summaryrefslogtreecommitdiff
path: root/gcc/ddg.c
diff options
context:
space:
mode:
authorMostafa Hagog <hagog@gcc.gnu.org>2004-05-25 12:58:32 +0000
committerMostafa Hagog <hagog@gcc.gnu.org>2004-05-25 12:58:32 +0000
commitd397e8c6729cde9044c1ee42d28f2d1e98204cfc (patch)
tree7a818210ec5b5ad8bfadde298e02d012e88d4c8f /gcc/ddg.c
parente56261981bc8ad88515fda18d846bf61bf6c2353 (diff)
downloadgcc-d397e8c6729cde9044c1ee42d28f2d1e98204cfc.tar.gz
New files for implementing sms in gcc.
From-SVN: r82236
Diffstat (limited to 'gcc/ddg.c')
-rw-r--r--gcc/ddg.c1046
1 files changed, 1046 insertions, 0 deletions
diff --git a/gcc/ddg.c b/gcc/ddg.c
new file mode 100644
index 00000000000..408a4d8acf0
--- /dev/null
+++ b/gcc/ddg.c
@@ -0,0 +1,1046 @@
+/* DDG - Data Dependence Graph implementation.
+ Copyright (C) 2004
+ Free Software Foundation, Inc.
+ Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+02111-1307, USA. */
+
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "toplev.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "regs.h"
+#include "function.h"
+#include "flags.h"
+#include "insn-config.h"
+#include "insn-attr.h"
+#include "except.h"
+#include "recog.h"
+#include "sched-int.h"
+#include "target.h"
+#include "cfglayout.h"
+#include "cfgloop.h"
+#include "sbitmap.h"
+#include "expr.h"
+#include "bitmap.h"
+#include "df.h"
+#include "ddg.h"
+
+/* A flag indicating that a ddg edge belongs to an SCC or not. */
+enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
+
+/* Forward declarations. */
+static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
+static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
+static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
+static void create_ddg_dependence (ddg_ptr, ddg_node_ptr, ddg_node_ptr, rtx);
+static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
+ dep_type, dep_data_type, int);
+static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
+ dep_data_type, int, int);
+static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
+
+/* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
+static bool mem_ref_p;
+
+/* Auxiliary function for mem_read_insn_p. */
+static int
+mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
+{
+ if (GET_CODE (*x) == MEM)
+ mem_ref_p = true;
+ return 0;
+}
+
+/* Auxiliary function for mem_read_insn_p. */
+static void
+mark_mem_use_1 (rtx *x, void *data)
+{
+ for_each_rtx (x, mark_mem_use, data);
+}
+
+/* Returns non-zero if INSN reads from memory. */
+static bool
+mem_read_insn_p (rtx insn)
+{
+ mem_ref_p = false;
+ note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
+ return mem_ref_p;
+}
+
+static void
+mark_mem_store (rtx loc, rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
+{
+ if (GET_CODE (loc) == MEM)
+ mem_ref_p = true;
+}
+
+/* Returns non-zero if INSN writes to memory. */
+static bool
+mem_write_insn_p (rtx insn)
+{
+ mem_ref_p = false;
+ note_stores (PATTERN (insn), mark_mem_store, NULL);
+ return mem_ref_p;
+}
+
+/* Returns non-zero if X has access to memory. */
+static bool
+rtx_mem_access_p (rtx x)
+{
+ int i, j;
+ const char *fmt;
+ enum rtx_code code;
+
+ if (x == 0)
+ return false;
+
+ if (GET_CODE (x) == MEM)
+ return true;
+
+ code = GET_CODE (x);
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ if (rtx_mem_access_p (XEXP (x, i)))
+ return true;
+ }
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ {
+ if (rtx_mem_access_p (XVECEXP (x, i, j)))
+ return true;
+ }
+ }
+ return false;
+}
+
+/* Returns non-zero if INSN reads to or writes from memory. */
+static bool
+mem_access_insn_p (rtx insn)
+{
+ return rtx_mem_access_p (PATTERN (insn));
+}
+
+/* Computes the dependence parameters (latency, distance etc.), creates
+ a ddg_edge and adds it to the given DDG. */
+static void
+create_ddg_dependence (ddg_ptr g, ddg_node_ptr src_node,
+ ddg_node_ptr dest_node, rtx link)
+{
+ ddg_edge_ptr e;
+ int latency, distance = 0;
+ int interloop = (src_node->cuid >= dest_node->cuid);
+ dep_type t = TRUE_DEP;
+ dep_data_type dt = (mem_access_insn_p (src_node->insn)
+ && mem_access_insn_p (dest_node->insn) ? MEM_DEP
+ : REG_DEP);
+
+ /* For now we don't have an exact calculation of the distance,
+ so assume 1 conservatively. */
+ if (interloop)
+ distance = 1;
+
+ if (!link)
+ abort ();
+
+ /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
+ if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
+ t = ANTI_DEP;
+ else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
+ t = OUTPUT_DEP;
+ latency = insn_cost (src_node->insn, link, dest_node->insn);
+
+ e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
+
+ if (interloop)
+ {
+ /* Some interloop dependencies are relaxed:
+ 1. Every insn is output dependent on itself; ignore such deps.
+ 2. Every true/flow dependence is an anti dependence in the
+ opposite direction with distance 1; such register deps
+ will be removed by renaming if broken --- ignore them. */
+ if (!(t == OUTPUT_DEP && src_node == dest_node)
+ && !(t == ANTI_DEP && dt == REG_DEP))
+ add_backarc_to_ddg (g, e);
+ else
+ free (e);
+ }
+ else
+ add_edge_to_ddg (g, e);
+}
+
+/* The same as the above function, but it doesn't require a link parameter. */
+static void
+create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
+ dep_type d_t, dep_data_type d_dt, int distance)
+{
+ ddg_edge_ptr e;
+ int l;
+ rtx link = alloc_INSN_LIST (to->insn, NULL_RTX);
+
+ if (d_t == ANTI_DEP)
+ PUT_REG_NOTE_KIND (link, REG_DEP_ANTI);
+ else if (d_t == OUTPUT_DEP)
+ PUT_REG_NOTE_KIND (link, REG_DEP_OUTPUT);
+
+ l = insn_cost (from->insn, link, to->insn);
+ free_INSN_LIST_node (link);
+
+ e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
+ if (distance > 0)
+ add_backarc_to_ddg (g, e);
+ else
+ add_edge_to_ddg (g, e);
+}
+
+
+/* Given a downwards exposed register def RD, add inter-loop true dependences
+ for all its uses in the next iteration, and an output dependence to the
+ first def of the next iteration. */
+static void
+add_deps_for_def (ddg_ptr g, struct df *df, struct ref *rd)
+{
+ int regno = DF_REF_REGNO (rd);
+ struct bb_info *bb_info = DF_BB_INFO (df, g->bb);
+ struct df_link *r_use;
+ int use_before_def = false;
+ rtx def_insn = DF_REF_INSN (rd);
+ ddg_node_ptr src_node = get_node_of_insn (g, def_insn);
+
+ /* Create and inter-loop true dependence between RD and each of its uses
+ that is upwards exposed in RD's block. */
+ for (r_use = DF_REF_CHAIN (rd); r_use != NULL; r_use = r_use->next)
+ {
+ if (bitmap_bit_p (bb_info->ru_gen, r_use->ref->id))
+ {
+ rtx use_insn = DF_REF_INSN (r_use->ref);
+ ddg_node_ptr dest_node = get_node_of_insn (g, use_insn);
+
+ if (!src_node || !dest_node)
+ abort ();
+
+ /* Any such upwards exposed use appears before the rd def. */
+ use_before_def = true;
+ create_ddg_dep_no_link (g, src_node, dest_node, TRUE_DEP,
+ REG_DEP, 1);
+ }
+ }
+
+ /* Create an inter-loop output dependence between RD (which is the
+ last def in its block, being downwards exposed) and the first def
+ in its block. Avoid creating a self output dependence. Avoid creating
+ an output dependence if there is a dependence path between the two defs
+ starting with a true dependence followed by an anti dependence (i.e. if
+ there is a use between the two defs. */
+ if (! use_before_def)
+ {
+ struct ref *def = df_bb_regno_first_def_find (df, g->bb, regno);
+ int i;
+ ddg_node_ptr dest_node;
+
+ if (!def || rd->id == def->id)
+ return;
+
+ /* Check if there are uses after RD. */
+ for (i = src_node->cuid + 1; i < g->num_nodes; i++)
+ if (df_reg_used (df, g->nodes[i].insn, rd->reg))
+ return;
+
+ dest_node = get_node_of_insn (g, def->insn);
+ create_ddg_dep_no_link (g, src_node, dest_node, OUTPUT_DEP, REG_DEP, 1);
+ }
+}
+
+/* Given a register USE, add an inter-loop anti dependence to the first
+ (nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
+ by a def in the block. */
+static void
+add_deps_for_use (ddg_ptr g, struct df *df, struct ref *use)
+{
+ int i;
+ int regno = DF_REF_REGNO (use);
+ struct ref *first_def = df_bb_regno_first_def_find (df, g->bb, regno);
+ ddg_node_ptr use_node;
+ ddg_node_ptr def_node;
+ struct bb_info *bb_info;
+
+ bb_info = DF_BB_INFO (df, g->bb);
+
+ if (!first_def)
+ return;
+
+ use_node = get_node_of_insn (g, use->insn);
+ def_node = get_node_of_insn (g, first_def->insn);
+
+ if (!use_node || !def_node)
+ abort ();
+
+ /* Make sure there are no defs after USE. */
+ for (i = use_node->cuid + 1; i < g->num_nodes; i++)
+ if (df_find_def (df, g->nodes[i].insn, use->reg))
+ return;
+ /* We must not add ANTI dep when there is an intra-loop TRUE dep in
+ the opozite direction. If the first_def reaches the USE then there is
+ such a dep. */
+ if (! bitmap_bit_p (bb_info->rd_gen, first_def->id))
+ create_ddg_dep_no_link (g, use_node, def_node, ANTI_DEP, REG_DEP, 1);
+}
+
+/* Build inter-loop dependencies, by looking at DF analysis backwards. */
+static void
+build_inter_loop_deps (ddg_ptr g, struct df *df)
+{
+ int rd_num, u_num;
+ struct bb_info *bb_info;
+
+ bb_info = DF_BB_INFO (df, g->bb);
+
+ /* Find inter-loop output and true deps by connecting downward exposed defs
+ to the first def of the BB and to upwards exposed uses. */
+ EXECUTE_IF_SET_IN_BITMAP (bb_info->rd_gen, 0, rd_num,
+ {
+ struct ref *rd = df->defs[rd_num];
+
+ add_deps_for_def (g, df, rd);
+ });
+
+ /* Find inter-loop anti deps. We are interested in uses of the block that
+ appear below all defs; this implies that these uses are killed. */
+ EXECUTE_IF_SET_IN_BITMAP (bb_info->ru_kill, 0, u_num,
+ {
+ struct ref *use = df->uses[u_num];
+
+ /* We are interested in uses of this BB. */
+ if (BLOCK_FOR_INSN (use->insn) == g->bb)
+ add_deps_for_use (g, df,use);
+ });
+}
+
+/* Given two nodes, analyze their RTL insns and add inter-loop mem deps
+ to ddg G. */
+static void
+add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
+{
+ if (mem_write_insn_p (from->insn))
+ {
+ if (mem_read_insn_p (to->insn))
+ create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
+ else if (from->cuid != to->cuid)
+ create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
+ }
+ else
+ {
+ if (mem_read_insn_p (to->insn))
+ return;
+ else if (from->cuid != to->cuid)
+ {
+ create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
+ create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
+ }
+ }
+
+}
+
+/* Perform intra-block Data Dependency analysis and connect the nodes in
+ the DDG. We assume the loop has a single basic block. */
+static void
+build_intra_loop_deps (ddg_ptr g)
+{
+ int i;
+ /* Hold the dependency analysis state during dependency calculations. */
+ struct deps tmp_deps;
+ rtx head, tail, link;
+
+ /* Build the dependence information, using the sched_analyze function. */
+ init_deps_global ();
+ init_deps (&tmp_deps);
+
+ /* Do the intra-block data dependence analysis for the given block. */
+ get_block_head_tail (g->bb->index, &head, &tail);
+ sched_analyze (&tmp_deps, head, tail);
+
+ /* Build intra-loop data dependecies using the schedular dependecy
+ analysis. */
+ for (i = 0; i < g->num_nodes; i++)
+ {
+ ddg_node_ptr dest_node = &g->nodes[i];
+
+ if (! INSN_P (dest_node->insn))
+ continue;
+
+ for (link = LOG_LINKS (dest_node->insn); link; link = XEXP (link, 1))
+ {
+ ddg_node_ptr src_node = get_node_of_insn (g, XEXP (link, 0));
+
+ if (!src_node)
+ continue;
+
+ add_forward_dependence (XEXP (link, 0), dest_node->insn,
+ REG_NOTE_KIND (link));
+ create_ddg_dependence (g, src_node, dest_node,
+ INSN_DEPEND (src_node->insn));
+ }
+
+ /* If this insn modifies memory, add an edge to all insns that access
+ memory. */
+ if (mem_access_insn_p (dest_node->insn))
+ {
+ int j;
+
+ for (j = 0; j <= i; j++)
+ {
+ ddg_node_ptr j_node = &g->nodes[j];
+ if (mem_access_insn_p (j_node->insn))
+ /* Don't bother calculating inter-loop dep if an intra-loop dep
+ already exists. */
+ if (! TEST_BIT (dest_node->successors, j))
+ add_inter_loop_mem_dep (g, dest_node, j_node);
+ }
+ }
+ }
+
+ /* Free the INSN_LISTs. */
+ finish_deps_global ();
+ free_deps (&tmp_deps);
+}
+
+
+/* Given a basic block, create its DDG and return a pointer to a variable
+ of ddg type that represents it.
+ Initialize the ddg structure fields to the appropriate values. */
+ddg_ptr
+create_ddg (basic_block bb, struct df *df, int closing_branch_deps)
+{
+ ddg_ptr g;
+ rtx insn, first_note;
+ int i;
+ int num_nodes = 0;
+
+ g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
+
+ g->bb = bb;
+ g->closing_branch_deps = closing_branch_deps;
+
+ /* Count the number of insns in the BB. */
+ for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
+ insn = NEXT_INSN (insn))
+ {
+ if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
+ continue;
+
+ if (mem_read_insn_p (insn))
+ g->num_loads++;
+ if (mem_write_insn_p (insn))
+ g->num_stores++;
+ num_nodes++;
+ }
+
+ /* There is nothing to do for this BB. */
+ if (num_nodes <= 1)
+ {
+ free (g);
+ return NULL;
+ }
+
+ /* Allocate the nodes array, and initialize the nodes. */
+ g->num_nodes = num_nodes;
+ g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
+ g->closing_branch = NULL;
+ i = 0;
+ first_note = NULL_RTX;
+ for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
+ insn = NEXT_INSN (insn))
+ {
+ if (! INSN_P (insn))
+ {
+ if (! first_note && GET_CODE (insn) == NOTE
+ && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
+ first_note = insn;
+ continue;
+ }
+ if (GET_CODE (insn) == JUMP_INSN)
+ {
+ if (g->closing_branch)
+ abort (); /* Found two branches in DDG. */
+ else
+ g->closing_branch = &g->nodes[i];
+ }
+ else if (GET_CODE (PATTERN (insn)) == USE)
+ {
+ if (! first_note)
+ first_note = insn;
+ continue;
+ }
+
+ g->nodes[i].cuid = i;
+ g->nodes[i].successors = sbitmap_alloc (num_nodes);
+ sbitmap_zero (g->nodes[i].successors);
+ g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
+ sbitmap_zero (g->nodes[i].predecessors);
+ g->nodes[i].first_note = (first_note ? first_note : insn);
+ g->nodes[i++].insn = insn;
+ first_note = NULL_RTX;
+ }
+
+ if (!g->closing_branch)
+ abort (); /* Found no branch in DDG. */
+
+ /* Build the data dependecy graph. */
+ build_intra_loop_deps (g);
+ build_inter_loop_deps (g, df);
+ return g;
+}
+
+/* Free all the memory allocated for the DDG. */
+void
+free_ddg (ddg_ptr g)
+{
+ int i;
+
+ if (!g)
+ return;
+
+ for (i = 0; i < g->num_nodes; i++)
+ {
+ ddg_edge_ptr e = g->nodes[i].out;
+
+ while (e)
+ {
+ ddg_edge_ptr next = e->next_out;
+
+ free (e);
+ e = next;
+ }
+ sbitmap_free (g->nodes[i].successors);
+ sbitmap_free (g->nodes[i].predecessors);
+ }
+ if (g->num_backarcs > 0)
+ free (g->backarcs);
+ free (g->nodes);
+ free (g);
+}
+
+void
+print_ddg_edge (FILE *dump_file, ddg_edge_ptr e)
+{
+ char dep_c;
+
+ switch (e->type) {
+ case OUTPUT_DEP :
+ dep_c = 'O';
+ break;
+ case ANTI_DEP :
+ dep_c = 'A';
+ break;
+ default:
+ dep_c = 'T';
+ }
+
+ fprintf (dump_file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
+ dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
+}
+
+/* Print the DDG nodes with there in/out edges to the dump file. */
+void
+print_ddg (FILE *dump_file, ddg_ptr g)
+{
+ int i;
+
+ for (i = 0; i < g->num_nodes; i++)
+ {
+ ddg_edge_ptr e;
+
+ print_rtl_single (dump_file, g->nodes[i].insn);
+ fprintf (dump_file, "OUT ARCS: ");
+ for (e = g->nodes[i].out; e; e = e->next_out)
+ print_ddg_edge (dump_file, e);
+
+ fprintf (dump_file, "\nIN ARCS: ");
+ for (e = g->nodes[i].in; e; e = e->next_in)
+ print_ddg_edge (dump_file, e);
+
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Print the given DDG in VCG format. */
+void
+vcg_print_ddg (FILE *dump_file, ddg_ptr g)
+{
+ int src_cuid;
+
+ fprintf (dump_file, "graph: {\n");
+ for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
+ {
+ ddg_edge_ptr e;
+ int src_uid = INSN_UID (g->nodes[src_cuid].insn);
+
+ fprintf (dump_file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
+ print_rtl_single (dump_file, g->nodes[src_cuid].insn);
+ fprintf (dump_file, "\"}\n");
+ for (e = g->nodes[src_cuid].out; e; e = e->next_out)
+ {
+ int dst_uid = INSN_UID (e->dest->insn);
+ int dst_cuid = e->dest->cuid;
+
+ /* Give the backarcs a different color. */
+ if (e->distance > 0)
+ fprintf (dump_file, "backedge: {color: red ");
+ else
+ fprintf (dump_file, "edge: { ");
+
+ fprintf (dump_file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
+ fprintf (dump_file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
+ fprintf (dump_file, "label: \"%d_%d\"}\n", e->latency, e->distance);
+ }
+ }
+ fprintf (dump_file, "}\n");
+}
+
+/* Create an edge and initialize it with given values. */
+static ddg_edge_ptr
+create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
+ dep_type t, dep_data_type dt, int l, int d)
+{
+ ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
+
+ e->src = src;
+ e->dest = dest;
+ e->type = t;
+ e->data_type = dt;
+ e->latency = l;
+ e->distance = d;
+ e->next_in = e->next_out = NULL;
+ e->aux.info = 0;
+ return e;
+}
+
+/* Add the given edge to the in/out linked lists of the DDG nodes. */
+static void
+add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
+{
+ ddg_node_ptr src = e->src;
+ ddg_node_ptr dest = e->dest;
+
+ if (!src->successors || !dest->predecessors)
+ abort (); /* Should have allocated the sbitmaps. */
+
+ SET_BIT (src->successors, dest->cuid);
+ SET_BIT (dest->predecessors, src->cuid);
+ e->next_in = dest->in;
+ dest->in = e;
+ e->next_out = src->out;
+ src->out = e;
+}
+
+
+
+/* Algorithm for computing the recurrence_length of an scc. We assume at
+ for now that cycles in the data dependence graph contain a single backarc.
+ This simplifies the algorithm, and can be generalized later. */
+static void
+set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
+{
+ int j;
+ int result = -1;
+
+ for (j = 0; j < scc->num_backarcs; j++)
+ {
+ ddg_edge_ptr backarc = scc->backarcs[j];
+ int length;
+ int distance = backarc->distance;
+ ddg_node_ptr src = backarc->dest;
+ ddg_node_ptr dest = backarc->src;
+
+ length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
+ if (length < 0 )
+ {
+ /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
+ continue;
+ }
+ length += backarc->latency;
+ result = MAX (result, (length / distance));
+ }
+ scc->recurrence_length = result;
+}
+
+/* Create a new SCC given the set of its nodes. Compute its recurrence_length
+ and mark edges that belong to this scc as IN_SCC. */
+static ddg_scc_ptr
+create_scc (ddg_ptr g, sbitmap nodes)
+{
+ ddg_scc_ptr scc;
+ int u;
+
+ scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
+ scc->backarcs = NULL;
+ scc->num_backarcs = 0;
+ scc->nodes = sbitmap_alloc (g->num_nodes);
+ sbitmap_copy (scc->nodes, nodes);
+
+ /* Mark the backarcs that belong to this SCC. */
+ EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u,
+ {
+ ddg_edge_ptr e;
+ ddg_node_ptr n = &g->nodes[u];
+
+ for (e = n->out; e; e = e->next_out)
+ if (TEST_BIT (nodes, e->dest->cuid))
+ {
+ e->aux.count = IN_SCC;
+ if (e->distance > 0)
+ add_backarc_to_scc (scc, e);
+ }
+ });
+
+ set_recurrence_length (scc, g);
+ return scc;
+}
+
+/* Cleans the memory allocation of a given SCC. */
+static void
+free_scc (ddg_scc_ptr scc)
+{
+ if (!scc)
+ return;
+
+ sbitmap_free (scc->nodes);
+ if (scc->num_backarcs > 0)
+ free (scc->backarcs);
+ free (scc);
+}
+
+
+/* Add a given edge known to be a backarc to the given DDG. */
+static void
+add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
+{
+ int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
+
+ add_edge_to_ddg (g, e);
+ g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
+ g->backarcs[g->num_backarcs++] = e;
+}
+
+/* Add backarc to an SCC. */
+static void
+add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
+{
+ int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
+
+ scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
+ scc->backarcs[scc->num_backarcs++] = e;
+}
+
+/* Add the given SCC to the DDG. */
+static void
+add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
+{
+ int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
+
+ g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
+ g->sccs[g->num_sccs++] = scc;
+}
+
+/* Given the instruction INSN return the node that represents it. */
+ddg_node_ptr
+get_node_of_insn (ddg_ptr g, rtx insn)
+{
+ int i;
+
+ for (i = 0; i < g->num_nodes; i++)
+ if (insn == g->nodes[i].insn)
+ return &g->nodes[i];
+ return NULL;
+}
+
+/* Given a set OPS of nodes in the DDG, find the set of their successors
+ which are not in OPS, and set their bits in SUCC. Bits corresponding to
+ OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
+void
+find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
+{
+ int i;
+
+ EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i,
+ {
+ const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
+ sbitmap_a_or_b (succ, succ, node_succ);
+ });
+
+ /* We want those that are not in ops. */
+ sbitmap_difference (succ, succ, ops);
+}
+
+/* Given a set OPS of nodes in the DDG, find the set of their predecessors
+ which are not in OPS, and set their bits in PREDS. Bits corresponding to
+ OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
+void
+find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
+{
+ int i;
+
+ EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i,
+ {
+ const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
+ sbitmap_a_or_b (preds, preds, node_preds);
+ });
+
+ /* We want those that are not in ops. */
+ sbitmap_difference (preds, preds, ops);
+}
+
+
+/* Compare function to be passed to qsort to order the backarcs in descending
+ recMII order. */
+static int
+compare_sccs (const void *s1, const void *s2)
+{
+ int rec_l1 = (*(ddg_scc_ptr *)s1)->recurrence_length;
+ int rec_l2 = (*(ddg_scc_ptr *)s2)->recurrence_length;
+ return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
+
+}
+
+/* Order the backarcs in descending recMII order using compare_sccs. */
+static void
+order_sccs (ddg_all_sccs_ptr g)
+{
+ qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
+ (int (*) (const void *, const void *)) compare_sccs);
+}
+
+/* Perform the Strongly Connected Components decomposing algorithm on the
+ DDG and return DDG_ALL_SCCS structure that contains them. */
+ddg_all_sccs_ptr
+create_ddg_all_sccs (ddg_ptr g)
+{
+ int i;
+ int num_nodes = g->num_nodes;
+ sbitmap from = sbitmap_alloc (num_nodes);
+ sbitmap to = sbitmap_alloc (num_nodes);
+ sbitmap scc_nodes = sbitmap_alloc (num_nodes);
+ ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
+ xmalloc (sizeof (struct ddg_all_sccs));
+
+ sccs->ddg = g;
+ sccs->sccs = NULL;
+ sccs->num_sccs = 0;
+
+ for (i = 0; i < g->num_backarcs; i++)
+ {
+ ddg_scc_ptr scc;
+ ddg_edge_ptr backarc = g->backarcs[i];
+ ddg_node_ptr src = backarc->src;
+ ddg_node_ptr dest = backarc->dest;
+
+ /* If the backarc already belongs to an SCC, continue. */
+ if (backarc->aux.count == IN_SCC)
+ continue;
+
+ sbitmap_zero (from);
+ sbitmap_zero (to);
+ SET_BIT (from, dest->cuid);
+ SET_BIT (to, src->cuid);
+
+ if (find_nodes_on_paths (scc_nodes, g, from, to))
+ {
+ scc = create_scc (g, scc_nodes);
+ add_scc_to_ddg (sccs, scc);
+ }
+ }
+ order_sccs (sccs);
+ sbitmap_free (from);
+ sbitmap_free (to);
+ sbitmap_free (scc_nodes);
+ return sccs;
+}
+
+/* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
+void
+free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
+{
+ int i;
+
+ if (!all_sccs)
+ return;
+
+ for (i = 0; i < all_sccs->num_sccs; i++)
+ free_scc (all_sccs->sccs[i]);
+
+ free (all_sccs);
+}
+
+
+/* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
+ nodes - find all nodes that lie on paths from FROM to TO (not excluding
+ nodes from FROM and TO). Return non zero if nodes exist. */
+int
+find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
+{
+ int answer;
+ int change, u;
+ int num_nodes = g->num_nodes;
+ sbitmap workset = sbitmap_alloc (num_nodes);
+ sbitmap reachable_from = sbitmap_alloc (num_nodes);
+ sbitmap reach_to = sbitmap_alloc (num_nodes);
+ sbitmap tmp = sbitmap_alloc (num_nodes);
+
+ sbitmap_copy (reachable_from, from);
+ sbitmap_copy (tmp, from);
+
+ change = 1;
+ while (change)
+ {
+ change = 0;
+ sbitmap_copy (workset, tmp);
+ sbitmap_zero (tmp);
+ EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
+ {
+ ddg_edge_ptr e;
+ ddg_node_ptr u_node = &g->nodes[u];
+
+ for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
+ {
+ ddg_node_ptr v_node = e->dest;
+ int v = v_node->cuid;
+
+ if (!TEST_BIT (reachable_from, v))
+ {
+ SET_BIT (reachable_from, v);
+ SET_BIT (tmp, v);
+ change = 1;
+ }
+ }
+ });
+ }
+
+ sbitmap_copy (reach_to, to);
+ sbitmap_copy (tmp, to);
+
+ change = 1;
+ while (change)
+ {
+ change = 0;
+ sbitmap_copy (workset, tmp);
+ sbitmap_zero (tmp);
+ EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
+ {
+ ddg_edge_ptr e;
+ ddg_node_ptr u_node = &g->nodes[u];
+
+ for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
+ {
+ ddg_node_ptr v_node = e->src;
+ int v = v_node->cuid;
+
+ if (!TEST_BIT (reach_to, v))
+ {
+ SET_BIT (reach_to, v);
+ SET_BIT (tmp, v);
+ change = 1;
+ }
+ }
+ });
+ }
+
+ answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
+ sbitmap_free (workset);
+ sbitmap_free (reachable_from);
+ sbitmap_free (reach_to);
+ sbitmap_free (tmp);
+ return answer;
+}
+
+
+/* Updates the counts of U_NODE's successors (that belong to NODES) to be
+ at-least as large as the count of U_NODE plus the latency between them.
+ Sets a bit in TMP for each successor whose count was changed (increased).
+ Returns non-zero if any count was changed. */
+static int
+update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
+{
+ ddg_edge_ptr e;
+ int result = 0;
+
+ for (e = u_node->out; e; e = e->next_out)
+ {
+ ddg_node_ptr v_node = e->dest;
+ int v = v_node->cuid;
+
+ if (TEST_BIT (nodes, v)
+ && (e->distance == 0)
+ && (v_node->aux.count < u_node->aux.count + e->latency))
+ {
+ v_node->aux.count = u_node->aux.count + e->latency;
+ SET_BIT (tmp, v);
+ result = 1;
+ }
+ }
+ return result;
+}
+
+
+/* Find the length of a longest path from SRC to DEST in G,
+ going only through NODES, and disregarding backarcs. */
+int
+longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
+{
+ int i, u;
+ int change = 1;
+ int result;
+ int num_nodes = g->num_nodes;
+ sbitmap workset = sbitmap_alloc (num_nodes);
+ sbitmap tmp = sbitmap_alloc (num_nodes);
+
+
+ /* Data will hold the distance of the longest path found so far from
+ src to each node. Initialize to -1 = less than minimum. */
+ for (i = 0; i < g->num_nodes; i++)
+ g->nodes[i].aux.count = -1;
+ g->nodes[src].aux.count = 0;
+
+ sbitmap_zero (tmp);
+ SET_BIT (tmp, src);
+
+ while (change)
+ {
+ change = 0;
+ sbitmap_copy (workset, tmp);
+ sbitmap_zero (tmp);
+ EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
+ {
+ ddg_node_ptr u_node = &g->nodes[u];
+
+ change |= update_dist_to_successors (u_node, nodes, tmp);
+ });
+ }
+ result = g->nodes[dest].aux.count;
+ sbitmap_free (workset);
+ sbitmap_free (tmp);
+ return result;
+}