summaryrefslogtreecommitdiff
path: root/gcc/doc/install-old.texi
diff options
context:
space:
mode:
authorjsm28 <jsm28@138bc75d-0d04-0410-961f-82ee72b054a4>2001-06-02 22:33:30 +0000
committerjsm28 <jsm28@138bc75d-0d04-0410-961f-82ee72b054a4>2001-06-02 22:33:30 +0000
commitf46050d88aa561b4e35ad38508c50ae321e0450d (patch)
treec5c400a25183556a375e1b0a62a4fb2fcf643b1f /gcc/doc/install-old.texi
parent3faa8a401133cde7cab3d08d4bb39f3e6b0556b0 (diff)
downloadgcc-f46050d88aa561b4e35ad38508c50ae321e0450d.tar.gz
* doc/gcc.texi, doc/install-old.texi: Remove old system-specific
installation documentation. * doc/install.texi: Move it to here. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@42816 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/doc/install-old.texi')
-rw-r--r--gcc/doc/install-old.texi697
1 files changed, 0 insertions, 697 deletions
diff --git a/gcc/doc/install-old.texi b/gcc/doc/install-old.texi
index c0aa729cc70..96e10c86729 100644
--- a/gcc/doc/install-old.texi
+++ b/gcc/doc/install-old.texi
@@ -664,705 +664,8 @@ Here is a list of configurations that have special treatment or special
things you must know:
@table @samp
-@item 1750a-*-*
-MIL-STD-1750A processors.
-
-The MIL-STD-1750A cross configuration produces output for
-@code{as1750}, an assembler/linker available under the GNU Public
-License for the 1750A. @code{as1750} can be obtained at
-@uref{ftp://ftp.fta-berlin.de/pub/crossgcc/1750gals/}.
-A similarly licensed simulator for
-the 1750A is available from same address.
-
-You should ignore a fatal error during the building of libgcc (libgcc is
-not yet implemented for the 1750A.)
-
-The @code{as1750} assembler requires the file @file{ms1750.inc}, which is
-found in the directory @file{config/1750a}.
-
-GNU CC produced the same sections as the Fairchild F9450 C Compiler,
-namely:
-
-@table @code
-@item Normal
-The program code section.
-
-@item Static
-The read/write (RAM) data section.
-
-@item Konst
-The read-only (ROM) constants section.
-
-@item Init
-Initialization section (code to copy KREL to SREL).
-@end table
-
-The smallest addressable unit is 16 bits (BITS_PER_UNIT is 16). This
-means that type `char' is represented with a 16-bit word per character.
-The 1750A's "Load/Store Upper/Lower Byte" instructions are not used by
-GNU CC.
-
-@item alpha-*-osf1
-Systems using processors that implement the DEC Alpha architecture and
-are running the DEC Unix (OSF/1) operating system, for example the DEC
-Alpha AXP systems.CC.)
-
-GNU CC writes a @samp{.verstamp} directive to the assembler output file
-unless it is built as a cross-compiler. It gets the version to use from
-the system header file @file{/usr/include/stamp.h}. If you install a
-new version of DEC Unix, you should rebuild GCC to pick up the new version
-stamp.
-
-Note that since the Alpha is a 64-bit architecture, cross-compilers from
-32-bit machines will not generate code as efficient as that generated
-when the compiler is running on a 64-bit machine because many
-optimizations that depend on being able to represent a word on the
-target in an integral value on the host cannot be performed. Building
-cross-compilers on the Alpha for 32-bit machines has only been tested in
-a few cases and may not work properly.
-
-@code{make compare} may fail on old versions of DEC Unix unless you add
-@samp{-save-temps} to @code{CFLAGS}. On these systems, the name of the
-assembler input file is stored in the object file, and that makes
-comparison fail if it differs between the @code{stage1} and
-@code{stage2} compilations. The option @samp{-save-temps} forces a
-fixed name to be used for the assembler input file, instead of a
-randomly chosen name in @file{/tmp}. Do not add @samp{-save-temps}
-unless the comparisons fail without that option. If you add
-@samp{-save-temps}, you will have to manually delete the @samp{.i} and
-@samp{.s} files after each series of compilations.
-
-GNU CC now supports both the native (ECOFF) debugging format used by DBX
-and GDB and an encapsulated STABS format for use only with GDB. See the
-discussion of the @samp{--with-stabs} option of @file{configure} above
-for more information on these formats and how to select them.
-
-There is a bug in DEC's assembler that produces incorrect line numbers
-for ECOFF format when the @samp{.align} directive is used. To work
-around this problem, GNU CC will not emit such alignment directives
-while writing ECOFF format debugging information even if optimization is
-being performed. Unfortunately, this has the very undesirable
-side-effect that code addresses when @samp{-O} is specified are
-different depending on whether or not @samp{-g} is also specified.
-
-To avoid this behavior, specify @samp{-gstabs+} and use GDB instead of
-DBX. DEC is now aware of this problem with the assembler and hopes to
-provide a fix shortly.
-
-@item arc-*-elf
-Argonaut ARC processor.
-This configuration is intended for embedded systems.
-
-@item arm-*-aout
-Advanced RISC Machines ARM-family processors. These are often used in
-embedded applications. There are no standard Unix configurations.
-This configuration corresponds to the basic instruction sequences and will
-produce @file{a.out} format object modules.
-
-You may need to make a variant of the file @file{arm.h} for your particular
-configuration.
-
-@item arm-*-elf
-This configuration is intended for embedded systems.
-
-@item arm-*-linux*aout
-Any of the ARM-family processors running the Linux-based GNU system with
-the @file{a.out} binary format. This is an obsolete configuration.
-
-@item arm-*-linux
-@itemx arm-*-linux-gnu
-@itemx arm-*-linux*oldld
-Any of the ARM-family processors running the Linux-based GNU system with
-the @file{ELF} binary format. You must use version 2.9.1.0.22 or later
-of the GNU/Linux binutils, which you can download from
-@uref{ftp://ftp.varesearch.com/pub/support/hjl/binutils/}.
-
-These two configurations differ only in the required version of GNU
-binutils. For binutils 2.9.1.0.x, use @samp{arm-*-linux-gnuoldld}. For
-newer versions of binutils, use @samp{arm-*-linux-gnu}.
-
-@item arm-*-riscix
-The ARM2 or ARM3 processor running RISC iX, Acorn's port of BSD Unix.
-If you are running a version of RISC iX prior to 1.2 then you must
-specify the version number during configuration. Note that the
-assembler shipped with RISC iX does not support stabs debugging
-information; a new version of the assembler, with stabs support
-included, is now available from Acorn and via ftp
-@uref{ftp://ftp.acorn.com/pub/riscix/as+xterm.tar.Z}. To enable stabs
-debugging, pass @samp{--with-gnu-as} to configure.
-
-You will need to install GNU @file{sed} before you can run configure.
-
-@item a29k
-AMD Am29k-family processors. These are normally used in embedded
-applications. There are no standard Unix configurations.
-This configuration
-corresponds to AMD's standard calling sequence and binary interface
-and is compatible with other 29k tools.
-
-You may need to make a variant of the file @file{a29k.h} for your
-particular configuration.
-
-@item a29k-*-bsd
-AMD Am29050 used in a system running a variant of BSD Unix.
-
-@item avr
-ATMEL AVR-family micro controllers. These are used in embedded
-applications. There are no standard Unix configurations.
-@xref{AVR Options}, for the list of supported MCU types.
-
-@item decstation-*
-MIPS-based DECstations can support three different personalities:
-Ultrix, DEC OSF/1, and OSF/rose. (Alpha-based DECstation products have
-a configuration name beginning with @samp{alpha-dec}.) To configure GCC
-for these platforms use the following configurations:
-
-@table @samp
-@item decstation-ultrix
-Ultrix configuration.
-
-@item decstation-osf1
-Dec's version of OSF/1.
-
-@item decstation-osfrose
-Open Software Foundation reference port of OSF/1 which uses the
-OSF/rose object file format instead of ECOFF. Normally, you
-would not select this configuration.
-@end table
-
-The MIPS C compiler needs to be told to increase its table size
-for switch statements with the @samp{-Wf,-XNg1500} option in
-order to compile @file{cp/parse.c}. If you use the @samp{-O2}
-optimization option, you also need to use @samp{-Olimit 3000}.
-Both of these options are automatically generated in the
-@file{Makefile} that the shell script @file{configure} builds.
-If you override the @code{CC} make variable and use the MIPS
-compilers, you may need to add @samp{-Wf,-XNg1500 -Olimit 3000}.
-
-@item elxsi-elxsi-bsd
-The Elxsi's C compiler has known limitations that prevent it from
-compiling GNU C. Please contact @email{mrs@@cygnus.com} for more details.
-
-@item dsp16xx
-A port to the AT&T DSP1610 family of processors.
-
-@ignore
-@item fx80
-Alliant FX/8 computer. Note that the standard installed C compiler in
-Concentrix 5.0 has a bug which prevent it from compiling GNU CC
-correctly. You can patch the compiler bug as follows:
-
-@smallexample
-cp /bin/pcc ./pcc
-adb -w ./pcc - << EOF
-15f6?w 6610
-EOF
-@end smallexample
-
-Then you must use the @samp{-ip12} option when compiling GNU CC
-with the patched compiler, as shown here:
-
-@smallexample
-make CC="./pcc -ip12" CFLAGS=-w
-@end smallexample
-
-Note also that Alliant's version of DBX does not manage to work with the
-output from GNU CC.
-@end ignore
-
-@item h8300-*-*
-Hitachi H8/300 series of processors.
-
-The calling convention and structure layout has changed in release 2.6.
-All code must be recompiled. The calling convention now passes the
-first three arguments in function calls in registers. Structures are no
-longer a multiple of 2 bytes.
-
-@item i370-*-*
-This port is very preliminary and has many known bugs. We hope to
-have a higher-quality port for this machine soon.
-
-@item i386-*-linux*oldld
-Use this configuration to generate @file{a.out} binaries on Linux-based
-GNU systems if you do not have gas/binutils version 2.5.2 or later
-installed. This is an obsolete configuration.
-
-@item i386-*-linux*aout
-Use this configuration to generate @file{a.out} binaries on Linux-based
-GNU systems. This configuration is being superseded. You must use
-gas/binutils version 2.5.2 or later.
-
-@item i386-*-linux
-@itemx i386-*-linux-gnu
-Use this configuration to generate ELF binaries on Linux-based GNU
-systems. You must use gas/binutils version 2.5.2 or later.
-
-@item i386-*-sco
-Compilation with RCC is recommended. Also, it may be a good idea to
-link with GNU malloc instead of the malloc that comes with the system.
-
-@item i386-*-sco3.2v4
-Use this configuration for SCO release 3.2 version 4.
-
-@item i386-*-sco3.2v5*
-Use this for the SCO OpenServer Release 5 family of operating systems.
-
-@item i386-*-isc
-It may be a good idea to link with GNU malloc instead of the malloc that
-comes with the system.
-
-In ISC version 4.1, @file{sed} core dumps when building
-@file{deduced.h}. Use the version of @file{sed} from version 4.0.
-
-@item i386-*-esix
-It may be good idea to link with GNU malloc instead of the malloc that
-comes with the system.
-
-@item i386-ibm-aix
-You need to use GAS version 2.1 or later, and LD from
-GNU binutils version 2.2 or later.
-
-@item i386-sequent-bsd
-Go to the Berkeley universe before compiling.
-
-@item i386-sequent-ptx1*
-@itemx i386-sequent-ptx2*
-You must install GNU @file{sed} before running @file{configure}.
-
-@item *-lynx-lynxos
-LynxOS 2.2 and earlier comes with GNU CC 1.x already installed as
-@file{/bin/gcc}. You should compile with this instead of @file{/bin/cc}.
-You can tell GNU CC to use the GNU assembler and linker, by specifying
-@samp{--with-gnu-as --with-gnu-ld} when configuring. These will produce
-COFF format object files and executables; otherwise GNU CC will use the
-installed tools, which produce @file{a.out} format executables.
-
-@item m32r-*-elf
-Mitsubishi M32R processor.
-This configuration is intended for embedded systems.
-
-@item m68000-hp-bsd
-HP 9000 series 200 running BSD. Note that the C compiler that comes
-with this system cannot compile GNU CC; contact @email{law@@cygnus.com}
-to get binaries of GNU CC for bootstrapping.
-
-@item m68k-altos
-Altos 3068. You must use the GNU assembler, linker and debugger.
-Also, you must fix a kernel bug. Details in the file @file{README.ALTOS}.
-
-@item m68k-apple-aux
-Apple Macintosh running A/UX.
-You may configure GCC to use either the system assembler and
-linker or the GNU assembler and linker. You should use the GNU configuration
-if you can, especially if you also want to use GNU C++. You enabled
-that configuration with + the @samp{--with-gnu-as} and @samp{--with-gnu-ld}
-options to @code{configure}.
-
-Note the C compiler that comes
-with this system cannot compile GNU CC. You can find binaries of GNU CC
-for bootstrapping on @code{jagubox.gsfc.nasa.gov}.
-You will also a patched version of @file{/bin/ld} there that
-raises some of the arbitrary limits found in the original.
-
-@item m68k-att-sysv
-AT&T 3b1, a.k.a. 7300 PC. This version of GNU CC cannot
-be compiled with the system C compiler, which is too buggy.
-You will need to get a previous version of GCC and use it to
-bootstrap. Binaries are available from the OSU-CIS archive, at
-@uref{ftp://archive.cis.ohio-state.edu/pub/att7300/}.
-
-@item m68k-bull-sysv
-Bull DPX/2 series 200 and 300 with BOS-2.00.45 up to BOS-2.01. GNU CC works
-either with native assembler or GNU assembler. You can use
-GNU assembler with native coff generation by providing @samp{--with-gnu-as} to
-the configure script or use GNU assembler with dbx-in-coff encapsulation
-by providing @samp{--with-gnu-as --stabs}. For any problem with native
-assembler or for availability of the DPX/2 port of GAS, contact
-@email{F.Pierresteguy@@frcl.bull.fr}.
-
-@item m68k-crds-unox
-Use @samp{configure unos} for building on Unos.
-
-The Unos assembler is named @code{casm} instead of @code{as}. For some
-strange reason linking @file{/bin/as} to @file{/bin/casm} changes the
-behavior, and does not work. So, when installing GNU CC, you should
-install the following script as @file{as} in the subdirectory where
-the passes of GCC are installed:
-
-@example
-#!/bin/sh
-casm $*
-@end example
-
-The default Unos library is named @file{libunos.a} instead of
-@file{libc.a}. To allow GNU CC to function, either change all
-references to @samp{-lc} in @file{gcc.c} to @samp{-lunos} or link
-@file{/lib/libc.a} to @file{/lib/libunos.a}.
-
-@cindex @code{alloca}, for Unos
-When compiling GNU CC with the standard compiler, to overcome bugs in
-the support of @code{alloca}, do not use @samp{-O} when making stage 2.
-Then use the stage 2 compiler with @samp{-O} to make the stage 3
-compiler. This compiler will have the same characteristics as the usual
-stage 2 compiler on other systems. Use it to make a stage 4 compiler
-and compare that with stage 3 to verify proper compilation.
-
-(Perhaps simply defining @code{ALLOCA} in @file{x-crds} as described in
-the comments there will make the above paragraph superfluous. Please
-inform us of whether this works.)
-
-Unos uses memory segmentation instead of demand paging, so you will need
-a lot of memory. 5 Mb is barely enough if no other tasks are running.
-If linking @file{cc1} fails, try putting the object files into a library
-and linking from that library.
-
-@item m68k-hp-hpux
-HP 9000 series 300 or 400 running HP-UX. HP-UX version 8.0 has a bug in
-the assembler that prevents compilation of GNU CC. To fix it, get patch
-PHCO_4484 from HP.
-
-In addition, if you wish to use gas @samp{--with-gnu-as} you must use
-gas version 2.1 or later, and you must use the GNU linker version 2.1 or
-later. Earlier versions of gas relied upon a program which converted the
-gas output into the native HP-UX format, but that program has not been
-kept up to date. gdb does not understand that native HP-UX format, so
-you must use gas if you wish to use gdb.
-
-@item m68k-sun
-Sun 3. We do not provide a configuration file to use the Sun FPA by
-default, because programs that establish signal handlers for floating
-point traps inherently cannot work with the FPA.
-
-@item m6811-elf
-Motorola 68HC11 family micro controllers. These are used in embedded
-applications. There are no standard Unix configurations.
-
-@item m6812-elf
-Motorola 68HC12 family micro controllers. These are used in embedded
-applications. There are no standard Unix configurations.
-
-@item m88k-*-svr3
-Motorola m88k running the AT&T/Unisoft/Motorola V.3 reference port.
-These systems tend to use the Green Hills C, revision 1.8.5, as the
-standard C compiler. There are apparently bugs in this compiler that
-result in object files differences between stage 2 and stage 3. If this
-happens, make the stage 4 compiler and compare it to the stage 3
-compiler. If the stage 3 and stage 4 object files are identical, this
-suggests you encountered a problem with the standard C compiler; the
-stage 3 and 4 compilers may be usable.
-
-It is best, however, to use an older version of GNU CC for bootstrapping
-if you have one.
-
-@item m88k-*-dgux
-Motorola m88k running DG/UX. To build 88open BCS native or cross
-compilers on DG/UX, specify the configuration name as
-@samp{m88k-*-dguxbcs} and build in the 88open BCS software development
-environment. To build ELF native or cross compilers on DG/UX, specify
-@samp{m88k-*-dgux} and build in the DG/UX ELF development environment.
-You set the software development environment by issuing
-@samp{sde-target} command and specifying either @samp{m88kbcs} or
-@samp{m88kdguxelf} as the operand.
-
-If you do not specify a configuration name, @file{configure} guesses the
-configuration based on the current software development environment.
-
-@item m88k-tektronix-sysv3
-Tektronix XD88 running UTekV 3.2e. Do not turn on
-optimization while building stage1 if you bootstrap with
-the buggy Green Hills compiler. Also, The bundled LAI
-System V NFS is buggy so if you build in an NFS mounted
-directory, start from a fresh reboot, or avoid NFS all together.
-Otherwise you may have trouble getting clean comparisons
-between stages.
-
-@item mips-mips-bsd
-MIPS machines running the MIPS operating system in BSD mode. It's
-possible that some old versions of the system lack the functions
-@code{memcpy}, @code{memmove}, @code{memcmp}, and @code{memset}. If your
-system lacks these, you must remove or undo the definition of
-@code{TARGET_MEM_FUNCTIONS} in @file{mips-bsd.h}.
-
-The MIPS C compiler needs to be told to increase its table size
-for switch statements with the @samp{-Wf,-XNg1500} option in
-order to compile @file{cp/parse.c}. If you use the @samp{-O2}
-optimization option, you also need to use @samp{-Olimit 3000}.
-Both of these options are automatically generated in the
-@file{Makefile} that the shell script @file{configure} builds.
-If you override the @code{CC} make variable and use the MIPS
-compilers, you may need to add @samp{-Wf,-XNg1500 -Olimit 3000}.
-
-@item mips-mips-riscos*
-The MIPS C compiler needs to be told to increase its table size
-for switch statements with the @samp{-Wf,-XNg1500} option in
-order to compile @file{cp/parse.c}. If you use the @samp{-O2}
-optimization option, you also need to use @samp{-Olimit 3000}.
-Both of these options are automatically generated in the
-@file{Makefile} that the shell script @file{configure} builds.
-If you override the @code{CC} make variable and use the MIPS
-compilers, you may need to add @samp{-Wf,-XNg1500 -Olimit 3000}.
-
-MIPS computers running RISC-OS can support four different
-personalities: default, BSD 4.3, System V.3, and System V.4
-(older versions of RISC-OS don't support V.4). To configure GCC
-for these platforms use the following configurations:
-
-@table @samp
-@item mips-mips-riscos@code{rev}
-Default configuration for RISC-OS, revision @code{rev}.
-
-@item mips-mips-riscos@code{rev}bsd
-BSD 4.3 configuration for RISC-OS, revision @code{rev}.
-
-@item mips-mips-riscos@code{rev}sysv4
-System V.4 configuration for RISC-OS, revision @code{rev}.
-
-@item mips-mips-riscos@code{rev}sysv
-System V.3 configuration for RISC-OS, revision @code{rev}.
-@end table
-
-The revision @code{rev} mentioned above is the revision of
-RISC-OS to use. You must reconfigure GCC when going from a
-RISC-OS revision 4 to RISC-OS revision 5. This has the effect of
-avoiding a linker
-@ifclear INSTALLONLY
-bug (see @ref{Installation Problems}, for more details).
-@end ifclear
-@ifset INSTALLONLY
-bug.
-@end ifset
-
-@item mips-sgi-*
-In order to compile GCC on an SGI running IRIX 4, the "c.hdr.lib"
-option must be installed from the CD-ROM supplied from Silicon Graphics.
-This is found on the 2nd CD in release 4.0.1.
-
-In order to compile GCC on an SGI running IRIX 5, the "compiler_dev.hdr"
-subsystem must be installed from the IDO CD-ROM supplied by Silicon
-Graphics.
-
-@code{make compare} may fail on version 5 of IRIX unless you add
-@samp{-save-temps} to @code{CFLAGS}. On these systems, the name of the
-assembler input file is stored in the object file, and that makes
-comparison fail if it differs between the @code{stage1} and
-@code{stage2} compilations. The option @samp{-save-temps} forces a
-fixed name to be used for the assembler input file, instead of a
-randomly chosen name in @file{/tmp}. Do not add @samp{-save-temps}
-unless the comparisons fail without that option. If you do you
-@samp{-save-temps}, you will have to manually delete the @samp{.i} and
-@samp{.s} files after each series of compilations.
-
-The MIPS C compiler needs to be told to increase its table size
-for switch statements with the @samp{-Wf,-XNg1500} option in
-order to compile @file{cp/parse.c}. If you use the @samp{-O2}
-optimization option, you also need to use @samp{-Olimit 3000}.
-Both of these options are automatically generated in the
-@file{Makefile} that the shell script @file{configure} builds.
-If you override the @code{CC} make variable and use the MIPS
-compilers, you may need to add @samp{-Wf,-XNg1500 -Olimit 3000}.
-
-On Irix version 4.0.5F, and perhaps on some other versions as well,
-there is an assembler bug that reorders instructions incorrectly. To
-work around it, specify the target configuration
-@samp{mips-sgi-irix4loser}. This configuration inhibits assembler
-optimization.
-
-In a compiler configured with target @samp{mips-sgi-irix4}, you can turn
-off assembler optimization by using the @samp{-noasmopt} option. This
-compiler option passes the option @samp{-O0} to the assembler, to
-inhibit reordering.
-
-The @samp{-noasmopt} option can be useful for testing whether a problem
-is due to erroneous assembler reordering. Even if a problem does not go
-away with @samp{-noasmopt}, it may still be due to assembler
-reordering---perhaps GNU CC itself was miscompiled as a result.
-
-To enable debugging under Irix 5, you must use GNU as 2.5 or later,
-and use the @samp{--with-gnu-as} configure option when configuring gcc.
-GNU as is distributed as part of the binutils package.
-
-@item mips-sony-sysv
-Sony MIPS NEWS. This works in NEWSOS 5.0.1, but not in 5.0.2 (which
-uses ELF instead of COFF). Support for 5.0.2 will probably be provided
-soon by volunteers. In particular, the linker does not like the
-code generated by GCC when shared libraries are linked in.
-
-@item ns32k-encore
-Encore ns32000 system. Encore systems are supported only under BSD.
-
-@item ns32k-*-genix
-National Semiconductor ns32000 system. Genix has bugs in @code{alloca}
-and @code{malloc}; you must get the compiled versions of these from GNU
-Emacs.
-
-@item ns32k-sequent
-Go to the Berkeley universe before compiling.
-
-@item ns32k-utek
-UTEK ns32000 system (``merlin''). The C compiler that comes with this
-system cannot compile GNU CC; contact @samp{tektronix!reed!mason} to get
-binaries of GNU CC for bootstrapping.
-
-@item romp-*-aos
-@itemx romp-*-mach
-The only operating systems supported for the IBM RT PC are AOS and
-MACH. GNU CC does not support AIX running on the RT. We recommend you
-compile GNU CC with an earlier version of itself; if you compile GNU CC
-with @code{hc}, the Metaware compiler, it will work, but you will get
-mismatches between the stage 2 and stage 3 compilers in various files.
-These errors are minor differences in some floating-point constants and
-can be safely ignored; the stage 3 compiler is correct.
-
-@item rs6000-*-aix
-@itemx powerpc-*-aix
-Various early versions of each release of the IBM XLC compiler will not
-bootstrap GNU CC. Symptoms include differences between the stage2 and
-stage3 object files, and errors when compiling @file{libgcc.a} or
-@file{enquire}. Known problematic releases include: xlc-1.2.1.8,
-xlc-1.3.0.0 (distributed with AIX 3.2.5), and xlc-1.3.0.19. Both
-xlc-1.2.1.28 and xlc-1.3.0.24 (PTF 432238) are known to produce working
-versions of GNU CC, but most other recent releases correctly bootstrap
-GNU CC.
-
-Release 4.3.0 of AIX and ones prior to AIX 3.2.4 include a version of
-the IBM assembler which does not accept debugging directives: assembler
-updates are available as PTFs. Also, if you are using AIX 3.2.5 or
-greater and the GNU assembler, you must have a version modified after
-October 16th, 1995 in order for the GNU C compiler to build. See the
-file @file{README.RS6000} for more details on any of these problems.
-
-GNU CC does not yet support the 64-bit PowerPC instructions.
-
-Objective C does not work on this architecture because it makes assumptions
-that are incompatible with the calling conventions.
-
-AIX on the RS/6000 provides support (NLS) for environments outside of
-the United States. Compilers and assemblers use NLS to support
-locale-specific representations of various objects including
-floating-point numbers ("." vs "," for separating decimal fractions).
-There have been problems reported where the library linked with GNU CC
-does not produce the same floating-point formats that the assembler
-accepts. If you have this problem, set the LANG environment variable to
-"C" or "En_US".
-
-Due to changes in the way that GNU CC invokes the binder (linker) for AIX
-4.1, you may now receive warnings of duplicate symbols from the link step
-that were not reported before. The assembly files generated by GNU CC for
-AIX have always included multiple symbol definitions for certain global
-variable and function declarations in the original program. The warnings
-should not prevent the linker from producing a correct library or runnable
-executable.
-
-By default, AIX 4.1 produces code that can be used on either Power or
-PowerPC processors.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpc-*-elf
-@itemx powerpc-*-sysv4
-PowerPC system in big endian mode, running System V.4.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpc-*-linux
-@itemx powerpc-*-linux-gnu
-PowerPC system in big endian mode, running the Linux-based GNU system.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpc-*-eabiaix
-Embedded PowerPC system in big endian mode with -mcall-aix selected as
-the default.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpc-*-eabisim
-Embedded PowerPC system in big endian mode for use in running under the
-PSIM simulator.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpc-*-eabi
-Embedded PowerPC system in big endian mode.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpcle-*-elf
-@itemx powerpcle-*-sysv4
-PowerPC system in little endian mode, running System V.4.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpcle-*-eabisim
-Embedded PowerPC system in little endian mode for use in running under
-the PSIM simulator.
-
-@itemx powerpcle-*-eabi
-Embedded PowerPC system in little endian mode.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item powerpcle-*-winnt
-@itemx powerpcle-*-pe
-PowerPC system in little endian mode running Windows NT.
-
-You can specify a default version for the @samp{-mcpu=}@var{cpu_type}
-switch by using the configure option @samp{--with-cpu-}@var{cpu_type}.
-
-@item vax-dec-ultrix
-Don't try compiling with Vax C (@code{vcc}). It produces incorrect code
-in some cases (for example, when @code{alloca} is used).
-
-Meanwhile, compiling @file{cp/parse.c} with pcc does not work because of
-an internal table size limitation in that compiler. To avoid this
-problem, compile just the GNU C compiler first, and use it to recompile
-building all the languages that you want to run.
-
@item vax-dec-vms
See @ref{VMS Install}, for details on how to install GNU CC on VMS.
-
-@item we32k-*-*
-These computers are also known as the 3b2, 3b5, 3b20 and other similar
-names. (However, the 3b1 is actually a 68000; see
-@ref{Configurations}.)
-
-Don't use @samp{-g} when compiling with the system's compiler. The
-system's linker seems to be unable to handle such a large program with
-debugging information.
-
-The system's compiler runs out of capacity when compiling @file{stmt.c}
-in GNU CC. You can work around this by building @file{cpp} in GNU CC
-first, then use that instead of the system's preprocessor with the
-system's C compiler to compile @file{stmt.c}. Here is how:
-
-@smallexample
-mv /lib/cpp /lib/cpp.att
-cp cpp /lib/cpp.gnu
-echo '/lib/cpp.gnu -traditional $@{1+"$@@"@}' > /lib/cpp
-chmod +x /lib/cpp
-@end smallexample
-
-The system's compiler produces bad code for some of the GNU CC
-optimization files. So you must build the stage 2 compiler without
-optimization. Then build a stage 3 compiler with optimization.
-That executable should work. Here are the necessary commands:
-
-@smallexample
-make LANGUAGES=c CC=stage1/xgcc CFLAGS="-Bstage1/ -g"
-make stage2
-make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -O"
-@end smallexample
-
-You may need to raise the ULIMIT setting to build a C++ compiler,
-as the file @file{cc1plus} is larger than one megabyte.
@end table
@node Other Dir