diff options
author | law <law@138bc75d-0d04-0410-961f-82ee72b054a4> | 2013-11-05 19:47:44 +0000 |
---|---|---|
committer | law <law@138bc75d-0d04-0410-961f-82ee72b054a4> | 2013-11-05 19:47:44 +0000 |
commit | db242b6d0eba96a468a2cea2c0e175aeb210644a (patch) | |
tree | faf2cabbd865647a82ca5248eea0cae3bb79f870 /gcc/gimple-ssa-isolate-paths.c | |
parent | 28573ae7cd13538cd4491e16b805da10afc08d94 (diff) | |
download | gcc-db242b6d0eba96a468a2cea2c0e175aeb210644a.tar.gz |
* Makefile.in (OBJS): Add gimple-ssa-isolate-paths.o
* common.opt (-fisolate-erroneous-paths): Add option and
documentation.
* gimple-ssa-isolate-paths.c: New file.
* gimple.c (check_loadstore): New function.
(infer_nonnull_range): Moved into gimple.c from tree-vrp.c
Verify OP is in the argument list and the argument corresponding
to OP is a pointer type. Use operand_equal_p rather than
pointer equality when testing if OP is on the nonnull list.
Use check_loadstore rather than count_ptr_derefs. Handle
GIMPLE_RETURN statements.
* tree-vrp.c (infer_nonnull_range): Remove.
* gimple.h (infer_nonnull_range): Declare.
* opts.c (default_options_table): Add
* OPT_fisolate_erroneous_paths.
* passes.def: Add pass_isolate_erroneous_paths.
* timevar.def (TV_ISOLATE_ERRONEOUS_PATHS): New timevar.
* tree-pass.h (make_pass_isolate_erroneous_paths): Declare.
* tree-ssa.c (struct count_ptr_d): Remove.
(count_ptr_derefs, count_uses_and_derefs): Remove.
* tree-ssa.h (count_uses_and_derefs): Remove.
* gcc.dg/pr38984.c: Add -fno-isolate-erroneous-paths.
* gcc.dg/tree-ssa/isolate-1.c: New test.
* gcc.dg/tree-ssa/isolate-2.c: New test.
* gcc.dg/tree-ssa/isolate-3.c: New test.
* gcc.dg/tree-ssa/isolate-4.c: New test.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@204414 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/gimple-ssa-isolate-paths.c')
-rw-r--r-- | gcc/gimple-ssa-isolate-paths.c | 325 |
1 files changed, 325 insertions, 0 deletions
diff --git a/gcc/gimple-ssa-isolate-paths.c b/gcc/gimple-ssa-isolate-paths.c new file mode 100644 index 00000000000..4868867308f --- /dev/null +++ b/gcc/gimple-ssa-isolate-paths.c @@ -0,0 +1,325 @@ +/* Detect paths through the CFG which can never be executed in a conforming + program and isolate them. + + Copyright (C) 2013 + Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tree.h" +#include "flags.h" +#include "basic-block.h" +#include "gimple.h" +#include "tree-ssa.h" +#include "tree-ssanames.h" +#include "gimple-ssa.h" +#include "tree-ssa-operands.h" +#include "tree-phinodes.h" +#include "ssa-iterators.h" +#include "cfgloop.h" +#include "tree-pass.h" + + +static bool cfg_altered; + +/* Insert a trap before SI and remove SI and all statements after SI. */ + +static void +insert_trap_and_remove_trailing_statements (gimple_stmt_iterator *si_p) +{ + gimple_seq seq = NULL; + gimple stmt = gimple_build_call (builtin_decl_explicit (BUILT_IN_TRAP), 0); + gimple_seq_add_stmt (&seq, stmt); + gsi_insert_before (si_p, seq, GSI_SAME_STMT); + + /* Now delete all remaining statements in this block. */ + for (; !gsi_end_p (*si_p);) + { + stmt = gsi_stmt (*si_p); + unlink_stmt_vdef (stmt); + gsi_remove (si_p, true); + release_defs (stmt); + } +} + +/* BB when reached via incoming edge E will exhibit undefined behaviour + at STMT. Isolate and optimize the path which exhibits undefined + behaviour. + + Isolation is simple. Duplicate BB and redirect E to BB'. + + Optimization is simple as well. Replace STMT in BB' with an + unconditional trap and remove all outgoing edges from BB'. + + DUPLICATE is a pre-existing duplicate, use it as BB' if it exists. + + Return BB'. */ + +basic_block +isolate_path (basic_block bb, basic_block duplicate, edge e, gimple stmt) +{ + gimple_stmt_iterator si, si2; + edge_iterator ei; + edge e2; + + + /* First duplicate BB if we have not done so already and remove all + the duplicate's outgoing edges as duplicate is going to unconditionally + trap. Removing the outgoing edges is both an optimization and ensures + we don't need to do any PHI node updates. */ + if (!duplicate) + { + duplicate = duplicate_block (bb, NULL, NULL); + for (ei = ei_start (duplicate->succs); (e2 = ei_safe_edge (ei)); ) + remove_edge (e2); + } + + /* Complete the isolation step by redirecting E to reach DUPLICATE. */ + e2 = redirect_edge_and_branch (e, duplicate); + if (e2) + flush_pending_stmts (e2); + + + /* There may be more than one statement in DUPLICATE which exhibits + undefined behaviour. Ultimately we want the first such statement in + DUPLCIATE so that we're able to delete as much code as possible. + + So each time we discover undefined behaviour in DUPLICATE, search for + the statement which triggers undefined behaviour. If found, then + transform the statement into a trap and delete everything after the + statement. If not found, then this particular instance was subsumed by + an earlier instance of undefined behaviour and there's nothing to do. + + This is made more complicated by the fact that we have STMT, which is in + BB rather than in DUPLICATE. So we set up two iterators, one for each + block and walk forward looking for STMT in BB, advancing each iterator at + each step. + + When we find STMT the second iterator should point to STMT's equivalent in + duplicate. If DUPLICATE ends before STMT is found in BB, then there's + nothing to do. + + Ignore labels and debug statements. */ + si = gsi_start_nondebug_after_labels_bb (bb); + si2 = gsi_start_nondebug_after_labels_bb (duplicate); + while (!gsi_end_p (si) && !gsi_end_p (si2) && gsi_stmt (si) != stmt) + { + gsi_next_nondebug (&si); + gsi_next_nondebug (&si2); + } + + /* This would be an indicator that we never found STMT in BB, which should + never happen. */ + gcc_assert (!gsi_end_p (si)); + + /* If we did not run to the end of DUPLICATE, then SI points to STMT and + SI2 points to the duplicate of STMT in DUPLICATE. Insert a trap + before SI2 and remove SI2 and all trailing statements. */ + if (!gsi_end_p (si2)) + insert_trap_and_remove_trailing_statements (&si2); + + return duplicate; +} + +/* Search the function for statements which, if executed, would cause + the program to fault such as a dereference of a NULL pointer. + + Such a program can't be valid if such a statement was to execute + according to ISO standards. + + We detect explicit NULL pointer dereferences as well as those implied + by a PHI argument having a NULL value which unconditionally flows into + a dereference in the same block as the PHI. + + In the former case we replace the offending statement with an + unconditional trap and eliminate the outgoing edges from the statement's + basic block. This may expose secondary optimization opportunities. + + In the latter case, we isolate the path(s) with the NULL PHI + feeding the dereference. We can then replace the offending statement + and eliminate the outgoing edges in the duplicate. Again, this may + expose secondary optimization opportunities. + + A warning for both cases may be advisable as well. + + Other statically detectable violations of the ISO standard could be + handled in a similar way, such as out-of-bounds array indexing. */ + +static unsigned int +gimple_ssa_isolate_erroneous_paths (void) +{ + basic_block bb; + + initialize_original_copy_tables (); + + /* Search all the blocks for edges which, if traversed, will + result in undefined behaviour. */ + cfg_altered = false; + FOR_EACH_BB (bb) + { + gimple_stmt_iterator si; + + /* First look for a PHI which sets a pointer to NULL and which + is then dereferenced within BB. This is somewhat overly + conservative, but probably catches most of the interesting + cases. */ + for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) + { + gimple phi = gsi_stmt (si); + tree lhs = gimple_phi_result (phi); + + /* If the result is not a pointer, then there is no need to + examine the arguments. */ + if (!POINTER_TYPE_P (TREE_TYPE (lhs))) + continue; + + /* PHI produces a pointer result. See if any of the PHI's + arguments are NULL. + + When we remove an edge, we want to reprocess the current + index, hence the ugly way we update I for each iteration. */ + basic_block duplicate = NULL; + for (unsigned i = 0, next_i = 0; + i < gimple_phi_num_args (phi); + i = next_i) + { + tree op = gimple_phi_arg_def (phi, i); + + next_i = i + 1; + + if (!integer_zerop (op)) + continue; + + edge e = gimple_phi_arg_edge (phi, i); + imm_use_iterator iter; + gimple use_stmt; + + /* We've got a NULL PHI argument. Now see if the + PHI's result is dereferenced within BB. */ + FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs) + { + /* We only care about uses in BB. Catching cases in + in other blocks would require more complex path + isolation code. */ + if (gimple_bb (use_stmt) != bb) + continue; + + if (infer_nonnull_range (use_stmt, lhs)) + { + duplicate = isolate_path (bb, duplicate, + e, use_stmt); + + /* When we remove an incoming edge, we need to + reprocess the Ith element. */ + next_i = i; + cfg_altered = true; + } + } + } + } + + /* Now look at the statements in the block and see if any of + them explicitly dereference a NULL pointer. This happens + because of jump threading and constant propagation. */ + for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) + { + gimple stmt = gsi_stmt (si); + + /* By passing null_pointer_node, we can use infer_nonnull_range + to detect explicit NULL pointer dereferences and other uses + where a non-NULL value is required. */ + if (infer_nonnull_range (stmt, null_pointer_node)) + { + insert_trap_and_remove_trailing_statements (&si); + + /* And finally, remove all outgoing edges from BB. */ + edge e; + for (edge_iterator ei = ei_start (bb->succs); + (e = ei_safe_edge (ei)); ) + remove_edge (e); + + /* Ignore any more operands on this statement and + continue the statement iterator (which should + terminate its loop immediately. */ + cfg_altered = true; + break; + } + } + } + free_original_copy_tables (); + + /* We scramble the CFG and loop structures a bit, clean up + appropriately. We really should incrementally update the + loop structures, in theory it shouldn't be that hard. */ + if (cfg_altered) + { + free_dominance_info (CDI_DOMINATORS); + free_dominance_info (CDI_POST_DOMINATORS); + loops_state_set (LOOPS_NEED_FIXUP); + return TODO_cleanup_cfg | TODO_update_ssa; + } + return 0; +} + +static bool +gate_isolate_erroneous_paths (void) +{ + /* If we do not have a suitable builtin function for the trap statement, + then do not perform the optimization. */ + return (flag_isolate_erroneous_paths != 0 + && builtin_decl_explicit (BUILT_IN_TRAP) != NULL); +} + +namespace { +const pass_data pass_data_isolate_erroneous_paths = +{ + GIMPLE_PASS, /* type */ + "isolate-paths", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + true, /* has_gate */ + true, /* has_execute */ + TV_ISOLATE_ERRONEOUS_PATHS, /* tv_id */ + ( PROP_cfg | PROP_ssa ), /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_verify_ssa, /* todo_flags_finish */ +}; + +class pass_isolate_erroneous_paths : public gimple_opt_pass +{ +public: + pass_isolate_erroneous_paths (gcc::context *ctxt) + : gimple_opt_pass (pass_data_isolate_erroneous_paths, ctxt) + {} + + /* opt_pass methods: */ + opt_pass * clone () { return new pass_isolate_erroneous_paths (m_ctxt); } + bool gate () { return gate_isolate_erroneous_paths (); } + unsigned int execute () { return gimple_ssa_isolate_erroneous_paths (); } + +}; // class pass_uncprop +} + +gimple_opt_pass * +make_pass_isolate_erroneous_paths (gcc::context *ctxt) +{ + return new pass_isolate_erroneous_paths (ctxt); +} |