diff options
author | hagog <hagog@138bc75d-0d04-0410-961f-82ee72b054a4> | 2004-05-25 12:58:32 +0000 |
---|---|---|
committer | hagog <hagog@138bc75d-0d04-0410-961f-82ee72b054a4> | 2004-05-25 12:58:32 +0000 |
commit | 5b6269ed5dd3dff316c4a82fdf33d84a26bde69c (patch) | |
tree | 7a818210ec5b5ad8bfadde298e02d012e88d4c8f /gcc/modulo-sched.c | |
parent | 406a73e72e285d52b83924c5c6a0347260b2579e (diff) | |
download | gcc-5b6269ed5dd3dff316c4a82fdf33d84a26bde69c.tar.gz |
New files for implementing sms in gcc.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@82236 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/modulo-sched.c')
-rw-r--r-- | gcc/modulo-sched.c | 2125 |
1 files changed, 2125 insertions, 0 deletions
diff --git a/gcc/modulo-sched.c b/gcc/modulo-sched.c new file mode 100644 index 00000000000..77dd6e8551b --- /dev/null +++ b/gcc/modulo-sched.c @@ -0,0 +1,2125 @@ +/* Swing Modulo Scheduling implementation. + Copyright (C) 2004 + Free Software Foundation, Inc. + Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 2, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING. If not, write to the Free +Software Foundation, 59 Temple Place - Suite 330, Boston, MA +02111-1307, USA. */ + + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "toplev.h" +#include "rtl.h" +#include "tm_p.h" +#include "hard-reg-set.h" +#include "basic-block.h" +#include "regs.h" +#include "function.h" +#include "flags.h" +#include "insn-config.h" +#include "insn-attr.h" +#include "except.h" +#include "toplev.h" +#include "recog.h" +#include "sched-int.h" +#include "target.h" +#include "cfglayout.h" +#include "cfgloop.h" +#include "cfghooks.h" +#include "expr.h" +#include "params.h" +#include "gcov-io.h" +#include "df.h" +#include "ddg.h" + + +/* This file contains the implementation of the Swing Modulo Scheduler, + described in the following references: + [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt. + Lifetime--sensitive modulo scheduling in a production environment. + IEEE Trans. on Comps., 50(3), March 2001 + [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero. + Swing Modulo Scheduling: A Lifetime Sensitive Approach. + PACT '96 , pages 80-87, October 1996 (Boston - Massachussets - USA). + + The basic structure is: + 1. Build a data-dependence graph (DDG) for each loop. + 2. Use the DDG to order the insns of a loop (not in topological order + necessarily, but rather) trying to place each insn after all its + predecessors _or_ after all its successors. + 3. Compute MII: a lower bound on the number of cycles to schedule the loop. + 4. Use the ordering to perform list-scheduling of the loop: + 1. Set II = MII. We will try to schedule the loop within II cycles. + 2. Try to schedule the insns one by one according to the ordering. + For each insn compute an interval of cycles by considering already- + scheduled preds and succs (and associated latencies); try to place + the insn in the cycles of this window checking for potential + resource conflicts (using the DFA interface). + Note: this is different from the cycle-scheduling of schedule_insns; + here the insns are not scheduled monotonically top-down (nor bottom- + up). + 3. If failed in scheduling all insns - bump II++ and try again, unless + II reaches an upper bound MaxII, inwhich case report failure. + 5. If we succeeded in scheduling the loop within II cycles, we now + generate prolog and epilog, decrease the counter of the loop, and + perform modulo variable expansion for live ranges that span more than + II cycles (i.e. use register copies to prevent a def from overwriting + itself before reaching the use). +*/ + + +/* This page defines partial-schedule structures and functions for + modulo scheduling. */ + +typedef struct partial_schedule *partial_schedule_ptr; +typedef struct ps_insn *ps_insn_ptr; + +/* The minimum (absolute) cycle that a node of ps was scheduled in. */ +#define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle) + +/* The maximum (absolute) cycle that a node of ps was scheduled in. */ +#define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle) + +/* Perform signed modulo, always returning a non-negative value. */ +#define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y)) + +/* The number of different iterations the nodes in ps span, assuming + the stage boundaries are placed efficiently. */ +#define PS_STAGE_COUNT(ps) ((PS_MAX_CYCLE (ps) - PS_MIN_CYCLE (ps) \ + + 1 + (ps)->ii - 1) / (ps)->ii) + +#define CFG_HOOKS cfg_layout_rtl_cfg_hooks + +/* A single instruction in the partial schedule. */ +struct ps_insn +{ + /* The corresponding DDG_NODE. */ + ddg_node_ptr node; + + /* The (absolute) cycle in which the PS instruction is scheduled. + Same as SCHED_TIME (node). */ + int cycle; + + /* The next/prev PS_INSN in the same row. */ + ps_insn_ptr next_in_row, + prev_in_row; + + /* The number of nodes in the same row that come after this node. */ + int row_rest_count; +}; + +/* Holds the partial schedule as an array of II rows. Each entry of the + array points to a linked list of PS_INSNs, which represents the + instructions that are scheduled for that row. */ +struct partial_schedule +{ + int ii; /* Number of rows in the partial schedule. */ + int history; /* Threshold for conflict checking using DFA. */ + + /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */ + ps_insn_ptr *rows; + + /* The earliest absolute cycle of an insn in the partial schedule. */ + int min_cycle; + + /* The latest absolute cycle of an insn in the partial schedule. */ + int max_cycle; + + ddg_ptr g; /* The DDG of the insns in the partial schedule. */ +}; + + +partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history); +void free_partial_schedule (partial_schedule_ptr); +void reset_partial_schedule (partial_schedule_ptr, int new_ii); +void print_partial_schedule (partial_schedule_ptr, FILE *); +ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr, + ddg_node_ptr node, int cycle); +void rotate_partial_schedule (partial_schedule_ptr, int); +void set_row_column_for_ps (partial_schedule_ptr); + + +/* This page defines constants and structures for the modulo scheduiing + driver. */ + +/* As in haifa-sched.c: */ +/* issue_rate is the number of insns that can be scheduled in the same + machine cycle. It can be defined in the config/mach/mach.h file, + otherwise we set it to 1. */ + +static int issue_rate; + +/* For printing statistics. */ +static FILE *stats_file; + +static int sms_order_nodes (ddg_ptr, int, int * result); +static void set_node_sched_params (ddg_ptr); +static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, + int *, FILE*); +static void permute_partial_schedule (partial_schedule_ptr ps, rtx last); +static void generate_prolog_epilog (partial_schedule_ptr, rtx, rtx, int); +static void duplicate_insns_of_cycles (partial_schedule_ptr ps, + int from_stage, int to_stage, + int is_prolog); + + +#define SCHED_ASAP(x) (((node_sched_params_ptr)(x)->aux.info)->asap) +#define SCHED_TIME(x) (((node_sched_params_ptr)(x)->aux.info)->time) +#define SCHED_FIRST_REG_MOVE(x) \ + (((node_sched_params_ptr)(x)->aux.info)->first_reg_move) +#define SCHED_NREG_MOVES(x) \ + (((node_sched_params_ptr)(x)->aux.info)->nreg_moves) +#define SCHED_ROW(x) (((node_sched_params_ptr)(x)->aux.info)->row) +#define SCHED_STAGE(x) (((node_sched_params_ptr)(x)->aux.info)->stage) +#define SCHED_COLUMN(x) (((node_sched_params_ptr)(x)->aux.info)->column) + +/* The scheduling parameters held for each node. */ +typedef struct node_sched_params +{ + int asap; /* A lower-bound on the absolute scheduling cycle. */ + int time; /* The absolute scheduling cycle (time >= asap). */ + + /* The following field (first_reg_move) is a pointer to the first + register-move instruction added to handle the modulo-variable-expansion + of the register defined by this node. This register-move copies the + original register defined by the node. */ + rtx first_reg_move; + + /* The number of register-move instructions added, immediately preceeding + first_reg_move. */ + int nreg_moves; + + int row; /* Holds time % ii. */ + int stage; /* Holds time / ii. */ + + /* The column of a node inside the ps. If nodes u, v are on the same row, + u will preceed v if column (u) < column (v). */ + int column; +} *node_sched_params_ptr; + + +/* The following three functions are copied from the current scheduler + code in order to use sched_analyze() for computing the dependecies. + They are used when initializing the sched_info structure. */ +static const char * +sms_print_insn (rtx insn, int aligned ATTRIBUTE_UNUSED) +{ + static char tmp[80]; + + sprintf (tmp, "i%4d", INSN_UID (insn)); + return tmp; +} + +static int +contributes_to_priority (rtx next, rtx insn) +{ + return BLOCK_NUM (next) == BLOCK_NUM (insn); +} + +static void +compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED, + regset cond_exec ATTRIBUTE_UNUSED, + regset used ATTRIBUTE_UNUSED, + regset set ATTRIBUTE_UNUSED) +{ +} + +static struct sched_info sms_sched_info = +{ + NULL, + NULL, + NULL, + NULL, + NULL, + sms_print_insn, + contributes_to_priority, + compute_jump_reg_dependencies, + NULL, NULL, + NULL, NULL, + 0, 0, 0 +}; + + +/* Return the register decremented and tested or zero if it is not a decrement + and branch jump insn (similar to doloop_condition_get). */ +static rtx +doloop_register_get (rtx insn, rtx *comp) +{ + rtx pattern, cmp, inc, reg, condition; + + if (GET_CODE (insn) != JUMP_INSN) + return NULL_RTX; + pattern = PATTERN (insn); + + /* The canonical doloop pattern we expect is: + + (parallel [(set (pc) (if_then_else (condition) + (label_ref (label)) + (pc))) + (set (reg) (plus (reg) (const_int -1))) + (additional clobbers and uses)]) + + where condition is further restricted to be + (ne (reg) (const_int 1)). */ + + if (GET_CODE (pattern) != PARALLEL) + return NULL_RTX; + + cmp = XVECEXP (pattern, 0, 0); + inc = XVECEXP (pattern, 0, 1); + /* Return the compare rtx. */ + *comp = cmp; + + /* Check for (set (reg) (something)). */ + if (GET_CODE (inc) != SET || ! REG_P (SET_DEST (inc))) + return NULL_RTX; + + /* Extract loop counter register. */ + reg = SET_DEST (inc); + + /* Check if something = (plus (reg) (const_int -1)). */ + if (GET_CODE (SET_SRC (inc)) != PLUS + || XEXP (SET_SRC (inc), 0) != reg + || XEXP (SET_SRC (inc), 1) != constm1_rtx) + return NULL_RTX; + + /* Check for (set (pc) (if_then_else (condition) + (label_ref (label)) + (pc))). */ + if (GET_CODE (cmp) != SET + || SET_DEST (cmp) != pc_rtx + || GET_CODE (SET_SRC (cmp)) != IF_THEN_ELSE + || GET_CODE (XEXP (SET_SRC (cmp), 1)) != LABEL_REF + || XEXP (SET_SRC (cmp), 2) != pc_rtx) + return NULL_RTX; + + /* Extract loop termination condition. */ + condition = XEXP (SET_SRC (cmp), 0); + + /* Check if condition = (ne (reg) (const_int 1)), which is more + restrictive than the check in doloop_condition_get: + if ((GET_CODE (condition) != GE && GET_CODE (condition) != NE) + || GET_CODE (XEXP (condition, 1)) != CONST_INT). */ + if (GET_CODE (condition) != NE + || XEXP (condition, 1) != const1_rtx) + return NULL_RTX; + + if (XEXP (condition, 0) == reg) + return reg; + + return NULL_RTX; +} + +/* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so + that the number of iterations is a compile-time constant. If so, + return the rtx that sets COUNT_REG to a constant, and set COUNT to + this constant. Otherwise return 0. */ +static rtx +const_iteration_count (rtx count_reg, basic_block pre_header, + HOST_WIDEST_INT * count) +{ + rtx insn; + rtx head, tail; + get_block_head_tail (pre_header->index, &head, &tail); + + for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn)) + if (INSN_P (insn) && single_set (insn) && + rtx_equal_p (count_reg, SET_DEST (single_set (insn)))) + { + rtx pat = single_set (insn); + + if (GET_CODE (SET_SRC (pat)) == CONST_INT) + { + *count = INTVAL (SET_SRC (pat)); + return insn; + } + + return NULL_RTX; + } + + return NULL_RTX; +} + +/* A very simple resource-based lower bound on the initiation interval. + ??? Improve the accuracy of this bound by considering the + utilization of various units. */ +static int +res_MII (ddg_ptr g) +{ + return (g->num_nodes / issue_rate); +} + + +/* Points to the array that contains the sched data for each node. */ +static node_sched_params_ptr node_sched_params; + +/* Allocate sched_params for each node and initialize it. Assumes that + the aux field of each node contain the asap bound (computed earlier), + and copies it into the sched_params field. */ +static void +set_node_sched_params (ddg_ptr g) +{ + int i; + + /* Allocate for each node in the DDG a place to hold the "sched_data". */ + /* Initialize ASAP/ALAP/HIGHT to zero. */ + node_sched_params = (node_sched_params_ptr) + xcalloc (g->num_nodes, + sizeof (struct node_sched_params)); + + /* Set the pointer of the general data of the node to point to the + appropriate sched_params strcture. */ + for (i = 0; i < g->num_nodes; i++) + { + /* Watch out for aliasing problems? */ + node_sched_params[i].asap = g->nodes[i].aux.count; + g->nodes[i].aux.info = &node_sched_params[i]; + } +} + +static void +print_node_sched_params (FILE * dump_file, int num_nodes) +{ + int i; + + for (i = 0; i < num_nodes; i++) + { + node_sched_params_ptr nsp = &node_sched_params[i]; + rtx reg_move = nsp->first_reg_move; + int j; + + fprintf (dump_file, "Node %d:\n", i); + fprintf (dump_file, " asap = %d:\n", nsp->asap); + fprintf (dump_file, " time = %d:\n", nsp->time); + fprintf (dump_file, " nreg_moves = %d:\n", nsp->nreg_moves); + for (j = 0; j < nsp->nreg_moves; j++) + { + fprintf (dump_file, " reg_move = "); + print_rtl_single (dump_file, reg_move); + reg_move = PREV_INSN (reg_move); + } + } +} + +/* Calculate an upper bound for II. SMS should not schedule the loop if it + requires more cycles than this bound. Currently set to the sum of the + longest latency edge for each node. Reset based on experiments. */ +static int +calculate_maxii (ddg_ptr g) +{ + int i; + int maxii = 0; + + for (i = 0; i < g->num_nodes; i++) + { + ddg_node_ptr u = &g->nodes[i]; + ddg_edge_ptr e; + int max_edge_latency = 0; + + for (e = u->out; e; e = e->next_out) + max_edge_latency = MAX (max_edge_latency, e->latency); + + maxii += max_edge_latency; + } + return maxii; +} + + +/* Given the partial schdule, generate register moves when the length + of the register live range is more than ii; the number of moves is + determined according to the following equation: + SCHED_TIME (use) - SCHED_TIME (def) { 1 broken loop-carried + nreg_moves = ----------------------------------- - { dependecnce. + ii { 0 if not. + This handles the modulo-variable-expansions (mve's) needed for the ps. */ +static void +generate_reg_moves (partial_schedule_ptr ps) +{ + ddg_ptr g = ps->g; + int ii = ps->ii; + int i; + + for (i = 0; i < g->num_nodes; i++) + { + ddg_node_ptr u = &g->nodes[i]; + ddg_edge_ptr e; + int nreg_moves = 0, i_reg_move; + sbitmap *uses_of_defs; + rtx last_reg_move; + rtx prev_reg, old_reg; + + /* Compute the number of reg_moves needed for u, by looking at life + ranges started at u (excluding self-loops). */ + for (e = u->out; e; e = e->next_out) + if (e->type == TRUE_DEP && e->dest != e->src) + { + int nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii; + + /* If dest preceeds src in the schedule of the kernel, then dest + will read before src writes and we can save one reg_copy. */ + if (SCHED_ROW (e->dest) == SCHED_ROW (e->src) + && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src)) + nreg_moves4e--; + + nreg_moves = MAX (nreg_moves, nreg_moves4e); + } + + if (nreg_moves == 0) + continue; + + /* Every use of the register defined by node may require a different + copy of this register, depending on the time the use is scheduled. + Set a bitmap vector, telling which nodes use each copy of this + register. */ + uses_of_defs = sbitmap_vector_alloc (nreg_moves, g->num_nodes); + sbitmap_vector_zero (uses_of_defs, nreg_moves); + for (e = u->out; e; e = e->next_out) + if (e->type == TRUE_DEP && e->dest != e->src) + { + int dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii; + + if (SCHED_ROW (e->dest) == SCHED_ROW (e->src) + && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src)) + dest_copy--; + + if (dest_copy) + SET_BIT (uses_of_defs[dest_copy - 1], e->dest->cuid); + } + + /* Now generate the reg_moves, attaching relevant uses to them. */ + SCHED_NREG_MOVES (u) = nreg_moves; + old_reg = prev_reg = copy_rtx (SET_DEST (single_set (u->insn))); + last_reg_move = u->insn; + + for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++) + { + int i_use; + rtx new_reg = gen_reg_rtx (GET_MODE (prev_reg)); + rtx reg_move = gen_move_insn (new_reg, prev_reg); + + add_insn_before (reg_move, last_reg_move); + last_reg_move = reg_move; + + if (!SCHED_FIRST_REG_MOVE (u)) + SCHED_FIRST_REG_MOVE (u) = reg_move; + + EXECUTE_IF_SET_IN_SBITMAP (uses_of_defs[i_reg_move], 0, i_use, + replace_rtx (g->nodes[i_use].insn, old_reg, new_reg)); + + prev_reg = new_reg; + } + } +} + +/* Bump the SCHED_TIMEs of all nodes to start from zero. Set the values + of SCHED_ROW and SCHED_STAGE. */ +static void +normalize_sched_times (partial_schedule_ptr ps) +{ + int i; + ddg_ptr g = ps->g; + int amount = PS_MIN_CYCLE (ps); + int ii = ps->ii; + + for (i = 0; i < g->num_nodes; i++) + { + ddg_node_ptr u = &g->nodes[i]; + int normalized_time = SCHED_TIME (u) - amount; + + if (normalized_time < 0) + abort (); + + SCHED_TIME (u) = normalized_time; + SCHED_ROW (u) = normalized_time % ii; + SCHED_STAGE (u) = normalized_time / ii; + } +} + +/* Set SCHED_COLUMN of each node according to its position in PS. */ +static void +set_columns_for_ps (partial_schedule_ptr ps) +{ + int row; + + for (row = 0; row < ps->ii; row++) + { + ps_insn_ptr cur_insn = ps->rows[row]; + int column = 0; + + for (; cur_insn; cur_insn = cur_insn->next_in_row) + SCHED_COLUMN (cur_insn->node) = column++; + } +} + +/* Permute the insns according to their order in PS, from row 0 to + row ii-1, and position them right before LAST. This schedules + the insns of the loop kernel. */ +static void +permute_partial_schedule (partial_schedule_ptr ps, rtx last) +{ + int ii = ps->ii; + int row; + ps_insn_ptr ps_ij; + + for (row = 0; row < ii ; row++) + for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row) + if (PREV_INSN (last) != ps_ij->node->insn) + reorder_insns_nobb (ps_ij->node->first_note, ps_ij->node->insn, + PREV_INSN (last)); +} + +/* Used to generate the prologue & epilogue. Duplicate the subset of + nodes whose stages are between FROM_STAGE and TO_STAGE (inclusive + of both), together with a prefix/suffix of their reg_moves. */ +static void +duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage, + int to_stage, int for_prolog) +{ + int row; + ps_insn_ptr ps_ij; + + for (row = 0; row < ps->ii; row++) + for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row) + { + ddg_node_ptr u_node = ps_ij->node; + int j, i_reg_moves; + rtx reg_move = NULL_RTX; + + if (for_prolog) + { + /* SCHED_STAGE (u_node) >= from_stage == 0. Generate increasing + number of reg_moves starting with the second occurance of + u_node, which is generated if its SCHED_STAGE <= to_stage. */ + i_reg_moves = to_stage - SCHED_STAGE (u_node); + i_reg_moves = MAX (i_reg_moves, 0); + i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node)); + + /* The reg_moves start from the *first* reg_move backwards. */ + if (i_reg_moves) + { + reg_move = SCHED_FIRST_REG_MOVE (u_node); + for (j = 1; j < i_reg_moves; j++) + reg_move = PREV_INSN (reg_move); + } + } + else /* It's for the epilog. */ + { + /* SCHED_STAGE (u_node) <= to_stage. Generate all reg_moves, + starting to decrease one stage after u_node no longer occurs; + that is, generate all reg_moves until + SCHED_STAGE (u_node) == from_stage - 1. */ + i_reg_moves = SCHED_NREG_MOVES (u_node) + - (from_stage - SCHED_STAGE (u_node) - 1); + i_reg_moves = MAX (i_reg_moves, 0); + i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node)); + + /* The reg_moves start from the *last* reg_move forwards. */ + if (i_reg_moves) + { + reg_move = SCHED_FIRST_REG_MOVE (u_node); + for (j = 1; j < SCHED_NREG_MOVES (u_node); j++) + reg_move = PREV_INSN (reg_move); + } + } + + for (j = 0; j < i_reg_moves; j++, reg_move = NEXT_INSN (reg_move)) + emit_insn (copy_rtx (PATTERN (reg_move))); + + if (SCHED_STAGE (u_node) >= from_stage + && SCHED_STAGE (u_node) <= to_stage) + duplicate_insn_chain (u_node->first_note, u_node->insn); + } +} + + +/* Generate the instructions (including reg_moves) for prolog & epilog. */ +static void +generate_prolog_epilog (partial_schedule_ptr ps, rtx orig_loop_beg, + rtx orig_loop_end, int unknown_count) +{ + int i; + int last_stage = PS_STAGE_COUNT (ps) - 1; + edge e; + rtx c_reg = NULL_RTX; + rtx cmp = NULL_RTX; + rtx precond_jump = NULL_RTX; + rtx precond_exit_label = NULL_RTX; + rtx precond_exit_label_insn = NULL_RTX; + rtx last_epilog_insn = NULL_RTX; + rtx loop_exit_label = NULL_RTX; + rtx loop_exit_label_insn = NULL_RTX; + rtx orig_loop_bct = NULL_RTX; + + /* Loop header edge. */ + e = ps->g->bb->pred; + if (e->src == ps->g->bb) + e = e->pred_next; + + /* Generate the prolog, inserting its insns on the loop-entry edge. */ + start_sequence (); + + /* This is the place where we want to insert the precondition. */ + if (unknown_count) + precond_jump = emit_note (NOTE_INSN_DELETED); + + for (i = 0; i < last_stage; i++) + duplicate_insns_of_cycles (ps, 0, i, 1); + + /* No need to call insert_insn_on_edge; we prepared the sequence. */ + e->insns.r = get_insns (); + end_sequence (); + + /* Generate the epilog, inserting its insns on the loop-exit edge. */ + start_sequence (); + + for (i = 0; i < last_stage; i++) + duplicate_insns_of_cycles (ps, i + 1, last_stage, 0); + + last_epilog_insn = emit_note (NOTE_INSN_DELETED); + + /* Emit the label where to put the original loop code. */ + if (unknown_count) + { + rtx label, cond; + + precond_exit_label = gen_label_rtx (); + precond_exit_label_insn = emit_label (precond_exit_label); + + /* Put the original loop code. */ + reorder_insns_nobb (orig_loop_beg, orig_loop_end, precond_exit_label_insn); + + /* Change the label of the BCT to be the PRECOND_EXIT_LABEL. */ + orig_loop_bct = get_last_insn (); + c_reg = doloop_register_get (orig_loop_bct, &cmp); + label = XEXP (SET_SRC (cmp), 1); + cond = XEXP (SET_SRC (cmp), 0); + + if (! c_reg || GET_CODE (cond) != NE) + abort (); + + XEXP (label, 0) = precond_exit_label; + JUMP_LABEL (orig_loop_bct) = precond_exit_label_insn; + LABEL_NUSES (precond_exit_label_insn)++; + + /* Generate the loop exit label. */ + loop_exit_label = gen_label_rtx (); + loop_exit_label_insn = emit_label (loop_exit_label); + } + + e = ps->g->bb->succ; + if (e->dest == ps->g->bb) + e = e->succ_next; + + e->insns.r = get_insns (); + end_sequence (); + + commit_edge_insertions (); + + if (unknown_count) + { + rtx precond_insns, epilog_jump, insert_after_insn; + basic_block loop_exit_bb = BLOCK_FOR_INSN (loop_exit_label_insn); + basic_block epilog_bb = BLOCK_FOR_INSN (last_epilog_insn); + basic_block precond_bb = BLOCK_FOR_INSN (precond_jump); + basic_block orig_loop_bb = BLOCK_FOR_INSN (precond_exit_label_insn); + edge epilog_exit_edge = epilog_bb->succ; + + /* Do loop preconditioning to take care of cases were the loop count is + less than the stage count. Update the CFG properly. */ + insert_after_insn = precond_jump; + start_sequence (); + c_reg = doloop_register_get (ps->g->closing_branch->insn, &cmp); + emit_cmp_and_jump_insns (c_reg, GEN_INT (PS_STAGE_COUNT (ps)), LT, NULL, + GET_MODE (c_reg), 1, precond_exit_label); + precond_insns = get_insns (); + precond_jump = get_last_insn (); + end_sequence (); + reorder_insns (precond_insns, precond_jump, insert_after_insn); + + /* Generate a subtract instruction at the beginning of the prolog to + adjust the loop count by STAGE_COUNT. */ + emit_insn_after (gen_sub2_insn (c_reg, GEN_INT (PS_STAGE_COUNT (ps) - 1)), + precond_jump); + update_bb_for_insn (precond_bb); + delete_insn (insert_after_insn); + + /* Update label info for the precondition jump. */ + JUMP_LABEL (precond_jump) = precond_exit_label_insn; + LABEL_NUSES (precond_exit_label_insn)++; + + /* Update the CFG. */ + split_block (precond_bb, precond_jump); + make_edge (precond_bb, orig_loop_bb, 0); + + /* Add a jump at end of the epilog to the LOOP_EXIT_LABEL to jump over the + original loop copy and update the CFG. */ + epilog_jump = emit_jump_insn_after (gen_jump (loop_exit_label), + last_epilog_insn); + delete_insn (last_epilog_insn); + JUMP_LABEL (epilog_jump) = loop_exit_label_insn; + LABEL_NUSES (loop_exit_label_insn)++; + + redirect_edge_succ (epilog_exit_edge, loop_exit_bb); + epilog_exit_edge->flags &= ~EDGE_FALLTHRU; + emit_barrier_after (BB_END (epilog_bb)); + } +} + +/* Return the line note insn preceding INSN, for debugging. Taken from + emit-rtl.c. */ +static rtx +find_line_note (rtx insn) +{ + for (; insn; insn = PREV_INSN (insn)) + if (GET_CODE (insn) == NOTE + && NOTE_LINE_NUMBER (insn) >= 0) + break; + + return insn; +} + +/* Main entry point, perform SMS scheduling on the loops of the function + that consist of single basic blocks. */ +void +sms_schedule (FILE *dump_file) +{ + static int passes = 0; + rtx insn; + ddg_ptr *g_arr, g; + basic_block bb, pre_header = NULL; + int * node_order; + int maxii; + int i; + partial_schedule_ptr ps; + int max_bb_index = last_basic_block; + struct df *df; + + /* SMS uses the DFA interface. */ + if (! targetm.sched.use_dfa_pipeline_interface + || ! (*targetm.sched.use_dfa_pipeline_interface) ()) + return; + + stats_file = dump_file; + + + /* Initialize issue_rate. */ + if (targetm.sched.issue_rate) + { + int temp = reload_completed; + + reload_completed = 1; + issue_rate = (*targetm.sched.issue_rate) (); + reload_completed = temp; + } + else + issue_rate = 1; + + /* Initilize the scheduler. */ + current_sched_info = &sms_sched_info; + sched_init (NULL); + + /* Init Data Flow analysis, to be used in interloop dep calculation. */ + df = df_init (); + df_analyze (df, 0, DF_ALL); + + /* Allocate memory to hold the DDG array. */ + g_arr = xcalloc (max_bb_index, sizeof (ddg_ptr)); + + /* Build DDGs for all the relevant loops and hold them in G_ARR + indexed by the loop BB index. */ + FOR_EACH_BB (bb) + { + rtx head, tail; + rtx count_reg, comp; + edge e, pre_header_edge; + + if (bb->index < 0) + continue; + + /* Check if bb has two successors, one being itself. */ + e = bb->succ; + if (!e || !e->succ_next || e->succ_next->succ_next) + continue; + + if (e->dest != bb && e->succ_next->dest != bb) + continue; + + if ((e->flags & EDGE_COMPLEX) + || (e->succ_next->flags & EDGE_COMPLEX)) + continue; + + /* Check if bb has two predecessors, one being itself. */ + /* In view of above tests, suffices to check e->pred_next->pred_next? */ + e = bb->pred; + if (!e || !e->pred_next || e->pred_next->pred_next) + continue; + + if (e->src != bb && e->pred_next->src != bb) + continue; + + if ((e->flags & EDGE_COMPLEX) + || (e->pred_next->flags & EDGE_COMPLEX)) + continue; + + /* For debugging. */ + if (passes++ > MAX_SMS_LOOP_NUMBER && MAX_SMS_LOOP_NUMBER != -1) + { + if (dump_file) + fprintf (dump_file, "SMS reached MAX_PASSES... \n"); + break; + } + + get_block_head_tail (bb->index, &head, &tail); + pre_header_edge = bb->pred; + if (bb->pred->src != bb) + pre_header_edge = bb->pred->pred_next; + + /* Perfrom SMS only on loops that their average count is above threshold. */ + if (bb->count < pre_header_edge->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD) + { + if (stats_file) + { + rtx line_note = find_line_note (tail); + + if (line_note) + fprintf (stats_file, "SMS bb %s %d (file, line)\n", + NOTE_SOURCE_FILE (line_note), NOTE_LINE_NUMBER (line_note)); + fprintf (stats_file, "SMS single-bb-loop\n"); + if (profile_info && flag_branch_probabilities) + { + fprintf (stats_file, "SMS loop-count "); + fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC, + (HOST_WIDEST_INT) bb->count); + fprintf (stats_file, "\n"); + fprintf (stats_file, "SMS preheader-count "); + fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC, + (HOST_WIDEST_INT) pre_header_edge->count); + fprintf (stats_file, "\n"); + fprintf (stats_file, "SMS profile-sum-max "); + fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC, + (HOST_WIDEST_INT) profile_info->sum_max); + fprintf (stats_file, "\n"); + } + } + continue; + } + + /* Make sure this is a doloop. */ + if ( !(count_reg = doloop_register_get (tail, &comp))) + continue; + + e = bb->pred; + if (e->src == bb) + pre_header = e->pred_next->src; + else + pre_header = e->src; + + /* Don't handle BBs with calls or barriers, or !single_set insns. */ + for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn)) + if (GET_CODE (insn) == CALL_INSN + || GET_CODE (insn) == BARRIER + || (INSN_P (insn) && GET_CODE (insn) != JUMP_INSN + && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE)) + break; + + if (insn != NEXT_INSN (tail)) + { + if (stats_file) + { + if (GET_CODE (insn) == CALL_INSN) + fprintf (stats_file, "SMS loop-with-call\n"); + else if (GET_CODE (insn) == BARRIER) + fprintf (stats_file, "SMS loop-with-barrier\n"); + else + fprintf (stats_file, "SMS loop-with-not-single-set\n"); + print_rtl_single (stats_file, insn); + } + + continue; + } + + if (! (g = create_ddg (bb, df, 0))) + { + if (stats_file) + fprintf (stats_file, "SMS doloop\n"); + continue; + } + + g_arr[bb->index] = g; + } + + /* Release Data Flow analysis data structures. */ + df_finish (df); + + /* Go over the built DDGs and perfrom SMS for each one of them. */ + for (i = 0; i < max_bb_index; i++) + { + rtx head, tail; + rtx count_reg, count_init, comp; + edge pre_header_edge; + int mii, rec_mii; + int stage_count = 0; + HOST_WIDEST_INT loop_count = 0; + + if (! (g = g_arr[i])) + continue; + + if (dump_file) + print_ddg (dump_file, g); + + get_block_head_tail (g->bb->index, &head, &tail); + + pre_header_edge = g->bb->pred; + if (g->bb->pred->src != g->bb) + pre_header_edge = g->bb->pred->pred_next; + + if (stats_file) + { + rtx line_note = find_line_note (tail); + + if (line_note) + fprintf (stats_file, "SMS bb %s %d (file, line)\n", + NOTE_SOURCE_FILE (line_note), NOTE_LINE_NUMBER (line_note)); + fprintf (stats_file, "SMS single-bb-loop\n"); + if (profile_info && flag_branch_probabilities) + { + fprintf (stats_file, "SMS loop-count "); + fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC, + (HOST_WIDEST_INT) bb->count); + fprintf (stats_file, "\n"); + fprintf (stats_file, "SMS preheader-count "); + fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC, + (HOST_WIDEST_INT) pre_header_edge->count); + fprintf (stats_file, "\n"); + fprintf (stats_file, "SMS profile-sum-max "); + fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC, + (HOST_WIDEST_INT) profile_info->sum_max); + fprintf (stats_file, "\n"); + } + fprintf (stats_file, "SMS doloop\n"); + fprintf (stats_file, "SMS built-ddg %d\n", g->num_nodes); + fprintf (stats_file, "SMS num-loads %d\n", g->num_loads); + fprintf (stats_file, "SMS num-stores %d\n", g->num_stores); + } + + /* Make sure this is a doloop. */ + if ( !(count_reg = doloop_register_get (tail, &comp))) + abort (); + + /* This should be NULL_RTX if the count is unknown at compile time. */ + count_init = const_iteration_count (count_reg, pre_header, &loop_count); + + if (stats_file && count_init) + { + fprintf (stats_file, "SMS const-doloop "); + fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC, loop_count); + fprintf (stats_file, "\n"); + } + + node_order = (int *) xmalloc (sizeof (int) * g->num_nodes); + + mii = 1; /* Need to pass some estimate of mii. */ + rec_mii = sms_order_nodes (g, mii, node_order); + mii = MAX (res_MII (g), rec_mii); + maxii = (calculate_maxii (g) * SMS_MAX_II_FACTOR) / 100; + + if (stats_file) + fprintf (stats_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n", + rec_mii, mii, maxii); + + /* After sms_order_nodes and before sms_schedule_by_order, to copy over + ASAP. */ + set_node_sched_params (g); + + ps = sms_schedule_by_order (g, mii, maxii, node_order, dump_file); + + if (ps) + stage_count = PS_STAGE_COUNT (ps); + + if (stage_count == 0 || (count_init && (stage_count > loop_count))) + { + if (dump_file) + fprintf (dump_file, "SMS failed... \n"); + if (stats_file) + fprintf (stats_file, "SMS sched-failed %d\n", stage_count); + } + else + { + rtx orig_loop_beg = NULL_RTX; + rtx orig_loop_end = NULL_RTX; + + if (stats_file) + { + fprintf (stats_file, + "SMS succeeded %d %d (with ii, sc)\n", ps->ii, + stage_count); + print_partial_schedule (ps, dump_file); + fprintf (dump_file, + "SMS Branch (%d) will later be scheduled at cycle %d.\n", + g->closing_branch->cuid, PS_MIN_CYCLE (ps) - 1); + } + + /* Save the original loop if we want to do loop preconditioning in + case the BCT count is not known. */ + if (! count_init) + { + int i; + + start_sequence (); + /* Copy the original loop code before modifying it - so we can use + it later. */ + for (i = 0; i < ps->g->num_nodes; i++) + duplicate_insn_chain (ps->g->nodes[i].first_note, + ps->g->nodes[i].insn); + + orig_loop_beg = get_insns (); + orig_loop_end = get_last_insn (); + end_sequence (); + } + /* Set the stage boundaries. If the DDG is built with closing_branch_deps, + the closing_branch was scheduled and should appear in the last (ii-1) + row. Otherwise, we are free to schedule the branch, and we let nodes + that were scheduled at the first PS_MIN_CYCLE cycle appear in the first + row; this should reduce stage_count to minimum. */ + normalize_sched_times (ps); + rotate_partial_schedule (ps, PS_MIN_CYCLE (ps)); + set_columns_for_ps (ps); + + permute_partial_schedule (ps, g->closing_branch->first_note); + generate_reg_moves (ps); + if (dump_file) + print_node_sched_params (dump_file, g->num_nodes); + + /* Set new iteration count of loop kernel. */ + if (count_init) + SET_SRC (single_set (count_init)) = GEN_INT (loop_count + - stage_count + 1); + + /* Generate prolog and epilog. */ + generate_prolog_epilog (ps, orig_loop_beg, orig_loop_end, + count_init ? 0 : 1); + } + free_partial_schedule (ps); + free (node_sched_params); + free (node_order); + free_ddg (g); + } + + /* Release scheduler data, needed until now because of DFA. */ + sched_finish (); +} + +/* The SMS scheduling algorithm itself + ----------------------------------- + Input: 'O' an ordered list of insns of a loop. + Output: A scheduling of the loop - kernel, prolog, and epilogue. + + 'Q' is the empty Set + 'PS' is the partial schedule; it holds the currently scheduled nodes with + their cycle/slot. + 'PSP' previously scheduled predecessors. + 'PSS' previously scheduled successors. + 't(u)' the cycle where u is scheduled. + 'l(u)' is the latency of u. + 'd(v,u)' is the dependence distance from v to u. + 'ASAP(u)' the earliest time at which u could be scheduled as computed in + the node ordering phase. + 'check_hardware_resources_conflicts(u, PS, c)' + run a trace around cycle/slot through DFA model + to check resource conflicts involving instruction u + at cycle c given the partial schedule PS. + 'add_to_partial_schedule_at_time(u, PS, c)' + Add the node/instruction u to the partial schedule + PS at time c. + 'calculate_register_pressure(PS)' + Given a schedule of instructions, calculate the register + pressure it implies. One implementation could be the + maximum number of overlapping live ranges. + 'maxRP' The maximum allowed register pressure, it is usually derived from the number + registers available in the hardware. + + 1. II = MII. + 2. PS = empty list + 3. for each node u in O in pre-computed order + 4. if (PSP(u) != Q && PSS(u) == Q) then + 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u). + 6. start = Early_start; end = Early_start + II - 1; step = 1 + 11. else if (PSP(u) == Q && PSS(u) != Q) then + 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u). + 13. start = Late_start; end = Late_start - II + 1; step = -1 + 14. else if (PSP(u) != Q && PSS(u) != Q) then + 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u). + 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u). + 17. start = Early_start; + 18. end = min(Early_start + II - 1 , Late_start); + 19. step = 1 + 20. else "if (PSP(u) == Q && PSS(u) == Q)" + 21. start = ASAP(u); end = start + II - 1; step = 1 + 22. endif + + 23. success = false + 24. for (c = start ; c != end ; c += step) + 25. if check_hardware_resources_conflicts(u, PS, c) then + 26. add_to_partial_schedule_at_time(u, PS, c) + 27. success = true + 28. break + 29. endif + 30. endfor + 31. if (success == false) then + 32. II = II + 1 + 33. if (II > maxII) then + 34. finish - failed to schedule + 35. endif + 36. goto 2. + 37. endif + 38. endfor + 39. if (calculate_register_pressure(PS) > maxRP) then + 40. goto 32. + 41. endif + 42. compute epilogue & prologue + 43. finish - succeeded to schedule +*/ + +/* A limit on the number of cycles that resource conflicts can span. ??? Should + be provided by DFA, and be dependent on the type of insn scheduled. Currently + set to 0 to save compile time. */ +#define DFA_HISTORY SMS_DFA_HISTORY + +static partial_schedule_ptr +sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order, FILE *dump_file) +{ + int ii = mii; + int i, c, success; + int try_again_with_larger_ii = true; + int num_nodes = g->num_nodes; + ddg_edge_ptr e; + int start, end, step; /* Place together into one struct? */ + sbitmap sched_nodes = sbitmap_alloc (num_nodes); + sbitmap psp = sbitmap_alloc (num_nodes); + sbitmap pss = sbitmap_alloc (num_nodes); + partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY); + + while (try_again_with_larger_ii && ii < maxii) + { + if (dump_file) + fprintf(dump_file, "Starting with ii=%d\n", ii); + try_again_with_larger_ii = false; + sbitmap_zero (sched_nodes); + + for (i = 0; i < num_nodes; i++) + { + int u = nodes_order[i]; + ddg_node_ptr u_node = &g->nodes[u]; + sbitmap u_node_preds = NODE_PREDECESSORS (u_node); + sbitmap u_node_succs = NODE_SUCCESSORS (u_node); + int psp_not_empty; + int pss_not_empty; + rtx insn = u_node->insn; + + if (!INSN_P (insn)) + continue; + + if (GET_CODE (insn) == JUMP_INSN) /* Closing branch handled later. */ + continue; + + /* 1. compute sched window for u (start, end, step). */ + sbitmap_zero (psp); + sbitmap_zero (pss); + psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes); + pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes); + + if (psp_not_empty && !pss_not_empty) + { + int early_start = 0; + + end = INT_MAX; + for (e = u_node->in; e != 0; e = e->next_in) + { + ddg_node_ptr v_node = e->src; + if (TEST_BIT (sched_nodes, v_node->cuid)) + { + early_start = MAX (early_start, + SCHED_TIME (v_node) + + e->latency - (e->distance * ii)); + if (e->data_type == MEM_DEP) + end = MIN (end, SCHED_TIME (v_node) + ii - 1); + } + } + start = early_start; + end = MIN (end, early_start + ii); + step = 1; + } + + else if (!psp_not_empty && pss_not_empty) + { + int late_start = INT_MAX; + + end = INT_MIN; + for (e = u_node->out; e != 0; e = e->next_out) + { + ddg_node_ptr v_node = e->dest; + if (TEST_BIT (sched_nodes, v_node->cuid)) + { + late_start = MIN (late_start, + SCHED_TIME (v_node) - e->latency + + (e->distance * ii)); + if (e->data_type == MEM_DEP) + end = MAX (end, SCHED_TIME (v_node) - ii + 1); + } + } + start = late_start; + end = MAX (end, late_start - ii); + step = -1; + } + + else if (psp_not_empty && pss_not_empty) + { + int early_start = 0; + int late_start = INT_MAX; + + start = INT_MIN; + end = INT_MAX; + for (e = u_node->in; e != 0; e = e->next_in) + { + ddg_node_ptr v_node = e->src; + + if (TEST_BIT (sched_nodes, v_node->cuid)) + { + early_start = MAX (early_start, + SCHED_TIME (v_node) + e->latency + - (e->distance * ii)); + if (e->data_type == MEM_DEP) + end = MIN (end, SCHED_TIME (v_node) + ii - 1); + } + } + for (e = u_node->out; e != 0; e = e->next_out) + { + ddg_node_ptr v_node = e->dest; + + if (TEST_BIT (sched_nodes, v_node->cuid)) + { + late_start = MIN (late_start, + SCHED_TIME (v_node) - e->latency + + (e->distance * ii)); + if (e->data_type == MEM_DEP) + start = MAX (start, SCHED_TIME (v_node) - ii + 1); + } + } + start = MAX (start, early_start); + end = MIN (end, MIN (early_start + ii, late_start + 1)); + step = 1; + } + else /* psp is empty && pss is empty. */ + { + start = SCHED_ASAP (u_node); + end = start + ii; + step = 1; + } + + /* 2. Try scheduling u in window. */ + if (dump_file) + fprintf(dump_file, "Trying to schedule node %d in (%d .. %d) step %d\n", + u, start, end, step); + + success = 0; + if ((step > 0 && start < end) || (step < 0 && start > end)) + for (c = start; c != end; c += step) + { + ps_insn_ptr psi = ps_add_node_check_conflicts (ps, u_node, c); + + if (psi) + { + SCHED_TIME (u_node) = c; + SET_BIT (sched_nodes, u); + success = 1; + if (dump_file) + fprintf(dump_file, "Schedule in %d\n", c); + break; + } + } + if (!success) + { + /* ??? Try backtracking instead of immediately ii++? */ + ii++; + try_again_with_larger_ii = true; + reset_partial_schedule (ps, ii); + break; + } + /* ??? If (success), check register pressure estimates. */ + } /* Continue with next node. */ + } /* While try_again_with_larger_ii. */ + + sbitmap_free (sched_nodes); + sbitmap_free (psp); + sbitmap_free (pss); + + if (ii >= maxii) + { + free_partial_schedule (ps); + ps = NULL; + } + return ps; +} + + +/* This page implements the algorithm for ordering the nodes of a DDG + for modulo scheduling, activated through the + "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */ + +#define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info) +#define ASAP(x) (ORDER_PARAMS ((x))->asap) +#define ALAP(x) (ORDER_PARAMS ((x))->alap) +#define HEIGHT(x) (ORDER_PARAMS ((x))->height) +#define MOB(x) (ALAP ((x)) - ASAP ((x))) +#define DEPTH(x) (ASAP ((x))) + +typedef struct node_order_params * nopa; + +static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result); +static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int); +static nopa calculate_order_params (ddg_ptr, int mii); +static int find_max_asap (ddg_ptr, sbitmap); +static int find_max_hv_min_mob (ddg_ptr, sbitmap); +static int find_max_dv_min_mob (ddg_ptr, sbitmap); + +enum sms_direction {BOTTOMUP, TOPDOWN}; + +struct node_order_params +{ + int asap; + int alap; + int height; +}; + +/* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */ +static void +check_nodes_order (int *node_order, int num_nodes) +{ + int i; + sbitmap tmp = sbitmap_alloc (num_nodes); + + sbitmap_zero (tmp); + + for (i = 0; i < num_nodes; i++) + { + int u = node_order[i]; + + if (u >= num_nodes || u < 0 || TEST_BIT (tmp, u)) + abort (); + + SET_BIT (tmp, u); + } + + sbitmap_free (tmp); +} + +/* Order the nodes of G for scheduling and pass the result in + NODE_ORDER. Also set aux.count of each node to ASAP. + Return the recMII for the given DDG. */ +static int +sms_order_nodes (ddg_ptr g, int mii, int * node_order) +{ + int i; + int rec_mii = 0; + ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g); + + nopa nops = calculate_order_params (g, mii); + + order_nodes_of_sccs (sccs, node_order); + + if (sccs->num_sccs > 0) + /* First SCC has the largest recurrence_length. */ + rec_mii = sccs->sccs[0]->recurrence_length; + + /* Save ASAP before destroying node_order_params. */ + for (i = 0; i < g->num_nodes; i++) + { + ddg_node_ptr v = &g->nodes[i]; + v->aux.count = ASAP (v); + } + + free (nops); + free_ddg_all_sccs (sccs); + check_nodes_order (node_order, g->num_nodes); + + return rec_mii; +} + +static void +order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order) +{ + int i, pos = 0; + ddg_ptr g = all_sccs->ddg; + int num_nodes = g->num_nodes; + sbitmap prev_sccs = sbitmap_alloc (num_nodes); + sbitmap on_path = sbitmap_alloc (num_nodes); + sbitmap tmp = sbitmap_alloc (num_nodes); + sbitmap ones = sbitmap_alloc (num_nodes); + + sbitmap_zero (prev_sccs); + sbitmap_ones (ones); + + /* Perfrom the node ordering starting from the SCC with the highest recMII. + For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */ + for (i = 0; i < all_sccs->num_sccs; i++) + { + ddg_scc_ptr scc = all_sccs->sccs[i]; + + /* Add nodes on paths from previous SCCs to the current SCC. */ + find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes); + sbitmap_a_or_b (tmp, scc->nodes, on_path); + + /* Add nodes on paths from the current SCC to previous SCCs. */ + find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs); + sbitmap_a_or_b (tmp, tmp, on_path); + + /* Remove nodes of previous SCCs from current extended SCC. */ + sbitmap_difference (tmp, tmp, prev_sccs); + + pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos); + /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */ + } + + /* Handle the remaining nodes that do not belong to any scc. Each call + to order_nodes_in_scc handles a single connected component. */ + while (pos < g->num_nodes) + { + sbitmap_difference (tmp, ones, prev_sccs); + pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos); + } + sbitmap_free (prev_sccs); + sbitmap_free (on_path); + sbitmap_free (tmp); + sbitmap_free (ones); +} + +/* MII is needed if we consider backarcs (that do not close recursive cycles). */ +static struct node_order_params * +calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED) +{ + int u; + int max_asap; + int num_nodes = g->num_nodes; + ddg_edge_ptr e; + /* Allocate a place to hold ordering params for each node in the DDG. */ + nopa node_order_params_arr; + + /* Initialize of ASAP/ALAP/HEIGHT to zero. */ + node_order_params_arr = (nopa) xcalloc (num_nodes, + sizeof (struct node_order_params)); + + /* Set the aux pointer of each node to point to its order_params strcture. */ + for (u = 0; u < num_nodes; u++) + g->nodes[u].aux.info = &node_order_params_arr[u]; + + /* Disregarding a backarc from each recursive cycle to obtain a DAG, + calculate ASAP, ALAP, mobility, distance, and height for each node + in the dependence (direct acyclic) graph. */ + + /* We assume that the nodes in the array are in topological order. */ + + max_asap = 0; + for (u = 0; u < num_nodes; u++) + { + ddg_node_ptr u_node = &g->nodes[u]; + + ASAP (u_node) = 0; + for (e = u_node->in; e; e = e->next_in) + if (e->distance == 0) + ASAP (u_node) = MAX (ASAP (u_node), + ASAP (e->src) + e->latency); + max_asap = MAX (max_asap, ASAP (u_node)); + } + + for (u = num_nodes - 1; u > -1; u--) + { + ddg_node_ptr u_node = &g->nodes[u]; + + ALAP (u_node) = max_asap; + HEIGHT (u_node) = 0; + for (e = u_node->out; e; e = e->next_out) + if (e->distance == 0) + { + ALAP (u_node) = MIN (ALAP (u_node), + ALAP (e->dest) - e->latency); + HEIGHT (u_node) = MAX (HEIGHT (u_node), + HEIGHT (e->dest) + e->latency); + } + } + + return node_order_params_arr; +} + +static int +find_max_asap (ddg_ptr g, sbitmap nodes) +{ + int u; + int max_asap = -1; + int result = -1; + + EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, + { + ddg_node_ptr u_node = &g->nodes[u]; + + if (max_asap < ASAP (u_node)) + { + max_asap = ASAP (u_node); + result = u; + } + }); + return result; +} + +static int +find_max_hv_min_mob (ddg_ptr g, sbitmap nodes) +{ + int u; + int max_hv = -1; + int min_mob = INT_MAX; + int result = -1; + + EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, + { + ddg_node_ptr u_node = &g->nodes[u]; + + if (max_hv < HEIGHT (u_node)) + { + max_hv = HEIGHT (u_node); + min_mob = MOB (u_node); + result = u; + } + else if ((max_hv == HEIGHT (u_node)) + && (min_mob > MOB (u_node))) + { + min_mob = MOB (u_node); + result = u; + } + }); + return result; +} + +static int +find_max_dv_min_mob (ddg_ptr g, sbitmap nodes) +{ + int u; + int max_dv = -1; + int min_mob = INT_MAX; + int result = -1; + + EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, + { + ddg_node_ptr u_node = &g->nodes[u]; + + if (max_dv < DEPTH (u_node)) + { + max_dv = DEPTH (u_node); + min_mob = MOB (u_node); + result = u; + } + else if ((max_dv == DEPTH (u_node)) + && (min_mob > MOB (u_node))) + { + min_mob = MOB (u_node); + result = u; + } + }); + return result; +} + +/* Places the nodes of SCC into the NODE_ORDER array starting + at position POS, according to the SMS ordering algorithm. + NODES_ORDERED (in&out parameter) holds the bitset of all nodes in + the NODE_ORDER array, starting from position zero. */ +static int +order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc, + int * node_order, int pos) +{ + enum sms_direction dir; + int num_nodes = g->num_nodes; + sbitmap workset = sbitmap_alloc (num_nodes); + sbitmap tmp = sbitmap_alloc (num_nodes); + sbitmap zero_bitmap = sbitmap_alloc (num_nodes); + sbitmap predecessors = sbitmap_alloc (num_nodes); + sbitmap successors = sbitmap_alloc (num_nodes); + + sbitmap_zero (predecessors); + find_predecessors (predecessors, g, nodes_ordered); + + sbitmap_zero (successors); + find_successors (successors, g, nodes_ordered); + + sbitmap_zero (tmp); + if (sbitmap_a_and_b_cg (tmp, predecessors, scc)) + { + sbitmap_copy (workset, tmp); + dir = BOTTOMUP; + } + else if (sbitmap_a_and_b_cg (tmp, successors, scc)) + { + sbitmap_copy (workset, tmp); + dir = TOPDOWN; + } + else + { + int u; + + sbitmap_zero (workset); + if ((u = find_max_asap (g, scc)) >= 0) + SET_BIT (workset, u); + dir = BOTTOMUP; + } + + sbitmap_zero (zero_bitmap); + while (!sbitmap_equal (workset, zero_bitmap)) + { + int v; + ddg_node_ptr v_node; + sbitmap v_node_preds; + sbitmap v_node_succs; + + if (dir == TOPDOWN) + { + while (!sbitmap_equal (workset, zero_bitmap)) + { + v = find_max_hv_min_mob (g, workset); + v_node = &g->nodes[v]; + node_order[pos++] = v; + v_node_succs = NODE_SUCCESSORS (v_node); + sbitmap_a_and_b (tmp, v_node_succs, scc); + + /* Don't consider the already ordered successors again. */ + sbitmap_difference (tmp, tmp, nodes_ordered); + sbitmap_a_or_b (workset, workset, tmp); + RESET_BIT (workset, v); + SET_BIT (nodes_ordered, v); + } + dir = BOTTOMUP; + sbitmap_zero (predecessors); + find_predecessors (predecessors, g, nodes_ordered); + sbitmap_a_and_b (workset, predecessors, scc); + } + else + { + while (!sbitmap_equal (workset, zero_bitmap)) + { + v = find_max_dv_min_mob (g, workset); + v_node = &g->nodes[v]; + node_order[pos++] = v; + v_node_preds = NODE_PREDECESSORS (v_node); + sbitmap_a_and_b (tmp, v_node_preds, scc); + + /* Don't consider the already ordered predecessors again. */ + sbitmap_difference (tmp, tmp, nodes_ordered); + sbitmap_a_or_b (workset, workset, tmp); + RESET_BIT (workset, v); + SET_BIT (nodes_ordered, v); + } + dir = TOPDOWN; + sbitmap_zero (successors); + find_successors (successors, g, nodes_ordered); + sbitmap_a_and_b (workset, successors, scc); + } + } + sbitmap_free (tmp); + sbitmap_free (workset); + sbitmap_free (zero_bitmap); + sbitmap_free (predecessors); + sbitmap_free (successors); + return pos; +} + + +/* This page contains functions for manipulating partial-schedules during + modulo scheduling. */ + +/* Create a partial schedule and allocate a memory to hold II rows. */ +partial_schedule_ptr +create_partial_schedule (int ii, ddg_ptr g, int history) +{ + partial_schedule_ptr ps = (partial_schedule_ptr) + xmalloc (sizeof (struct partial_schedule)); + ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr)); + ps->ii = ii; + ps->history = history; + ps->min_cycle = INT_MAX; + ps->max_cycle = INT_MIN; + ps->g = g; + + return ps; +} + +/* Free the PS_INSNs in rows array of the given partial schedule. + ??? Consider caching the PS_INSN's. */ +static void +free_ps_insns (partial_schedule_ptr ps) +{ + int i; + + for (i = 0; i < ps->ii; i++) + { + while (ps->rows[i]) + { + ps_insn_ptr ps_insn = ps->rows[i]->next_in_row; + + free (ps->rows[i]); + ps->rows[i] = ps_insn; + } + ps->rows[i] = NULL; + } +} + +/* Free all the memory allocated to the partial schedule. */ +void +free_partial_schedule (partial_schedule_ptr ps) +{ + if (!ps) + return; + free_ps_insns (ps); + free (ps->rows); + free (ps); +} + +/* Clear the rows array with its PS_INSNs, and create a new one with + NEW_II rows. */ +void +reset_partial_schedule (partial_schedule_ptr ps, int new_ii) +{ + if (!ps) + return; + free_ps_insns (ps); + if (new_ii == ps->ii) + return; + ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii + * sizeof (ps_insn_ptr)); + memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr)); + ps->ii = new_ii; + ps->min_cycle = INT_MAX; + ps->max_cycle = INT_MIN; +} + +/* Prints the partial schedule as an ii rows array, for each rows + print the ids of the insns in it. */ +void +print_partial_schedule (partial_schedule_ptr ps, FILE *dump) +{ + int i; + + for (i = 0; i < ps->ii; i++) + { + ps_insn_ptr ps_i = ps->rows[i]; + + fprintf (dump, "\n[CYCLE %d ]: ", i); + while (ps_i) + { + fprintf (dump, "%d, ", + INSN_UID (ps_i->node->insn)); + ps_i = ps_i->next_in_row; + } + } +} + +/* Creates an object of PS_INSN and initializes it to the given parameters. */ +static ps_insn_ptr +create_ps_insn (ddg_node_ptr node, int rest_count, int cycle) +{ + ps_insn_ptr ps_i = xmalloc (sizeof (struct ps_insn)); + + ps_i->node = node; + ps_i->next_in_row = NULL; + ps_i->prev_in_row = NULL; + ps_i->row_rest_count = rest_count; + ps_i->cycle = cycle; + + return ps_i; +} + + +/* Removes the given PS_INSN from the partial schedule. Returns false if the + node is not found in the partial schedule, else returns true. */ +static int +remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i) +{ + int row; + + if (!ps || !ps_i) + return false; + + row = SMODULO (ps_i->cycle, ps->ii); + if (! ps_i->prev_in_row) + { + if (ps_i != ps->rows[row]) + return false; + + ps->rows[row] = ps_i->next_in_row; + if (ps->rows[row]) + ps->rows[row]->prev_in_row = NULL; + } + else + { + ps_i->prev_in_row->next_in_row = ps_i->next_in_row; + if (ps_i->next_in_row) + ps_i->next_in_row->prev_in_row = ps_i->prev_in_row; + } + free (ps_i); + return true; +} + +/* Advances the PS_INSN one column in its current row; returns false + in failure and true in success. */ +static int +ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i) +{ + ps_insn_ptr prev, next; + int row; + + if (!ps || !ps_i) + return false; + + row = SMODULO (ps_i->cycle, ps->ii); + + if (! ps_i->next_in_row) + return false; + + /* Check if next_in_row is dependent on ps_i, both having same sched + times (typically ANTI_DEP). If so, ps_i cannot skip over it. */ + if (ps_i->cycle == ps_i->next_in_row->cycle) + { + ddg_edge_ptr e; + ddg_node_ptr next_node = ps_i->next_in_row->node; + + for (e = ps_i->node->out; e; e = e->next_out) + if (e->dest == next_node) + return false; + } + + /* Advace PS_I over its next_in_row in the doubly linked list. */ + prev = ps_i->prev_in_row; + next = ps_i->next_in_row; + + if (ps_i == ps->rows[row]) + ps->rows[row] = next; + + ps_i->next_in_row = next->next_in_row; + + if (next->next_in_row) + next->next_in_row->prev_in_row = ps_i; + + next->next_in_row = ps_i; + ps_i->prev_in_row = next; + + next->prev_in_row = prev; + if (prev) + prev->next_in_row = next; + + return true; +} + +/* Inserts a DDG_NODE to the given partial schedule at the given cycle. + Returns 0 if this is not possible and a PS_INSN otherwise. */ +static ps_insn_ptr +add_node_to_ps (partial_schedule_ptr ps, ddg_node_ptr node, int cycle) +{ + ps_insn_ptr ps_i, next_ps_i, advance_after; + int rest_count = 1; + int row = SMODULO (cycle, ps->ii); + ddg_edge_ptr e; + + if (ps->rows[row] + && ps->rows[row]->row_rest_count >= issue_rate) + return NULL; + + if (ps->rows[row]) + rest_count += ps->rows[row]->row_rest_count; + + ps_i = create_ps_insn (node, rest_count, cycle); + ps_i->next_in_row = ps->rows[row]; + ps_i->prev_in_row = NULL; + if (ps_i->next_in_row) + ps_i->next_in_row->prev_in_row = ps_i; + ps->rows[row] = ps_i; + + /* Check if n is dependent on an insn already in row, having same cycle + (typically ANTI_DEP). If so, n must skip over it. */ + advance_after = NULL; + for (next_ps_i = ps_i->next_in_row; + next_ps_i; + next_ps_i = next_ps_i->next_in_row) + if (next_ps_i->cycle == cycle) + for (e = node->in; e; e = e->next_in) + if (e->src == next_ps_i->node) + advance_after = next_ps_i; + + if (advance_after) + while (ps_i->prev_in_row != advance_after) + if (!ps_insn_advance_column (ps, ps_i)) + { + remove_node_from_ps (ps, ps_i); + return NULL; + } + + return ps_i; +} + +/* Advance time one cycle. Assumes DFA is being used. */ +static void +advance_one_cycle (void) +{ + if (targetm.sched.use_dfa_pipeline_interface + && (*targetm.sched.use_dfa_pipeline_interface) ()) + { + if (targetm.sched.dfa_pre_cycle_insn) + state_transition (curr_state, + (*targetm.sched.dfa_pre_cycle_insn) ()); + + state_transition (curr_state, NULL); + + if (targetm.sched.dfa_post_cycle_insn) + state_transition (curr_state, + (*targetm.sched.dfa_post_cycle_insn) ()); + } +} + +/* Checks if PS has resource conflicts according to DFA, starting from + FROM cycle to TO cycle; returns true if there are conflicts and false + if there are no conflicts. Assumes DFA is being used. */ +static int +ps_has_conflicts (partial_schedule_ptr ps, int from, int to) +{ + int cycle; + + if (! targetm.sched.use_dfa_pipeline_interface + || ! (*targetm.sched.use_dfa_pipeline_interface) ()) + return true; + + state_reset (curr_state); + + for (cycle = from; cycle <= to; cycle++) + { + ps_insn_ptr crr_insn; + /* Holds the remaining issue slots in the current row. */ + int can_issue_more = issue_rate; + + /* Walk through the DFA for the current row. */ + for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)]; + crr_insn; + crr_insn = crr_insn->next_in_row) + { + rtx insn = crr_insn->node->insn; + + if (!INSN_P (insn)) + continue; + + /* Check if there is room for the current insn. */ + if (!can_issue_more || state_dead_lock_p (curr_state)) + return true; + + /* Update the DFA state and return with failure if the DFA found + recource conflicts. */ + if (state_transition (curr_state, insn) >= 0) + return true; + + if (targetm.sched.variable_issue) + can_issue_more = + (*targetm.sched.variable_issue) (sched_dump, sched_verbose, + insn, can_issue_more); + /* A naked CLOBBER or USE generates no instruction, so don't + let them consume issue slots. */ + else if (GET_CODE (PATTERN (insn)) != USE + && GET_CODE (PATTERN (insn)) != CLOBBER) + can_issue_more--; + } + + /* Advance the DFA to the next cycle. */ + advance_one_cycle (); + } + return false; +} + +/* Checks if the given node causes resource conflicts when added to PS at + cycle C. If not the node is added to PS and returned; otherwise zero + is returned. */ +ps_insn_ptr +ps_add_node_check_conflicts (partial_schedule_ptr ps, ddg_node_ptr n, int c) +{ + int has_conflicts = 0; + ps_insn_ptr ps_i; + + /* First add the node to the PS, if this succeeds check for conflicts, + trying different issue slots in the same row. */ + if (! (ps_i = add_node_to_ps (ps, n, c))) + return NULL; /* Failed to insert the node at the given cycle. */ + + has_conflicts = ps_has_conflicts (ps, c, c) + || (ps->history > 0 + && ps_has_conflicts (ps, + c - ps->history, + c + ps->history)); + + /* Try different issue slots to find one that the given node can be + scheduled in without conflicts. */ + while (has_conflicts) + { + if (! ps_insn_advance_column (ps, ps_i)) + break; + has_conflicts = ps_has_conflicts (ps, c, c) + || (ps->history > 0 + && ps_has_conflicts (ps, + c - ps->history, + c + ps->history)); + } + + if (has_conflicts) + { + remove_node_from_ps (ps, ps_i); + return NULL; + } + + ps->min_cycle = MIN (ps->min_cycle, c); + ps->max_cycle = MAX (ps->max_cycle, c); + return ps_i; +} + +/* Rotate the rows of PS such that insns scheduled at time + START_CYCLE will appear in row 0. Updates max/min_cycles. */ +void +rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle) +{ + int i, row, backward_rotates; + int last_row = ps->ii - 1; + + if (start_cycle == 0) + return; + + backward_rotates = SMODULO (start_cycle, ps->ii); + + /* Revisit later and optimize this into a single loop. */ + for (i = 0; i < backward_rotates; i++) + { + ps_insn_ptr first_row = ps->rows[0]; + + for (row = 0; row < last_row; row++) + ps->rows[row] = ps->rows[row+1]; + + ps->rows[last_row] = first_row; + } + + ps->max_cycle -= start_cycle; + ps->min_cycle -= start_cycle; +} |