summaryrefslogtreecommitdiff
path: root/gcc/doc/tree-ssa.texi
diff options
context:
space:
mode:
authorbstarynk <bstarynk@138bc75d-0d04-0410-961f-82ee72b054a4>2009-04-07 06:05:11 +0000
committerbstarynk <bstarynk@138bc75d-0d04-0410-961f-82ee72b054a4>2009-04-07 06:05:11 +0000
commitebebeee379dd8b985e6877e56bc124041907038b (patch)
tree32a2ce6c6b8ce5f11172be301cb81225d5d5cbac /gcc/doc/tree-ssa.texi
parent588bbfff28d00a54a71f2d751fb75767b6b1b3cb (diff)
downloadgcc-ebebeee379dd8b985e6877e56bc124041907038b.tar.gz
2009-04-07 Basile Starynkevitch <basile@starynkevitch.net>
MELT branch merged with trunk r145646 git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/branches/melt-branch@145649 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/doc/tree-ssa.texi')
-rw-r--r--gcc/doc/tree-ssa.texi264
1 files changed, 67 insertions, 197 deletions
diff --git a/gcc/doc/tree-ssa.texi b/gcc/doc/tree-ssa.texi
index bd0edc44226..659431b0274 100644
--- a/gcc/doc/tree-ssa.texi
+++ b/gcc/doc/tree-ssa.texi
@@ -795,230 +795,100 @@ is popped.
@cindex flow-sensitive alias analysis
@cindex flow-insensitive alias analysis
-Alias analysis proceeds in 4 main phases:
+Alias analysis in GIMPLE SSA form consists of two pieces. First
+the virtual SSA web ties conflicting memory accesses and provides
+a SSA use-def chain and SSA immediate-use chains for walking
+possibly dependent memory accesses. Second an alias-oracle can
+be queried to disambiguate explicit and implicit memory references.
@enumerate
-@item Structural alias analysis.
+@item Memory SSA form.
-This phase walks the types for structure variables, and determines which
-of the fields can overlap using offset and size of each field. For each
-field, a ``subvariable'' called a ``Structure field tag'' (SFT)@ is
-created, which represents that field as a separate variable. All
-accesses that could possibly overlap with a given field will have
-virtual operands for the SFT of that field.
+All statements that may use memory have exactly one accompanied use of
+a virtual SSA name that represents the state of memory at the
+given point in the IL.
+
+All statements that may define memory have exactly one accompanied
+definition of a virtual SSA name using the previous state of memory
+and defining the new state of memory after the given point in the IL.
@smallexample
-struct foo
-@{
- int a;
- int b;
-@}
-struct foo temp;
-int bar (void)
+int i;
+int foo (void)
@{
- int tmp1, tmp2, tmp3;
- SFT.0_2 = VDEF <SFT.0_1>
- temp.a = 5;
- SFT.1_4 = VDEF <SFT.1_3>
- temp.b = 6;
-
- VUSE <SFT.1_4>
- tmp1_5 = temp.b;
- VUSE <SFT.0_2>
- tmp2_6 = temp.a;
-
- tmp3_7 = tmp1_5 + tmp2_6;
- return tmp3_7;
+ # .MEM_3 = VDEF <.MEM_2(D)>
+ i = 1;
+ # VUSE <.MEM_3>
+ return i;
@}
@end smallexample
-If you copy the symbol tag for a variable for some reason, you probably
-also want to copy the subvariables for that variable.
+The virtual SSA names in this case are @code{.MEM_2(D)} and
+@code{.MEM_3}. The store to the global variable @code{i}
+defines @code{.MEM_3} invalidating @code{.MEM_2(D)}. The
+load from @code{i} uses that new state @code{.MEM_3}.
+
+The virtual SSA web serves as constraints to SSA optimizers
+preventing illegitimate code-motion and optimization. It
+also provides a way to walk related memory statements.
@item Points-to and escape analysis.
-This phase walks the use-def chains in the SSA web looking for
-three things:
+Points-to analysis builds a set of constraints from the GIMPLE
+SSA IL representing all pointer operations and facts we do
+or do not know about pointers. Solving this set of constraints
+yields a conservatively correct solution for each pointer
+variable in the program (though we are only interested in
+SSA name pointers) as to what it may possibly point to.
+
+This points-to solution for a given SSA name pointer is stored
+in the @code{pt_solution} sub-structure of the
+@code{SSA_NAME_PTR_INFO} record. The following accessor
+functions are available:
@itemize @bullet
-@item Assignments of the form @code{P_i = &VAR}
-@item Assignments of the form P_i = malloc()
-@item Pointers and ADDR_EXPR that escape the current function.
+@item @code{pt_solution_includes}
+@item @code{pt_solutions_intersect}
@end itemize
-The concept of `escaping' is the same one used in the Java world.
-When a pointer or an ADDR_EXPR escapes, it means that it has been
-exposed outside of the current function. So, assignment to
-global variables, function arguments and returning a pointer are
-all escape sites.
-
-This is where we are currently limited. Since not everything is
-renamed into SSA, we lose track of escape properties when a
-pointer is stashed inside a field in a structure, for instance.
-In those cases, we are assuming that the pointer does escape.
-
-We use escape analysis to determine whether a variable is
-call-clobbered. Simply put, if an ADDR_EXPR escapes, then the
-variable is call-clobbered. If a pointer P_i escapes, then all
-the variables pointed-to by P_i (and its memory tag) also escape.
-
-@item Compute flow-sensitive aliases
+Points-to analysis also computes the solution for two special
+set of pointers, @code{ESCAPED} and @code{CALLUSED}. Those
+represent all memory that has escaped the scope of analysis
+or that is used by pure or nested const calls.
-We have two classes of memory tags. Memory tags associated with
-the pointed-to data type of the pointers in the program. These
-tags are called ``symbol memory tag'' (SMT)@. The other class are
-those associated with SSA_NAMEs, called ``name memory tag'' (NMT)@.
-The basic idea is that when adding operands for an INDIRECT_REF
-*P_i, we will first check whether P_i has a name tag, if it does
-we use it, because that will have more precise aliasing
-information. Otherwise, we use the standard symbol tag.
+@item Type-based alias analysis
-In this phase, we go through all the pointers we found in
-points-to analysis and create alias sets for the name memory tags
-associated with each pointer P_i. If P_i escapes, we mark
-call-clobbered the variables it points to and its tag.
-
-
-@item Compute flow-insensitive aliases
-
-This pass will compare the alias set of every symbol memory tag and
-every addressable variable found in the program. Given a symbol
-memory tag SMT and an addressable variable V@. If the alias sets
-of SMT and V conflict (as computed by may_alias_p), then V is
-marked as an alias tag and added to the alias set of SMT@.
+Type-based alias analysis is frontend dependent though generic
+support is provided by the middle-end in @code{alias.c}. TBAA
+code is used by both tree optimizers and RTL optimizers.
Every language that wishes to perform language-specific alias analysis
should define a function that computes, given a @code{tree}
node, an alias set for the node. Nodes in different alias sets are not
allowed to alias. For an example, see the C front-end function
@code{c_get_alias_set}.
-@end enumerate
-
-For instance, consider the following function:
-
-@smallexample
-foo (int i)
-@{
- int *p, *q, a, b;
-
- if (i > 10)
- p = &a;
- else
- q = &b;
-
- *p = 3;
- *q = 5;
- a = b + 2;
- return *p;
-@}
-@end smallexample
-
-After aliasing analysis has finished, the symbol memory tag for
-pointer @code{p} will have two aliases, namely variables @code{a} and
-@code{b}.
-Every time pointer @code{p} is dereferenced, we want to mark the
-operation as a potential reference to @code{a} and @code{b}.
-
-@smallexample
-foo (int i)
-@{
- int *p, a, b;
-
- if (i_2 > 10)
- p_4 = &a;
- else
- p_6 = &b;
- # p_1 = PHI <p_4(1), p_6(2)>;
- # a_7 = VDEF <a_3>;
- # b_8 = VDEF <b_5>;
- *p_1 = 3;
+@item Tree alias-oracle
- # a_9 = VDEF <a_7>
- # VUSE <b_8>
- a_9 = b_8 + 2;
+The tree alias-oracle provides means to disambiguate two memory
+references and memory references against statements. The following
+queries are available:
- # VUSE <a_9>;
- # VUSE <b_8>;
- return *p_1;
-@}
-@end smallexample
-
-In certain cases, the list of may aliases for a pointer may grow
-too large. This may cause an explosion in the number of virtual
-operands inserted in the code. Resulting in increased memory
-consumption and compilation time.
-
-When the number of virtual operands needed to represent aliased
-loads and stores grows too large (configurable with @option{--param
-max-aliased-vops}), alias sets are grouped to avoid severe
-compile-time slow downs and memory consumption. The alias
-grouping heuristic proceeds as follows:
-
-@enumerate
-@item Sort the list of pointers in decreasing number of contributed
-virtual operands.
-
-@item Take the first pointer from the list and reverse the role
-of the memory tag and its aliases. Usually, whenever an
-aliased variable Vi is found to alias with a memory tag
-T, we add Vi to the may-aliases set for T@. Meaning that
-after alias analysis, we will have:
-
-@smallexample
-may-aliases(T) = @{ V1, V2, V3, @dots{}, Vn @}
-@end smallexample
-
-This means that every statement that references T, will get
-@code{n} virtual operands for each of the Vi tags. But, when
-alias grouping is enabled, we make T an alias tag and add it
-to the alias set of all the Vi variables:
-
-@smallexample
-may-aliases(V1) = @{ T @}
-may-aliases(V2) = @{ T @}
-@dots{}
-may-aliases(Vn) = @{ T @}
-@end smallexample
-
-This has two effects: (a) statements referencing T will only get
-a single virtual operand, and, (b) all the variables Vi will now
-appear to alias each other. So, we lose alias precision to
-improve compile time. But, in theory, a program with such a high
-level of aliasing should not be very optimizable in the first
-place.
-
-@item Since variables may be in the alias set of more than one
-memory tag, the grouping done in step (2) needs to be extended
-to all the memory tags that have a non-empty intersection with
-the may-aliases set of tag T@. For instance, if we originally
-had these may-aliases sets:
-
-@smallexample
-may-aliases(T) = @{ V1, V2, V3 @}
-may-aliases(R) = @{ V2, V4 @}
-@end smallexample
-
-In step (2) we would have reverted the aliases for T as:
-
-@smallexample
-may-aliases(V1) = @{ T @}
-may-aliases(V2) = @{ T @}
-may-aliases(V3) = @{ T @}
-@end smallexample
+@itemize @bullet
+@item @code{refs_may_alias_p}
+@item @code{ref_maybe_used_by_stmt_p}
+@item @code{stmt_may_clobber_ref_p}
+@end itemize
-But note that now V2 is no longer aliased with R@. We could
-add R to may-aliases(V2), but we are in the process of
-grouping aliases to reduce virtual operands so what we do is
-add V4 to the grouping to obtain:
+In addition to those two kind of statement walkers are available
+walking statements related to a reference ref.
+@code{walk_non_aliased_vuses} walks over dominating memory defining
+statements and calls back if the statement does not clobber ref
+providing the non-aliased VUSE. The walk stops at
+the first clobbering statement or if asked to.
+@code{walk_aliased_vdefs} walks over dominating memory defining
+statements and calls back on each statement clobbering ref
+providing its aliasing VDEF. The walk stops if asked to.
-@smallexample
-may-aliases(V1) = @{ T @}
-may-aliases(V2) = @{ T @}
-may-aliases(V3) = @{ T @}
-may-aliases(V4) = @{ T @}
-@end smallexample
-
-@item If the total number of virtual operands due to aliasing is
-still above the threshold set by max-alias-vops, go back to (2).
@end enumerate
+