summaryrefslogtreecommitdiff
path: root/gcc/mcf.c
diff options
context:
space:
mode:
authorhjl <hjl@138bc75d-0d04-0410-961f-82ee72b054a4>2008-08-18 19:16:30 +0000
committerhjl <hjl@138bc75d-0d04-0410-961f-82ee72b054a4>2008-08-18 19:16:30 +0000
commit4679bb0cc91866d2516ee1a0936895da652df946 (patch)
tree6a20c1f399b08cf2e4183459090cff06a7c1df5a /gcc/mcf.c
parente0dc6f2bee436056af7d1c49ed2714fa53ee430d (diff)
downloadgcc-4679bb0cc91866d2516ee1a0936895da652df946.tar.gz
2008-08-18 H.J. Lu <hongjiu.lu@intel.com>
* mcf.c: Really add it. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@139209 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/mcf.c')
-rw-r--r--gcc/mcf.c1401
1 files changed, 1401 insertions, 0 deletions
diff --git a/gcc/mcf.c b/gcc/mcf.c
new file mode 100644
index 00000000000..d7bc5f30e72
--- /dev/null
+++ b/gcc/mcf.c
@@ -0,0 +1,1401 @@
+/* Routines to implement minimum-cost maximal flow algorithm used to smooth
+ basic block and edge frequency counts.
+ Copyright (C) 2008
+ Free Software Foundation, Inc.
+ Contributed by Paul Yuan (yingbo.com@gmail.com) and
+ Vinodha Ramasamy (vinodha@google.com).
+
+This file is part of GCC.
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* References:
+ [1] "Feedback-directed Optimizations in GCC with Estimated Edge Profiles
+ from Hardware Event Sampling", Vinodha Ramasamy, Paul Yuan, Dehao Chen,
+ and Robert Hundt; GCC Summit 2008.
+ [2] "Complementing Missing and Inaccurate Profiling Using a Minimum Cost
+ Circulation Algorithm", Roy Levin, Ilan Newman and Gadi Haber;
+ HiPEAC '08.
+
+ Algorithm to smooth basic block and edge counts:
+ 1. create_fixup_graph: Create fixup graph by translating function CFG into
+ a graph that satisfies MCF algorithm requirements.
+ 2. find_max_flow: Find maximal flow.
+ 3. compute_residual_flow: Form residual network.
+ 4. Repeat:
+ cancel_negative_cycle: While G contains a negative cost cycle C, reverse
+ the flow on the found cycle by the minimum residual capacity in that
+ cycle.
+ 5. Form the minimal cost flow
+ f(u,v) = rf(v, u).
+ 6. adjust_cfg_counts: Update initial edge weights with corrected weights.
+ delta(u.v) = f(u,v) -f(v,u).
+ w*(u,v) = w(u,v) + delta(u,v). */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "basic-block.h"
+#include "output.h"
+#include "langhooks.h"
+#include "tree.h"
+#include "gcov-io.h"
+
+#include "profile.h"
+
+/* CAP_INFINITY: Constant to represent infinite capacity. */
+#define CAP_INFINITY __LONG_LONG_MAX__
+
+/* COST FUNCTION. */
+#define K_POS(b) ((b))
+#define K_NEG(b) (50 * (b))
+#define COST(k, w) ((k) / mcf_ln ((w) + 2))
+/* Limit the number of iterations for cancel_negative_cycles() to ensure
+ reasonable compile time. */
+#define MAX_ITER(n, e) 10 + (1000000 / ((n) * (e)))
+typedef enum
+{
+ INVALID_EDGE,
+ VERTEX_SPLIT_EDGE, /* Edge to represent vertex with w(e) = w(v). */
+ REDIRECT_EDGE, /* Edge after vertex transformation. */
+ REVERSE_EDGE,
+ SOURCE_CONNECT_EDGE, /* Single edge connecting to single source. */
+ SINK_CONNECT_EDGE, /* Single edge connecting to single sink. */
+ BALANCE_EDGE, /* Edge connecting with source/sink: cp(e) = 0. */
+ REDIRECT_NORMALIZED_EDGE, /* Normalized edge for a redirect edge. */
+ REVERSE_NORMALIZED_EDGE /* Normalized edge for a reverse edge. */
+} edge_type;
+
+/* Structure to represent an edge in the fixup graph. */
+typedef struct fixup_edge_d
+{
+ int src;
+ int dest;
+ /* Flag denoting type of edge and attributes for the flow field. */
+ edge_type type;
+ bool is_rflow_valid;
+ /* Index to the normalization vertex added for this edge. */
+ int norm_vertex_index;
+ /* Flow for this edge. */
+ gcov_type flow;
+ /* Residual flow for this edge - used during negative cycle canceling. */
+ gcov_type rflow;
+ gcov_type weight;
+ gcov_type cost;
+ gcov_type max_capacity;
+} fixup_edge_type;
+
+typedef fixup_edge_type *fixup_edge_p;
+
+DEF_VEC_P (fixup_edge_p);
+DEF_VEC_ALLOC_P (fixup_edge_p, heap);
+
+/* Structure to represent a vertex in the fixup graph. */
+typedef struct fixup_vertex_d
+{
+ VEC (fixup_edge_p, heap) *succ_edges;
+} fixup_vertex_type;
+
+typedef fixup_vertex_type *fixup_vertex_p;
+
+/* Fixup graph used in the MCF algorithm. */
+typedef struct fixup_graph_d
+{
+ /* Current number of vertices for the graph. */
+ int num_vertices;
+ /* Current number of edges for the graph. */
+ int num_edges;
+ /* Index of new entry vertex. */
+ int new_entry_index;
+ /* Index of new exit vertex. */
+ int new_exit_index;
+ /* Fixup vertex list. Adjacency list for fixup graph. */
+ fixup_vertex_p vertex_list;
+ /* Fixup edge list. */
+ fixup_edge_p edge_list;
+} fixup_graph_type;
+
+typedef struct queue_d
+{
+ int *queue;
+ int head;
+ int tail;
+ int size;
+} queue_type;
+
+/* Structure used in the maximal flow routines to find augmenting path. */
+typedef struct augmenting_path_d
+{
+ /* Queue used to hold vertex indices. */
+ queue_type queue_list;
+ /* Vector to hold chain of pred vertex indices in augmenting path. */
+ int *bb_pred;
+ /* Vector that indicates if basic block i has been visited. */
+ int *is_visited;
+} augmenting_path_type;
+
+
+/* Function definitions. */
+
+/* Dump routines to aid debugging. */
+
+/* Print basic block with index N for FIXUP_GRAPH in n' and n'' format. */
+
+static void
+print_basic_block (FILE *file, fixup_graph_type *fixup_graph, int n)
+{
+ if (n == ENTRY_BLOCK)
+ fputs ("ENTRY", file);
+ else if (n == ENTRY_BLOCK + 1)
+ fputs ("ENTRY''", file);
+ else if (n == 2 * EXIT_BLOCK)
+ fputs ("EXIT", file);
+ else if (n == 2 * EXIT_BLOCK + 1)
+ fputs ("EXIT''", file);
+ else if (n == fixup_graph->new_exit_index)
+ fputs ("NEW_EXIT", file);
+ else if (n == fixup_graph->new_entry_index)
+ fputs ("NEW_ENTRY", file);
+ else
+ {
+ fprintf (file, "%d", n / 2);
+ if (n % 2)
+ fputs ("''", file);
+ else
+ fputs ("'", file);
+ }
+}
+
+
+/* Print edge S->D for given fixup_graph with n' and n'' format.
+ PARAMETERS:
+ S is the index of the source vertex of the edge (input) and
+ D is the index of the destination vertex of the edge (input) for the given
+ fixup_graph (input). */
+
+static void
+print_edge (FILE *file, fixup_graph_type *fixup_graph, int s, int d)
+{
+ print_basic_block (file, fixup_graph, s);
+ fputs ("->", file);
+ print_basic_block (file, fixup_graph, d);
+}
+
+
+/* Dump out the attributes of a given edge FEDGE in the fixup_graph to a
+ file. */
+static void
+dump_fixup_edge (FILE *file, fixup_graph_type *fixup_graph, fixup_edge_p fedge)
+{
+ if (!fedge)
+ {
+ fputs ("NULL fixup graph edge.\n", file);
+ return;
+ }
+
+ print_edge (file, fixup_graph, fedge->src, fedge->dest);
+ fputs (": ", file);
+
+ if (fedge->type)
+ {
+ fprintf (file, "flow/capacity=" HOST_WIDEST_INT_PRINT_DEC "/",
+ fedge->flow);
+ if (fedge->max_capacity == CAP_INFINITY)
+ fputs ("+oo,", file);
+ else
+ fprintf (file, "" HOST_WIDEST_INT_PRINT_DEC ",", fedge->max_capacity);
+ }
+
+ if (fedge->is_rflow_valid)
+ {
+ if (fedge->rflow == CAP_INFINITY)
+ fputs (" rflow=+oo.", file);
+ else
+ fprintf (file, " rflow=" HOST_WIDEST_INT_PRINT_DEC ",", fedge->rflow);
+ }
+
+ fprintf (file, " cost=" HOST_WIDEST_INT_PRINT_DEC ".", fedge->cost);
+
+ fprintf (file, "\t(%d->%d)", fedge->src, fedge->dest);
+
+ if (fedge->type)
+ {
+ switch (fedge->type)
+ {
+ case VERTEX_SPLIT_EDGE:
+ fputs (" @VERTEX_SPLIT_EDGE", file);
+ break;
+
+ case REDIRECT_EDGE:
+ fputs (" @REDIRECT_EDGE", file);
+ break;
+
+ case SOURCE_CONNECT_EDGE:
+ fputs (" @SOURCE_CONNECT_EDGE", file);
+ break;
+
+ case SINK_CONNECT_EDGE:
+ fputs (" @SINK_CONNECT_EDGE", file);
+ break;
+
+ case REVERSE_EDGE:
+ fputs (" @REVERSE_EDGE", file);
+ break;
+
+ case BALANCE_EDGE:
+ fputs (" @BALANCE_EDGE", file);
+ break;
+
+ case REDIRECT_NORMALIZED_EDGE:
+ case REVERSE_NORMALIZED_EDGE:
+ fputs (" @NORMALIZED_EDGE", file);
+ break;
+
+ default:
+ fputs (" @INVALID_EDGE", file);
+ break;
+ }
+ }
+ fputs ("\n", file);
+}
+
+
+/* Print out the edges and vertices of the given FIXUP_GRAPH, into the dump
+ file. The input string MSG is printed out as a heading. */
+
+static void
+dump_fixup_graph (FILE *file, fixup_graph_type *fixup_graph, const char *msg)
+{
+ int i, j;
+ int fnum_vertices, fnum_edges;
+
+ fixup_vertex_p fvertex_list, pfvertex;
+ fixup_edge_p pfedge;
+
+ gcc_assert (fixup_graph);
+ fvertex_list = fixup_graph->vertex_list;
+ fnum_vertices = fixup_graph->num_vertices;
+ fnum_edges = fixup_graph->num_edges;
+
+ fprintf (file, "\nDump fixup graph for %s(): %s.\n",
+ lang_hooks.decl_printable_name (current_function_decl, 2), msg);
+ fprintf (file,
+ "There are %d vertices and %d edges. new_exit_index is %d.\n\n",
+ fnum_vertices, fnum_edges, fixup_graph->new_exit_index);
+
+ for (i = 0; i < fnum_vertices; i++)
+ {
+ pfvertex = fvertex_list + i;
+ fprintf (file, "vertex_list[%d]: %d succ fixup edges.\n",
+ i, VEC_length (fixup_edge_p, pfvertex->succ_edges));
+
+ for (j = 0; VEC_iterate (fixup_edge_p, pfvertex->succ_edges, j, pfedge);
+ j++)
+ {
+ /* Distinguish forward edges and backward edges in the residual flow
+ network. */
+ if (pfedge->type)
+ fputs ("(f) ", file);
+ else if (pfedge->is_rflow_valid)
+ fputs ("(b) ", file);
+ dump_fixup_edge (file, fixup_graph, pfedge);
+ }
+ }
+
+ fputs ("\n", file);
+}
+
+
+/* Utility routines. */
+/* ln() implementation: approximate calculation. Returns ln of X. */
+
+static double
+mcf_ln (double x)
+{
+#define E 2.71828
+ int l = 1;
+ double m = E;
+
+ gcc_assert (x >= 0);
+
+ while (m < x)
+ {
+ m *= E;
+ l++;
+ }
+
+ return l;
+}
+
+
+/* sqrt() implementation: based on open source QUAKE3 code (magic sqrt
+ implementation) by John Carmack. Returns sqrt of X. */
+
+static double
+mcf_sqrt (double x)
+{
+#define MAGIC_CONST1 0x1fbcf800
+#define MAGIC_CONST2 0x5f3759df
+ union {
+ int intPart;
+ float floatPart;
+ } convertor, convertor2;
+
+ gcc_assert (x >= 0);
+
+ convertor.floatPart = x;
+ convertor2.floatPart = x;
+ convertor.intPart = MAGIC_CONST1 + (convertor.intPart >> 1);
+ convertor2.intPart = MAGIC_CONST2 - (convertor2.intPart >> 1);
+
+ return 0.5f * (convertor.floatPart + (x * convertor2.floatPart));
+}
+
+
+/* Common code shared between add_fixup_edge and add_rfixup_edge. Adds an edge
+ (SRC->DEST) to the edge_list maintained in FIXUP_GRAPH with cost of the edge
+ added set to COST. */
+
+static fixup_edge_p
+add_edge (fixup_graph_type *fixup_graph, int src, int dest, gcov_type cost)
+{
+ fixup_vertex_p curr_vertex = fixup_graph->vertex_list + src;
+ fixup_edge_p curr_edge = fixup_graph->edge_list + fixup_graph->num_edges;
+ curr_edge->src = src;
+ curr_edge->dest = dest;
+ curr_edge->cost = cost;
+ fixup_graph->num_edges++;
+ if (dump_file)
+ dump_fixup_edge (dump_file, fixup_graph, curr_edge);
+ VEC_safe_push (fixup_edge_p, heap, curr_vertex->succ_edges, curr_edge);
+ return curr_edge;
+}
+
+
+/* Add a fixup edge (src->dest) with attributes TYPE, WEIGHT, COST and
+ MAX_CAPACITY to the edge_list in the fixup graph. */
+
+static void
+add_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest, int type,
+ gcov_type weight, gcov_type cost, gcov_type max_capacity)
+{
+ fixup_edge_p curr_edge = add_edge(fixup_graph, src, dest, cost);
+ curr_edge->type = type;
+ curr_edge->weight = weight;
+ curr_edge->max_capacity = max_capacity;
+}
+
+
+/* Add a residual edge (SRC->DEST) with attributes RFLOW and COST
+ to the fixup graph. */
+
+static void
+add_rfixup_edge (fixup_graph_type *fixup_graph, int src, int dest,
+ gcov_type rflow, gcov_type cost)
+{
+ fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost);
+ curr_edge->rflow = rflow;
+ curr_edge->is_rflow_valid = true;
+ /* This edge is not a valid edge - merely used to hold residual flow. */
+ curr_edge->type = INVALID_EDGE;
+}
+
+
+/* Return the pointer to fixup edge SRC->DEST or NULL if edge does not
+ exist in the FIXUP_GRAPH. */
+
+static fixup_edge_p
+find_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest)
+{
+ int j;
+ fixup_edge_p pfedge;
+ fixup_vertex_p pfvertex;
+
+ gcc_assert (src < fixup_graph->num_vertices);
+
+ pfvertex = fixup_graph->vertex_list + src;
+
+ for (j = 0; VEC_iterate (fixup_edge_p, pfvertex->succ_edges, j, pfedge);
+ j++)
+ if (pfedge->dest == dest)
+ return pfedge;
+
+ return NULL;
+}
+
+
+/* Cleanup routine to free structures in FIXUP_GRAPH. */
+
+static void
+delete_fixup_graph (fixup_graph_type *fixup_graph)
+{
+ int i;
+ int fnum_vertices = fixup_graph->num_vertices;
+ fixup_vertex_p pfvertex = fixup_graph->vertex_list;
+
+ for (i = 0; i < fnum_vertices; i++, pfvertex++)
+ VEC_free (fixup_edge_p, heap, pfvertex->succ_edges);
+
+ free (fixup_graph->vertex_list);
+ free (fixup_graph->edge_list);
+}
+
+
+/* Creates a fixup graph FIXUP_GRAPH from the function CFG. */
+
+static void
+create_fixup_graph (fixup_graph_type *fixup_graph)
+{
+ double sqrt_avg_vertex_weight = 0;
+ double total_vertex_weight = 0;
+ double k_pos = 0;
+ double k_neg = 0;
+ /* Vector to hold D(v) = sum_out_edges(v) - sum_in_edges(v). */
+ gcov_type *diff_out_in = NULL;
+ gcov_type supply_value = 1, demand_value = 0;
+ gcov_type fcost = 0;
+ int new_entry_index = 0, new_exit_index = 0;
+ int i = 0, j = 0;
+ int new_index = 0;
+ basic_block bb;
+ edge e;
+ edge_iterator ei;
+ fixup_edge_p pfedge, r_pfedge;
+ fixup_edge_p fedge_list;
+ int fnum_edges;
+
+ /* Each basic_block will be split into 2 during vertex transformation. */
+ int fnum_vertices_after_transform = 2 * n_basic_blocks;
+ int fnum_edges_after_transform = n_edges + n_basic_blocks;
+
+ /* Count the new SOURCE and EXIT vertices to be added. */
+ int fmax_num_vertices =
+ fnum_vertices_after_transform + n_edges + n_basic_blocks + 2;
+
+ /* In create_fixup_graph: Each basic block and edge can be split into 3
+ edges. Number of balance edges = n_basic_blocks. So after
+ create_fixup_graph:
+ max_edges = 4 * n_basic_blocks + 3 * n_edges
+ Accounting for residual flow edges
+ max_edges = 2 * (4 * n_basic_blocks + 3 * n_edges)
+ = 8 * n_basic_blocks + 6 * n_edges
+ < 8 * n_basic_blocks + 8 * n_edges. */
+ int fmax_num_edges = 8 * (n_basic_blocks + n_edges);
+
+ /* Initial num of vertices in the fixup graph. */
+ fixup_graph->num_vertices = n_basic_blocks;
+
+ /* Fixup graph vertex list. */
+ fixup_graph->vertex_list =
+ (fixup_vertex_p) xcalloc (fmax_num_vertices, sizeof (fixup_vertex_type));
+
+ /* Fixup graph edge list. */
+ fixup_graph->edge_list =
+ (fixup_edge_p) xcalloc (fmax_num_edges, sizeof (fixup_edge_type));
+
+ diff_out_in =
+ (gcov_type *) xcalloc (1 + fnum_vertices_after_transform,
+ sizeof (gcov_type));
+
+ /* Compute constants b, k_pos, k_neg used in the cost function calculation.
+ b = sqrt(avg_vertex_weight(cfg)); k_pos = b; k_neg = 50b. */
+ FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
+ total_vertex_weight += bb->count;
+
+ sqrt_avg_vertex_weight = mcf_sqrt (total_vertex_weight / n_basic_blocks);
+
+ k_pos = K_POS (sqrt_avg_vertex_weight);
+ k_neg = K_NEG (sqrt_avg_vertex_weight);
+
+ /* 1. Vertex Transformation: Split each vertex v into two vertices v' and v'',
+ connected by an edge e from v' to v''. w(e) = w(v). */
+
+ if (dump_file)
+ fprintf (dump_file, "\nVertex transformation:\n");
+
+ FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
+ {
+ /* v'->v'': index1->(index1+1). */
+ i = 2 * bb->index;
+ fcost = (gcov_type) COST (k_pos, bb->count);
+ add_fixup_edge (fixup_graph, i, i + 1, VERTEX_SPLIT_EDGE, bb->count,
+ fcost, CAP_INFINITY);
+ fixup_graph->num_vertices++;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ /* Edges with ignore attribute set should be treated like they don't
+ exist. */
+ if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
+ continue;
+ j = 2 * e->dest->index;
+ fcost = (gcov_type) COST (k_pos, e->count);
+ add_fixup_edge (fixup_graph, i + 1, j, REDIRECT_EDGE, e->count, fcost,
+ CAP_INFINITY);
+ }
+ }
+
+ /* After vertex transformation. */
+ gcc_assert (fixup_graph->num_vertices == fnum_vertices_after_transform);
+ /* Redirect edges are not added for edges with ignore attribute. */
+ gcc_assert (fixup_graph->num_edges <= fnum_edges_after_transform);
+
+ fnum_edges_after_transform = fixup_graph->num_edges;
+
+ /* 2. Initialize D(v). */
+ for (i = 0; i < fnum_edges_after_transform; i++)
+ {
+ pfedge = fixup_graph->edge_list + i;
+ diff_out_in[pfedge->src] += pfedge->weight;
+ diff_out_in[pfedge->dest] -= pfedge->weight;
+ }
+
+ /* Entry block - vertex indices 0, 1; EXIT block - vertex indices 2, 3. */
+ for (i = 0; i <= 3; i++)
+ diff_out_in[i] = 0;
+
+ /* 3. Add reverse edges: needed to decrease counts during smoothing. */
+ if (dump_file)
+ fprintf (dump_file, "\nReverse edges:\n");
+ for (i = 0; i < fnum_edges_after_transform; i++)
+ {
+ pfedge = fixup_graph->edge_list + i;
+ if ((pfedge->src == 0) || (pfedge->src == 2))
+ continue;
+ r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
+ if (!r_pfedge && pfedge->weight)
+ {
+ /* Skip adding reverse edges for edges with w(e) = 0, as its maximum
+ capacity is 0. */
+ fcost = (gcov_type) COST (k_neg, pfedge->weight);
+ add_fixup_edge (fixup_graph, pfedge->dest, pfedge->src,
+ REVERSE_EDGE, 0, fcost, pfedge->weight);
+ }
+ }
+
+ /* 4. Create single source and sink. Connect new source vertex s' to function
+ entry block. Connect sink vertex t' to function exit. */
+ if (dump_file)
+ fprintf (dump_file, "\ns'->S, T->t':\n");
+
+ new_entry_index = fixup_graph->new_entry_index = fixup_graph->num_vertices;
+ fixup_graph->num_vertices++;
+ /* Set supply_value to 1 to avoid zero count function ENTRY. */
+ add_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK, SOURCE_CONNECT_EDGE,
+ 1 /* supply_value */, 0, 1 /* supply_value */);
+
+ /* Create new exit with EXIT_BLOCK as single pred. */
+ new_exit_index = fixup_graph->new_exit_index = fixup_graph->num_vertices;
+ fixup_graph->num_vertices++;
+ add_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index,
+ SINK_CONNECT_EDGE,
+ 0 /* demand_value */, 0, 0 /* demand_value */);
+
+ /* Connect vertices with unbalanced D(v) to source/sink. */
+ if (dump_file)
+ fprintf (dump_file, "\nD(v) balance:\n");
+ /* Skip vertices for ENTRY (0, 1) and EXIT (2,3) blocks, so start with i = 4.
+ diff_out_in[v''] will be 0, so skip v'' vertices, hence i += 2. */
+ for (i = 4; i < new_entry_index; i += 2)
+ {
+ if (diff_out_in[i] > 0)
+ {
+ add_fixup_edge (fixup_graph, i, new_exit_index, BALANCE_EDGE, 0, 0,
+ diff_out_in[i]);
+ demand_value += diff_out_in[i];
+ }
+ else if (diff_out_in[i] < 0)
+ {
+ add_fixup_edge (fixup_graph, new_entry_index, i, BALANCE_EDGE, 0, 0,
+ -diff_out_in[i]);
+ supply_value -= diff_out_in[i];
+ }
+ }
+
+ /* Set supply = demand. */
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nAdjust supply and demand:\n");
+ fprintf (dump_file, "supply_value=" HOST_WIDEST_INT_PRINT_DEC "\n",
+ supply_value);
+ fprintf (dump_file, "demand_value=" HOST_WIDEST_INT_PRINT_DEC "\n",
+ demand_value);
+ }
+
+ if (demand_value > supply_value)
+ {
+ pfedge = find_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK);
+ pfedge->max_capacity += (demand_value - supply_value);
+ }
+ else
+ {
+ pfedge = find_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index);
+ pfedge->max_capacity += (supply_value - demand_value);
+ }
+
+ /* 6. Normalize edges: remove anti-parallel edges. Anti-parallel edges are
+ created by the vertex transformation step from self-edges in the original
+ CFG and by the reverse edges added earlier. */
+ if (dump_file)
+ fprintf (dump_file, "\nNormalize edges:\n");
+
+ fnum_edges = fixup_graph->num_edges;
+ fedge_list = fixup_graph->edge_list;
+
+ for (i = 0; i < fnum_edges; i++)
+ {
+ pfedge = fedge_list + i;
+ r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
+ if (((pfedge->type == VERTEX_SPLIT_EDGE)
+ || (pfedge->type == REDIRECT_EDGE)) && r_pfedge)
+ {
+ new_index = fixup_graph->num_vertices;
+ fixup_graph->num_vertices++;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nAnti-parallel edge:\n");
+ dump_fixup_edge (dump_file, fixup_graph, pfedge);
+ dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
+ fprintf (dump_file, "New vertex is %d.\n", new_index);
+ fprintf (dump_file, "------------------\n");
+ }
+
+ pfedge->cost /= 2;
+ pfedge->norm_vertex_index = new_index;
+ if (dump_file)
+ {
+ fprintf (dump_file, "After normalization:\n");
+ dump_fixup_edge (dump_file, fixup_graph, pfedge);
+ }
+
+ /* Add a new fixup edge: new_index->src. */
+ add_fixup_edge (fixup_graph, new_index, pfedge->src,
+ REVERSE_NORMALIZED_EDGE, 0, r_pfedge->cost,
+ r_pfedge->max_capacity);
+ gcc_assert (fixup_graph->num_vertices <= fmax_num_vertices);
+
+ /* Edge: r_pfedge->src -> r_pfedge->dest
+ ==> r_pfedge->src -> new_index. */
+ r_pfedge->dest = new_index;
+ r_pfedge->type = REVERSE_NORMALIZED_EDGE;
+ r_pfedge->cost = pfedge->cost;
+ r_pfedge->max_capacity = pfedge->max_capacity;
+ if (dump_file)
+ dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
+ }
+ }
+
+ if (dump_file)
+ dump_fixup_graph (dump_file, fixup_graph, "After create_fixup_graph()");
+
+ /* Cleanup. */
+ free (diff_out_in);
+}
+
+
+/* Allocates space for the structures in AUGMENTING_PATH. The space needed is
+ proportional to the number of nodes in the graph, which is given by
+ GRAPH_SIZE. */
+
+static void
+init_augmenting_path (augmenting_path_type *augmenting_path, int graph_size)
+{
+ augmenting_path->queue_list.queue = (int *)
+ xcalloc (graph_size + 2, sizeof (int));
+ augmenting_path->queue_list.size = graph_size + 2;
+ augmenting_path->bb_pred = (int *) xcalloc (graph_size, sizeof (int));
+ augmenting_path->is_visited = (int *) xcalloc (graph_size, sizeof (int));
+}
+
+/* Free the structures in AUGMENTING_PATH. */
+static void
+free_augmenting_path (augmenting_path_type *augmenting_path)
+{
+ free (augmenting_path->queue_list.queue);
+ free (augmenting_path->bb_pred);
+ free (augmenting_path->is_visited);
+}
+
+
+/* Queue routines. Assumes queue will never overflow. */
+
+static void
+init_queue (queue_type *queue_list)
+{
+ gcc_assert (queue_list);
+ queue_list->head = 0;
+ queue_list->tail = 0;
+}
+
+/* Return true if QUEUE_LIST is empty. */
+static bool
+is_empty (queue_type *queue_list)
+{
+ return (queue_list->head == queue_list->tail);
+}
+
+/* Insert element X into QUEUE_LIST. */
+static void
+enqueue (queue_type *queue_list, int x)
+{
+ gcc_assert (queue_list->tail < queue_list->size);
+ queue_list->queue[queue_list->tail] = x;
+ (queue_list->tail)++;
+}
+
+/* Return the first element in QUEUE_LIST. */
+static int
+dequeue (queue_type *queue_list)
+{
+ int x;
+ gcc_assert (queue_list->head >= 0);
+ x = queue_list->queue[queue_list->head];
+ (queue_list->head)++;
+ return x;
+}
+
+
+/* Finds a negative cycle in the residual network using
+ the Bellman-Ford algorithm. The flow on the found cycle is reversed by the
+ minimum residual capacity of that cycle. ENTRY and EXIT vertices are not
+ considered.
+
+Parameters:
+ FIXUP_GRAPH - Residual graph (input/output)
+ The following are allocated/freed by the caller:
+ PI - Vector to hold predecessors in path (pi = pred index)
+ D - D[I] holds minimum cost of path from i to sink
+ CYCLE - Vector to hold the minimum cost cycle
+
+Return:
+ true if a negative cycle was found, false otherwise. */
+
+static bool
+cancel_negative_cycle (fixup_graph_type *fixup_graph,
+ int *pi, gcov_type *d, int *cycle)
+{
+ int i, j, k;
+ int fnum_vertices, fnum_edges;
+ fixup_edge_p fedge_list, pfedge, r_pfedge;
+ bool found_cycle = false;
+ int cycle_start = 0, cycle_end = 0;
+ gcov_type sum_cost = 0, cycle_flow = 0;
+ int new_entry_index;
+ bool propagated = false;
+
+ gcc_assert (fixup_graph);
+ fnum_vertices = fixup_graph->num_vertices;
+ fnum_edges = fixup_graph->num_edges;
+ fedge_list = fixup_graph->edge_list;
+ new_entry_index = fixup_graph->new_entry_index;
+
+ /* Initialize. */
+ /* Skip ENTRY. */
+ for (i = 1; i < fnum_vertices; i++)
+ {
+ d[i] = CAP_INFINITY;
+ pi[i] = -1;
+ cycle[i] = -1;
+ }
+ d[ENTRY_BLOCK] = 0;
+
+ /* Relax. */
+ for (k = 1; k < fnum_vertices; k++)
+ {
+ propagated = false;
+ for (i = 0; i < fnum_edges; i++)
+ {
+ pfedge = fedge_list + i;
+ if (pfedge->src == new_entry_index)
+ continue;
+ if (pfedge->is_rflow_valid && pfedge->rflow
+ && d[pfedge->src] != CAP_INFINITY
+ && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
+ {
+ d[pfedge->dest] = d[pfedge->src] + pfedge->cost;
+ pi[pfedge->dest] = pfedge->src;
+ propagated = true;
+ }
+ }
+ if (!propagated)
+ break;
+ }
+
+ if (!propagated)
+ /* No negative cycles exist. */
+ return 0;
+
+ /* Detect. */
+ for (i = 0; i < fnum_edges; i++)
+ {
+ pfedge = fedge_list + i;
+ if (pfedge->src == new_entry_index)
+ continue;
+ if (pfedge->is_rflow_valid && pfedge->rflow
+ && d[pfedge->src] != CAP_INFINITY
+ && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
+ {
+ found_cycle = true;
+ break;
+ }
+ }
+
+ if (!found_cycle)
+ return 0;
+
+ /* Augment the cycle with the cycle's minimum residual capacity. */
+ found_cycle = false;
+ cycle[0] = pfedge->dest;
+ j = pfedge->dest;
+
+ for (i = 1; i < fnum_vertices; i++)
+ {
+ j = pi[j];
+ cycle[i] = j;
+ for (k = 0; k < i; k++)
+ {
+ if (cycle[k] == j)
+ {
+ /* cycle[k] -> ... -> cycle[i]. */
+ cycle_start = k;
+ cycle_end = i;
+ found_cycle = true;
+ break;
+ }
+ }
+ if (found_cycle)
+ break;
+ }
+
+ gcc_assert (cycle[cycle_start] == cycle[cycle_end]);
+ if (dump_file)
+ fprintf (dump_file, "\nNegative cycle length is %d:\n",
+ cycle_end - cycle_start);
+
+ sum_cost = 0;
+ cycle_flow = CAP_INFINITY;
+ for (k = cycle_start; k < cycle_end; k++)
+ {
+ pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
+ cycle_flow = MIN (cycle_flow, pfedge->rflow);
+ sum_cost += pfedge->cost;
+ if (dump_file)
+ fprintf (dump_file, "%d ", cycle[k]);
+ }
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "%d", cycle[k]);
+ fprintf (dump_file,
+ ": (" HOST_WIDEST_INT_PRINT_DEC ", " HOST_WIDEST_INT_PRINT_DEC
+ ")\n", sum_cost, cycle_flow);
+ fprintf (dump_file,
+ "Augment cycle with " HOST_WIDEST_INT_PRINT_DEC "\n",
+ cycle_flow);
+ }
+
+ for (k = cycle_start; k < cycle_end; k++)
+ {
+ pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
+ r_pfedge = find_fixup_edge (fixup_graph, cycle[k], cycle[k + 1]);
+ pfedge->rflow -= cycle_flow;
+ if (pfedge->type)
+ pfedge->flow += cycle_flow;
+ r_pfedge->rflow += cycle_flow;
+ if (r_pfedge->type)
+ r_pfedge->flow -= cycle_flow;
+ }
+
+ return true;
+}
+
+
+/* Computes the residual flow for FIXUP_GRAPH by setting the rflow field of
+ the edges. ENTRY and EXIT vertices should not be considered. */
+
+static void
+compute_residual_flow (fixup_graph_type *fixup_graph)
+{
+ int i;
+ int fnum_edges;
+ fixup_edge_p fedge_list, pfedge;
+
+ gcc_assert (fixup_graph);
+
+ if (dump_file)
+ fputs ("\ncompute_residual_flow():\n", dump_file);
+
+ fnum_edges = fixup_graph->num_edges;
+ fedge_list = fixup_graph->edge_list;
+
+ for (i = 0; i < fnum_edges; i++)
+ {
+ pfedge = fedge_list + i;
+ pfedge->rflow = pfedge->max_capacity - pfedge->flow;
+ pfedge->is_rflow_valid = true;
+ add_rfixup_edge (fixup_graph, pfedge->dest, pfedge->src, pfedge->flow,
+ -pfedge->cost);
+ }
+}
+
+
+/* Uses Edmonds-Karp algorithm - BFS to find augmenting path from SOURCE to
+ SINK. The fields in the edge vector in the FIXUP_GRAPH are not modified by
+ this routine. The vector bb_pred in the AUGMENTING_PATH structure is updated
+ to reflect the path found.
+ Returns: 0 if no augmenting path is found, 1 otherwise. */
+
+static int
+find_augmenting_path (fixup_graph_type *fixup_graph,
+ augmenting_path_type *augmenting_path, int source,
+ int sink)
+{
+ int u = 0;
+ int i;
+ fixup_vertex_p fvertex_list, pfvertex;
+ fixup_edge_p pfedge;
+ int *bb_pred, *is_visited;
+ queue_type *queue_list;
+
+ gcc_assert (augmenting_path);
+ bb_pred = augmenting_path->bb_pred;
+ gcc_assert (bb_pred);
+ is_visited = augmenting_path->is_visited;
+ gcc_assert (is_visited);
+ queue_list = &(augmenting_path->queue_list);
+
+ gcc_assert (fixup_graph);
+
+ fvertex_list = fixup_graph->vertex_list;
+
+ for (u = 0; u < fixup_graph->num_vertices; u++)
+ is_visited[u] = 0;
+
+ init_queue (queue_list);
+ enqueue (queue_list, source);
+ bb_pred[source] = -1;
+
+ while (!is_empty (queue_list))
+ {
+ u = dequeue (queue_list);
+ is_visited[u] = 1;
+ pfvertex = fvertex_list + u;
+ for (i = 0; VEC_iterate (fixup_edge_p, pfvertex->succ_edges, i, pfedge);
+ i++)
+ {
+ int dest = pfedge->dest;
+ if ((pfedge->rflow > 0) && (is_visited[dest] == 0))
+ {
+ enqueue (queue_list, dest);
+ bb_pred[dest] = u;
+ is_visited[dest] = 1;
+ if (dest == sink)
+ return 1;
+ }
+ }
+ }
+
+ return 0;
+}
+
+
+/* Routine to find the maximal flow:
+ Algorithm:
+ 1. Initialize flow to 0
+ 2. Find an augmenting path form source to sink.
+ 3. Send flow equal to the path's residual capacity along the edges of this path.
+ 4. Repeat steps 2 and 3 until no new augmenting path is found.
+
+Parameters:
+SOURCE: index of source vertex (input)
+SINK: index of sink vertex (input)
+FIXUP_GRAPH: adjacency matrix representing the graph. The flow of the edges will be
+ set to have a valid maximal flow by this routine. (input)
+Return: Maximum flow possible. */
+
+static gcov_type
+find_max_flow (fixup_graph_type *fixup_graph, int source, int sink)
+{
+ int fnum_edges;
+ augmenting_path_type augmenting_path;
+ int *bb_pred;
+ gcov_type max_flow = 0;
+ int i, u;
+ fixup_edge_p fedge_list, pfedge, r_pfedge;
+
+ gcc_assert (fixup_graph);
+
+ fnum_edges = fixup_graph->num_edges;
+ fedge_list = fixup_graph->edge_list;
+
+ /* Initialize flow to 0. */
+ for (i = 0; i < fnum_edges; i++)
+ {
+ pfedge = fedge_list + i;
+ pfedge->flow = 0;
+ }
+
+ compute_residual_flow (fixup_graph);
+
+ init_augmenting_path (&augmenting_path, fixup_graph->num_vertices);
+
+ bb_pred = augmenting_path.bb_pred;
+ while (find_augmenting_path (fixup_graph, &augmenting_path, source, sink))
+ {
+ /* Determine the amount by which we can increment the flow. */
+ gcov_type increment = CAP_INFINITY;
+ for (u = sink; u != source; u = bb_pred[u])
+ {
+ pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
+ increment = MIN (increment, pfedge->rflow);
+ }
+ max_flow += increment;
+
+ /* Now increment the flow. EXIT vertex index is 1. */
+ for (u = sink; u != source; u = bb_pred[u])
+ {
+ pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
+ r_pfedge = find_fixup_edge (fixup_graph, u, bb_pred[u]);
+ if (pfedge->type)
+ {
+ /* forward edge. */
+ pfedge->flow += increment;
+ pfedge->rflow -= increment;
+ r_pfedge->rflow += increment;
+ }
+ else
+ {
+ /* backward edge. */
+ gcc_assert (r_pfedge->type);
+ r_pfedge->rflow += increment;
+ r_pfedge->flow -= increment;
+ pfedge->rflow -= increment;
+ }
+ }
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nDump augmenting path:\n");
+ for (u = sink; u != source; u = bb_pred[u])
+ {
+ print_basic_block (dump_file, fixup_graph, u);
+ fprintf (dump_file, "<-");
+ }
+ fprintf (dump_file,
+ "ENTRY (path_capacity=" HOST_WIDEST_INT_PRINT_DEC ")\n",
+ increment);
+ fprintf (dump_file,
+ "Network flow is " HOST_WIDEST_INT_PRINT_DEC ".\n",
+ max_flow);
+ }
+ }
+
+ free_augmenting_path (&augmenting_path);
+ if (dump_file)
+ dump_fixup_graph (dump_file, fixup_graph, "After find_max_flow()");
+ return max_flow;
+}
+
+
+/* Computes the corrected edge and basic block weights using FIXUP_GRAPH
+ after applying the find_minimum_cost_flow() routine. */
+
+static void
+adjust_cfg_counts (fixup_graph_type *fixup_graph)
+{
+ basic_block bb;
+ edge e;
+ edge_iterator ei;
+ int i, j;
+ fixup_edge_p pfedge, pfedge_n;
+
+ gcc_assert (fixup_graph);
+
+ if (dump_file)
+ fprintf (dump_file, "\nadjust_cfg_counts():\n");
+
+ FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
+ {
+ i = 2 * bb->index;
+
+ /* Fixup BB. */
+ if (dump_file)
+ fprintf (dump_file,
+ "BB%d: " HOST_WIDEST_INT_PRINT_DEC "", bb->index, bb->count);
+
+ pfedge = find_fixup_edge (fixup_graph, i, i + 1);
+ if (pfedge->flow)
+ {
+ bb->count += pfedge->flow;
+ if (dump_file)
+ {
+ fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(",
+ pfedge->flow);
+ print_edge (dump_file, fixup_graph, i, i + 1);
+ fprintf (dump_file, ")");
+ }
+ }
+
+ pfedge_n =
+ find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
+ /* Deduct flow from normalized reverse edge. */
+ if (pfedge->norm_vertex_index && pfedge_n->flow)
+ {
+ bb->count -= pfedge_n->flow;
+ if (dump_file)
+ {
+ fprintf (dump_file, " - " HOST_WIDEST_INT_PRINT_DEC "(",
+ pfedge_n->flow);
+ print_edge (dump_file, fixup_graph, i + 1,
+ pfedge->norm_vertex_index);
+ fprintf (dump_file, ")");
+ }
+ }
+ if (dump_file)
+ fprintf (dump_file, " = " HOST_WIDEST_INT_PRINT_DEC "\n", bb->count);
+
+ /* Fixup edge. */
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ /* Treat edges with ignore attribute set as if they don't exist. */
+ if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
+ continue;
+
+ j = 2 * e->dest->index;
+ if (dump_file)
+ fprintf (dump_file, "%d->%d: " HOST_WIDEST_INT_PRINT_DEC "",
+ bb->index, e->dest->index, e->count);
+
+ pfedge = find_fixup_edge (fixup_graph, i + 1, j);
+
+ if (bb->index != e->dest->index)
+ {
+ /* Non-self edge. */
+ if (pfedge->flow)
+ {
+ e->count += pfedge->flow;
+ if (dump_file)
+ {
+ fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(",
+ pfedge->flow);
+ print_edge (dump_file, fixup_graph, i + 1, j);
+ fprintf (dump_file, ")");
+ }
+ }
+
+ pfedge_n =
+ find_fixup_edge (fixup_graph, j, pfedge->norm_vertex_index);
+ /* Deduct flow from normalized reverse edge. */
+ if (pfedge->norm_vertex_index && pfedge_n->flow)
+ {
+ e->count -= pfedge_n->flow;
+ if (dump_file)
+ {
+ fprintf (dump_file, " - " HOST_WIDEST_INT_PRINT_DEC "(",
+ pfedge_n->flow);
+ print_edge (dump_file, fixup_graph, j,
+ pfedge->norm_vertex_index);
+ fprintf (dump_file, ")");
+ }
+ }
+ }
+ else
+ {
+ /* Handle self edges. Self edge is split with a normalization
+ vertex. Here i=j. */
+ pfedge = find_fixup_edge (fixup_graph, j, i + 1);
+ pfedge_n =
+ find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
+ e->count += pfedge_n->flow;
+ bb->count += pfedge_n->flow;
+ if (dump_file)
+ {
+ fprintf (dump_file, "(self edge)");
+ fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(",
+ pfedge_n->flow);
+ print_edge (dump_file, fixup_graph, i + 1,
+ pfedge->norm_vertex_index);
+ fprintf (dump_file, ")");
+ }
+ }
+
+ if (bb->count)
+ e->probability = REG_BR_PROB_BASE * e->count / bb->count;
+ if (dump_file)
+ fprintf (dump_file, " = " HOST_WIDEST_INT_PRINT_DEC "\t(%.1f%%)\n",
+ e->count, e->probability * 100.0 / REG_BR_PROB_BASE);
+ }
+ }
+
+ ENTRY_BLOCK_PTR->count = sum_edge_counts (ENTRY_BLOCK_PTR->succs);
+ EXIT_BLOCK_PTR->count = sum_edge_counts (EXIT_BLOCK_PTR->preds);
+
+ /* Compute edge probabilities. */
+ FOR_ALL_BB (bb)
+ {
+ if (bb->count)
+ {
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ e->probability = REG_BR_PROB_BASE * e->count / bb->count;
+ }
+ else
+ {
+ int total = 0;
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
+ total++;
+ if (total)
+ {
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
+ e->probability = REG_BR_PROB_BASE / total;
+ else
+ e->probability = 0;
+ }
+ }
+ else
+ {
+ total += EDGE_COUNT (bb->succs);
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ e->probability = REG_BR_PROB_BASE / total;
+ }
+ }
+ }
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nCheck %s() CFG flow conservation:\n",
+ lang_hooks.decl_printable_name (current_function_decl, 2));
+ FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
+ {
+ if ((bb->count != sum_edge_counts (bb->preds))
+ || (bb->count != sum_edge_counts (bb->succs)))
+ {
+ fprintf (dump_file,
+ "BB%d(" HOST_WIDEST_INT_PRINT_DEC ") **INVALID**: ",
+ bb->index, bb->count);
+ fprintf (stderr,
+ "******** BB%d(" HOST_WIDEST_INT_PRINT_DEC
+ ") **INVALID**: \n", bb->index, bb->count);
+ fprintf (dump_file, "in_edges=" HOST_WIDEST_INT_PRINT_DEC " ",
+ sum_edge_counts (bb->preds));
+ fprintf (dump_file, "out_edges=" HOST_WIDEST_INT_PRINT_DEC "\n",
+ sum_edge_counts (bb->succs));
+ }
+ }
+ }
+}
+
+
+/* Implements the negative cycle canceling algorithm to compute a minimum cost
+ flow.
+Algorithm:
+1. Find maximal flow.
+2. Form residual network
+3. Repeat:
+ While G contains a negative cost cycle C, reverse the flow on the found cycle
+ by the minimum residual capacity in that cycle.
+4. Form the minimal cost flow
+ f(u,v) = rf(v, u)
+Input:
+ FIXUP_GRAPH - Initial fixup graph.
+ The flow field is modified to represent the minimum cost flow. */
+
+static void
+find_minimum_cost_flow (fixup_graph_type *fixup_graph)
+{
+ /* Holds the index of predecessor in path. */
+ int *pred;
+ /* Used to hold the minimum cost cycle. */
+ int *cycle;
+ /* Used to record the number of iterations of cancel_negative_cycle. */
+ int iteration;
+ /* Vector d[i] holds the minimum cost of path from i to sink. */
+ gcov_type *d;
+ int fnum_vertices;
+ int new_exit_index;
+ int new_entry_index;
+
+ gcc_assert (fixup_graph);
+ fnum_vertices = fixup_graph->num_vertices;
+ new_exit_index = fixup_graph->new_exit_index;
+ new_entry_index = fixup_graph->new_entry_index;
+
+ find_max_flow (fixup_graph, new_entry_index, new_exit_index);
+
+ /* Initialize the structures for find_negative_cycle(). */
+ pred = (int *) xcalloc (fnum_vertices, sizeof (int));
+ d = (gcov_type *) xcalloc (fnum_vertices, sizeof (gcov_type));
+ cycle = (int *) xcalloc (fnum_vertices, sizeof (int));
+
+ /* Repeatedly find and cancel negative cost cycles, until
+ no more negative cycles exist. This also updates the flow field
+ to represent the minimum cost flow so far. */
+ iteration = 0;
+ while (cancel_negative_cycle (fixup_graph, pred, d, cycle))
+ {
+ iteration++;
+ if (iteration > MAX_ITER (fixup_graph->num_vertices,
+ fixup_graph->num_edges))
+ break;
+ }
+
+ if (dump_file)
+ dump_fixup_graph (dump_file, fixup_graph,
+ "After find_minimum_cost_flow()");
+
+ /* Cleanup structures. */
+ free (pred);
+ free (d);
+ free (cycle);
+}
+
+
+/* Compute the sum of the edge counts in TO_EDGES. */
+
+gcov_type
+sum_edge_counts (VEC (edge, gc) *to_edges)
+{
+ gcov_type sum = 0;
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, to_edges)
+ {
+ if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
+ continue;
+ sum += e->count;
+ }
+ return sum;
+}
+
+
+/* Main routine. Smoothes the intial assigned basic block and edge counts using
+ a minimum cost flow algorithm, to ensure that the flow consistency rule is
+ obeyed: sum of outgoing edges = sum of incoming edges for each basic
+ block. */
+
+void
+mcf_smooth_cfg (void)
+{
+ fixup_graph_type fixup_graph;
+ memset (&fixup_graph, 0, sizeof (fixup_graph));
+ create_fixup_graph (&fixup_graph);
+ find_minimum_cost_flow (&fixup_graph);
+ adjust_cfg_counts (&fixup_graph);
+ delete_fixup_graph (&fixup_graph);
+}