summaryrefslogtreecommitdiff
path: root/gcc/fortran/arith.c
diff options
context:
space:
mode:
authorkargl <kargl@138bc75d-0d04-0410-961f-82ee72b054a4>2006-08-26 21:55:28 +0000
committerkargl <kargl@138bc75d-0d04-0410-961f-82ee72b054a4>2006-08-26 21:55:28 +0000
commitaa89df21c8136a9588e64ab57aa08ced53d6b414 (patch)
treedf0a6554d2681ea684caaae14f57577800be48ba /gcc/fortran/arith.c
parent18a3d34c624b0fbaaae8afb8f02b61b88b11347d (diff)
downloadgcc-aa89df21c8136a9588e64ab57aa08ced53d6b414.tar.gz
2006-08-26 Steven G. Kargl <kargls@comcast.net>
* arith.h: Update Copyright dates. Fix whitespace. * arith.c: Update Copyright dates. Fix whitespace. Fix comments. (gfc_arith_done_1): Clean up pedantic_min_int and subnormal. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@116480 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/fortran/arith.c')
-rw-r--r--gcc/fortran/arith.c173
1 files changed, 99 insertions, 74 deletions
diff --git a/gcc/fortran/arith.c b/gcc/fortran/arith.c
index 55289b49cf0..884d810c99b 100644
--- a/gcc/fortran/arith.c
+++ b/gcc/fortran/arith.c
@@ -1,6 +1,6 @@
/* Compiler arithmetic
- Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation,
- Inc.
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006
+ Free Software Foundation, Inc.
Contributed by Andy Vaught
This file is part of GCC.
@@ -22,8 +22,8 @@ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
/* Since target arithmetic must be done on the host, there has to
be some way of evaluating arithmetic expressions as the host
- would evaluate them. We use the GNU MP library to do arithmetic,
- and this file provides the interface. */
+ would evaluate them. We use the GNU MP library and the MPFR
+ library to do arithmetic, and this file provides the interface. */
#include "config.h"
#include "system.h"
@@ -123,7 +123,6 @@ arctangent2 (mpfr_t y, mpfr_t x, mpfr_t result)
}
mpfr_clear (t);
-
}
@@ -182,11 +181,11 @@ gfc_arith_init_1 (void)
mpfr_init (a);
mpz_init (r);
- /* Convert the minimum/maximum values for each kind into their
+ /* Convert the minimum and maximum values for each kind into their
GNU MP representation. */
for (int_info = gfc_integer_kinds; int_info->kind != 0; int_info++)
{
- /* Huge */
+ /* Huge */
mpz_set_ui (r, int_info->radix);
mpz_pow_ui (r, r, int_info->digits);
@@ -215,7 +214,7 @@ gfc_arith_init_1 (void)
mpz_add (int_info->max_int, int_info->huge, int_info->huge);
mpz_add_ui (int_info->max_int, int_info->max_int, 1);
- /* Range */
+ /* Range */
mpfr_set_z (a, int_info->huge, GFC_RND_MODE);
mpfr_log10 (a, a, GFC_RND_MODE);
mpfr_trunc (a, a);
@@ -234,33 +233,33 @@ gfc_arith_init_1 (void)
mpfr_init (c);
/* huge(x) = (1 - b**(-p)) * b**(emax-1) * b */
- /* a = 1 - b**(-p) */
+ /* a = 1 - b**(-p) */
mpfr_set_ui (a, 1, GFC_RND_MODE);
mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
mpfr_pow_si (b, b, -real_info->digits, GFC_RND_MODE);
mpfr_sub (a, a, b, GFC_RND_MODE);
- /* c = b**(emax-1) */
+ /* c = b**(emax-1) */
mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
mpfr_pow_ui (c, b, real_info->max_exponent - 1, GFC_RND_MODE);
- /* a = a * c = (1 - b**(-p)) * b**(emax-1) */
+ /* a = a * c = (1 - b**(-p)) * b**(emax-1) */
mpfr_mul (a, a, c, GFC_RND_MODE);
- /* a = (1 - b**(-p)) * b**(emax-1) * b */
+ /* a = (1 - b**(-p)) * b**(emax-1) * b */
mpfr_mul_ui (a, a, real_info->radix, GFC_RND_MODE);
mpfr_init (real_info->huge);
mpfr_set (real_info->huge, a, GFC_RND_MODE);
- /* tiny(x) = b**(emin-1) */
+ /* tiny(x) = b**(emin-1) */
mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
mpfr_pow_si (b, b, real_info->min_exponent - 1, GFC_RND_MODE);
mpfr_init (real_info->tiny);
mpfr_set (real_info->tiny, b, GFC_RND_MODE);
- /* subnormal (x) = b**(emin - digit) */
+ /* subnormal (x) = b**(emin - digit) */
mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
mpfr_pow_si (b, b, real_info->min_exponent - real_info->digits,
GFC_RND_MODE);
@@ -268,26 +267,27 @@ gfc_arith_init_1 (void)
mpfr_init (real_info->subnormal);
mpfr_set (real_info->subnormal, b, GFC_RND_MODE);
- /* epsilon(x) = b**(1-p) */
+ /* epsilon(x) = b**(1-p) */
mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
mpfr_pow_si (b, b, 1 - real_info->digits, GFC_RND_MODE);
mpfr_init (real_info->epsilon);
mpfr_set (real_info->epsilon, b, GFC_RND_MODE);
- /* range(x) = int(min(log10(huge(x)), -log10(tiny)) */
+ /* range(x) = int(min(log10(huge(x)), -log10(tiny)) */
mpfr_log10 (a, real_info->huge, GFC_RND_MODE);
mpfr_log10 (b, real_info->tiny, GFC_RND_MODE);
mpfr_neg (b, b, GFC_RND_MODE);
+ /* a = min(a, b) */
if (mpfr_cmp (a, b) > 0)
- mpfr_set (a, b, GFC_RND_MODE); /* a = min(a, b) */
+ mpfr_set (a, b, GFC_RND_MODE);
mpfr_trunc (a, a);
gfc_mpfr_to_mpz (r, a);
real_info->range = mpz_get_si (r);
- /* precision(x) = int((p - 1) * log10(b)) + k */
+ /* precision(x) = int((p - 1) * log10(b)) + k */
mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
mpfr_log10 (a, a, GFC_RND_MODE);
@@ -296,8 +296,7 @@ gfc_arith_init_1 (void)
gfc_mpfr_to_mpz (r, a);
real_info->precision = mpz_get_si (r);
- /* If the radix is an integral power of 10, add one to the
- precision. */
+ /* If the radix is an integral power of 10, add one to the precision. */
for (i = 10; i <= real_info->radix; i *= 10)
if (i == real_info->radix)
real_info->precision++;
@@ -323,6 +322,7 @@ gfc_arith_done_1 (void)
{
mpz_clear (ip->min_int);
mpz_clear (ip->max_int);
+ mpz_clear (ip->pedantic_min_int);
mpz_clear (ip->huge);
}
@@ -331,6 +331,7 @@ gfc_arith_done_1 (void)
mpfr_clear (rp->epsilon);
mpfr_clear (rp->huge);
mpfr_clear (rp->tiny);
+ mpfr_clear (rp->subnormal);
}
}
@@ -411,10 +412,10 @@ gfc_check_real_range (mpfr_t p, int kind)
}
else if (mpfr_cmp (q, gfc_real_kinds[i].tiny) < 0)
{
- /* MPFR operates on a numbers with a given precision and enormous
- exponential range. To represent subnormal numbers the exponent is
+ /* MPFR operates on a number with a given precision and enormous
+ exponential range. To represent subnormal numbers, the exponent is
allowed to become smaller than emin, but always retains the full
- precision. This function resets unused bits to 0 to alleviate
+ precision. This code resets unused bits to 0 to alleviate
rounding problems. Note, a future version of MPFR will have a
mpfr_subnormalize() function, which handles this truncation in a
more efficient and robust way. */
@@ -428,7 +429,7 @@ gfc_check_real_range (mpfr_t p, int kind)
for (j = k; j < gfc_real_kinds[i].digits; j++)
bin[j] = '0';
/* Need space for '0.', bin, 'E', and e */
- s = (char *) gfc_getmem (strlen(bin)+10);
+ s = (char *) gfc_getmem (strlen(bin) + 10);
sprintf (s, "0.%sE%d", bin, (int) e);
mpfr_set_str (q, s, gfc_real_kinds[i].radix, GMP_RNDN);
@@ -451,8 +452,7 @@ gfc_check_real_range (mpfr_t p, int kind)
}
-/* Function to return a constant expression node of a given type and
- kind. */
+/* Function to return a constant expression node of a given type and kind. */
gfc_expr *
gfc_constant_result (bt type, int kind, locus * where)
@@ -611,7 +611,6 @@ gfc_range_check (gfc_expr * e)
mpfr_set_inf (e->value.complex.i, mpfr_sgn (e->value.complex.i));
if (rc == ARITH_NAN)
mpfr_set_nan (e->value.complex.i);
-
break;
default:
@@ -792,9 +791,6 @@ gfc_arith_times (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
break;
case BT_COMPLEX:
-
- /* FIXME: possible numericals problem. */
-
gfc_set_model (op1->value.complex.r);
mpfr_init (x);
mpfr_init (y);
@@ -809,7 +805,6 @@ gfc_arith_times (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
mpfr_clear (x);
mpfr_clear (y);
-
break;
default:
@@ -872,7 +867,6 @@ gfc_arith_divide (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
mpfr_init (y);
mpfr_init (div);
- /* FIXME: possible numerical problems. */
mpfr_mul (x, op2->value.complex.r, op2->value.complex.r, GFC_RND_MODE);
mpfr_mul (y, op2->value.complex.i, op2->value.complex.i, GFC_RND_MODE);
mpfr_add (div, x, y, GFC_RND_MODE);
@@ -892,7 +886,6 @@ gfc_arith_divide (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
mpfr_clear (x);
mpfr_clear (y);
mpfr_clear (div);
-
break;
default:
@@ -919,7 +912,6 @@ complex_reciprocal (gfc_expr * op)
mpfr_init (re);
mpfr_init (im);
- /* FIXME: another possible numerical problem. */
mpfr_mul (mod, op->value.complex.r, op->value.complex.r, GFC_RND_MODE);
mpfr_mul (a, op->value.complex.i, op->value.complex.i, GFC_RND_MODE);
mpfr_add (mod, mod, a, GFC_RND_MODE);
@@ -1038,7 +1030,6 @@ gfc_arith_power (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
result->value.integer);
mpz_clear (unity_z);
}
-
break;
case BT_REAL:
@@ -1140,7 +1131,7 @@ gfc_compare_expr (gfc_expr * op1, gfc_expr * op2)
/* Compare a pair of complex numbers. Naturally, this is only for
- equality/nonequality. */
+ equality and nonequality. */
static int
compare_complex (gfc_expr * op1, gfc_expr * op2)
@@ -1150,13 +1141,12 @@ compare_complex (gfc_expr * op1, gfc_expr * op2)
}
-/* Given two constant strings and the inverse collating sequence,
- compare the strings. We return -1 for a<b, 0 for a==b and 1 for
- a>b. If the xcoll_table is NULL, we use the processor's default
- collating sequence. */
+/* Given two constant strings and the inverse collating sequence, compare the
+ strings. We return -1 for a < b, 0 for a == b and 1 for a > b. If the
+ xcoll_table is NULL, we use the processor's default collating sequence. */
int
-gfc_compare_string (gfc_expr * a, gfc_expr * b, const int *xcoll_table)
+gfc_compare_string (gfc_expr * a, gfc_expr * b, const int * xcoll_table)
{
int len, alen, blen, i, ac, bc;
@@ -1168,7 +1158,7 @@ gfc_compare_string (gfc_expr * a, gfc_expr * b, const int *xcoll_table)
for (i = 0; i < len; i++)
{
/* We cast to unsigned char because default char, if it is signed,
- would lead to ac<0 for string[i] > 127. */
+ would lead to ac < 0 for string[i] > 127. */
ac = (unsigned char) ((i < alen) ? a->value.character.string[i] : ' ');
bc = (unsigned char) ((i < blen) ? b->value.character.string[i] : ' ');
@@ -1509,7 +1499,8 @@ eval_intrinsic (gfc_intrinsic_op operator,
switch (operator)
{
- case INTRINSIC_NOT: /* Logical unary */
+ /* Logical unary */
+ case INTRINSIC_NOT:
if (op1->ts.type != BT_LOGICAL)
goto runtime;
@@ -1519,7 +1510,7 @@ eval_intrinsic (gfc_intrinsic_op operator,
unary = 1;
break;
- /* Logical binary operators */
+ /* Logical binary operators */
case INTRINSIC_OR:
case INTRINSIC_AND:
case INTRINSIC_NEQV:
@@ -1533,8 +1524,9 @@ eval_intrinsic (gfc_intrinsic_op operator,
unary = 0;
break;
+ /* Numeric unary */
case INTRINSIC_UPLUS:
- case INTRINSIC_UMINUS: /* Numeric unary */
+ case INTRINSIC_UMINUS:
if (!gfc_numeric_ts (&op1->ts))
goto runtime;
@@ -1549,9 +1541,10 @@ eval_intrinsic (gfc_intrinsic_op operator,
unary = 1;
break;
+ /* Additional restrictions for ordering relations. */
case INTRINSIC_GE:
- case INTRINSIC_LT: /* Additional restrictions */
- case INTRINSIC_LE: /* for ordering relations. */
+ case INTRINSIC_LT:
+ case INTRINSIC_LE:
case INTRINSIC_GT:
if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
{
@@ -1560,8 +1553,7 @@ eval_intrinsic (gfc_intrinsic_op operator,
goto runtime;
}
- /* else fall through */
-
+ /* Fall through */
case INTRINSIC_EQ:
case INTRINSIC_NE:
if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER)
@@ -1572,17 +1564,18 @@ eval_intrinsic (gfc_intrinsic_op operator,
break;
}
- /* else fall through */
-
+ /* Fall through */
+ /* Numeric binary */
case INTRINSIC_PLUS:
case INTRINSIC_MINUS:
case INTRINSIC_TIMES:
case INTRINSIC_DIVIDE:
- case INTRINSIC_POWER: /* Numeric binary */
+ case INTRINSIC_POWER:
if (!gfc_numeric_ts (&op1->ts) || !gfc_numeric_ts (&op2->ts))
goto runtime;
- /* Insert any necessary type conversions to make the operands compatible. */
+ /* Insert any necessary type conversions to make the operands
+ compatible. */
temp.expr_type = EXPR_OP;
gfc_clear_ts (&temp.ts);
@@ -1604,7 +1597,8 @@ eval_intrinsic (gfc_intrinsic_op operator,
unary = 0;
break;
- case INTRINSIC_CONCAT: /* Character binary */
+ /* Character binary */
+ case INTRINSIC_CONCAT:
if (op1->ts.type != BT_CHARACTER || op2->ts.type != BT_CHARACTER)
goto runtime;
@@ -1628,16 +1622,16 @@ eval_intrinsic (gfc_intrinsic_op operator,
if (op1->from_H
|| (op1->expr_type != EXPR_CONSTANT
&& (op1->expr_type != EXPR_ARRAY
- || !gfc_is_constant_expr (op1)
- || !gfc_expanded_ac (op1))))
+ || !gfc_is_constant_expr (op1)
+ || !gfc_expanded_ac (op1))))
goto runtime;
if (op2 != NULL
&& (op2->from_H
- || (op2->expr_type != EXPR_CONSTANT
- && (op2->expr_type != EXPR_ARRAY
- || !gfc_is_constant_expr (op2)
- || !gfc_expanded_ac (op2)))))
+ || (op2->expr_type != EXPR_CONSTANT
+ && (op2->expr_type != EXPR_ARRAY
+ || !gfc_is_constant_expr (op2)
+ || !gfc_expanded_ac (op2)))))
goto runtime;
if (unary)
@@ -1646,7 +1640,7 @@ eval_intrinsic (gfc_intrinsic_op operator,
rc = reduce_binary (eval.f3, op1, op2, &result);
if (rc != ARITH_OK)
- { /* Something went wrong */
+ { /* Something went wrong. */
gfc_error (gfc_arith_error (rc), &op1->where);
return NULL;
}
@@ -1656,7 +1650,7 @@ eval_intrinsic (gfc_intrinsic_op operator,
return result;
runtime:
- /* Create a run-time expression */
+ /* Create a run-time expression. */
result = gfc_get_expr ();
result->ts = temp.ts;
@@ -1673,8 +1667,9 @@ runtime:
/* Modify type of expression for zero size array. */
+
static gfc_expr *
-eval_type_intrinsic0 (gfc_intrinsic_op operator, gfc_expr *op)
+eval_type_intrinsic0 (gfc_intrinsic_op operator, gfc_expr * op)
{
if (op == NULL)
gfc_internal_error ("eval_type_intrinsic0(): op NULL");
@@ -1776,115 +1771,132 @@ eval_intrinsic_f3 (gfc_intrinsic_op operator,
}
-
gfc_expr *
gfc_uplus (gfc_expr * op)
{
return eval_intrinsic_f2 (INTRINSIC_UPLUS, gfc_arith_uplus, op, NULL);
}
+
gfc_expr *
gfc_uminus (gfc_expr * op)
{
return eval_intrinsic_f2 (INTRINSIC_UMINUS, gfc_arith_uminus, op, NULL);
}
+
gfc_expr *
gfc_add (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_PLUS, gfc_arith_plus, op1, op2);
}
+
gfc_expr *
gfc_subtract (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_MINUS, gfc_arith_minus, op1, op2);
}
+
gfc_expr *
gfc_multiply (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_TIMES, gfc_arith_times, op1, op2);
}
+
gfc_expr *
gfc_divide (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_DIVIDE, gfc_arith_divide, op1, op2);
}
+
gfc_expr *
gfc_power (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_POWER, gfc_arith_power, op1, op2);
}
+
gfc_expr *
gfc_concat (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_CONCAT, gfc_arith_concat, op1, op2);
}
+
gfc_expr *
gfc_and (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_AND, gfc_arith_and, op1, op2);
}
+
gfc_expr *
gfc_or (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_OR, gfc_arith_or, op1, op2);
}
+
gfc_expr *
gfc_not (gfc_expr * op1)
{
return eval_intrinsic_f2 (INTRINSIC_NOT, gfc_arith_not, op1, NULL);
}
+
gfc_expr *
gfc_eqv (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_EQV, gfc_arith_eqv, op1, op2);
}
+
gfc_expr *
gfc_neqv (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_NEQV, gfc_arith_neqv, op1, op2);
}
+
gfc_expr *
gfc_eq (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_EQ, gfc_arith_eq, op1, op2);
}
+
gfc_expr *
gfc_ne (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_NE, gfc_arith_ne, op1, op2);
}
+
gfc_expr *
gfc_gt (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_GT, gfc_arith_gt, op1, op2);
}
+
gfc_expr *
gfc_ge (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_GE, gfc_arith_ge, op1, op2);
}
+
gfc_expr *
gfc_lt (gfc_expr * op1, gfc_expr * op2)
{
return eval_intrinsic_f3 (INTRINSIC_LT, gfc_arith_lt, op1, op2);
}
+
gfc_expr *
gfc_le (gfc_expr * op1, gfc_expr * op2)
{
@@ -1895,13 +1907,13 @@ gfc_le (gfc_expr * op1, gfc_expr * op2)
/* Convert an integer string to an expression node. */
gfc_expr *
-gfc_convert_integer (const char *buffer, int kind, int radix, locus * where)
+gfc_convert_integer (const char * buffer, int kind, int radix, locus * where)
{
gfc_expr *e;
const char *t;
e = gfc_constant_result (BT_INTEGER, kind, where);
- /* a leading plus is allowed, but not by mpz_set_str */
+ /* A leading plus is allowed, but not by mpz_set_str. */
if (buffer[0] == '+')
t = buffer + 1;
else
@@ -1915,7 +1927,7 @@ gfc_convert_integer (const char *buffer, int kind, int radix, locus * where)
/* Convert a real string to an expression node. */
gfc_expr *
-gfc_convert_real (const char *buffer, int kind, locus * where)
+gfc_convert_real (const char * buffer, int kind, locus * where)
{
gfc_expr *e;
@@ -1989,6 +2001,7 @@ arith_error (arith rc, gfc_typespec * from, gfc_typespec * to, locus * where)
NaN, etc. */
}
+
/* Convert integers to integers. */
gfc_expr *
@@ -2269,28 +2282,35 @@ gfc_log2log (gfc_expr * src, int kind)
return result;
}
+
/* Convert logical to integer. */
gfc_expr *
gfc_log2int (gfc_expr *src, int kind)
{
gfc_expr *result;
+
result = gfc_constant_result (BT_INTEGER, kind, &src->where);
mpz_set_si (result->value.integer, src->value.logical);
+
return result;
}
+
/* Convert integer to logical. */
gfc_expr *
gfc_int2log (gfc_expr *src, int kind)
{
gfc_expr *result;
+
result = gfc_constant_result (BT_LOGICAL, kind, &src->where);
result->value.logical = (mpz_cmp_si (src->value.integer, 0) != 0);
+
return result;
}
+
/* Convert Hollerith to integer. The constant will be padded or truncated. */
gfc_expr *
@@ -2320,12 +2340,13 @@ gfc_hollerith2int (gfc_expr * src, int kind)
if (len < kind)
memset (&result->value.character.string[len], ' ', kind - len);
- result->value.character.string[kind] = '\0'; /* For debugger */
+ result->value.character.string[kind] = '\0'; /* For debugger */
result->value.character.length = kind;
return result;
}
+
/* Convert Hollerith to real. The constant will be padded or truncated. */
gfc_expr *
@@ -2355,12 +2376,13 @@ gfc_hollerith2real (gfc_expr * src, int kind)
if (len < kind)
memset (&result->value.character.string[len], ' ', kind - len);
- result->value.character.string[kind] = '\0'; /* For debugger */
+ result->value.character.string[kind] = '\0'; /* For debugger. */
result->value.character.length = kind;
return result;
}
+
/* Convert Hollerith to complex. The constant will be padded or truncated. */
gfc_expr *
@@ -2392,12 +2414,13 @@ gfc_hollerith2complex (gfc_expr * src, int kind)
if (len < kind)
memset (&result->value.character.string[len], ' ', kind - len);
- result->value.character.string[kind] = '\0'; /* For debugger */
+ result->value.character.string[kind] = '\0'; /* For debugger */
result->value.character.length = kind;
return result;
}
+
/* Convert Hollerith to character. */
gfc_expr *
@@ -2413,6 +2436,7 @@ gfc_hollerith2character (gfc_expr * src, int kind)
return result;
}
+
/* Convert Hollerith to logical. The constant will be padded or truncated. */
gfc_expr *
@@ -2442,14 +2466,15 @@ gfc_hollerith2logical (gfc_expr * src, int kind)
if (len < kind)
memset (&result->value.character.string[len], ' ', kind - len);
- result->value.character.string[kind] = '\0'; /* For debugger */
+ result->value.character.string[kind] = '\0'; /* For debugger */
result->value.character.length = kind;
return result;
}
+
/* Returns an initializer whose value is one higher than the value of the
- LAST_INITIALIZER argument. If that is argument is NULL, the
+ LAST_INITIALIZER argument. If the argument is NULL, the
initializers value will be set to zero. The initializer's kind
will be set to gfc_c_int_kind.
@@ -2458,7 +2483,7 @@ gfc_hollerith2logical (gfc_expr * src, int kind)
here if an initializer exceeds gfc_c_int_kind. */
gfc_expr *
-gfc_enum_initializer (gfc_expr *last_initializer, locus where)
+gfc_enum_initializer (gfc_expr * last_initializer, locus where)
{
gfc_expr *result;
@@ -2485,7 +2510,7 @@ gfc_enum_initializer (gfc_expr *last_initializer, locus where)
else
{
/* Control comes here, if it's the very first enumerator and no
- initializer has been given. It will be initialized to ZERO (0). */
+ initializer has been given. It will be initialized to zero. */
mpz_set_si (result->value.integer, 0);
}