diff options
author | spop <spop@138bc75d-0d04-0410-961f-82ee72b054a4> | 2007-03-09 12:39:49 +0000 |
---|---|---|
committer | spop <spop@138bc75d-0d04-0410-961f-82ee72b054a4> | 2007-03-09 12:39:49 +0000 |
commit | 355572cc823edb71bcbbcaa8a330a4874cec22d0 (patch) | |
tree | 4ee6210dea808586e7ac71cd42ee0dac8c9cde63 /gcc/omega.c | |
parent | 975070ea36f98849ff1100f6619c46937b0c3160 (diff) | |
download | gcc-355572cc823edb71bcbbcaa8a330a4874cec22d0.tar.gz |
* doc/loop.texi: Document the Omega linear constraints solver.
* doc/invoke.texi: Document -fcheck-data-deps, omega-max-vars,
omega-max-geqs, omega-max-eqs, omega-max-wild-cards,
omega-hash-table-size, omega-max-keys, and
omega-eliminate-redundant-constraints.
* tree-pass.h (pass_check_data_deps): Declared.
* omega.c: New.
* omega.h: New.
* timevar.def (TV_CHECK_DATA_DEPS): Declared.
* tree-ssa-loop.c (check_data_deps, gate_check_data_deps,
pass_check_data_deps): New.
* tree-data-ref.c (init_data_ref): Remove declaration.
(dump_data_dependence_relation): Dump DDR_INNER_LOOP.
(analyze_array): Renamed init_array_ref, move up initializations.
(init_data_ref): Renamed init_pointer_ref. Moved before its call.
Removed arguments that are set to NULL.
(analyze_indirect_ref): Correct indentation, correct call to
init_pointer_ref.
(object_analysis): Call init_array_ref instead of analyze_array.
(initialize_data_dependence_relation): Initialize DDR_INNER_LOOP.
(access_functions_are_affine_or_constant_p): Use DR_ACCESS_FNS instead
of DR_ACCESS_FNS_ADDR.
(init_omega_eq_with_af, omega_extract_distance_vectors,
omega_setup_subscript, init_omega_for_ddr_1, init_omega_for_ddr,
ddr_consistent_p): New.
(compute_affine_dependence): Check consistency of ddrs when
flag_check_data_deps is passed.
(analyze_all_data_dependences): Uncomment.
(tree_check_data_deps): New.
* tree-data-ref.h: Include omega.h.
(DR_ACCESS_FNS_ADDR): Removed.
(data_dependence_relation): Add inner_loop.
(DDR_INNER_LOOP): New.
* common.opt (fcheck-data-deps): New.
* tree-flow.h (tree_check_data_deps): Declare.
* Makefile.in (TREE_DATA_REF_H): Depend on omega.h.
(OBJS-common): Depend on omega.o.
(omega.o): Define.
* passes.c (pass_check_data_deps): Scheduled.
* params.def (PARAM_OMEGA_MAX_VARS, PARAM_OMEGA_MAX_GEQS,
PARAM_OMEGA_MAX_EQS, PARAM_OMEGA_MAX_WILD_CARDS,
PARAM_OMEGA_HASH_TABLE_SIZE, PARAM_OMEGA_MAX_KEYS,
PARAM_VECT_MAX_VERSION_CHECKS,
PARAM_OMEGA_ELIMINATE_REDUNDANT_CONSTRAINTS): New.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@122749 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/omega.c')
-rw-r--r-- | gcc/omega.c | 5583 |
1 files changed, 5583 insertions, 0 deletions
diff --git a/gcc/omega.c b/gcc/omega.c new file mode 100644 index 00000000000..9f5abaf406b --- /dev/null +++ b/gcc/omega.c @@ -0,0 +1,5583 @@ +/* Source code for an implementation of the Omega test, an integer + programming algorithm for dependence analysis, by William Pugh, + appeared in Supercomputing '91 and CACM Aug 92. + + This code has no license restrictions, and is considered public + domain. + + Changes copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc. + Contributed by Sebastian Pop <sebastian.pop@inria.fr> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 2, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING. If not, write to the Free +Software Foundation, 59 Temple Place - Suite 330, Boston, MA +02111-1307, USA. */ + +/* For a detailed description, see "Constraint-Based Array Dependence + Analysis" William Pugh, David Wonnacott, TOPLAS'98 and David + Wonnacott's thesis: + ftp://ftp.cs.umd.edu/pub/omega/davewThesis/davewThesis.ps.gz +*/ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "errors.h" +#include "ggc.h" +#include "tree.h" +#include "diagnostic.h" +#include "varray.h" +#include "tree-pass.h" +#include "omega.h" + +/* When set to true, keep substitution variables. When set to false, + resurrect substitution variables (convert substitutions back to EQs). */ +static bool omega_reduce_with_subs = true; + +/* When set to true, omega_simplify_problem checks for problem with no + solutions, calling verify_omega_pb. */ +static bool omega_verify_simplification = false; + +/* When set to true, only produce a single simplified result. */ +static bool omega_single_result = false; + +/* Set return_single_result to 1 when omega_single_result is true. */ +static int return_single_result = 0; + +/* Hash table for equations generated by the solver. */ +#define HASH_TABLE_SIZE PARAM_VALUE (PARAM_OMEGA_HASH_TABLE_SIZE) +#define MAX_KEYS PARAM_VALUE (PARAM_OMEGA_MAX_KEYS) +static eqn hash_master; +static int next_key; +static int hash_version = 0; + +/* Set to true for making the solver enter in approximation mode. */ +static bool in_approximate_mode = false; + +/* When set to zero, the solver is allowed to add new equalities to + the problem to be solved. */ +static int conservative = 0; + +/* Set to omega_true when the problem was successfully reduced, set to + omega_unknown when the solver is unable to determine an answer. */ +static enum omega_result omega_found_reduction; + +/* Set to true when the solver is allowed to add omega_red equations. */ +static bool create_color = false; + +/* Set to nonzero when the problem to be solved can be reduced. */ +static int may_be_red = 0; + +/* When false, there should be no substitution equations in the + simplified problem. */ +static int please_no_equalities_in_simplified_problems = 0; + +/* Variables names for pretty printing. */ +static char wild_name[200][40]; + +/* Pointer to the void problem. */ +static omega_pb no_problem = (omega_pb) 0; + +/* Pointer to the problem to be solved. */ +static omega_pb original_problem = (omega_pb) 0; + + +/* Return the integer A divided by B. */ + +static inline int +int_div (int a, int b) +{ + if (a > 0) + return a/b; + else + return -((-a + b - 1)/b); +} + +/* Return the integer A modulo B. */ + +static inline int +int_mod (int a, int b) +{ + return a - b * int_div (a, b); +} + +/* For X and Y positive integers, return X multiplied by Y and check + that the result does not overflow. */ + +static inline int +check_pos_mul (int x, int y) +{ + if (x != 0) + gcc_assert ((INT_MAX) / x > y); + + return x * y; +} + +/* Return X multiplied by Y and check that the result does not + overflow. */ + +static inline int +check_mul (int x, int y) +{ + if (x >= 0) + { + if (y >= 0) + return check_pos_mul (x, y); + else + return -check_pos_mul (x, -y); + } + else if (y >= 0) + return -check_pos_mul (-x, y); + else + return check_pos_mul (-x, -y); +} + +/* Test whether equation E is red. */ + +static inline bool +omega_eqn_is_red (eqn e, int desired_res) +{ + return (desired_res == omega_simplify && e->color == omega_red); +} + +/* Return a string for VARIABLE. */ + +static inline char * +omega_var_to_str (int variable) +{ + if (0 <= variable && variable <= 20) + return wild_name[variable]; + + if (-20 < variable && variable < 0) + return wild_name[40 + variable]; + + /* Collapse all the entries that would have overflowed. */ + return wild_name[21]; +} + +/* Return a string for variable I in problem PB. */ + +static inline char * +omega_variable_to_str (omega_pb pb, int i) +{ + return omega_var_to_str (pb->var[i]); +} + +/* Do nothing function: used for default initializations. */ + +void +omega_no_procedure (omega_pb pb ATTRIBUTE_UNUSED) +{ +} + +void (*omega_when_reduced) (omega_pb) = omega_no_procedure; + +/* Compute the greatest common divisor of A and B. */ + +static inline int +gcd (int b, int a) +{ + if (b == 1) + return 1; + + while (b != 0) + { + int t = b; + b = a % b; + a = t; + } + + return a; +} + +/* Print to FILE from PB equation E with all its coefficients + multiplied by C. */ + +static void +omega_print_term (FILE *file, omega_pb pb, eqn e, int c) +{ + int i; + bool first = true; + int n = pb->num_vars; + int went_first = -1; + + for (i = 1; i <= n; i++) + if (c * e->coef[i] > 0) + { + first = false; + went_first = i; + + if (c * e->coef[i] == 1) + fprintf (file, "%s", omega_variable_to_str (pb, i)); + else + fprintf (file, "%d * %s", c * e->coef[i], + omega_variable_to_str (pb, i)); + break; + } + + for (i = 1; i <= n; i++) + if (i != went_first && c * e->coef[i] != 0) + { + if (!first && c * e->coef[i] > 0) + fprintf (file, " + "); + + first = false; + + if (c * e->coef[i] == 1) + fprintf (file, "%s", omega_variable_to_str (pb, i)); + else if (c * e->coef[i] == -1) + fprintf (file, " - %s", omega_variable_to_str (pb, i)); + else + fprintf (file, "%d * %s", c * e->coef[i], + omega_variable_to_str (pb, i)); + } + + if (!first && c * e->coef[0] > 0) + fprintf (file, " + "); + + if (first || c * e->coef[0] != 0) + fprintf (file, "%d", c * e->coef[0]); +} + +/* Print to FILE the equation E of problem PB. */ + +void +omega_print_eqn (FILE *file, omega_pb pb, eqn e, bool test, int extra) +{ + int i; + int n = pb->num_vars + extra; + bool is_lt = test && e->coef[0] == -1; + bool first; + + if (test) + { + if (e->touched) + fprintf (file, "!"); + + else if (e->key != 0) + fprintf (file, "%d: ", e->key); + } + + if (e->color == omega_red) + fprintf (file, "["); + + first = true; + + for (i = is_lt ? 1 : 0; i <= n; i++) + if (e->coef[i] < 0) + { + if (!first) + fprintf (file, " + "); + else + first = false; + + if (i == 0) + fprintf (file, "%d", -e->coef[i]); + else if (e->coef[i] == -1) + fprintf (file, "%s", omega_variable_to_str (pb, i)); + else + fprintf (file, "%d * %s", -e->coef[i], + omega_variable_to_str (pb, i)); + } + + if (first) + { + if (is_lt) + { + fprintf (file, "1"); + is_lt = false; + } + else + fprintf (file, "0"); + } + + if (test == 0) + fprintf (file, " = "); + else if (is_lt) + fprintf (file, " < "); + else + fprintf (file, " <= "); + + first = true; + + for (i = 0; i <= n; i++) + if (e->coef[i] > 0) + { + if (!first) + fprintf (file, " + "); + else + first = false; + + if (i == 0) + fprintf (file, "%d", e->coef[i]); + else if (e->coef[i] == 1) + fprintf (file, "%s", omega_variable_to_str (pb, i)); + else + fprintf (file, "%d * %s", e->coef[i], + omega_variable_to_str (pb, i)); + } + + if (first) + fprintf (file, "0"); + + if (e->color == omega_red) + fprintf (file, "]"); +} + +/* Print to FILE all the variables of problem PB. */ + +static void +omega_print_vars (FILE *file, omega_pb pb) +{ + int i; + + fprintf (file, "variables = "); + + if (pb->safe_vars > 0) + fprintf (file, "protected ("); + + for (i = 1; i <= pb->num_vars; i++) + { + fprintf (file, "%s", omega_variable_to_str (pb, i)); + + if (i == pb->safe_vars) + fprintf (file, ")"); + + if (i < pb->num_vars) + fprintf (file, ", "); + } + + fprintf (file, "\n"); +} + +/* Debug problem PB. */ + +void +debug_omega_problem (omega_pb pb) +{ + omega_print_problem (stderr, pb); +} + +/* Print to FILE problem PB. */ + +void +omega_print_problem (FILE *file, omega_pb pb) +{ + int e; + + if (!pb->variables_initialized) + omega_initialize_variables (pb); + + omega_print_vars (file, pb); + + for (e = 0; e < pb->num_eqs; e++) + { + omega_print_eq (file, pb, &pb->eqs[e]); + fprintf (file, "\n"); + } + + fprintf (file, "Done with EQ\n"); + + for (e = 0; e < pb->num_geqs; e++) + { + omega_print_geq (file, pb, &pb->geqs[e]); + fprintf (file, "\n"); + } + + fprintf (file, "Done with GEQ\n"); + + for (e = 0; e < pb->num_subs; e++) + { + eqn eq = &pb->subs[e]; + + if (eq->color == omega_red) + fprintf (file, "["); + + if (eq->key > 0) + fprintf (file, "%s := ", omega_var_to_str (eq->key)); + else + fprintf (file, "#%d := ", eq->key); + + omega_print_term (file, pb, eq, 1); + + if (eq->color == omega_red) + fprintf (file, "]"); + + fprintf (file, "\n"); + } +} + +/* Return the number of equations in PB tagged omega_red. */ + +int +omega_count_red_equations (omega_pb pb) +{ + int e, i; + int result = 0; + + for (e = 0; e < pb->num_eqs; e++) + if (pb->eqs[e].color == omega_red) + { + for (i = pb->num_vars; i > 0; i--) + if (pb->geqs[e].coef[i]) + break; + + if (i == 0 && pb->geqs[e].coef[0] == 1) + return 0; + else + result += 2; + } + + for (e = 0; e < pb->num_geqs; e++) + if (pb->geqs[e].color == omega_red) + result += 1; + + for (e = 0; e < pb->num_subs; e++) + if (pb->subs[e].color == omega_red) + result += 2; + + return result; +} + +/* Print to FILE all the equations in PB that are tagged omega_red. */ + +void +omega_print_red_equations (FILE *file, omega_pb pb) +{ + int e; + + if (!pb->variables_initialized) + omega_initialize_variables (pb); + + omega_print_vars (file, pb); + + for (e = 0; e < pb->num_eqs; e++) + if (pb->eqs[e].color == omega_red) + { + omega_print_eq (file, pb, &pb->eqs[e]); + fprintf (file, "\n"); + } + + for (e = 0; e < pb->num_geqs; e++) + if (pb->geqs[e].color == omega_red) + { + omega_print_geq (file, pb, &pb->geqs[e]); + fprintf (file, "\n"); + } + + for (e = 0; e < pb->num_subs; e++) + if (pb->subs[e].color == omega_red) + { + eqn eq = &pb->subs[e]; + fprintf (file, "["); + + if (eq->key > 0) + fprintf (file, "%s := ", omega_var_to_str (eq->key)); + else + fprintf (file, "#%d := ", eq->key); + + omega_print_term (file, pb, eq, 1); + fprintf (file, "]\n"); + } +} + +/* Pretty print PB to FILE. */ + +void +omega_pretty_print_problem (FILE *file, omega_pb pb) +{ + int e, v, v1, v2, v3, t; + bool *live = XNEWVEC (bool, OMEGA_MAX_GEQS); + int stuffPrinted = 0; + bool change; + + typedef enum { + none, le, lt + } partial_order_type; + + partial_order_type **po = XNEWVEC (partial_order_type *, + OMEGA_MAX_VARS * OMEGA_MAX_VARS); + int **po_eq = XNEWVEC (int *, OMEGA_MAX_VARS * OMEGA_MAX_VARS); + int *last_links = XNEWVEC (int, OMEGA_MAX_VARS); + int *first_links = XNEWVEC (int, OMEGA_MAX_VARS); + int *chain_length = XNEWVEC (int, OMEGA_MAX_VARS); + int *chain = XNEWVEC (int, OMEGA_MAX_VARS); + int i, m; + bool multiprint; + + if (!pb->variables_initialized) + omega_initialize_variables (pb); + + if (pb->num_vars > 0) + { + omega_eliminate_redundant (pb, false); + + for (e = 0; e < pb->num_eqs; e++) + { + if (stuffPrinted) + fprintf (file, "; "); + + stuffPrinted = 1; + omega_print_eq (file, pb, &pb->eqs[e]); + } + + for (e = 0; e < pb->num_geqs; e++) + live[e] = true; + + while (1) + { + for (v = 1; v <= pb->num_vars; v++) + { + last_links[v] = first_links[v] = 0; + chain_length[v] = 0; + + for (v2 = 1; v2 <= pb->num_vars; v2++) + po[v][v2] = none; + } + + for (e = 0; e < pb->num_geqs; e++) + if (live[e]) + { + for (v = 1; v <= pb->num_vars; v++) + if (pb->geqs[e].coef[v] == 1) + first_links[v]++; + else if (pb->geqs[e].coef[v] == -1) + last_links[v]++; + + v1 = pb->num_vars; + + while (v1 > 0 && pb->geqs[e].coef[v1] == 0) + v1--; + + v2 = v1 - 1; + + while (v2 > 0 && pb->geqs[e].coef[v2] == 0) + v2--; + + v3 = v2 - 1; + + while (v3 > 0 && pb->geqs[e].coef[v3] == 0) + v3--; + + if (pb->geqs[e].coef[0] > 0 || pb->geqs[e].coef[0] < -1 + || v2 <= 0 || v3 > 0 + || pb->geqs[e].coef[v1] * pb->geqs[e].coef[v2] != -1) + { + /* Not a partial order relation. */ + } + else + { + if (pb->geqs[e].coef[v1] == 1) + { + v3 = v2; + v2 = v1; + v1 = v3; + } + + /* Relation is v1 <= v2 or v1 < v2. */ + po[v1][v2] = ((pb->geqs[e].coef[0] == 0) ? le : lt); + po_eq[v1][v2] = e; + } + } + for (v = 1; v <= pb->num_vars; v++) + chain_length[v] = last_links[v]; + + /* Just in case pb->num_vars <= 0. */ + change = false; + for (t = 0; t < pb->num_vars; t++) + { + change = false; + + for (v1 = 1; v1 <= pb->num_vars; v1++) + for (v2 = 1; v2 <= pb->num_vars; v2++) + if (po[v1][v2] != none && + chain_length[v1] <= chain_length[v2]) + { + chain_length[v1] = chain_length[v2] + 1; + change = true; + } + } + + /* Caught in cycle. */ + gcc_assert (!change); + + for (v1 = 1; v1 <= pb->num_vars; v1++) + if (chain_length[v1] == 0) + first_links[v1] = 0; + + v = 1; + + for (v1 = 2; v1 <= pb->num_vars; v1++) + if (chain_length[v1] + first_links[v1] > + chain_length[v] + first_links[v]) + v = v1; + + if (chain_length[v] + first_links[v] == 0) + break; + + if (stuffPrinted) + fprintf (file, "; "); + + stuffPrinted = 1; + + /* Chain starts at v. */ + { + int tmp; + bool first = true; + + for (e = 0; e < pb->num_geqs; e++) + if (live[e] && pb->geqs[e].coef[v] == 1) + { + if (!first) + fprintf (file, ", "); + + tmp = pb->geqs[e].coef[v]; + pb->geqs[e].coef[v] = 0; + omega_print_term (file, pb, &pb->geqs[e], -1); + pb->geqs[e].coef[v] = tmp; + live[e] = false; + first = false; + } + + if (!first) + fprintf (file, " <= "); + } + + /* Find chain. */ + chain[0] = v; + m = 1; + while (1) + { + /* Print chain. */ + for (v2 = 1; v2 <= pb->num_vars; v2++) + if (po[v][v2] && chain_length[v] == 1 + chain_length[v2]) + break; + + if (v2 > pb->num_vars) + break; + + chain[m++] = v2; + v = v2; + } + + fprintf (file, "%s", omega_variable_to_str (pb, chain[0])); + + for (multiprint = false, i = 1; i < m; i++) + { + v = chain[i - 1]; + v2 = chain[i]; + + if (po[v][v2] == le) + fprintf (file, " <= "); + else + fprintf (file, " < "); + + fprintf (file, "%s", omega_variable_to_str (pb, v2)); + live[po_eq[v][v2]] = false; + + if (!multiprint && i < m - 1) + for (v3 = 1; v3 <= pb->num_vars; v3++) + { + if (v == v3 || v2 == v3 + || po[v][v2] != po[v][v3] + || po[v2][chain[i + 1]] != po[v3][chain[i + 1]]) + continue; + + fprintf (file, ",%s", omega_variable_to_str (pb, v3)); + live[po_eq[v][v3]] = false; + live[po_eq[v3][chain[i + 1]]] = false; + multiprint = true; + } + else + multiprint = false; + } + + v = chain[m - 1]; + /* Print last_links. */ + { + int tmp; + bool first = true; + + for (e = 0; e < pb->num_geqs; e++) + if (live[e] && pb->geqs[e].coef[v] == -1) + { + if (!first) + fprintf (file, ", "); + else + fprintf (file, " <= "); + + tmp = pb->geqs[e].coef[v]; + pb->geqs[e].coef[v] = 0; + omega_print_term (file, pb, &pb->geqs[e], 1); + pb->geqs[e].coef[v] = tmp; + live[e] = false; + first = false; + } + } + } + + for (e = 0; e < pb->num_geqs; e++) + if (live[e]) + { + if (stuffPrinted) + fprintf (file, "; "); + stuffPrinted = 1; + omega_print_geq (file, pb, &pb->geqs[e]); + } + + for (e = 0; e < pb->num_subs; e++) + { + eqn eq = &pb->subs[e]; + + if (stuffPrinted) + fprintf (file, "; "); + + stuffPrinted = 1; + + if (eq->key > 0) + fprintf (file, "%s := ", omega_var_to_str (eq->key)); + else + fprintf (file, "#%d := ", eq->key); + + omega_print_term (file, pb, eq, 1); + } + } + + free (live); + free (po); + free (po_eq); + free (last_links); + free (first_links); + free (chain_length); + free (chain); +} + +/* Assign to variable I in PB the next wildcard name. The name of a + wildcard is a negative number. */ +static int next_wild_card = 0; + +static void +omega_name_wild_card (omega_pb pb, int i) +{ + --next_wild_card; + if (next_wild_card < -PARAM_VALUE (PARAM_OMEGA_MAX_WILD_CARDS)) + next_wild_card = -1; + pb->var[i] = next_wild_card; +} + +/* Return the index of the last protected (or safe) variable in PB, + after having added a new wildcard variable. */ + +static int +omega_add_new_wild_card (omega_pb pb) +{ + int e; + int i = ++pb->safe_vars; + pb->num_vars++; + + /* Make a free place in the protected (safe) variables, by moving + the non protected variable pointed by "I" at the end, ie. at + offset pb->num_vars. */ + if (pb->num_vars != i) + { + /* Move "I" for all the inequalities. */ + for (e = pb->num_geqs - 1; e >= 0; e--) + { + if (pb->geqs[e].coef[i]) + pb->geqs[e].touched = 1; + + pb->geqs[e].coef[pb->num_vars] = pb->geqs[e].coef[i]; + } + + /* Move "I" for all the equalities. */ + for (e = pb->num_eqs - 1; e >= 0; e--) + pb->eqs[e].coef[pb->num_vars] = pb->eqs[e].coef[i]; + + /* Move "I" for all the substitutions. */ + for (e = pb->num_subs - 1; e >= 0; e--) + pb->subs[e].coef[pb->num_vars] = pb->subs[e].coef[i]; + + /* Move the identifier. */ + pb->var[pb->num_vars] = pb->var[i]; + } + + /* Initialize at zero all the coefficients */ + for (e = pb->num_geqs - 1; e >= 0; e--) + pb->geqs[e].coef[i] = 0; + + for (e = pb->num_eqs - 1; e >= 0; e--) + pb->eqs[e].coef[i] = 0; + + for (e = pb->num_subs - 1; e >= 0; e--) + pb->subs[e].coef[i] = 0; + + /* And give it a name. */ + omega_name_wild_card (pb, i); + return i; +} + +/* Delete inequality E from problem PB that has N_VARS variables. */ + +static void +omega_delete_geq (omega_pb pb, int e, int n_vars) +{ + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Deleting %d (last:%d): ", e, pb->num_geqs - 1); + omega_print_geq (dump_file, pb, &pb->geqs[e]); + fprintf (dump_file, "\n"); + } + + if (e < pb->num_geqs - 1) + omega_copy_eqn (&pb->geqs[e], &pb->geqs[pb->num_geqs - 1], n_vars); + + pb->num_geqs--; +} + +/* Delete extra inequality E from problem PB that has N_VARS + variables. */ + +static void +omega_delete_geq_extra (omega_pb pb, int e, int n_vars) +{ + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Deleting %d: ",e); + omega_print_geq_extra (dump_file, pb, &pb->geqs[e]); + fprintf (dump_file, "\n"); + } + + if (e < pb->num_geqs - 1) + omega_copy_eqn (&pb->geqs[e], &pb->geqs[pb->num_geqs - 1], n_vars); + + pb->num_geqs--; +} + + +/* Remove variable I from problem PB. */ + +static void +omega_delete_variable (omega_pb pb, int i) +{ + int n_vars = pb->num_vars; + int e; + + if (omega_safe_var_p (pb, i)) + { + int j = pb->safe_vars; + + for (e = pb->num_geqs - 1; e >= 0; e--) + { + pb->geqs[e].touched = 1; + pb->geqs[e].coef[i] = pb->geqs[e].coef[j]; + pb->geqs[e].coef[j] = pb->geqs[e].coef[n_vars]; + } + + for (e = pb->num_eqs - 1; e >= 0; e--) + { + pb->eqs[e].coef[i] = pb->eqs[e].coef[j]; + pb->eqs[e].coef[j] = pb->eqs[e].coef[n_vars]; + } + + for (e = pb->num_subs - 1; e >= 0; e--) + { + pb->subs[e].coef[i] = pb->subs[e].coef[j]; + pb->subs[e].coef[j] = pb->subs[e].coef[n_vars]; + } + + pb->var[i] = pb->var[j]; + pb->var[j] = pb->var[n_vars]; + } + else if (i < n_vars) + { + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].coef[n_vars]) + { + pb->geqs[e].coef[i] = pb->geqs[e].coef[n_vars]; + pb->geqs[e].touched = 1; + } + + for (e = pb->num_eqs - 1; e >= 0; e--) + pb->eqs[e].coef[i] = pb->eqs[e].coef[n_vars]; + + for (e = pb->num_subs - 1; e >= 0; e--) + pb->subs[e].coef[i] = pb->subs[e].coef[n_vars]; + + pb->var[i] = pb->var[n_vars]; + } + + if (omega_safe_var_p (pb, i)) + pb->safe_vars--; + + pb->num_vars--; +} + +/* Because the coefficients of an equation are sparse, PACKING records + indices for non null coefficients. */ +static int *packing; + +/* Set up the coefficients of PACKING, following the coefficients of + equation EQN that has NUM_VARS variables. */ + +static inline int +setup_packing (eqn eqn, int num_vars) +{ + int k; + int n = 0; + + for (k = num_vars; k >= 0; k--) + if (eqn->coef[k]) + packing[n++] = k; + + return n; +} + +/* Computes a linear combination of EQ and SUB at VAR with coefficient + C, such that EQ->coef[VAR] is set to 0. TOP_VAR is the number of + non null indices of SUB stored in PACKING. */ + +static inline void +omega_substitute_red_1 (eqn eq, eqn sub, int var, int c, bool *found_black, + int top_var) +{ + if (eq->coef[var] != 0) + { + if (eq->color == omega_black) + *found_black = true; + else + { + int j, k = eq->coef[var]; + + eq->coef[var] = 0; + + for (j = top_var; j >= 0; j--) + eq->coef[packing[j]] -= sub->coef[packing[j]] * k * c; + } + } +} + +/* Substitute in PB variable VAR with "C * SUB". */ + +static void +omega_substitute_red (omega_pb pb, eqn sub, int var, int c, bool *found_black) +{ + int e, top_var = setup_packing (sub, pb->num_vars); + + *found_black = false; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + if (sub->color == omega_red) + fprintf (dump_file, "["); + + fprintf (dump_file, "substituting using %s := ", + omega_variable_to_str (pb, var)); + omega_print_term (dump_file, pb, sub, -c); + + if (sub->color == omega_red) + fprintf (dump_file, "]"); + + fprintf (dump_file, "\n"); + omega_print_vars (dump_file, pb); + } + + for (e = pb->num_eqs - 1; e >= 0; e--) + { + eqn eqn = &(pb->eqs[e]); + + omega_substitute_red_1 (eqn, sub, var, c, found_black, top_var); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + omega_print_eq (dump_file, pb, eqn); + fprintf (dump_file, "\n"); + } + } + + for (e = pb->num_geqs - 1; e >= 0; e--) + { + eqn eqn = &(pb->geqs[e]); + + omega_substitute_red_1 (eqn, sub, var, c, found_black, top_var); + + if (eqn->coef[var] && eqn->color == omega_red) + eqn->touched = 1; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + omega_print_geq (dump_file, pb, eqn); + fprintf (dump_file, "\n"); + } + } + + for (e = pb->num_subs - 1; e >= 0; e--) + { + eqn eqn = &(pb->subs[e]); + + omega_substitute_red_1 (eqn, sub, var, c, found_black, top_var); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "%s := ", omega_var_to_str (eqn->key)); + omega_print_term (dump_file, pb, eqn, 1); + fprintf (dump_file, "\n"); + } + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "---\n\n"); + + if (omega_safe_var_p (pb, var) && !omega_wildcard_p (pb, var)) + *found_black = true; +} + +/* Substitute in PB variable VAR with "C * SUB". */ + +static void +omega_substitute (omega_pb pb, eqn sub, int var, int c) +{ + int e, j, j0; + int top_var = setup_packing (sub, pb->num_vars); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "substituting using %s := ", + omega_variable_to_str (pb, var)); + omega_print_term (dump_file, pb, sub, -c); + fprintf (dump_file, "\n"); + omega_print_vars (dump_file, pb); + } + + if (top_var < 0) + { + for (e = pb->num_eqs - 1; e >= 0; e--) + pb->eqs[e].coef[var] = 0; + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].coef[var] != 0) + { + pb->geqs[e].touched = 1; + pb->geqs[e].coef[var] = 0; + } + + for (e = pb->num_subs - 1; e >= 0; e--) + pb->subs[e].coef[var] = 0; + + if (omega_safe_var_p (pb, var) && !omega_wildcard_p (pb, var)) + { + int k; + eqn eqn = &(pb->subs[pb->num_subs++]); + + for (k = pb->num_vars; k >= 0; k--) + eqn->coef[k] = 0; + + eqn->key = pb->var[var]; + eqn->color = omega_black; + } + } + else if (top_var == 0 && packing[0] == 0) + { + c = -sub->coef[0] * c; + + for (e = pb->num_eqs - 1; e >= 0; e--) + { + pb->eqs[e].coef[0] += pb->eqs[e].coef[var] * c; + pb->eqs[e].coef[var] = 0; + } + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].coef[var] != 0) + { + pb->geqs[e].coef[0] += pb->geqs[e].coef[var] * c; + pb->geqs[e].coef[var] = 0; + pb->geqs[e].touched = 1; + } + + for (e = pb->num_subs - 1; e >= 0; e--) + { + pb->subs[e].coef[0] += pb->subs[e].coef[var] * c; + pb->subs[e].coef[var] = 0; + } + + if (omega_safe_var_p (pb, var) && !omega_wildcard_p (pb, var)) + { + int k; + eqn eqn = &(pb->subs[pb->num_subs++]); + + for (k = pb->num_vars; k >= 1; k--) + eqn->coef[k] = 0; + + eqn->coef[0] = c; + eqn->key = pb->var[var]; + eqn->color = omega_black; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "---\n\n"); + omega_print_problem (dump_file, pb); + fprintf (dump_file, "===\n\n"); + } + } + else + { + for (e = pb->num_eqs - 1; e >= 0; e--) + { + eqn eqn = &(pb->eqs[e]); + int k = eqn->coef[var]; + + if (k != 0) + { + k = c * k; + eqn->coef[var] = 0; + + for (j = top_var; j >= 0; j--) + { + j0 = packing[j]; + eqn->coef[j0] -= sub->coef[j0] * k; + } + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + omega_print_eq (dump_file, pb, eqn); + fprintf (dump_file, "\n"); + } + } + + for (e = pb->num_geqs - 1; e >= 0; e--) + { + eqn eqn = &(pb->geqs[e]); + int k = eqn->coef[var]; + + if (k != 0) + { + k = c * k; + eqn->touched = 1; + eqn->coef[var] = 0; + + for (j = top_var; j >= 0; j--) + { + j0 = packing[j]; + eqn->coef[j0] -= sub->coef[j0] * k; + } + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + omega_print_geq (dump_file, pb, eqn); + fprintf (dump_file, "\n"); + } + } + + for (e = pb->num_subs - 1; e >= 0; e--) + { + eqn eqn = &(pb->subs[e]); + int k = eqn->coef[var]; + + if (k != 0) + { + k = c * k; + eqn->coef[var] = 0; + + for (j = top_var; j >= 0; j--) + { + j0 = packing[j]; + eqn->coef[j0] -= sub->coef[j0] * k; + } + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "%s := ", omega_var_to_str (eqn->key)); + omega_print_term (dump_file, pb, eqn, 1); + fprintf (dump_file, "\n"); + } + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "---\n\n"); + omega_print_problem (dump_file, pb); + fprintf (dump_file, "===\n\n"); + } + + if (omega_safe_var_p (pb, var) && !omega_wildcard_p (pb, var)) + { + int k; + eqn eqn = &(pb->subs[pb->num_subs++]); + c = -c; + + for (k = pb->num_vars; k >= 0; k--) + eqn->coef[k] = c * (sub->coef[k]); + + eqn->key = pb->var[var]; + eqn->color = sub->color; + } + } +} + +/* Solve e = factor alpha for x_j and substitute. */ + +static void +omega_do_mod (omega_pb pb, int factor, int e, int j) +{ + int k, i; + eqn eq = omega_alloc_eqns (0, 1); + int nfactor; + bool kill_j = false; + + omega_copy_eqn (eq, &pb->eqs[e], pb->num_vars); + + for (k = pb->num_vars; k >= 0; k--) + { + eq->coef[k] = int_mod (eq->coef[k], factor); + + if (2 * eq->coef[k] >= factor) + eq->coef[k] -= factor; + } + + nfactor = eq->coef[j]; + + if (omega_safe_var_p (pb, j) && !omega_wildcard_p (pb, j)) + { + i = omega_add_new_wild_card (pb); + eq->coef[pb->num_vars] = eq->coef[i]; + eq->coef[j] = 0; + eq->coef[i] = -factor; + kill_j = true; + } + else + { + eq->coef[j] = -factor; + if (!omega_wildcard_p (pb, j)) + omega_name_wild_card (pb, j); + } + + omega_substitute (pb, eq, j, nfactor); + + for (k = pb->num_vars; k >= 0; k--) + pb->eqs[e].coef[k] = pb->eqs[e].coef[k] / factor; + + if (kill_j) + omega_delete_variable (pb, j); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Mod-ing and normalizing produces:\n"); + omega_print_problem (dump_file, pb); + } + + omega_free_eqns (eq, 1); +} + +/* Multiplies by -1 inequality E. */ + +void +omega_negate_geq (omega_pb pb, int e) +{ + int i; + + for (i = pb->num_vars; i >= 0; i--) + pb->geqs[e].coef[i] *= -1; + + pb->geqs[e].coef[0]--; + pb->geqs[e].touched = 1; +} + +/* Returns OMEGA_TRUE when problem PB has a solution. */ + +static enum omega_result +verify_omega_pb (omega_pb pb) +{ + enum omega_result result; + int e; + bool any_color = false; + omega_pb tmp_problem = XNEW (struct omega_pb); + + omega_copy_problem (tmp_problem, pb); + tmp_problem->safe_vars = 0; + tmp_problem->num_subs = 0; + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].color == omega_red) + { + any_color = true; + break; + } + + if (please_no_equalities_in_simplified_problems) + any_color = true; + + if (any_color) + original_problem = no_problem; + else + original_problem = pb; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "verifying problem"); + + if (any_color) + fprintf (dump_file, " (color mode)"); + + fprintf (dump_file, " :\n"); + omega_print_problem (dump_file, pb); + } + + result = omega_solve_problem (tmp_problem, omega_unknown); + original_problem = no_problem; + free (tmp_problem); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + if (result != omega_false) + fprintf (dump_file, "verified problem\n"); + else + fprintf (dump_file, "disproved problem\n"); + omega_print_problem (dump_file, pb); + } + + return result; +} + +/* Add a new equality to problem PB at last position E. */ + +static void +adding_equality_constraint (omega_pb pb, int e) +{ + if (original_problem != no_problem + && original_problem != pb + && !conservative) + { + int i, j; + int e2 = original_problem->num_eqs++; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + "adding equality constraint %d to outer problem\n", e2); + omega_init_eqn_zero (&original_problem->eqs[e2], + original_problem->num_vars); + + for (i = pb->num_vars; i >= 1; i--) + { + for (j = original_problem->num_vars; j >= 1; j--) + if (original_problem->var[j] == pb->var[i]) + break; + + if (j <= 0) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "retracting\n"); + original_problem->num_eqs--; + return; + } + original_problem->eqs[e2].coef[j] = pb->eqs[e].coef[i]; + } + + original_problem->eqs[e2].coef[0] = pb->eqs[e].coef[0]; + + if (dump_file && (dump_flags & TDF_DETAILS)) + omega_print_problem (dump_file, original_problem); + } +} + +static int *fast_lookup; +static int *fast_lookup_red; + +typedef enum { + normalize_false, + normalize_uncoupled, + normalize_coupled +} normalize_return_type; + +/* Normalizes PB by removing redundant constraints. Returns + normalize_false when the constraints system has no solution, + otherwise returns normalize_coupled or normalize_uncoupled. */ + +static normalize_return_type +normalize_omega_problem (omega_pb pb) +{ + int e, i, j, k, n_vars; + int coupled_subscripts = 0; + + n_vars = pb->num_vars; + + for (e = 0; e < pb->num_geqs; e++) + { + if (!pb->geqs[e].touched) + { + if (!single_var_geq (&pb->geqs[e], n_vars)) + coupled_subscripts = 1; + } + else + { + int g, top_var, i0, hashCode; + int *p = &packing[0]; + + for (k = 1; k <= n_vars; k++) + if (pb->geqs[e].coef[k]) + *(p++) = k; + + top_var = (p - &packing[0]) - 1; + + if (top_var == -1) + { + if (pb->geqs[e].coef[0] < 0) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + omega_print_geq (dump_file, pb, &pb->geqs[e]); + fprintf (dump_file, "\nequations have no solution \n"); + } + return normalize_false; + } + + omega_delete_geq (pb, e, n_vars); + e--; + continue; + } + else if (top_var == 0) + { + int singlevar = packing[0]; + + g = pb->geqs[e].coef[singlevar]; + + if (g > 0) + { + pb->geqs[e].coef[singlevar] = 1; + pb->geqs[e].key = singlevar; + } + else + { + g = -g; + pb->geqs[e].coef[singlevar] = -1; + pb->geqs[e].key = -singlevar; + } + + if (g > 1) + pb->geqs[e].coef[0] = int_div (pb->geqs[e].coef[0], g); + } + else + { + int g2; + int hash_key_multiplier = 31; + + coupled_subscripts = 1; + i0 = top_var; + i = packing[i0--]; + g = pb->geqs[e].coef[i]; + hashCode = g * (i + 3); + + if (g < 0) + g = -g; + + for (; i0 >= 0; i0--) + { + int x; + + i = packing[i0]; + x = pb->geqs[e].coef[i]; + hashCode = hashCode * hash_key_multiplier * (i + 3) + x; + + if (x < 0) + x = -x; + + if (x == 1) + { + g = 1; + i0--; + break; + } + else + g = gcd (x, g); + } + + for (; i0 >= 0; i0--) + { + int x; + i = packing[i0]; + x = pb->geqs[e].coef[i]; + hashCode = hashCode * hash_key_multiplier * (i + 3) + x; + } + + if (g > 1) + { + pb->geqs[e].coef[0] = int_div (pb->geqs[e].coef[0], g); + i0 = top_var; + i = packing[i0--]; + pb->geqs[e].coef[i] = pb->geqs[e].coef[i] / g; + hashCode = pb->geqs[e].coef[i] * (i + 3); + + for (; i0 >= 0; i0--) + { + i = packing[i0]; + pb->geqs[e].coef[i] = pb->geqs[e].coef[i] / g; + hashCode = hashCode * hash_key_multiplier * (i + 3) + + pb->geqs[e].coef[i]; + } + } + + g2 = abs (hashCode); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Hash code = %d, eqn = ", hashCode); + omega_print_geq (dump_file, pb, &pb->geqs[e]); + fprintf (dump_file, "\n"); + } + + j = g2 % HASH_TABLE_SIZE; + + do { + eqn proto = &(hash_master[j]); + + if (proto->touched == g2) + { + if (proto->coef[0] == top_var) + { + if (hashCode >= 0) + for (i0 = top_var; i0 >= 0; i0--) + { + i = packing[i0]; + + if (pb->geqs[e].coef[i] != proto->coef[i]) + break; + } + else + for (i0 = top_var; i0 >= 0; i0--) + { + i = packing[i0]; + + if (pb->geqs[e].coef[i] != -proto->coef[i]) + break; + } + + if (i0 < 0) + { + if (hashCode >= 0) + pb->geqs[e].key = proto->key; + else + pb->geqs[e].key = -proto->key; + break; + } + } + } + else if (proto->touched < 0) + { + omega_init_eqn_zero (proto, pb->num_vars); + if (hashCode >= 0) + for (i0 = top_var; i0 >= 0; i0--) + { + i = packing[i0]; + proto->coef[i] = pb->geqs[e].coef[i]; + } + else + for (i0 = top_var; i0 >= 0; i0--) + { + i = packing[i0]; + proto->coef[i] = -pb->geqs[e].coef[i]; + } + + proto->coef[0] = top_var; + proto->touched = g2; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, " constraint key = %d\n", + next_key); + + proto->key = next_key++; + + /* Too many hash keys generated. */ + gcc_assert (proto->key <= MAX_KEYS); + + if (hashCode >= 0) + pb->geqs[e].key = proto->key; + else + pb->geqs[e].key = -proto->key; + + break; + } + + j = (j + 1) % HASH_TABLE_SIZE; + } while (1); + } + + pb->geqs[e].touched = 0; + } + + { + int eKey = pb->geqs[e].key; + int e2; + if (e > 0) + { + int cTerm = pb->geqs[e].coef[0]; + e2 = fast_lookup[MAX_KEYS - eKey]; + + if (e2 < e && pb->geqs[e2].key == -eKey + && pb->geqs[e2].color == omega_black) + { + if (pb->geqs[e2].coef[0] < -cTerm) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + omega_print_geq (dump_file, pb, &pb->geqs[e]); + fprintf (dump_file, "\n"); + omega_print_geq (dump_file, pb, &pb->geqs[e2]); + fprintf (dump_file, + "\nequations have no solution \n"); + } + return normalize_false; + } + + if (pb->geqs[e2].coef[0] == -cTerm + && (create_color + || pb->geqs[e].color == omega_black)) + { + omega_copy_eqn (&pb->eqs[pb->num_eqs], &pb->geqs[e], + pb->num_vars); + if (pb->geqs[e].color == omega_black) + adding_equality_constraint (pb, pb->num_eqs); + pb->num_eqs++; + gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); + } + } + + e2 = fast_lookup_red[MAX_KEYS - eKey]; + + if (e2 < e && pb->geqs[e2].key == -eKey + && pb->geqs[e2].color == omega_red) + { + if (pb->geqs[e2].coef[0] < -cTerm) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + omega_print_geq (dump_file, pb, &pb->geqs[e]); + fprintf (dump_file, "\n"); + omega_print_geq (dump_file, pb, &pb->geqs[e2]); + fprintf (dump_file, + "\nequations have no solution \n"); + } + return normalize_false; + } + + if (pb->geqs[e2].coef[0] == -cTerm && create_color) + { + omega_copy_eqn (&pb->eqs[pb->num_eqs], &pb->geqs[e], + pb->num_vars); + pb->eqs[pb->num_eqs].color = omega_red; + pb->num_eqs++; + gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); + } + } + + e2 = fast_lookup[MAX_KEYS + eKey]; + + if (e2 < e && pb->geqs[e2].key == eKey + && pb->geqs[e2].color == omega_black) + { + if (pb->geqs[e2].coef[0] > cTerm) + { + if (pb->geqs[e].color == omega_black) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "Removing Redudant Equation: "); + omega_print_geq (dump_file, pb, &(pb->geqs[e2])); + fprintf (dump_file, "\n"); + fprintf (dump_file, + "[a] Made Redundant by: "); + omega_print_geq (dump_file, pb, &(pb->geqs[e])); + fprintf (dump_file, "\n"); + } + pb->geqs[e2].coef[0] = cTerm; + omega_delete_geq (pb, e, n_vars); + e--; + continue; + } + } + else + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Removing Redudant Equation: "); + omega_print_geq (dump_file, pb, &(pb->geqs[e])); + fprintf (dump_file, "\n"); + fprintf (dump_file, "[b] Made Redundant by: "); + omega_print_geq (dump_file, pb, &(pb->geqs[e2])); + fprintf (dump_file, "\n"); + } + omega_delete_geq (pb, e, n_vars); + e--; + continue; + } + } + + e2 = fast_lookup_red[MAX_KEYS + eKey]; + + if (e2 < e && pb->geqs[e2].key == eKey + && pb->geqs[e2].color == omega_red) + { + if (pb->geqs[e2].coef[0] >= cTerm) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Removing Redudant Equation: "); + omega_print_geq (dump_file, pb, &(pb->geqs[e2])); + fprintf (dump_file, "\n"); + fprintf (dump_file, "[c] Made Redundant by: "); + omega_print_geq (dump_file, pb, &(pb->geqs[e])); + fprintf (dump_file, "\n"); + } + pb->geqs[e2].coef[0] = cTerm; + pb->geqs[e2].color = pb->geqs[e].color; + } + else if (pb->geqs[e].color == omega_red) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Removing Redudant Equation: "); + omega_print_geq (dump_file, pb, &(pb->geqs[e])); + fprintf (dump_file, "\n"); + fprintf (dump_file, "[d] Made Redundant by: "); + omega_print_geq (dump_file, pb, &(pb->geqs[e2])); + fprintf (dump_file, "\n"); + } + } + omega_delete_geq (pb, e, n_vars); + e--; + continue; + + } + } + + if (pb->geqs[e].color == omega_red) + fast_lookup_red[MAX_KEYS + eKey] = e; + else + fast_lookup[MAX_KEYS + eKey] = e; + } + } + + create_color = false; + return coupled_subscripts ? normalize_coupled : normalize_uncoupled; +} + +/* Divide the coefficients of EQN by their gcd. N_VARS is the number + of variables in EQN. */ + +static inline void +divide_eqn_by_gcd (eqn eqn, int n_vars) +{ + int var, g = 0; + + for (var = n_vars; var >= 0; var--) + g = gcd (abs (eqn->coef[var]), g); + + if (g) + for (var = n_vars; var >= 0; var--) + eqn->coef[var] = eqn->coef[var] / g; +} + +/* Rewrite some non-safe variables in function of protected + wildcard variables. */ + +static void +cleanout_wildcards (omega_pb pb) +{ + int e, i, j; + int n_vars = pb->num_vars; + bool renormalize = false; + + for (e = pb->num_eqs - 1; e >= 0; e--) + for (i = n_vars; !omega_safe_var_p (pb, i); i--) + if (pb->eqs[e].coef[i] != 0) + { + /* i is the last non-zero non-safe variable. */ + + for (j = i - 1; !omega_safe_var_p (pb, j); j--) + if (pb->eqs[e].coef[j] != 0) + break; + + /* j is the next non-zero non-safe variable, or points + to a safe variable: it is then a wildcard variable. */ + + /* Clean it out. */ + if (omega_safe_var_p (pb, j)) + { + eqn sub = &(pb->eqs[e]); + int c = pb->eqs[e].coef[i]; + int a = abs (c); + int e2; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "Found a single wild card equality: "); + omega_print_eq (dump_file, pb, &pb->eqs[e]); + fprintf (dump_file, "\n"); + omega_print_problem (dump_file, pb); + } + + for (e2 = pb->num_eqs - 1; e2 >= 0; e2--) + if (e != e2 && pb->eqs[e2].coef[i] + && (pb->eqs[e2].color == omega_red + || (pb->eqs[e2].color == omega_black + && pb->eqs[e].color == omega_black))) + { + eqn eqn = &(pb->eqs[e2]); + int var, k; + + for (var = n_vars; var >= 0; var--) + eqn->coef[var] *= a; + + k = eqn->coef[i]; + + for (var = n_vars; var >= 0; var--) + eqn->coef[var] -= sub->coef[var] * k / c; + + eqn->coef[i] = 0; + divide_eqn_by_gcd (eqn, n_vars); + } + + for (e2 = pb->num_geqs - 1; e2 >= 0; e2--) + if (pb->geqs[e2].coef[i] + && (pb->geqs[e2].color == omega_red + || (pb->eqs[e].color == omega_black + && pb->geqs[e2].color == omega_black))) + { + eqn eqn = &(pb->geqs[e2]); + int var, k; + + for (var = n_vars; var >= 0; var--) + eqn->coef[var] *= a; + + k = eqn->coef[i]; + + for (var = n_vars; var >= 0; var--) + eqn->coef[var] -= sub->coef[var] * k / c; + + eqn->coef[i] = 0; + eqn->touched = 1; + renormalize = true; + } + + for (e2 = pb->num_subs - 1; e2 >= 0; e2--) + if (pb->subs[e2].coef[i] + && (pb->subs[e2].color == omega_red + || (pb->subs[e2].color == omega_black + && pb->eqs[e].color == omega_black))) + { + eqn eqn = &(pb->subs[e2]); + int var, k; + + for (var = n_vars; var >= 0; var--) + eqn->coef[var] *= a; + + k = eqn->coef[i]; + + for (var = n_vars; var >= 0; var--) + eqn->coef[var] -= sub->coef[var] * k / c; + + eqn->coef[i] = 0; + divide_eqn_by_gcd (eqn, n_vars); + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "cleaned-out wildcard: "); + omega_print_problem (dump_file, pb); + } + break; + } + } + + if (renormalize) + normalize_omega_problem (pb); +} + +/* Swap values contained in I and J. */ + +static inline void +swap (int *i, int *j) +{ + int tmp; + tmp = *i; + *i = *j; + *j = tmp; +} + +/* Swap values contained in I and J. */ + +static inline void +bswap (bool *i, bool *j) +{ + bool tmp; + tmp = *i; + *i = *j; + *j = tmp; +} + +/* Make variable IDX unprotected in PB, by swapping its index at the + PB->safe_vars rank. */ + +static inline void +omega_unprotect_1 (omega_pb pb, int *idx, bool *unprotect) +{ + /* If IDX is protected... */ + if (*idx < pb->safe_vars) + { + /* ... swap its index with the last non protected index. */ + int j = pb->safe_vars; + int e; + + for (e = pb->num_geqs - 1; e >= 0; e--) + { + pb->geqs[e].touched = 1; + swap (&pb->geqs[e].coef[*idx], &pb->geqs[e].coef[j]); + } + + for (e = pb->num_eqs - 1; e >= 0; e--) + swap (&pb->eqs[e].coef[*idx], &pb->eqs[e].coef[j]); + + for (e = pb->num_subs - 1; e >= 0; e--) + swap (&pb->subs[e].coef[*idx], &pb->subs[e].coef[j]); + + if (unprotect) + bswap (&unprotect[*idx], &unprotect[j]); + + swap (&pb->var[*idx], &pb->var[j]); + pb->forwarding_address[pb->var[*idx]] = *idx; + pb->forwarding_address[pb->var[j]] = j; + (*idx)--; + } + + /* The variable at pb->safe_vars is also unprotected now. */ + pb->safe_vars--; +} + +/* During the Fourier-Motzkin elimination some variables are + substituted with other variables. This function resurrects the + substituted variables in PB. */ + +static void +resurrect_subs (omega_pb pb) +{ + if (pb->num_subs > 0 + && please_no_equalities_in_simplified_problems == 0) + { + int i, e, n, m; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "problem reduced, bringing variables back to life\n"); + omega_print_problem (dump_file, pb); + } + + for (i = 1; omega_safe_var_p (pb, i); i++) + if (omega_wildcard_p (pb, i)) + omega_unprotect_1 (pb, &i, NULL); + + m = pb->num_subs; + n = MAX (pb->num_vars, pb->safe_vars + m); + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (single_var_geq (&pb->geqs[e], pb->num_vars)) + { + if (!omega_safe_var_p (pb, abs (pb->geqs[e].key))) + pb->geqs[e].key += (pb->geqs[e].key > 0 ? m : -m); + } + else + { + pb->geqs[e].touched = 1; + pb->geqs[e].key = 0; + } + + for (i = pb->num_vars; !omega_safe_var_p (pb, i); i--) + { + pb->var[i + m] = pb->var[i]; + + for (e = pb->num_geqs - 1; e >= 0; e--) + pb->geqs[e].coef[i + m] = pb->geqs[e].coef[i]; + + for (e = pb->num_eqs - 1; e >= 0; e--) + pb->eqs[e].coef[i + m] = pb->eqs[e].coef[i]; + + for (e = pb->num_subs - 1; e >= 0; e--) + pb->subs[e].coef[i + m] = pb->subs[e].coef[i]; + } + + for (i = pb->safe_vars + m; !omega_safe_var_p (pb, i); i--) + { + for (e = pb->num_geqs - 1; e >= 0; e--) + pb->geqs[e].coef[i] = 0; + + for (e = pb->num_eqs - 1; e >= 0; e--) + pb->eqs[e].coef[i] = 0; + + for (e = pb->num_subs - 1; e >= 0; e--) + pb->subs[e].coef[i] = 0; + } + + pb->num_vars += m; + + for (e = pb->num_subs - 1; e >= 0; e--) + { + pb->var[pb->safe_vars + 1 + e] = pb->subs[e].key; + omega_copy_eqn (&(pb->eqs[pb->num_eqs]), &(pb->subs[e]), + pb->num_vars); + pb->eqs[pb->num_eqs].coef[pb->safe_vars + 1 + e] = -1; + pb->eqs[pb->num_eqs].color = omega_black; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "brought back: "); + omega_print_eq (dump_file, pb, &pb->eqs[pb->num_eqs]); + fprintf (dump_file, "\n"); + } + + pb->num_eqs++; + gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); + } + + pb->safe_vars += m; + pb->num_subs = 0; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "variables brought back to life\n"); + omega_print_problem (dump_file, pb); + } + + cleanout_wildcards (pb); + } +} + +static inline bool +implies (unsigned int a, unsigned int b) +{ + return (a == (a & b)); +} + +/* Eliminate redundant equations in PB. When EXPENSIVE is true, an + extra step is performed. Returns omega_false when there exist no + solution, omega_true otherwise. */ + +enum omega_result +omega_eliminate_redundant (omega_pb pb, bool expensive) +{ + int c, e, e1, e2, e3, p, q, i, k, alpha, alpha1, alpha2, alpha3; + bool *is_dead = XNEWVEC (bool, OMEGA_MAX_GEQS); + omega_pb tmp_problem; + + /* {P,Z,N}EQS = {Positive,Zero,Negative} Equations. */ + unsigned int *peqs = XNEWVEC (unsigned int, OMEGA_MAX_GEQS); + unsigned int *zeqs = XNEWVEC (unsigned int, OMEGA_MAX_GEQS); + unsigned int *neqs = XNEWVEC (unsigned int, OMEGA_MAX_GEQS); + + /* PP = Possible Positives, PZ = Possible Zeros, PN = Possible Negatives */ + unsigned int pp, pz, pn; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "in eliminate Redudant:\n"); + omega_print_problem (dump_file, pb); + } + + for (e = pb->num_geqs - 1; e >= 0; e--) + { + int tmp = 1; + + is_dead[e] = false; + peqs[e] = zeqs[e] = neqs[e] = 0; + + for (i = pb->num_vars; i >= 1; i--) + { + if (pb->geqs[e].coef[i] > 0) + peqs[e] |= tmp; + else if (pb->geqs[e].coef[i] < 0) + neqs[e] |= tmp; + else + zeqs[e] |= tmp; + + tmp <<= 1; + } + } + + + for (e1 = pb->num_geqs - 1; e1 >= 0; e1--) + if (!is_dead[e1]) + for (e2 = e1 - 1; e2 >= 0; e2--) + if (!is_dead[e2]) + { + for (p = pb->num_vars; p > 1; p--) + for (q = p - 1; q > 0; q--) + if ((alpha = pb->geqs[e1].coef[p] * pb->geqs[e2].coef[q] + - pb->geqs[e2].coef[p] * pb->geqs[e1].coef[q]) != 0) + goto foundPQ; + + continue; + + foundPQ: + pz = ((zeqs[e1] & zeqs[e2]) | (peqs[e1] & neqs[e2]) + | (neqs[e1] & peqs[e2])); + pp = peqs[e1] | peqs[e2]; + pn = neqs[e1] | neqs[e2]; + + for (e3 = pb->num_geqs - 1; e3 >= 0; e3--) + if (e3 != e1 && e3 != e2) + { + if (!implies (zeqs[e3], pz)) + goto nextE3; + + alpha1 = (pb->geqs[e2].coef[q] * pb->geqs[e3].coef[p] + - pb->geqs[e2].coef[p] * pb->geqs[e3].coef[q]); + alpha2 = -(pb->geqs[e1].coef[q] * pb->geqs[e3].coef[p] + - pb->geqs[e1].coef[p] * pb->geqs[e3].coef[q]); + alpha3 = alpha; + + if (alpha1 * alpha2 <= 0) + goto nextE3; + + if (alpha1 < 0) + { + alpha1 = -alpha1; + alpha2 = -alpha2; + alpha3 = -alpha3; + } + + if (alpha3 > 0) + { + /* Trying to prove e3 is redundant. */ + if (!implies (peqs[e3], pp) + || !implies (neqs[e3], pn)) + goto nextE3; + + if (pb->geqs[e3].color == omega_black + && (pb->geqs[e1].color == omega_red + || pb->geqs[e2].color == omega_red)) + goto nextE3; + + for (k = pb->num_vars; k >= 1; k--) + if (alpha3 * pb->geqs[e3].coef[k] + != (alpha1 * pb->geqs[e1].coef[k] + + alpha2 * pb->geqs[e2].coef[k])) + goto nextE3; + + c = (alpha1 * pb->geqs[e1].coef[0] + + alpha2 * pb->geqs[e2].coef[0]); + + if (c < alpha3 * (pb->geqs[e3].coef[0] + 1)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "found redundant inequality\n"); + fprintf (dump_file, + "alpha1, alpha2, alpha3 = %d,%d,%d\n", + alpha1, alpha2, alpha3); + + omega_print_geq (dump_file, pb, &(pb->geqs[e1])); + fprintf (dump_file, "\n"); + omega_print_geq (dump_file, pb, &(pb->geqs[e2])); + fprintf (dump_file, "\n=> "); + omega_print_geq (dump_file, pb, &(pb->geqs[e3])); + fprintf (dump_file, "\n\n"); + } + + is_dead[e3] = true; + } + } + else + { + /* Trying to prove e3 <= 0 and therefore e3 = 0, + or trying to prove e3 < 0, and therefore the + problem has no solutions. */ + if (!implies (peqs[e3], pn) + || !implies (neqs[e3], pp)) + goto nextE3; + + if (pb->geqs[e1].color == omega_red + || pb->geqs[e2].color == omega_red + || pb->geqs[e3].color == omega_red) + goto nextE3; + + alpha3 = alpha3; + /* verify alpha1*v1+alpha2*v2 = alpha3*v3 */ + for (k = pb->num_vars; k >= 1; k--) + if (alpha3 * pb->geqs[e3].coef[k] + != (alpha1 * pb->geqs[e1].coef[k] + + alpha2 * pb->geqs[e2].coef[k])) + goto nextE3; + + c = (alpha1 * pb->geqs[e1].coef[0] + + alpha2 * pb->geqs[e2].coef[0]); + + if (c < alpha3 * (pb->geqs[e3].coef[0])) + { + /* We just proved e3 < 0, so no solutions exist. */ + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "found implied over tight inequality\n"); + fprintf (dump_file, + "alpha1, alpha2, alpha3 = %d,%d,%d\n", + alpha1, alpha2, -alpha3); + omega_print_geq (dump_file, pb, &(pb->geqs[e1])); + fprintf (dump_file, "\n"); + omega_print_geq (dump_file, pb, &(pb->geqs[e2])); + fprintf (dump_file, "\n=> not "); + omega_print_geq (dump_file, pb, &(pb->geqs[e3])); + fprintf (dump_file, "\n\n"); + } + free (is_dead); + free (peqs); + free (zeqs); + free (neqs); + return omega_false; + } + else if (c < alpha3 * (pb->geqs[e3].coef[0] - 1)) + { + /* We just proved that e3 <=0, so e3 = 0. */ + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "found implied tight inequality\n"); + fprintf (dump_file, + "alpha1, alpha2, alpha3 = %d,%d,%d\n", + alpha1, alpha2, -alpha3); + omega_print_geq (dump_file, pb, &(pb->geqs[e1])); + fprintf (dump_file, "\n"); + omega_print_geq (dump_file, pb, &(pb->geqs[e2])); + fprintf (dump_file, "\n=> inverse "); + omega_print_geq (dump_file, pb, &(pb->geqs[e3])); + fprintf (dump_file, "\n\n"); + } + + omega_copy_eqn (&pb->eqs[pb->num_eqs++], + &pb->geqs[e3], pb->num_vars); + gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); + adding_equality_constraint (pb, pb->num_eqs - 1); + is_dead[e3] = true; + } + } + nextE3:; + } + } + + /* Delete the inequalities that were marked as dead. */ + for (e = pb->num_geqs - 1; e >= 0; e--) + if (is_dead[e]) + omega_delete_geq (pb, e, pb->num_vars); + + if (!expensive) + goto eliminate_redundant_done; + + tmp_problem = XNEW (struct omega_pb); + conservative++; + + for (e = pb->num_geqs - 1; e >= 0; e--) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "checking equation %d to see if it is redundant: ", e); + omega_print_geq (dump_file, pb, &(pb->geqs[e])); + fprintf (dump_file, "\n"); + } + + omega_copy_problem (tmp_problem, pb); + omega_negate_geq (tmp_problem, e); + tmp_problem->safe_vars = 0; + tmp_problem->variables_freed = false; + + if (omega_solve_problem (tmp_problem, omega_false) == omega_false) + omega_delete_geq (pb, e, pb->num_vars); + } + + free (tmp_problem); + conservative--; + + if (!omega_reduce_with_subs) + { + resurrect_subs (pb); + gcc_assert (please_no_equalities_in_simplified_problems + || pb->num_subs == 0); + } + + eliminate_redundant_done: + free (is_dead); + free (peqs); + free (zeqs); + free (neqs); + return omega_true; +} + +/* For each inequality that has coefficients bigger than 20, try to + create a new constraint that cannot be derived from the original + constraint and that has smaller coefficients. Add the new + constraint at the end of geqs. Return the number of inequalities + that have been added to PB. */ + +static int +smooth_weird_equations (omega_pb pb) +{ + int e1, e2, e3, p, q, k, alpha, alpha1, alpha2, alpha3; + int c; + int v; + int result = 0; + + for (e1 = pb->num_geqs - 1; e1 >= 0; e1--) + if (pb->geqs[e1].color == omega_black) + { + int g = 999999; + + for (v = pb->num_vars; v >= 1; v--) + if (pb->geqs[e1].coef[v] != 0 && abs (pb->geqs[e1].coef[v]) < g) + g = abs (pb->geqs[e1].coef[v]); + + /* Magic number. */ + if (g > 20) + { + e3 = pb->num_geqs; + + for (v = pb->num_vars; v >= 1; v--) + pb->geqs[e3].coef[v] = int_div (6 * pb->geqs[e1].coef[v] + g / 2, + g); + + pb->geqs[e3].color = omega_black; + pb->geqs[e3].touched = 1; + /* Magic number. */ + pb->geqs[e3].coef[0] = 9997; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Checking to see if we can derive: "); + omega_print_geq (dump_file, pb, &pb->geqs[e3]); + fprintf (dump_file, "\n from: "); + omega_print_geq (dump_file, pb, &pb->geqs[e1]); + fprintf (dump_file, "\n"); + } + + for (e2 = pb->num_geqs - 1; e2 >= 0; e2--) + if (e1 != e2 && pb->geqs[e2].color == omega_black) + { + for (p = pb->num_vars; p > 1; p--) + { + for (q = p - 1; q > 0; q--) + { + alpha = + (pb->geqs[e1].coef[p] * pb->geqs[e2].coef[q] - + pb->geqs[e2].coef[p] * pb->geqs[e1].coef[q]); + if (alpha != 0) + goto foundPQ; + } + } + continue; + + foundPQ: + + alpha1 = (pb->geqs[e2].coef[q] * pb->geqs[e3].coef[p] + - pb->geqs[e2].coef[p] * pb->geqs[e3].coef[q]); + alpha2 = -(pb->geqs[e1].coef[q] * pb->geqs[e3].coef[p] + - pb->geqs[e1].coef[p] * pb->geqs[e3].coef[q]); + alpha3 = alpha; + + if (alpha1 * alpha2 <= 0) + continue; + + if (alpha1 < 0) + { + alpha1 = -alpha1; + alpha2 = -alpha2; + alpha3 = -alpha3; + } + + if (alpha3 > 0) + { + /* Try to prove e3 is redundant: verify + alpha1*v1 + alpha2*v2 = alpha3*v3. */ + for (k = pb->num_vars; k >= 1; k--) + if (alpha3 * pb->geqs[e3].coef[k] + != (alpha1 * pb->geqs[e1].coef[k] + + alpha2 * pb->geqs[e2].coef[k])) + goto nextE2; + + c = alpha1 * pb->geqs[e1].coef[0] + + alpha2 * pb->geqs[e2].coef[0]; + + if (c < alpha3 * (pb->geqs[e3].coef[0] + 1)) + pb->geqs[e3].coef[0] = int_div (c, alpha3); + } + nextE2:; + } + + if (pb->geqs[e3].coef[0] < 9997) + { + result++; + pb->num_geqs++; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "Smoothing wierd equations; adding:\n"); + omega_print_geq (dump_file, pb, &pb->geqs[e3]); + fprintf (dump_file, "\nto:\n"); + omega_print_problem (dump_file, pb); + fprintf (dump_file, "\n\n"); + } + } + } + } + return result; +} + +/* Replace tuples of inequalities, that define upper and lower half + spaces, with an equation. */ + +static void +coalesce (omega_pb pb) +{ + int e, e2; + int colors = 0; + bool *is_dead = XNEWVEC (bool, OMEGA_MAX_GEQS); + int found_something = 0; + + for (e = 0; e < pb->num_geqs; e++) + if (pb->geqs[e].color == omega_red) + colors++; + + if (colors < 2) + return; + + for (e = 0; e < pb->num_geqs; e++) + is_dead[e] = false; + + for (e = 0; e < pb->num_geqs; e++) + if (pb->geqs[e].color == omega_red + && !pb->geqs[e].touched) + for (e2 = e + 1; e2 < pb->num_geqs; e2++) + if (!pb->geqs[e2].touched + && pb->geqs[e].key == -pb->geqs[e2].key + && pb->geqs[e].coef[0] == -pb->geqs[e2].coef[0] + && pb->geqs[e2].color == omega_red) + { + omega_copy_eqn (&pb->eqs[pb->num_eqs++], &pb->geqs[e], + pb->num_vars); + gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); + found_something++; + is_dead[e] = true; + is_dead[e2] = true; + } + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (is_dead[e]) + omega_delete_geq (pb, e, pb->num_vars); + + if (dump_file && (dump_flags & TDF_DETAILS) && found_something) + { + fprintf (dump_file, "Coalesced pb->geqs into %d EQ's:\n", + found_something); + omega_print_problem (dump_file, pb); + } + + free (is_dead); +} + +/* Eliminate red inequalities from PB. When ELIMINATE_ALL is + true, continue to eliminate all the red inequalities. */ + +void +omega_eliminate_red (omega_pb pb, bool eliminate_all) +{ + int e, e2, e3, i, j, k, a, alpha1, alpha2; + int c = 0; + bool *is_dead = XNEWVEC (bool, OMEGA_MAX_GEQS); + int dead_count = 0; + int red_found; + omega_pb tmp_problem; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "in eliminate RED:\n"); + omega_print_problem (dump_file, pb); + } + + if (pb->num_eqs > 0) + omega_simplify_problem (pb); + + for (e = pb->num_geqs - 1; e >= 0; e--) + is_dead[e] = false; + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].color == omega_black && !is_dead[e]) + for (e2 = e - 1; e2 >= 0; e2--) + if (pb->geqs[e2].color == omega_black + && !is_dead[e2]) + { + a = 0; + + for (i = pb->num_vars; i > 1; i--) + for (j = i - 1; j > 0; j--) + if ((a = (pb->geqs[e].coef[i] * pb->geqs[e2].coef[j] + - pb->geqs[e2].coef[i] * pb->geqs[e].coef[j])) != 0) + goto found_pair; + + continue; + + found_pair: + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "found two equations to combine, i = %s, ", + omega_variable_to_str (pb, i)); + fprintf (dump_file, "j = %s, alpha = %d\n", + omega_variable_to_str (pb, j), a); + omega_print_geq (dump_file, pb, &(pb->geqs[e])); + fprintf (dump_file, "\n"); + omega_print_geq (dump_file, pb, &(pb->geqs[e2])); + fprintf (dump_file, "\n"); + } + + for (e3 = pb->num_geqs - 1; e3 >= 0; e3--) + if (pb->geqs[e3].color == omega_red) + { + alpha1 = (pb->geqs[e2].coef[j] * pb->geqs[e3].coef[i] + - pb->geqs[e2].coef[i] * pb->geqs[e3].coef[j]); + alpha2 = -(pb->geqs[e].coef[j] * pb->geqs[e3].coef[i] + - pb->geqs[e].coef[i] * pb->geqs[e3].coef[j]); + + if ((a > 0 && alpha1 > 0 && alpha2 > 0) + || (a < 0 && alpha1 < 0 && alpha2 < 0)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "alpha1 = %d, alpha2 = %d;" + "comparing against: ", + alpha1, alpha2); + omega_print_geq (dump_file, pb, &(pb->geqs[e3])); + fprintf (dump_file, "\n"); + } + + for (k = pb->num_vars; k >= 0; k--) + { + c = (alpha1 * pb->geqs[e].coef[k] + + alpha2 * pb->geqs[e2].coef[k]); + + if (c != a * pb->geqs[e3].coef[k]) + break; + + if (dump_file && (dump_flags & TDF_DETAILS) && k > 0) + fprintf (dump_file, " %s: %d, %d\n", + omega_variable_to_str (pb, k), c, + a * pb->geqs[e3].coef[k]); + } + + if (k < 0 + || (k == 0 && + ((a > 0 && c < a * pb->geqs[e3].coef[k]) + || (a < 0 && c > a * pb->geqs[e3].coef[k])))) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + dead_count++; + fprintf (dump_file, + "red equation#%d is dead " + "(%d dead so far, %d remain)\n", + e3, dead_count, + pb->num_geqs - dead_count); + omega_print_geq (dump_file, pb, &(pb->geqs[e])); + fprintf (dump_file, "\n"); + omega_print_geq (dump_file, pb, &(pb->geqs[e2])); + fprintf (dump_file, "\n"); + omega_print_geq (dump_file, pb, &(pb->geqs[e3])); + fprintf (dump_file, "\n"); + } + is_dead[e3] = true; + } + } + } + } + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (is_dead[e]) + omega_delete_geq (pb, e, pb->num_vars); + + free (is_dead); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "in eliminate RED, easy tests done:\n"); + omega_print_problem (dump_file, pb); + } + + for (red_found = 0, e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].color == omega_red) + red_found = 1; + + if (!red_found) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "fast checks worked\n"); + + if (!omega_reduce_with_subs) + gcc_assert (please_no_equalities_in_simplified_problems + || pb->num_subs == 0); + + return; + } + + if (!omega_verify_simplification + && verify_omega_pb (pb) == omega_false) + return; + + conservative++; + tmp_problem = XNEW (struct omega_pb); + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].color == omega_red) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "checking equation %d to see if it is redundant: ", e); + omega_print_geq (dump_file, pb, &(pb->geqs[e])); + fprintf (dump_file, "\n"); + } + + omega_copy_problem (tmp_problem, pb); + omega_negate_geq (tmp_problem, e); + tmp_problem->safe_vars = 0; + tmp_problem->variables_freed = false; + tmp_problem->num_subs = 0; + + if (omega_solve_problem (tmp_problem, omega_false) == omega_false) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "it is redundant\n"); + omega_delete_geq (pb, e, pb->num_vars); + } + else + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "it is not redundant\n"); + + if (!eliminate_all) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "no need to check other red equations\n"); + break; + } + } + } + + conservative--; + free (tmp_problem); + /* omega_simplify_problem (pb); */ + + if (!omega_reduce_with_subs) + gcc_assert (please_no_equalities_in_simplified_problems + || pb->num_subs == 0); +} + +/* Transform some wildcard variables to non-safe variables. */ + +static void +chain_unprotect (omega_pb pb) +{ + int i, e; + bool *unprotect = XNEWVEC (bool, OMEGA_MAX_VARS); + + for (i = 1; omega_safe_var_p (pb, i); i++) + { + unprotect[i] = omega_wildcard_p (pb, i); + + for (e = pb->num_subs - 1; e >= 0; e--) + if (pb->subs[e].coef[i]) + unprotect[i] = false; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Doing chain reaction unprotection\n"); + omega_print_problem (dump_file, pb); + + for (i = 1; omega_safe_var_p (pb, i); i++) + if (unprotect[i]) + fprintf (dump_file, "unprotecting %s\n", + omega_variable_to_str (pb, i)); + } + + for (i = 1; omega_safe_var_p (pb, i); i++) + if (unprotect[i]) + omega_unprotect_1 (pb, &i, unprotect); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "After chain reactions\n"); + omega_print_problem (dump_file, pb); + } + + free (unprotect); +} + +/* Reduce problem PB. */ + +static void +omega_problem_reduced (omega_pb pb) +{ + if (omega_verify_simplification + && !in_approximate_mode + && verify_omega_pb (pb) == omega_false) + return; + + if (PARAM_VALUE (PARAM_OMEGA_ELIMINATE_REDUNDANT_CONSTRAINTS) + && !omega_eliminate_redundant (pb, true)) + return; + + omega_found_reduction = omega_true; + + if (!please_no_equalities_in_simplified_problems) + coalesce (pb); + + if (omega_reduce_with_subs + || please_no_equalities_in_simplified_problems) + chain_unprotect (pb); + else + resurrect_subs (pb); + + if (!return_single_result) + { + int i; + + for (i = 1; omega_safe_var_p (pb, i); i++) + pb->forwarding_address[pb->var[i]] = i; + + for (i = 0; i < pb->num_subs; i++) + pb->forwarding_address[pb->subs[i].key] = -i - 1; + + (*omega_when_reduced) (pb); + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "-------------------------------------------\n"); + fprintf (dump_file, "problem reduced:\n"); + omega_print_problem (dump_file, pb); + fprintf (dump_file, "-------------------------------------------\n"); + } +} + +/* Eliminates all the free variables for problem PB, that is all the + variables from FV to PB->NUM_VARS. */ + +static void +omega_free_eliminations (omega_pb pb, int fv) +{ + bool try_again = true; + int i, e, e2; + int n_vars = pb->num_vars; + + while (try_again) + { + try_again = false; + + for (i = n_vars; i > fv; i--) + { + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].coef[i]) + break; + + if (e < 0) + e2 = e; + else if (pb->geqs[e].coef[i] > 0) + { + for (e2 = e - 1; e2 >= 0; e2--) + if (pb->geqs[e2].coef[i] < 0) + break; + } + else + { + for (e2 = e - 1; e2 >= 0; e2--) + if (pb->geqs[e2].coef[i] > 0) + break; + } + + if (e2 < 0) + { + int e3; + for (e3 = pb->num_subs - 1; e3 >= 0; e3--) + if (pb->subs[e3].coef[i]) + break; + + if (e3 >= 0) + continue; + + for (e3 = pb->num_eqs - 1; e3 >= 0; e3--) + if (pb->eqs[e3].coef[i]) + break; + + if (e3 >= 0) + continue; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "a free elimination of %s\n", + omega_variable_to_str (pb, i)); + + if (e >= 0) + { + omega_delete_geq (pb, e, n_vars); + + for (e--; e >= 0; e--) + if (pb->geqs[e].coef[i]) + omega_delete_geq (pb, e, n_vars); + + try_again = (i < n_vars); + } + + omega_delete_variable (pb, i); + n_vars = pb->num_vars; + } + } + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\nafter free eliminations:\n"); + omega_print_problem (dump_file, pb); + fprintf (dump_file, "\n"); + } +} + +/* Do free red eliminations. */ + +static void +free_red_eliminations (omega_pb pb) +{ + bool try_again = true; + int i, e, e2; + int n_vars = pb->num_vars; + bool *is_red_var = XNEWVEC (bool, OMEGA_MAX_VARS); + bool *is_dead_var = XNEWVEC (bool, OMEGA_MAX_VARS); + bool *is_dead_geq = XNEWVEC (bool, OMEGA_MAX_GEQS); + + for (i = n_vars; i > 0; i--) + { + is_red_var[i] = false; + is_dead_var[i] = false; + } + + for (e = pb->num_geqs - 1; e >= 0; e--) + { + is_dead_geq[e] = false; + + if (pb->geqs[e].color == omega_red) + for (i = n_vars; i > 0; i--) + if (pb->geqs[e].coef[i] != 0) + is_red_var[i] = true; + } + + while (try_again) + { + try_again = false; + for (i = n_vars; i > 0; i--) + if (!is_red_var[i] && !is_dead_var[i]) + { + for (e = pb->num_geqs - 1; e >= 0; e--) + if (!is_dead_geq[e] && pb->geqs[e].coef[i]) + break; + + if (e < 0) + e2 = e; + else if (pb->geqs[e].coef[i] > 0) + { + for (e2 = e - 1; e2 >= 0; e2--) + if (!is_dead_geq[e2] && pb->geqs[e2].coef[i] < 0) + break; + } + else + { + for (e2 = e - 1; e2 >= 0; e2--) + if (!is_dead_geq[e2] && pb->geqs[e2].coef[i] > 0) + break; + } + + if (e2 < 0) + { + int e3; + for (e3 = pb->num_subs - 1; e3 >= 0; e3--) + if (pb->subs[e3].coef[i]) + break; + + if (e3 >= 0) + continue; + + for (e3 = pb->num_eqs - 1; e3 >= 0; e3--) + if (pb->eqs[e3].coef[i]) + break; + + if (e3 >= 0) + continue; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "a free red elimination of %s\n", + omega_variable_to_str (pb, i)); + + for (; e >= 0; e--) + if (pb->geqs[e].coef[i]) + is_dead_geq[e] = true; + + try_again = true; + is_dead_var[i] = true; + } + } + } + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (is_dead_geq[e]) + omega_delete_geq (pb, e, n_vars); + + for (i = n_vars; i > 0; i--) + if (is_dead_var[i]) + omega_delete_variable (pb, i); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\nafter free red eliminations:\n"); + omega_print_problem (dump_file, pb); + fprintf (dump_file, "\n"); + } + + free (is_red_var); + free (is_dead_var); + free (is_dead_geq); +} + +/* For equation EQ of the form "0 = EQN", insert in PB two + inequalities "0 <= EQN" and "0 <= -EQN". */ + +void +omega_convert_eq_to_geqs (omega_pb pb, int eq) +{ + int i; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Converting Eq to Geqs\n"); + + /* Insert "0 <= EQN". */ + omega_copy_eqn (&pb->geqs[pb->num_geqs], &pb->eqs[eq], pb->num_vars); + pb->geqs[pb->num_geqs].touched = 1; + pb->num_geqs++; + + /* Insert "0 <= -EQN". */ + omega_copy_eqn (&pb->geqs[pb->num_geqs], &pb->eqs[eq], pb->num_vars); + pb->geqs[pb->num_geqs].touched = 1; + + for (i = 0; i <= pb->num_vars; i++) + pb->geqs[pb->num_geqs].coef[i] *= -1; + + pb->num_geqs++; + + if (dump_file && (dump_flags & TDF_DETAILS)) + omega_print_problem (dump_file, pb); +} + +/* Eliminates variable I from PB. */ + +static void +omega_do_elimination (omega_pb pb, int e, int i) +{ + eqn sub = omega_alloc_eqns (0, 1); + int c; + int n_vars = pb->num_vars; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "eliminating variable %s\n", + omega_variable_to_str (pb, i)); + + omega_copy_eqn (sub, &pb->eqs[e], pb->num_vars); + c = sub->coef[i]; + sub->coef[i] = 0; + if (c == 1 || c == -1) + { + if (pb->eqs[e].color == omega_red) + { + bool fB; + omega_substitute_red (pb, sub, i, c, &fB); + if (fB) + omega_convert_eq_to_geqs (pb, e); + else + omega_delete_variable (pb, i); + } + else + { + omega_substitute (pb, sub, i, c); + omega_delete_variable (pb, i); + } + } + else + { + int a = abs (c); + int e2 = e; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "performing non-exact elimination, c = %d\n", c); + + for (e = pb->num_eqs - 1; e >= 0; e--) + if (pb->eqs[e].coef[i]) + { + eqn eqn = &(pb->eqs[e]); + int j, k; + for (j = n_vars; j >= 0; j--) + eqn->coef[j] *= a; + k = eqn->coef[i]; + eqn->coef[i] = 0; + eqn->color |= sub->color; + for (j = n_vars; j >= 0; j--) + eqn->coef[j] -= sub->coef[j] * k / c; + } + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].coef[i]) + { + eqn eqn = &(pb->geqs[e]); + int j, k; + + if (sub->color == omega_red) + eqn->color = omega_red; + + for (j = n_vars; j >= 0; j--) + eqn->coef[j] *= a; + + eqn->touched = 1; + k = eqn->coef[i]; + eqn->coef[i] = 0; + + for (j = n_vars; j >= 0; j--) + eqn->coef[j] -= sub->coef[j] * k / c; + + } + + for (e = pb->num_subs - 1; e >= 0; e--) + if (pb->subs[e].coef[i]) + { + eqn eqn = &(pb->subs[e]); + int j, k; + gcc_assert (0); + gcc_assert (sub->color == omega_black); + for (j = n_vars; j >= 0; j--) + eqn->coef[j] *= a; + k = eqn->coef[i]; + eqn->coef[i] = 0; + for (j = n_vars; j >= 0; j--) + eqn->coef[j] -= sub->coef[j] * k / c; + } + + if (in_approximate_mode) + omega_delete_variable (pb, i); + else + omega_convert_eq_to_geqs (pb, e2); + } + + omega_free_eqns (sub, 1); +} + +/* Helper function for printing "sorry, no solution". */ + +static inline enum omega_result +omega_problem_has_no_solution (void) +{ + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "\nequations have no solution \n"); + + return omega_false; +} + +/* Helper function: solve equations in PB one at a time, following the + DESIRED_RES result. */ + +static enum omega_result +omega_solve_eq (omega_pb pb, enum omega_result desired_res) +{ + int i, j, e; + int g, g2; + g = 0; + + + if (dump_file && (dump_flags & TDF_DETAILS) && pb->num_eqs > 0) + { + fprintf (dump_file, "\nomega_solve_eq (%d, %d)\n", + desired_res, may_be_red); + omega_print_problem (dump_file, pb); + fprintf (dump_file, "\n"); + } + + if (may_be_red) + { + i = 0; + j = pb->num_eqs - 1; + + while (1) + { + eqn eq; + + while (i <= j && pb->eqs[i].color == omega_red) + i++; + + while (i <= j && pb->eqs[j].color == omega_black) + j--; + + if (i >= j) + break; + + eq = omega_alloc_eqns (0, 1); + omega_copy_eqn (eq, &pb->eqs[i], pb->num_vars); + omega_copy_eqn (&pb->eqs[i], &pb->eqs[j], pb->num_vars); + omega_copy_eqn (&pb->eqs[j], eq, pb->num_vars); + omega_free_eqns (eq, 1); + i++; + j--; + } + } + + /* Eliminate all EQ equations */ + for (e = pb->num_eqs - 1; e >= 0; e--) + { + eqn eqn = &(pb->eqs[e]); + int sv; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "----\n"); + + for (i = pb->num_vars; i > 0; i--) + if (eqn->coef[i]) + break; + + g = eqn->coef[i]; + + for (j = i - 1; j > 0; j--) + if (eqn->coef[j]) + break; + + /* i is the position of last non-zero coefficient, + g is the coefficient of i, + j is the position of next non-zero coefficient. */ + + if (j == 0) + { + if (eqn->coef[0] % g != 0) + return omega_problem_has_no_solution (); + + eqn->coef[0] = eqn->coef[0] / g; + eqn->coef[i] = 1; + pb->num_eqs--; + omega_do_elimination (pb, e, i); + continue; + } + + else if (j == -1) + { + if (eqn->coef[0] != 0) + return omega_problem_has_no_solution (); + + pb->num_eqs--; + continue; + } + + if (g < 0) + g = -g; + + if (g == 1) + { + pb->num_eqs--; + omega_do_elimination (pb, e, i); + } + + else + { + int k = j; + bool promotion_possible = + (omega_safe_var_p (pb, j) + && pb->safe_vars + 1 == i + && !omega_eqn_is_red (eqn, desired_res) + && !in_approximate_mode); + + if (dump_file && (dump_flags & TDF_DETAILS) && promotion_possible) + fprintf (dump_file, " Promotion possible\n"); + + normalizeEQ: + if (!omega_safe_var_p (pb, j)) + { + for (; g != 1 && !omega_safe_var_p (pb, j); j--) + g = gcd (abs (eqn->coef[j]), g); + g2 = g; + } + else if (!omega_safe_var_p (pb, i)) + g2 = g; + else + g2 = 0; + + for (; g != 1 && j > 0; j--) + g = gcd (abs (eqn->coef[j]), g); + + if (g > 1) + { + if (eqn->coef[0] % g != 0) + return omega_problem_has_no_solution (); + + for (j = 0; j <= pb->num_vars; j++) + eqn->coef[j] /= g; + + g2 = g2 / g; + } + + if (g2 > 1) + { + int e2; + + for (e2 = e - 1; e2 >= 0; e2--) + if (pb->eqs[e2].coef[i]) + break; + + if (e2 == -1) + for (e2 = pb->num_geqs - 1; e2 >= 0; e2--) + if (pb->geqs[e2].coef[i]) + break; + + if (e2 == -1) + for (e2 = pb->num_subs - 1; e2 >= 0; e2--) + if (pb->subs[e2].coef[i]) + break; + + if (e2 == -1) + { + bool change = false; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Ha! We own it! \n"); + omega_print_eq (dump_file, pb, eqn); + fprintf (dump_file, " \n"); + } + + g = eqn->coef[i]; + g = abs (g); + + for (j = i - 1; j >= 0; j--) + { + int t = int_mod (eqn->coef[j], g); + + if (2 * t >= g) + t -= g; + + if (t != eqn->coef[j]) + { + eqn->coef[j] = t; + change = true; + } + } + + if (!change) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "So what?\n"); + } + + else + { + omega_name_wild_card (pb, i); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + omega_print_eq (dump_file, pb, eqn); + fprintf (dump_file, " \n"); + } + + e++; + continue; + } + } + } + + if (promotion_possible) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "promoting %s to safety\n", + omega_variable_to_str (pb, i)); + omega_print_vars (dump_file, pb); + } + + pb->safe_vars++; + + if (!omega_wildcard_p (pb, i)) + omega_name_wild_card (pb, i); + + promotion_possible = false; + j = k; + goto normalizeEQ; + } + + if (g2 > 1 && !in_approximate_mode) + { + if (pb->eqs[e].color == omega_red) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "handling red equality\n"); + + pb->num_eqs--; + omega_do_elimination (pb, e, i); + continue; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "adding equation to handle safe variable \n"); + omega_print_eq (dump_file, pb, eqn); + fprintf (dump_file, "\n----\n"); + omega_print_problem (dump_file, pb); + fprintf (dump_file, "\n----\n"); + fprintf (dump_file, "\n----\n"); + } + + i = omega_add_new_wild_card (pb); + pb->num_eqs++; + gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); + omega_init_eqn_zero (&pb->eqs[e + 1], pb->num_vars); + omega_copy_eqn (&pb->eqs[e + 1], eqn, pb->safe_vars); + + for (j = pb->num_vars; j >= 0; j--) + { + pb->eqs[e + 1].coef[j] = int_mod (pb->eqs[e + 1].coef[j], g2); + + if (2 * pb->eqs[e + 1].coef[j] >= g2) + pb->eqs[e + 1].coef[j] -= g2; + } + + pb->eqs[e + 1].coef[i] = g2; + e += 2; + + if (dump_file && (dump_flags & TDF_DETAILS)) + omega_print_problem (dump_file, pb); + + continue; + } + + sv = pb->safe_vars; + if (g2 == 0) + sv = 0; + + /* Find variable to eliminate. */ + if (g2 > 1) + { + gcc_assert (in_approximate_mode); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "non-exact elimination: "); + omega_print_eq (dump_file, pb, eqn); + fprintf (dump_file, "\n"); + omega_print_problem (dump_file, pb); + } + + for (i = pb->num_vars; i > sv; i--) + if (pb->eqs[e].coef[i] != 0) + break; + } + else + for (i = pb->num_vars; i > sv; i--) + if (pb->eqs[e].coef[i] == 1 || pb->eqs[e].coef[i] == -1) + break; + + if (i > sv) + { + pb->num_eqs--; + omega_do_elimination (pb, e, i); + + if (dump_file && (dump_flags & TDF_DETAILS) && g2 > 1) + { + fprintf (dump_file, "result of non-exact elimination:\n"); + omega_print_problem (dump_file, pb); + } + } + else + { + int factor = (INT_MAX); + j = 0; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "doing moding\n"); + + for (i = pb->num_vars; i != sv; i--) + if ((pb->eqs[e].coef[i] & 1) != 0) + { + j = i; + i--; + + for (; i != sv; i--) + if ((pb->eqs[e].coef[i] & 1) != 0) + break; + + break; + } + + if (j != 0 && i == sv) + { + omega_do_mod (pb, 2, e, j); + e++; + continue; + } + + j = 0; + for (i = pb->num_vars; i != sv; i--) + if (pb->eqs[e].coef[i] != 0 + && factor > abs (pb->eqs[e].coef[i]) + 1) + { + factor = abs (pb->eqs[e].coef[i]) + 1; + j = i; + } + + if (j == sv) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "should not have happened\n"); + gcc_assert (0); + } + + omega_do_mod (pb, factor, e, j); + /* Go back and try this equation again. */ + e++; + } + } + } + + pb->num_eqs = 0; + return omega_unknown; +} + +/* Transform an inequation E to an equality, then solve DIFF problems + based on PB, and only differing by the constant part that is + diminished by one, trying to figure out which of the constants + satisfies PB. */ + +static enum omega_result +parallel_splinter (omega_pb pb, int e, int diff, + enum omega_result desired_res) +{ + omega_pb tmp_problem; + int i; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Using parallel splintering\n"); + omega_print_problem (dump_file, pb); + } + + tmp_problem = XNEW (struct omega_pb); + omega_copy_eqn (&pb->eqs[0], &pb->geqs[e], pb->num_vars); + pb->num_eqs = 1; + + for (i = 0; i <= diff; i++) + { + omega_copy_problem (tmp_problem, pb); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Splinter # %i\n", i); + omega_print_problem (dump_file, pb); + } + + if (omega_solve_problem (tmp_problem, desired_res) == omega_true) + { + free (tmp_problem); + return omega_true; + } + + pb->eqs[0].coef[0]--; + } + + free (tmp_problem); + return omega_false; +} + +/* Helper function: solve equations one at a time. */ + +static enum omega_result +omega_solve_geq (omega_pb pb, enum omega_result desired_res) +{ + int i, e; + int n_vars, fv; + enum omega_result result; + bool coupled_subscripts = false; + bool smoothed = false; + bool eliminate_again; + bool tried_eliminating_redundant = false; + + if (desired_res != omega_simplify) + { + pb->num_subs = 0; + pb->safe_vars = 0; + } + + solve_geq_start: + do { + gcc_assert (desired_res == omega_simplify || pb->num_subs == 0); + + /* Verify that there are not too many inequalities. */ + gcc_assert (pb->num_geqs <= OMEGA_MAX_GEQS); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\nomega_solve_geq (%d,%d):\n", + desired_res, please_no_equalities_in_simplified_problems); + omega_print_problem (dump_file, pb); + fprintf (dump_file, "\n"); + } + + n_vars = pb->num_vars; + + if (n_vars == 1) + { + enum omega_eqn_color u_color = omega_black; + enum omega_eqn_color l_color = omega_black; + int upper_bound = pos_infinity; + int lower_bound = neg_infinity; + + for (e = pb->num_geqs - 1; e >= 0; e--) + { + int a = pb->geqs[e].coef[1]; + int c = pb->geqs[e].coef[0]; + + /* Our equation is ax + c >= 0, or ax >= -c, or c >= -ax. */ + if (a == 0) + { + if (c < 0) + return omega_problem_has_no_solution (); + } + else if (a > 0) + { + if (a != 1) + c = int_div (c, a); + + if (lower_bound < -c + || (lower_bound == -c + && !omega_eqn_is_red (&pb->geqs[e], desired_res))) + { + lower_bound = -c; + l_color = pb->geqs[e].color; + } + } + else + { + if (a != -1) + c = int_div (c, -a); + + if (upper_bound > c + || (upper_bound == c + && !omega_eqn_is_red (&pb->geqs[e], desired_res))) + { + upper_bound = c; + u_color = pb->geqs[e].color; + } + } + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "upper bound = %d\n", upper_bound); + fprintf (dump_file, "lower bound = %d\n", lower_bound); + } + + if (lower_bound > upper_bound) + return omega_problem_has_no_solution (); + + if (desired_res == omega_simplify) + { + pb->num_geqs = 0; + if (pb->safe_vars == 1) + { + + if (lower_bound == upper_bound + && u_color == omega_black + && l_color == omega_black) + { + pb->eqs[0].coef[0] = -lower_bound; + pb->eqs[0].coef[1] = 1; + pb->eqs[0].color = omega_black; + pb->num_eqs = 1; + return omega_solve_problem (pb, desired_res); + } + else + { + if (lower_bound > neg_infinity) + { + pb->geqs[0].coef[0] = -lower_bound; + pb->geqs[0].coef[1] = 1; + pb->geqs[0].key = 1; + pb->geqs[0].color = l_color; + pb->geqs[0].touched = 0; + pb->num_geqs = 1; + } + + if (upper_bound < pos_infinity) + { + pb->geqs[pb->num_geqs].coef[0] = upper_bound; + pb->geqs[pb->num_geqs].coef[1] = -1; + pb->geqs[pb->num_geqs].key = -1; + pb->geqs[pb->num_geqs].color = u_color; + pb->geqs[pb->num_geqs].touched = 0; + pb->num_geqs++; + } + } + } + else + pb->num_vars = 0; + + omega_problem_reduced (pb); + return omega_false; + } + + if (original_problem != no_problem + && l_color == omega_black + && u_color == omega_black + && !conservative + && lower_bound == upper_bound) + { + pb->eqs[0].coef[0] = -lower_bound; + pb->eqs[0].coef[1] = 1; + pb->num_eqs = 1; + adding_equality_constraint (pb, 0); + } + + return omega_true; + } + + if (!pb->variables_freed) + { + pb->variables_freed = true; + + if (desired_res != omega_simplify) + omega_free_eliminations (pb, 0); + else + omega_free_eliminations (pb, pb->safe_vars); + + n_vars = pb->num_vars; + + if (n_vars == 1) + continue; + } + + switch (normalize_omega_problem (pb)) + { + case normalize_false: + return omega_false; + break; + + case normalize_coupled: + coupled_subscripts = true; + break; + + case normalize_uncoupled: + coupled_subscripts = false; + break; + + default: + gcc_unreachable (); + } + + n_vars = pb->num_vars; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\nafter normalization:\n"); + omega_print_problem (dump_file, pb); + fprintf (dump_file, "\n"); + fprintf (dump_file, "eliminating variable using Fourier-Motzkin.\n"); + } + + do { + int parallel_difference = INT_MAX; + int best_parallel_eqn = -1; + int minC, maxC, minCj = 0; + int lower_bound_count = 0; + int e2, Le = 0, Ue; + bool possible_easy_int_solution; + int max_splinters = 1; + bool exact = false; + bool lucky_exact = false; + int neweqns = 0; + int best = (INT_MAX); + int j = 0, jLe = 0, jLowerBoundCount = 0; + + + eliminate_again = false; + + if (pb->num_eqs > 0) + return omega_solve_problem (pb, desired_res); + + if (!coupled_subscripts) + { + if (pb->safe_vars == 0) + pb->num_geqs = 0; + else + for (e = pb->num_geqs - 1; e >= 0; e--) + if (!omega_safe_var_p (pb, abs (pb->geqs[e].key))) + omega_delete_geq (pb, e, n_vars); + + pb->num_vars = pb->safe_vars; + + if (desired_res == omega_simplify) + { + omega_problem_reduced (pb); + return omega_false; + } + + return omega_true; + } + + if (desired_res != omega_simplify) + fv = 0; + else + fv = pb->safe_vars; + + if (pb->num_geqs == 0) + { + if (desired_res == omega_simplify) + { + pb->num_vars = pb->safe_vars; + omega_problem_reduced (pb); + return omega_false; + } + return omega_true; + } + + if (desired_res == omega_simplify && n_vars == pb->safe_vars) + { + omega_problem_reduced (pb); + return omega_false; + } + + if (pb->num_geqs > OMEGA_MAX_GEQS - 30 + || pb->num_geqs > 2 * n_vars * n_vars + 4 * n_vars + 10) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + "TOO MANY EQUATIONS; " + "%d equations, %d variables, " + "ELIMINATING REDUNDANT ONES\n", + pb->num_geqs, n_vars); + + if (!omega_eliminate_redundant (pb, false)) + return omega_false; + + n_vars = pb->num_vars; + + if (pb->num_eqs > 0) + return omega_solve_problem (pb, desired_res); + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "END ELIMINATION OF REDUNDANT EQUATIONS\n"); + } + + if (desired_res != omega_simplify) + fv = 0; + else + fv = pb->safe_vars; + + for (i = n_vars; i != fv; i--) + { + int score; + int ub = -2; + int lb = -2; + bool lucky = false; + int upper_bound_count = 0; + + lower_bound_count = 0; + minC = maxC = 0; + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].coef[i] < 0) + { + minC = MIN (minC, pb->geqs[e].coef[i]); + upper_bound_count++; + if (pb->geqs[e].coef[i] < -1) + { + if (ub == -2) + ub = e; + else + ub = -1; + } + } + else if (pb->geqs[e].coef[i] > 0) + { + maxC = MAX (maxC, pb->geqs[e].coef[i]); + lower_bound_count++; + Le = e; + if (pb->geqs[e].coef[i] > 1) + { + if (lb == -2) + lb = e; + else + lb = -1; + } + } + + if (lower_bound_count == 0 + || upper_bound_count == 0) + { + lower_bound_count = 0; + break; + } + + if (ub >= 0 && lb >= 0 + && pb->geqs[lb].key == -pb->geqs[ub].key) + { + int Lc = pb->geqs[lb].coef[i]; + int Uc = -pb->geqs[ub].coef[i]; + int diff = + Lc * pb->geqs[ub].coef[0] + Uc * pb->geqs[lb].coef[0]; + lucky = (diff >= (Uc - 1) * (Lc - 1)); + } + + if (maxC == 1 + || minC == -1 + || lucky + || in_approximate_mode) + { + neweqns = score = upper_bound_count * lower_bound_count; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + "For %s, exact, score = %d*%d, range = %d ... %d," + "\nlucky = %d, in_approximate_mode=%d \n", + omega_variable_to_str (pb, i), + upper_bound_count, + lower_bound_count, minC, maxC, lucky, + in_approximate_mode); + + if (!exact + || score < best) + { + + best = score; + j = i; + minCj = minC; + jLe = Le; + jLowerBoundCount = lower_bound_count; + exact = true; + lucky_exact = lucky; + if (score == 1) + break; + } + } + else if (!exact) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + "For %s, non-exact, score = %d*%d," + "range = %d ... %d \n", + omega_variable_to_str (pb, i), + upper_bound_count, + lower_bound_count, minC, maxC); + + neweqns = upper_bound_count * lower_bound_count; + score = maxC - minC; + + if (best > score) + { + best = score; + j = i; + minCj = minC; + jLe = Le; + jLowerBoundCount = lower_bound_count; + } + } + } + + if (lower_bound_count == 0) + { + omega_free_eliminations (pb, pb->safe_vars); + n_vars = pb->num_vars; + eliminate_again = true; + continue; + } + + i = j; + minC = minCj; + Le = jLe; + lower_bound_count = jLowerBoundCount; + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].coef[i] > 0) + { + if (pb->geqs[e].coef[i] == -minC) + max_splinters += -minC - 1; + else + max_splinters += + check_pos_mul ((pb->geqs[e].coef[i] - 1), + (-minC - 1)) / (-minC) + 1; + } + + /* #ifdef Omega3 */ + /* Trying to produce exact elimination by finding redundant + constraints. */ + if (!exact && !tried_eliminating_redundant) + { + omega_eliminate_redundant (pb, false); + tried_eliminating_redundant = true; + eliminate_again = true; + continue; + } + tried_eliminating_redundant = false; + /* #endif */ + + if (return_single_result && desired_res == omega_simplify && !exact) + { + omega_problem_reduced (pb); + return omega_true; + } + + /* #ifndef Omega3 */ + /* Trying to produce exact elimination by finding redundant + constraints. */ + if (!exact && !tried_eliminating_redundant) + { + omega_eliminate_redundant (pb, false); + tried_eliminating_redundant = true; + continue; + } + tried_eliminating_redundant = false; + /* #endif */ + + if (!exact) + { + int e1, e2; + + for (e1 = pb->num_geqs - 1; e1 >= 0; e1--) + if (pb->geqs[e1].color == omega_black) + for (e2 = e1 - 1; e2 >= 0; e2--) + if (pb->geqs[e2].color == omega_black + && pb->geqs[e1].key == -pb->geqs[e2].key + && ((pb->geqs[e1].coef[0] + pb->geqs[e2].coef[0]) + * (3 - single_var_geq (&pb->geqs[e1], pb->num_vars)) + / 2 < parallel_difference)) + { + parallel_difference = + (pb->geqs[e1].coef[0] + pb->geqs[e2].coef[0]) + * (3 - single_var_geq (&pb->geqs[e1], pb->num_vars)) + / 2; + best_parallel_eqn = e1; + } + + if (dump_file && (dump_flags & TDF_DETAILS) + && best_parallel_eqn >= 0) + { + fprintf (dump_file, + "Possible parallel projection, diff = %d, in ", + parallel_difference); + omega_print_geq (dump_file, pb, &(pb->geqs[best_parallel_eqn])); + fprintf (dump_file, "\n"); + omega_print_problem (dump_file, pb); + } + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "going to eliminate %s, (%d,%d,%d)\n", + omega_variable_to_str (pb, i), i, minC, + lower_bound_count); + omega_print_problem (dump_file, pb); + + if (lucky_exact) + fprintf (dump_file, "(a lucky exact elimination)\n"); + + else if (exact) + fprintf (dump_file, "(an exact elimination)\n"); + + fprintf (dump_file, "Max # of splinters = %d\n", max_splinters); + } + + gcc_assert (max_splinters >= 1); + + if (!exact && desired_res == omega_simplify && best_parallel_eqn >= 0 + && parallel_difference <= max_splinters) + return parallel_splinter (pb, best_parallel_eqn, parallel_difference, + desired_res); + + smoothed = false; + + if (i != n_vars) + { + int t; + int j = pb->num_vars; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Swapping %d and %d\n", i, j); + omega_print_problem (dump_file, pb); + } + + swap (&pb->var[i], &pb->var[j]); + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].coef[i] != pb->geqs[e].coef[j]) + { + pb->geqs[e].touched = 1; + t = pb->geqs[e].coef[i]; + pb->geqs[e].coef[i] = pb->geqs[e].coef[j]; + pb->geqs[e].coef[j] = t; + } + + for (e = pb->num_subs - 1; e >= 0; e--) + if (pb->subs[e].coef[i] != pb->subs[e].coef[j]) + { + t = pb->subs[e].coef[i]; + pb->subs[e].coef[i] = pb->subs[e].coef[j]; + pb->subs[e].coef[j] = t; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Swapping complete \n"); + omega_print_problem (dump_file, pb); + fprintf (dump_file, "\n"); + } + + i = j; + } + + else if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "No swap needed\n"); + omega_print_problem (dump_file, pb); + } + + pb->num_vars--; + n_vars = pb->num_vars; + + if (exact) + { + if (n_vars == 1) + { + int upper_bound = pos_infinity; + int lower_bound = neg_infinity; + enum omega_eqn_color ub_color = omega_black; + enum omega_eqn_color lb_color = omega_black; + int topeqn = pb->num_geqs - 1; + int Lc = pb->geqs[Le].coef[i]; + + for (Le = topeqn; Le >= 0; Le--) + if ((Lc = pb->geqs[Le].coef[i]) == 0) + { + if (pb->geqs[Le].coef[1] == 1) + { + int constantTerm = -pb->geqs[Le].coef[0]; + + if (constantTerm > lower_bound || + (constantTerm == lower_bound && + !omega_eqn_is_red (&pb->geqs[Le], desired_res))) + { + lower_bound = constantTerm; + lb_color = pb->geqs[Le].color; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + if (pb->geqs[Le].color == omega_black) + fprintf (dump_file, " :::=> %s >= %d\n", + omega_variable_to_str (pb, 1), + constantTerm); + else + fprintf (dump_file, + " :::=> [%s >= %d]\n", + omega_variable_to_str (pb, 1), + constantTerm); + } + } + else + { + int constantTerm = pb->geqs[Le].coef[0]; + if (constantTerm < upper_bound || + (constantTerm == upper_bound + && !omega_eqn_is_red (&pb->geqs[Le], + desired_res))) + { + upper_bound = constantTerm; + ub_color = pb->geqs[Le].color; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + if (pb->geqs[Le].color == omega_black) + fprintf (dump_file, " :::=> %s <= %d\n", + omega_variable_to_str (pb, 1), + constantTerm); + else + fprintf (dump_file, + " :::=> [%s <= %d]\n", + omega_variable_to_str (pb, 1), + constantTerm); + } + } + } + else if (Lc > 0) + for (Ue = topeqn; Ue >= 0; Ue--) + if (pb->geqs[Ue].coef[i] < 0 + && pb->geqs[Le].key != -pb->geqs[Ue].key) + { + int Uc = -pb->geqs[Ue].coef[i]; + int coefficient = pb->geqs[Ue].coef[1] * Lc + + pb->geqs[Le].coef[1] * Uc; + int constantTerm = pb->geqs[Ue].coef[0] * Lc + + pb->geqs[Le].coef[0] * Uc; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + omega_print_geq_extra (dump_file, pb, + &(pb->geqs[Ue])); + fprintf (dump_file, "\n"); + omega_print_geq_extra (dump_file, pb, + &(pb->geqs[Le])); + fprintf (dump_file, "\n"); + } + + if (coefficient > 0) + { + constantTerm = -int_div (constantTerm, coefficient); + + if (constantTerm > lower_bound + || (constantTerm == lower_bound + && (desired_res != omega_simplify + || (pb->geqs[Ue].color == omega_black + && pb->geqs[Le].color == omega_black)))) + { + lower_bound = constantTerm; + lb_color = (pb->geqs[Ue].color == omega_red + || pb->geqs[Le].color == omega_red) + ? omega_red : omega_black; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + if (pb->geqs[Ue].color == omega_red + || pb->geqs[Le].color == omega_red) + fprintf (dump_file, + " ::=> [%s >= %d]\n", + omega_variable_to_str (pb, 1), + constantTerm); + else + fprintf (dump_file, + " ::=> %s >= %d\n", + omega_variable_to_str (pb, 1), + constantTerm); + } + } + else + { + constantTerm = int_div (constantTerm, -coefficient); + if (constantTerm < upper_bound + || (constantTerm == upper_bound + && pb->geqs[Ue].color == omega_black + && pb->geqs[Le].color == omega_black)) + { + upper_bound = constantTerm; + ub_color = (pb->geqs[Ue].color == omega_red + || pb->geqs[Le].color == omega_red) + ? omega_red : omega_black; + } + + if (dump_file + && (dump_flags & TDF_DETAILS)) + { + if (pb->geqs[Ue].color == omega_red + || pb->geqs[Le].color == omega_red) + fprintf (dump_file, + " ::=> [%s <= %d]\n", + omega_variable_to_str (pb, 1), + constantTerm); + else + fprintf (dump_file, + " ::=> %s <= %d\n", + omega_variable_to_str (pb, 1), + constantTerm); + } + } + } + + pb->num_geqs = 0; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + " therefore, %c%d <= %c%s%c <= %d%c\n", + lb_color == omega_red ? '[' : ' ', lower_bound, + (lb_color == omega_red && ub_color == omega_black) + ? ']' : ' ', + omega_variable_to_str (pb, 1), + (lb_color == omega_black && ub_color == omega_red) + ? '[' : ' ', + upper_bound, ub_color == omega_red ? ']' : ' '); + + if (lower_bound > upper_bound) + return omega_false; + + if (pb->safe_vars == 1) + { + if (upper_bound == lower_bound + && !(ub_color == omega_red || lb_color == omega_red) + && !please_no_equalities_in_simplified_problems) + { + pb->num_eqs++; + pb->eqs[0].coef[1] = -1; + pb->eqs[0].coef[0] = upper_bound; + + if (ub_color == omega_red + || lb_color == omega_red) + pb->eqs[0].color = omega_red; + + if (desired_res == omega_simplify + && pb->eqs[0].color == omega_black) + return omega_solve_problem (pb, desired_res); + } + + if (upper_bound != pos_infinity) + { + pb->geqs[0].coef[1] = -1; + pb->geqs[0].coef[0] = upper_bound; + pb->geqs[0].color = ub_color; + pb->geqs[0].key = -1; + pb->geqs[0].touched = 0; + pb->num_geqs++; + } + + if (lower_bound != neg_infinity) + { + pb->geqs[pb->num_geqs].coef[1] = 1; + pb->geqs[pb->num_geqs].coef[0] = -lower_bound; + pb->geqs[pb->num_geqs].color = lb_color; + pb->geqs[pb->num_geqs].key = 1; + pb->geqs[pb->num_geqs].touched = 0; + pb->num_geqs++; + } + } + + if (desired_res == omega_simplify) + { + omega_problem_reduced (pb); + return omega_false; + } + else + { + if (!conservative + && (desired_res != omega_simplify + || (lb_color == omega_black + && ub_color == omega_black)) + && original_problem != no_problem + && lower_bound == upper_bound) + { + for (i = original_problem->num_vars; i >= 0; i--) + if (original_problem->var[i] == pb->var[1]) + break; + + if (i == 0) + break; + + e = original_problem->num_eqs++; + omega_init_eqn_zero (&original_problem->eqs[e], + original_problem->num_vars); + original_problem->eqs[e].coef[i] = -1; + original_problem->eqs[e].coef[0] = upper_bound; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "adding equality %d to outer problem\n", e); + omega_print_problem (dump_file, original_problem); + } + } + return omega_true; + } + } + + eliminate_again = true; + + if (lower_bound_count == 1) + { + eqn lbeqn = omega_alloc_eqns (0, 1); + int Lc = pb->geqs[Le].coef[i]; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "an inplace elimination\n"); + + omega_copy_eqn (lbeqn, &pb->geqs[Le], (n_vars + 1)); + omega_delete_geq_extra (pb, Le, n_vars + 1); + + for (Ue = pb->num_geqs - 1; Ue >= 0; Ue--) + if (pb->geqs[Ue].coef[i] < 0) + { + if (lbeqn->key == -pb->geqs[Ue].key) + omega_delete_geq_extra (pb, Ue, n_vars + 1); + else + { + int k; + int Uc = -pb->geqs[Ue].coef[i]; + pb->geqs[Ue].touched = 1; + eliminate_again = false; + + if (lbeqn->color == omega_red) + pb->geqs[Ue].color = omega_red; + + for (k = 0; k <= n_vars; k++) + pb->geqs[Ue].coef[k] = + check_mul (pb->geqs[Ue].coef[k], Lc) + + check_mul (lbeqn->coef[k], Uc); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + omega_print_geq (dump_file, pb, + &(pb->geqs[Ue])); + fprintf (dump_file, "\n"); + } + } + } + + omega_free_eqns (lbeqn, 1); + continue; + } + else + { + int *dead_eqns = XNEWVEC (int, OMEGA_MAX_GEQS); + bool *is_dead = XNEWVEC (bool, OMEGA_MAX_GEQS); + int num_dead = 0; + int top_eqn = pb->num_geqs - 1; + lower_bound_count--; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "lower bound count = %d\n", + lower_bound_count); + + for (Le = top_eqn; Le >= 0; Le--) + if (pb->geqs[Le].coef[i] > 0) + { + int Lc = pb->geqs[Le].coef[i]; + for (Ue = top_eqn; Ue >= 0; Ue--) + if (pb->geqs[Ue].coef[i] < 0) + { + if (pb->geqs[Le].key != -pb->geqs[Ue].key) + { + int k; + int Uc = -pb->geqs[Ue].coef[i]; + + if (num_dead == 0) + e2 = pb->num_geqs++; + else + e2 = dead_eqns[--num_dead]; + + gcc_assert (e2 < OMEGA_MAX_GEQS); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "Le = %d, Ue = %d, gen = %d\n", + Le, Ue, e2); + omega_print_geq_extra (dump_file, pb, + &(pb->geqs[Le])); + fprintf (dump_file, "\n"); + omega_print_geq_extra (dump_file, pb, + &(pb->geqs[Ue])); + fprintf (dump_file, "\n"); + } + + eliminate_again = false; + + for (k = n_vars; k >= 0; k--) + pb->geqs[e2].coef[k] = + check_mul (pb->geqs[Ue].coef[k], Lc) + + check_mul (pb->geqs[Le].coef[k], Uc); + + pb->geqs[e2].coef[n_vars + 1] = 0; + pb->geqs[e2].touched = 1; + + if (pb->geqs[Ue].color == omega_red + || pb->geqs[Le].color == omega_red) + pb->geqs[e2].color = omega_red; + else + pb->geqs[e2].color = omega_black; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + omega_print_geq (dump_file, pb, + &(pb->geqs[e2])); + fprintf (dump_file, "\n"); + } + } + + if (lower_bound_count == 0) + { + dead_eqns[num_dead++] = Ue; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Killed %d\n", Ue); + } + } + + lower_bound_count--; + dead_eqns[num_dead++] = Le; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Killed %d\n", Le); + } + + for (e = pb->num_geqs - 1; e >= 0; e--) + is_dead[e] = false; + + while (num_dead > 0) + is_dead[dead_eqns[--num_dead]] = true; + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (is_dead[e]) + omega_delete_geq_extra (pb, e, n_vars + 1); + + free (dead_eqns); + free (is_dead); + continue; + } + } + else + { + omega_pb rS, iS; + + rS = omega_alloc_problem (0, 0); + iS = omega_alloc_problem (0, 0); + e2 = 0; + possible_easy_int_solution = true; + + for (e = 0; e < pb->num_geqs; e++) + if (pb->geqs[e].coef[i] == 0) + { + omega_copy_eqn (&(rS->geqs[e2]), &pb->geqs[e], + pb->num_vars); + omega_copy_eqn (&(iS->geqs[e2]), &pb->geqs[e], + pb->num_vars); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + int t; + fprintf (dump_file, "Copying (%d, %d): ", i, + pb->geqs[e].coef[i]); + omega_print_geq_extra (dump_file, pb, &pb->geqs[e]); + fprintf (dump_file, "\n"); + for (t = 0; t <= n_vars + 1; t++) + fprintf (dump_file, "%d ", pb->geqs[e].coef[t]); + fprintf (dump_file, "\n"); + + } + e2++; + gcc_assert (e2 < OMEGA_MAX_GEQS); + } + + for (Le = pb->num_geqs - 1; Le >= 0; Le--) + if (pb->geqs[Le].coef[i] > 0) + for (Ue = pb->num_geqs - 1; Ue >= 0; Ue--) + if (pb->geqs[Ue].coef[i] < 0) + { + int k; + int Lc = pb->geqs[Le].coef[i]; + int Uc = -pb->geqs[Ue].coef[i]; + + if (pb->geqs[Le].key != -pb->geqs[Ue].key) + { + + rS->geqs[e2].touched = iS->geqs[e2].touched = 1; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "---\n"); + fprintf (dump_file, + "Le(Lc) = %d(%d_, Ue(Uc) = %d(%d), gen = %d\n", + Le, Lc, Ue, Uc, e2); + omega_print_geq_extra (dump_file, pb, &pb->geqs[Le]); + fprintf (dump_file, "\n"); + omega_print_geq_extra (dump_file, pb, &pb->geqs[Ue]); + fprintf (dump_file, "\n"); + } + + if (Uc == Lc) + { + for (k = n_vars; k >= 0; k--) + iS->geqs[e2].coef[k] = rS->geqs[e2].coef[k] = + pb->geqs[Ue].coef[k] + pb->geqs[Le].coef[k]; + + iS->geqs[e2].coef[0] -= (Uc - 1); + } + else + { + for (k = n_vars; k >= 0; k--) + iS->geqs[e2].coef[k] = rS->geqs[e2].coef[k] = + check_mul (pb->geqs[Ue].coef[k], Lc) + + check_mul (pb->geqs[Le].coef[k], Uc); + + iS->geqs[e2].coef[0] -= (Uc - 1) * (Lc - 1); + } + + if (pb->geqs[Ue].color == omega_red + || pb->geqs[Le].color == omega_red) + iS->geqs[e2].color = rS->geqs[e2].color = omega_red; + else + iS->geqs[e2].color = rS->geqs[e2].color = omega_black; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + omega_print_geq (dump_file, pb, &(rS->geqs[e2])); + fprintf (dump_file, "\n"); + } + + e2++; + gcc_assert (e2 < OMEGA_MAX_GEQS); + } + else if (pb->geqs[Ue].coef[0] * Lc + + pb->geqs[Le].coef[0] * Uc - + (Uc - 1) * (Lc - 1) < 0) + possible_easy_int_solution = false; + } + + iS->variables_initialized = rS->variables_initialized = true; + iS->num_vars = rS->num_vars = pb->num_vars; + iS->num_geqs = rS->num_geqs = e2; + iS->num_eqs = rS->num_eqs = 0; + iS->num_subs = rS->num_subs = pb->num_subs; + iS->safe_vars = rS->safe_vars = pb->safe_vars; + + for (e = n_vars; e >= 0; e--) + rS->var[e] = pb->var[e]; + + for (e = n_vars; e >= 0; e--) + iS->var[e] = pb->var[e]; + + for (e = pb->num_subs - 1; e >= 0; e--) + { + omega_copy_eqn (&(rS->subs[e]), &(pb->subs[e]), pb->num_vars); + omega_copy_eqn (&(iS->subs[e]), &(pb->subs[e]), pb->num_vars); + } + + pb->num_vars++; + n_vars = pb->num_vars; + + if (desired_res != omega_true) + { + if (original_problem == no_problem) + { + original_problem = pb; + result = omega_solve_geq (rS, omega_false); + original_problem = no_problem; + } + else + result = omega_solve_geq (rS, omega_false); + + if (result == omega_false) + { + free (rS); + free (iS); + return result; + } + + if (pb->num_eqs > 0) + { + /* An equality constraint must have been found */ + free (rS); + free (iS); + return omega_solve_problem (pb, desired_res); + } + } + + if (desired_res != omega_false) + { + int j; + int lower_bounds = 0; + int *lower_bound = XNEWVEC (int, OMEGA_MAX_GEQS); + + if (possible_easy_int_solution) + { + conservative++; + result = omega_solve_geq (iS, desired_res); + conservative--; + + if (result != omega_false) + { + free (rS); + free (iS); + free (lower_bound); + return result; + } + } + + if (!exact && best_parallel_eqn >= 0 + && parallel_difference <= max_splinters) + { + free (rS); + free (iS); + free (lower_bound); + return parallel_splinter (pb, best_parallel_eqn, + parallel_difference, + desired_res); + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "have to do exact analysis\n"); + + conservative++; + + for (e = 0; e < pb->num_geqs; e++) + if (pb->geqs[e].coef[i] > 1) + lower_bound[lower_bounds++] = e; + + /* Sort array LOWER_BOUND. */ + for (j = 0; j < lower_bounds; j++) + { + int k, smallest = j; + + for (k = j + 1; k < lower_bounds; k++) + if (pb->geqs[lower_bound[smallest]].coef[i] > + pb->geqs[lower_bound[k]].coef[i]) + smallest = k; + + k = lower_bound[smallest]; + lower_bound[smallest] = lower_bound[j]; + lower_bound[j] = k; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "lower bound coeeficients = "); + + for (j = 0; j < lower_bounds; j++) + fprintf (dump_file, " %d", + pb->geqs[lower_bound[j]].coef[i]); + + fprintf (dump_file, "\n"); + } + + for (j = 0; j < lower_bounds; j++) + { + int max_incr; + int c; + int worst_lower_bound_constant = -minC; + + e = lower_bound[j]; + max_incr = (((pb->geqs[e].coef[i] - 1) * + (worst_lower_bound_constant - 1) - 1) + / worst_lower_bound_constant); + /* max_incr += 2; */ + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "for equation "); + omega_print_geq (dump_file, pb, &pb->geqs[e]); + fprintf (dump_file, + "\ntry decrements from 0 to %d\n", + max_incr); + omega_print_problem (dump_file, pb); + } + + if (max_incr > 50 && !smoothed + && smooth_weird_equations (pb)) + { + conservative--; + free (rS); + free (iS); + smoothed = true; + goto solve_geq_start; + } + + omega_copy_eqn (&pb->eqs[0], &pb->geqs[e], + pb->num_vars); + pb->eqs[0].color = omega_black; + omega_init_eqn_zero (&pb->geqs[e], pb->num_vars); + pb->geqs[e].touched = 1; + pb->num_eqs = 1; + + for (c = max_incr; c >= 0; c--) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "trying next decrement of %d\n", + max_incr - c); + omega_print_problem (dump_file, pb); + } + + omega_copy_problem (rS, pb); + + if (dump_file && (dump_flags & TDF_DETAILS)) + omega_print_problem (dump_file, rS); + + result = omega_solve_problem (rS, desired_res); + + if (result == omega_true) + { + free (rS); + free (iS); + free (lower_bound); + conservative--; + return omega_true; + } + + pb->eqs[0].coef[0]--; + } + + if (j + 1 < lower_bounds) + { + pb->num_eqs = 0; + omega_copy_eqn (&pb->geqs[e], &pb->eqs[0], + pb->num_vars); + pb->geqs[e].touched = 1; + pb->geqs[e].color = omega_black; + omega_copy_problem (rS, pb); + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + "exhausted lower bound, " + "checking if still feasible "); + + result = omega_solve_problem (rS, omega_false); + + if (result == omega_false) + break; + } + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "fall-off the end\n"); + + free (rS); + free (iS); + free (lower_bound); + conservative--; + return omega_false; + } + + free (rS); + free (iS); + } + return omega_unknown; + } while (eliminate_again); + } while (1); +} + +/* Because the omega solver is recursive, this counter limits the + recursion depth. */ +static int omega_solve_depth = 0; + +/* Return omega_true when the problem PB has a solution following the + DESIRED_RES. */ + +enum omega_result +omega_solve_problem (omega_pb pb, enum omega_result desired_res) +{ + enum omega_result result; + + gcc_assert (pb->num_vars >= pb->safe_vars); + omega_solve_depth++; + + if (desired_res != omega_simplify) + pb->safe_vars = 0; + + if (omega_solve_depth > 50) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + "Solve depth = %d, in_approximate_mode = %d, aborting\n", + omega_solve_depth, in_approximate_mode); + omega_print_problem (dump_file, pb); + } + gcc_assert (0); + } + + if (omega_solve_eq (pb, desired_res) == omega_false) + { + omega_solve_depth--; + return omega_false; + } + + if (in_approximate_mode && !pb->num_geqs) + { + result = omega_true; + pb->num_vars = pb->safe_vars; + omega_problem_reduced (pb); + } + else + result = omega_solve_geq (pb, desired_res); + + omega_solve_depth--; + + if (!omega_reduce_with_subs) + { + resurrect_subs (pb); + gcc_assert (please_no_equalities_in_simplified_problems + || !result || pb->num_subs == 0); + } + + return result; +} + +/* Return true if red equations constrain the set of possible solutions. + We assume that there are solutions to the black equations by + themselves, so if there is no solution to the combined problem, we + return true. */ + +bool +omega_problem_has_red_equations (omega_pb pb) +{ + bool result; + int e; + int i; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Checking for red equations:\n"); + omega_print_problem (dump_file, pb); + } + + please_no_equalities_in_simplified_problems++; + may_be_red++; + + if (omega_single_result) + return_single_result++; + + create_color = true; + result = (omega_simplify_problem (pb) == omega_false); + + if (omega_single_result) + return_single_result--; + + may_be_red--; + please_no_equalities_in_simplified_problems--; + + if (result) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Gist is FALSE\n"); + + pb->num_subs = 0; + pb->num_geqs = 0; + pb->num_eqs = 1; + pb->eqs[0].color = omega_red; + + for (i = pb->num_vars; i > 0; i--) + pb->eqs[0].coef[i] = 0; + + pb->eqs[0].coef[0] = 1; + return true; + } + + free_red_eliminations (pb); + gcc_assert (pb->num_eqs == 0); + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].color == omega_red) + result = true; + + if (!result) + return false; + + for (i = pb->safe_vars; i >= 1; i--) + { + int ub = 0; + int lb = 0; + + for (e = pb->num_geqs - 1; e >= 0; e--) + { + if (pb->geqs[e].coef[i]) + { + if (pb->geqs[e].coef[i] > 0) + lb |= (1 + (pb->geqs[e].color == omega_red ? 1 : 0)); + + else + ub |= (1 + (pb->geqs[e].color == omega_red ? 1 : 0)); + } + } + + if (ub == 2 || lb == 2) + { + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "checks for upper/lower bounds worked!\n"); + + if (!omega_reduce_with_subs) + { + resurrect_subs (pb); + gcc_assert (pb->num_subs == 0); + } + + return true; + } + } + + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + "*** Doing potentially expensive elimination tests " + "for red equations\n"); + + please_no_equalities_in_simplified_problems++; + omega_eliminate_red (pb, true); + please_no_equalities_in_simplified_problems--; + + result = false; + gcc_assert (pb->num_eqs == 0); + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].color == omega_red) + result = true; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + if (!result) + fprintf (dump_file, + "******************** Redudant Red Equations eliminated!!\n"); + else + fprintf (dump_file, + "******************** Red Equations remain\n"); + + omega_print_problem (dump_file, pb); + } + + if (!omega_reduce_with_subs) + { + normalize_return_type r; + + resurrect_subs (pb); + r = normalize_omega_problem (pb); + gcc_assert (r != normalize_false); + + coalesce (pb); + cleanout_wildcards (pb); + gcc_assert (pb->num_subs == 0); + } + + return result; +} + +/* Calls omega_simplify_problem in approximate mode. */ + +enum omega_result +omega_simplify_approximate (omega_pb pb) +{ + enum omega_result result; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "(Entering approximate mode\n"); + + in_approximate_mode = true; + result = omega_simplify_problem (pb); + in_approximate_mode = false; + + gcc_assert (pb->num_vars == pb->safe_vars); + if (!omega_reduce_with_subs) + gcc_assert (pb->num_subs == 0); + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Leaving approximate mode)\n"); + + return result; +} + + +/* Simplifies problem PB by eliminating redundant constraints and + reducing the constraints system to a minimal form. Returns + omega_true when the problem was successfully reduced, omega_unknown + when the solver is unable to determine an answer. */ + +enum omega_result +omega_simplify_problem (omega_pb pb) +{ + int i; + + omega_found_reduction = omega_false; + + if (!pb->variables_initialized) + omega_initialize_variables (pb); + + if (next_key * 3 > MAX_KEYS) + { + int e; + + hash_version++; + next_key = OMEGA_MAX_VARS + 1; + + for (e = pb->num_geqs - 1; e >= 0; e--) + pb->geqs[e].touched = 1; + + for (i = 0; i < HASH_TABLE_SIZE; i++) + hash_master[i].touched = -1; + + pb->hash_version = hash_version; + } + + else if (pb->hash_version != hash_version) + { + int e; + + for (e = pb->num_geqs - 1; e >= 0; e--) + pb->geqs[e].touched = 1; + + pb->hash_version = hash_version; + } + + if (pb->num_vars > pb->num_eqs + 3 * pb->safe_vars) + omega_free_eliminations (pb, pb->safe_vars); + + if (!may_be_red && pb->num_subs == 0 && pb->safe_vars == 0) + { + omega_found_reduction = omega_solve_problem (pb, omega_unknown); + + if (omega_found_reduction != omega_false + && !return_single_result) + { + pb->num_geqs = 0; + pb->num_eqs = 0; + (*omega_when_reduced) (pb); + } + + return omega_found_reduction; + } + + omega_solve_problem (pb, omega_simplify); + + if (omega_found_reduction != omega_false) + { + for (i = 1; omega_safe_var_p (pb, i); i++) + pb->forwarding_address[pb->var[i]] = i; + + for (i = 0; i < pb->num_subs; i++) + pb->forwarding_address[pb->subs[i].key] = -i - 1; + } + + if (!omega_reduce_with_subs) + gcc_assert (please_no_equalities_in_simplified_problems + || omega_found_reduction == omega_false + || pb->num_subs == 0); + + return omega_found_reduction; +} + +/* Make variable VAR unprotected: it then can be eliminated. */ + +void +omega_unprotect_variable (omega_pb pb, int var) +{ + int e, idx; + idx = pb->forwarding_address[var]; + + if (idx < 0) + { + idx = -1 - idx; + pb->num_subs--; + + if (idx < pb->num_subs) + { + omega_copy_eqn (&pb->subs[idx], &pb->subs[pb->num_subs], + pb->num_vars); + pb->forwarding_address[pb->subs[idx].key] = -idx - 1; + } + } + else + { + int *bring_to_life = XNEWVEC (int, OMEGA_MAX_VARS); + int e2; + + for (e = pb->num_subs - 1; e >= 0; e--) + bring_to_life[e] = (pb->subs[e].coef[idx] != 0); + + for (e2 = pb->num_subs - 1; e2 >= 0; e2--) + if (bring_to_life[e2]) + { + pb->num_vars++; + pb->safe_vars++; + + if (pb->safe_vars < pb->num_vars) + { + for (e = pb->num_geqs - 1; e >= 0; e--) + { + pb->geqs[e].coef[pb->num_vars] = + pb->geqs[e].coef[pb->safe_vars]; + + pb->geqs[e].coef[pb->safe_vars] = 0; + } + + for (e = pb->num_eqs - 1; e >= 0; e--) + { + pb->eqs[e].coef[pb->num_vars] = + pb->eqs[e].coef[pb->safe_vars]; + + pb->eqs[e].coef[pb->safe_vars] = 0; + } + + for (e = pb->num_subs - 1; e >= 0; e--) + { + pb->subs[e].coef[pb->num_vars] = + pb->subs[e].coef[pb->safe_vars]; + + pb->subs[e].coef[pb->safe_vars] = 0; + } + + pb->var[pb->num_vars] = pb->var[pb->safe_vars]; + pb->forwarding_address[pb->var[pb->num_vars]] = + pb->num_vars; + } + else + { + for (e = pb->num_geqs - 1; e >= 0; e--) + pb->geqs[e].coef[pb->safe_vars] = 0; + + for (e = pb->num_eqs - 1; e >= 0; e--) + pb->eqs[e].coef[pb->safe_vars] = 0; + + for (e = pb->num_subs - 1; e >= 0; e--) + pb->subs[e].coef[pb->safe_vars] = 0; + } + + pb->var[pb->safe_vars] = pb->subs[e2].key; + pb->forwarding_address[pb->subs[e2].key] = pb->safe_vars; + + omega_copy_eqn (&(pb->eqs[pb->num_eqs]), &(pb->subs[e2]), + pb->num_vars); + pb->eqs[pb->num_eqs++].coef[pb->safe_vars] = -1; + gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); + + if (e2 < pb->num_subs - 1) + omega_copy_eqn (&(pb->subs[e2]), &(pb->subs[pb->num_subs - 1]), + pb->num_vars); + + pb->num_subs--; + } + + omega_unprotect_1 (pb, &idx, NULL); + free (bring_to_life); + } + + chain_unprotect (pb); +} + +/* Unprotects VAR and simplifies PB. */ + +enum omega_result +omega_constrain_variable_sign (omega_pb pb, enum omega_eqn_color color, + int var, int sign) +{ + int n_vars = pb->num_vars; + int e, j; + int k = pb->forwarding_address[var]; + + if (k < 0) + { + k = -1 - k; + + if (sign != 0) + { + e = pb->num_geqs++; + omega_copy_eqn (&pb->geqs[e], &pb->subs[k], pb->num_vars); + + for (j = 0; j <= n_vars; j++) + pb->geqs[e].coef[j] *= sign; + + pb->geqs[e].coef[0]--; + pb->geqs[e].touched = 1; + pb->geqs[e].color = color; + } + else + { + e = pb->num_eqs++; + gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); + omega_copy_eqn (&pb->eqs[e], &pb->subs[k], pb->num_vars); + pb->eqs[e].color = color; + } + } + else if (sign != 0) + { + e = pb->num_geqs++; + omega_init_eqn_zero (&pb->geqs[e], pb->num_vars); + pb->geqs[e].coef[k] = sign; + pb->geqs[e].coef[0] = -1; + pb->geqs[e].touched = 1; + pb->geqs[e].color = color; + } + else + { + e = pb->num_eqs++; + gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); + omega_init_eqn_zero (&pb->eqs[e], pb->num_vars); + pb->eqs[e].coef[k] = 1; + pb->eqs[e].color = color; + } + + omega_unprotect_variable (pb, var); + return omega_simplify_problem (pb); +} + +/* Add an equation "VAR = VALUE" with COLOR to PB. */ + +void +omega_constrain_variable_value (omega_pb pb, enum omega_eqn_color color, + int var, int value) +{ + int e; + int k = pb->forwarding_address[var]; + + if (k < 0) + { + k = -1 - k; + e = pb->num_eqs++; + gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); + omega_copy_eqn (&pb->eqs[e], &pb->subs[k], pb->num_vars); + pb->eqs[e].coef[0] -= value; + } + else + { + e = pb->num_eqs++; + omega_init_eqn_zero (&pb->eqs[e], pb->num_vars); + pb->eqs[e].coef[k] = 1; + pb->eqs[e].coef[0] = -value; + } + + pb->eqs[e].color = color; +} + +/* Return false when the upper and lower bounds are not coupled. + Initialize the bounds LOWER_BOUND and UPPER_BOUND for the values of + variable I. */ + +bool +omega_query_variable (omega_pb pb, int i, int *lower_bound, int *upper_bound) +{ + int n_vars = pb->num_vars; + int e, j; + bool is_simple; + bool coupled = false; + + *lower_bound = neg_infinity; + *upper_bound = pos_infinity; + i = pb->forwarding_address[i]; + + if (i < 0) + { + i = -i - 1; + + for (j = 1; j <= n_vars; j++) + if (pb->subs[i].coef[j] != 0) + return true; + + *upper_bound = *lower_bound = pb->subs[i].coef[0]; + return false; + } + + for (e = pb->num_subs - 1; e >= 0; e--) + if (pb->subs[e].coef[i] != 0) + coupled = true; + + for (e = pb->num_eqs - 1; e >= 0; e--) + if (pb->eqs[e].coef[i] != 0) + { + is_simple = true; + + for (j = 1; j <= n_vars; j++) + if (i != j && pb->eqs[e].coef[j] != 0) + { + is_simple = false; + coupled = true; + break; + } + + if (!is_simple) + continue; + else + { + *lower_bound = *upper_bound = + -pb->eqs[e].coef[i] * pb->eqs[e].coef[0]; + return false; + } + } + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].coef[i] != 0) + { + if (pb->geqs[e].key == i) + *lower_bound = MAX (*lower_bound, -pb->geqs[e].coef[0]); + + else if (pb->geqs[e].key == -i) + *upper_bound = MIN (*upper_bound, pb->geqs[e].coef[0]); + + else + coupled = true; + } + + return coupled; +} + +/* Sets the lower bound L and upper bound U for the values of variable + I, and sets COULD_BE_ZERO to true if variable I might take value + zero. LOWER_BOUND and UPPER_BOUND are bounds on the values of + variable I. */ + +static void +query_coupled_variable (omega_pb pb, int i, int *l, int *u, + bool *could_be_zero, int lower_bound, int upper_bound) +{ + int e, b1, b2; + eqn eqn; + int sign; + int v; + + /* Preconditions. */ + gcc_assert (abs (pb->forwarding_address[i]) == 1 + && pb->num_vars + pb->num_subs == 2 + && pb->num_eqs + pb->num_subs == 1); + + /* Define variable I in terms of variable V. */ + if (pb->forwarding_address[i] == -1) + { + eqn = &pb->subs[0]; + sign = 1; + v = 1; + } + else + { + eqn = &pb->eqs[0]; + sign = -eqn->coef[1]; + v = 2; + } + + for (e = pb->num_geqs - 1; e >= 0; e--) + if (pb->geqs[e].coef[v] != 0) + { + if (pb->geqs[e].coef[v] == 1) + lower_bound = MAX (lower_bound, -pb->geqs[e].coef[0]); + + else + upper_bound = MIN (upper_bound, pb->geqs[e].coef[0]); + } + + if (lower_bound > upper_bound) + { + *l = pos_infinity; + *u = neg_infinity; + *could_be_zero = 0; + return; + } + + if (lower_bound == neg_infinity) + { + if (eqn->coef[v] > 0) + b1 = sign * neg_infinity; + + else + b1 = -sign * neg_infinity; + } + else + b1 = sign * (eqn->coef[0] + eqn->coef[v] * lower_bound); + + if (upper_bound == pos_infinity) + { + if (eqn->coef[v] > 0) + b2 = sign * pos_infinity; + + else + b2 = -sign * pos_infinity; + } + else + b2 = sign * (eqn->coef[0] + eqn->coef[v] * upper_bound); + + *l = MAX (*l, b1 <= b2 ? b1 : b2); + *u = MIN (*u, b1 <= b2 ? b2 : b1); + + *could_be_zero = (*l <= 0 && 0 <= *u + && int_mod (eqn->coef[0], abs (eqn->coef[v])) == 0); +} + +/* Return false when a lower bound L and an upper bound U for variable + I in problem PB have been initialized. */ + +bool +omega_query_variable_bounds (omega_pb pb, int i, int *l, int *u) +{ + *l = neg_infinity; + *u = pos_infinity; + + if (!omega_query_variable (pb, i, l, u) + || (pb->num_vars == 1 && pb->forwarding_address[i] == 1)) + return false; + + if (abs (pb->forwarding_address[i]) == 1 + && pb->num_vars + pb->num_subs == 2 + && pb->num_eqs + pb->num_subs == 1) + { + bool could_be_zero; + query_coupled_variable (pb, i, l, u, &could_be_zero, neg_infinity, + pos_infinity); + return false; + } + + return true; +} + +/* For problem PB, return an integer that represents the classic data + dependence direction in function of the DD_LT, DD_EQ and DD_GT bit + masks that are added to the result. When DIST_KNOWN is true, DIST + is set to the classic data dependence distance. LOWER_BOUND and + UPPER_BOUND are bounds on the value of variable I, for example, it + is possible to narrow the iteration domain with safe approximations + of loop counts, and thus discard some data dependences that cannot + occur. */ + +int +omega_query_variable_signs (omega_pb pb, int i, int dd_lt, + int dd_eq, int dd_gt, int lower_bound, + int upper_bound, bool *dist_known, int *dist) +{ + int result; + int l, u; + bool could_be_zero; + + l = neg_infinity; + u = pos_infinity; + + omega_query_variable (pb, i, &l, &u); + query_coupled_variable (pb, i, &l, &u, &could_be_zero, lower_bound, + upper_bound); + result = 0; + + if (l < 0) + result |= dd_gt; + + if (u > 0) + result |= dd_lt; + + if (could_be_zero) + result |= dd_eq; + + if (l == u) + { + *dist_known = true; + *dist = l; + } + else + *dist_known = false; + + return result; +} + +/* Initialize PB as an Omega problem with NVARS variables and NPROT + safe variables. Safe variables are not eliminated during the + Fourier-Motzkin elimination. Safe variables are all those + variables that are placed at the beginning of the array of + variables: P->var[0, ..., NPROT - 1]. */ + +omega_pb +omega_alloc_problem (int nvars, int nprot) +{ + omega_pb pb; + + gcc_assert (nvars <= OMEGA_MAX_VARS); + omega_initialize (); + + /* Allocate and initialize PB. */ + pb = XCNEW (struct omega_pb); + pb->var = XCNEWVEC (int, OMEGA_MAX_VARS + 2); + pb->forwarding_address = XCNEWVEC (int, OMEGA_MAX_VARS + 2); + pb->geqs = omega_alloc_eqns (0, OMEGA_MAX_GEQS); + pb->eqs = omega_alloc_eqns (0, OMEGA_MAX_EQS); + pb->subs = omega_alloc_eqns (0, OMEGA_MAX_VARS + 1); + + pb->hash_version = hash_version; + pb->num_vars = nvars; + pb->safe_vars = nprot; + pb->variables_initialized = false; + pb->variables_freed = false; + pb->num_eqs = 0; + pb->num_geqs = 0; + pb->num_subs = 0; + return pb; +} + +/* Keeps the state of the initialization. */ +static bool omega_initialized = false; + +/* Initialization of the Omega solver. */ + +void +omega_initialize (void) +{ + int i; + + if (omega_initialized) + return; + + next_wild_card = 0; + next_key = OMEGA_MAX_VARS + 1; + packing = XCNEWVEC (int, OMEGA_MAX_VARS); + fast_lookup = XCNEWVEC (int, MAX_KEYS * 2); + fast_lookup_red = XCNEWVEC (int, MAX_KEYS * 2); + hash_master = omega_alloc_eqns (0, HASH_TABLE_SIZE); + + for (i = 0; i < HASH_TABLE_SIZE; i++) + hash_master[i].touched = -1; + + sprintf (wild_name[0], "1"); + sprintf (wild_name[1], "a"); + sprintf (wild_name[2], "b"); + sprintf (wild_name[3], "c"); + sprintf (wild_name[4], "d"); + sprintf (wild_name[5], "e"); + sprintf (wild_name[6], "f"); + sprintf (wild_name[7], "g"); + sprintf (wild_name[8], "h"); + sprintf (wild_name[9], "i"); + sprintf (wild_name[10], "j"); + sprintf (wild_name[11], "k"); + sprintf (wild_name[12], "l"); + sprintf (wild_name[13], "m"); + sprintf (wild_name[14], "n"); + sprintf (wild_name[15], "o"); + sprintf (wild_name[16], "p"); + sprintf (wild_name[17], "q"); + sprintf (wild_name[18], "r"); + sprintf (wild_name[19], "s"); + sprintf (wild_name[20], "t"); + sprintf (wild_name[40 - 1], "alpha"); + sprintf (wild_name[40 - 2], "beta"); + sprintf (wild_name[40 - 3], "gamma"); + sprintf (wild_name[40 - 4], "delta"); + sprintf (wild_name[40 - 5], "tau"); + sprintf (wild_name[40 - 6], "sigma"); + sprintf (wild_name[40 - 7], "chi"); + sprintf (wild_name[40 - 8], "omega"); + sprintf (wild_name[40 - 9], "pi"); + sprintf (wild_name[40 - 10], "ni"); + sprintf (wild_name[40 - 11], "Alpha"); + sprintf (wild_name[40 - 12], "Beta"); + sprintf (wild_name[40 - 13], "Gamma"); + sprintf (wild_name[40 - 14], "Delta"); + sprintf (wild_name[40 - 15], "Tau"); + sprintf (wild_name[40 - 16], "Sigma"); + sprintf (wild_name[40 - 17], "Chi"); + sprintf (wild_name[40 - 18], "Omega"); + sprintf (wild_name[40 - 19], "xxx"); + + omega_initialized = true; +} |