diff options
author | Jeffrey A Law <law@cygnus.com> | 1997-08-11 20:07:24 +0000 |
---|---|---|
committer | Jeff Law <law@gcc.gnu.org> | 1997-08-11 14:07:24 -0600 |
commit | 9ae8ffe751384e446477c47f8cf670d3a1e92fe9 (patch) | |
tree | 070833bf20a821eb8d3cb38069e95b6e7b7b9bc6 /gcc/alias.c | |
parent | 5fa39bfeb7285e06d0cd52c1da94fe93a67703d0 (diff) | |
download | gcc-9ae8ffe751384e446477c47f8cf670d3a1e92fe9.tar.gz |
* Integrate alias analysis changes from jfc@mit.edu
* Makefile.in (OBJS): Add alias.o
(alias.o): Add dependencies.
* alias.c: New file.
* sched.c: Remove alias analysis code. It lives in alias.c now.
(reg_last_uses_size): Declare.
(sched_analyze_2): Add new arguments to true_dependence.
(sched_analyze_insn): Use reg_last_uses_size instead of max_reg.
(schedule_block): Initialize reg_last_uses_size.
(schedule_insns): Always call init_alias_analysis.
* calls.c (expand_call): Note calls to malloc, calloc, and realloc;
mark return value from such functions as a pointer and keep track of
them for alias analysis. If a return value from a function is a
pointer, mark it as such.
* combine.c (distribute_notes): Handle REG_NOALIAS.
* cse.c (struct write_data): Delete. No longer needed.
(invalidate): Don't call set_nonvarying_address_components anymore.
Use true_dependence to decide if an entry should be removed from
the hash table.
(invalidate_memory): Remove WRITES argument, simplify appropriately.
Fix all callers.
(note_mem_written): Similarly for WRITE_PTR argument.
(invalidate_from_clobbers): Similarly for W argument.
(invalidate_for_call): Remove memory elements from the hash table.
(refers_to_mem_p, cse_rtx_addr_varies_p): Deleted.
(cse_rtx_varies_p): New function. Derived from old
cse_rtx_addr_varies_p.
(cse_insn): Remove WRITES_MEMORY and INIT variables and all references.
Don't call note_mem_written anymore. Stack pushes invalidate the stack
pointer if PUSH_ROUNDING is defined. No longer need to call
cse_rtx_addr_varies_p to decide if a MEM should be invalidated.
(skipped_writes_memory): Remove variable.
(invalidate_skipped_set): Simplify and wewrite to use invalidate_memory.
(invalidate_skipped_block): Simplify for new alias analysis code.
(cse_set_around_loop): Likewise.
(cse_main): Call init_alias_analysis.
* flags.h (flag_alias_check, flag_argument_noalias): Declare.
* toplev.c (flag_alias_check, flag_argument_noalias): Define.
(f_options): Add new alias checking arguments.
(main): Set flag_alias_check when optimizing.
* local_alloc (validate_equiv_mem_from_store): Add new arguments
to true_dependence.
(memref_referenced_p): Likewise.
* loop.c (NUM_STORES): Increase to 30.
(prescan_loop): Only non-constant calls set unknown_address_altered.
(invariant_p): Add new arguments to true_dependence.
(record_giv): Initialize unrolled and shared fields.
(emit_iv_add_mult): Call record_base_value as needed.
* loop.h (struct induction): Add unrolled and shared fields.
* unroll.c (unroll_loop): Call record_base_value as needed.
(copy_loop_body): Likewise.
(final_biv_value): Likewise.
(final_giv_value): Likewise.
(find_splittable_regs): Likewise. Only create one new pseudo
if we have multiple address GIVs that were combined with the same
dst_reg GIV. Note when a new register is created due to unrolling.
* rtl.c (reg_note_name): Add REG_NOALIAS.
* rtl.h (enum reg_note): Similarly.
(rtx_varies_p, may_trap_p, side_effects_p): Declare.
(volatile_refs_p, volatile_insn_p, remove_note): Likewise.
(note_stores, refers_to_regno_p, reg_overlap_mentioned_p): Likewise.
(true_dependence, read_dependence, anti_dependence): Likewise.
(output_dependence, init_alias_analysis, end_alias_analysis): Likewise.
(mark_user_reg, mark_reg_pointer): Likewise.
jfc's alias analysis code.
From-SVN: r14768
Diffstat (limited to 'gcc/alias.c')
-rw-r--r-- | gcc/alias.c | 1015 |
1 files changed, 1015 insertions, 0 deletions
diff --git a/gcc/alias.c b/gcc/alias.c new file mode 100644 index 00000000000..75c784084b2 --- /dev/null +++ b/gcc/alias.c @@ -0,0 +1,1015 @@ +/* Alias analysis for GNU C + Copyright (C) 1997 Free Software Foundation, Inc. + Contributed by John Carr (jfc@mit.edu). + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +#include "config.h" +#include "rtl.h" +#include "expr.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "flags.h" + +static rtx canon_rtx PROTO((rtx)); +static int rtx_equal_for_memref_p PROTO((rtx, rtx)); +static rtx find_symbolic_term PROTO((rtx)); +static int memrefs_conflict_p PROTO((int, rtx, int, rtx, + HOST_WIDE_INT)); + +/* Set up all info needed to perform alias analysis on memory references. */ + +#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X))) + +/* reg_base_value[N] gives an address to which register N is related. + If all sets after the first add or subtract to the current value + or otherwise modify it so it does not point to a different top level + object, reg_base_value[N] is equal to the address part of the source + of the first set. The value will be a SYMBOL_REF, a LABEL_REF, or + (address (reg)) to indicate that the address is derived from an + argument or fixed register. */ +rtx *reg_base_value; +unsigned int reg_base_value_size; /* size of reg_base_value array */ +#define REG_BASE_VALUE(X) \ + (REGNO (X) < reg_base_value_size ? reg_base_value[REGNO (X)] : 0) + +/* Vector indexed by N giving the initial (unchanging) value known + for pseudo-register N. */ +rtx *reg_known_value; + +/* Indicates number of valid entries in reg_known_value. */ +static int reg_known_value_size; + +/* Vector recording for each reg_known_value whether it is due to a + REG_EQUIV note. Future passes (viz., reload) may replace the + pseudo with the equivalent expression and so we account for the + dependences that would be introduced if that happens. */ +/* ??? This is a problem only on the Convex. The REG_EQUIV notes created in + assign_parms mention the arg pointer, and there are explicit insns in the + RTL that modify the arg pointer. Thus we must ensure that such insns don't + get scheduled across each other because that would invalidate the REG_EQUIV + notes. One could argue that the REG_EQUIV notes are wrong, but solving + the problem in the scheduler will likely give better code, so we do it + here. */ +char *reg_known_equiv_p; + +/* Inside SRC, the source of a SET, find a base address. */ + +/* When copying arguments into pseudo-registers, record the (ADDRESS) + expression for the argument directly so that even if the argument + register is changed later (e.g. for a function call) the original + value is noted. */ +static int copying_arguments; + +static rtx +find_base_value (src) + register rtx src; +{ + switch (GET_CODE (src)) + { + case SYMBOL_REF: + case LABEL_REF: + return src; + + case REG: + if (copying_arguments && REGNO (src) < FIRST_PSEUDO_REGISTER) + return reg_base_value[REGNO (src)]; + return src; + + case MEM: + /* Check for an argument passed in memory. Only record in the + copying-arguments block; it is too hard to track changes + otherwise. */ + if (copying_arguments + && (XEXP (src, 0) == arg_pointer_rtx + || (GET_CODE (XEXP (src, 0)) == PLUS + && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx))) + return gen_rtx (ADDRESS, VOIDmode, src); + return 0; + + case CONST: + src = XEXP (src, 0); + if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS) + break; + /* fall through */ + case PLUS: + case MINUS: + /* Guess which operand to set the register equivalent to. */ + /* If the first operand is a symbol or the second operand is + an integer, the first operand is the base address. */ + if (GET_CODE (XEXP (src, 0)) == SYMBOL_REF + || GET_CODE (XEXP (src, 0)) == LABEL_REF + || GET_CODE (XEXP (src, 1)) == CONST_INT) + return XEXP (src, 0); + /* If an operand is a register marked as a pointer, it is the base. */ + if (GET_CODE (XEXP (src, 0)) == REG + && REGNO_POINTER_FLAG (REGNO (XEXP (src, 0)))) + src = XEXP (src, 0); + else if (GET_CODE (XEXP (src, 1)) == REG + && REGNO_POINTER_FLAG (REGNO (XEXP (src, 1)))) + src = XEXP (src, 1); + else + return 0; + if (copying_arguments && REGNO (src) < FIRST_PSEUDO_REGISTER) + return reg_base_value[REGNO (src)]; + return src; + + case AND: + /* If the second operand is constant set the base + address to the first operand. */ + if (GET_CODE (XEXP (src, 1)) == CONST_INT + && GET_CODE (XEXP (src, 0)) == REG) + { + src = XEXP (src, 0); + if (copying_arguments && REGNO (src) < FIRST_PSEUDO_REGISTER) + return reg_base_value[REGNO (src)]; + return src; + } + return 0; + + case HIGH: + return XEXP (src, 0); + } + + return 0; +} + +/* Called from init_alias_analysis indirectly through note_stores. */ + +/* while scanning insns to find base values, reg_seen[N] is nonzero if + register N has been set in this function. */ +static char *reg_seen; + +static +void record_set (dest, set) + rtx dest, set; +{ + register int regno; + rtx src; + + if (GET_CODE (dest) != REG) + return; + + regno = REGNO (dest); + + if (set) + { + /* A CLOBBER wipes out any old value but does not prevent a previously + unset register from acquiring a base address (i.e. reg_seen is not + set). */ + if (GET_CODE (set) == CLOBBER) + { + reg_base_value[regno] = 0; + return; + } + src = SET_SRC (set); + } + else + { + static int unique_id; + if (reg_seen[regno]) + { + reg_base_value[regno] = 0; + return; + } + reg_seen[regno] = 1; + reg_base_value[regno] = gen_rtx (ADDRESS, Pmode, + GEN_INT (unique_id++)); + return; + } + + /* This is not the first set. If the new value is not related to the + old value, forget the base value. Note that the following code is + not detected: + extern int x, y; int *p = &x; p += (&y-&x); + ANSI C does not allow computing the difference of addresses + of distinct top level objects. */ + if (reg_base_value[regno]) + switch (GET_CODE (src)) + { + case PLUS: + case MINUS: + if (XEXP (src, 0) != dest && XEXP (src, 1) != dest) + reg_base_value[regno] = 0; + break; + case AND: + if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT) + reg_base_value[regno] = 0; + break; + case LO_SUM: + if (XEXP (src, 0) != dest) + reg_base_value[regno] = 0; + break; + default: + reg_base_value[regno] = 0; + break; + } + /* If this is the first set of a register, record the value. */ + else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno]) + && ! reg_seen[regno] && reg_base_value[regno] == 0) + reg_base_value[regno] = find_base_value (src); + + reg_seen[regno] = 1; +} + +/* Called from loop optimization when a new pseudo-register is created. */ +void +record_base_value (regno, val) + int regno; + rtx val; +{ + if (!flag_alias_check || regno >= reg_base_value_size) + return; + if (GET_CODE (val) == REG) + { + if (REGNO (val) < reg_base_value_size) + reg_base_value[regno] = reg_base_value[REGNO (val)]; + return; + } + reg_base_value[regno] = find_base_value (val); +} + +static rtx +canon_rtx (x) + rtx x; +{ + /* Recursively look for equivalences. */ + if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER + && REGNO (x) < reg_known_value_size) + return reg_known_value[REGNO (x)] == x + ? x : canon_rtx (reg_known_value[REGNO (x)]); + else if (GET_CODE (x) == PLUS) + { + rtx x0 = canon_rtx (XEXP (x, 0)); + rtx x1 = canon_rtx (XEXP (x, 1)); + + if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1)) + { + /* We can tolerate LO_SUMs being offset here; these + rtl are used for nothing other than comparisons. */ + if (GET_CODE (x0) == CONST_INT) + return plus_constant_for_output (x1, INTVAL (x0)); + else if (GET_CODE (x1) == CONST_INT) + return plus_constant_for_output (x0, INTVAL (x1)); + return gen_rtx (PLUS, GET_MODE (x), x0, x1); + } + } + /* This gives us much better alias analysis when called from + the loop optimizer. Note we want to leave the original + MEM alone, but need to return the canonicalized MEM with + all the flags with their original values. */ + else if (GET_CODE (x) == MEM) + { + rtx addr = canon_rtx (XEXP (x, 0)); + if (addr != XEXP (x, 0)) + { + rtx new = gen_rtx (MEM, GET_MODE (x), addr); + MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x); + RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x); + MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x); + x = new; + } + } + return x; +} + +/* Return 1 if X and Y are identical-looking rtx's. + + We use the data in reg_known_value above to see if two registers with + different numbers are, in fact, equivalent. */ + +static int +rtx_equal_for_memref_p (x, y) + rtx x, y; +{ + register int i; + register int j; + register enum rtx_code code; + register char *fmt; + + if (x == 0 && y == 0) + return 1; + if (x == 0 || y == 0) + return 0; + x = canon_rtx (x); + y = canon_rtx (y); + + if (x == y) + return 1; + + code = GET_CODE (x); + /* Rtx's of different codes cannot be equal. */ + if (code != GET_CODE (y)) + return 0; + + /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. + (REG:SI x) and (REG:HI x) are NOT equivalent. */ + + if (GET_MODE (x) != GET_MODE (y)) + return 0; + + /* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively. */ + + if (code == REG) + return REGNO (x) == REGNO (y); + if (code == LABEL_REF) + return XEXP (x, 0) == XEXP (y, 0); + if (code == SYMBOL_REF) + return XSTR (x, 0) == XSTR (y, 0); + + /* For commutative operations, the RTX match if the operand match in any + order. Also handle the simple binary and unary cases without a loop. */ + if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c') + return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0)) + && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1))) + || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1)) + && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0)))); + else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2') + return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0)) + && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1))); + else if (GET_RTX_CLASS (code) == '1') + return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0)); + + /* Compare the elements. If any pair of corresponding elements + fail to match, return 0 for the whole things. */ + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + switch (fmt[i]) + { + case 'w': + if (XWINT (x, i) != XWINT (y, i)) + return 0; + break; + + case 'n': + case 'i': + if (XINT (x, i) != XINT (y, i)) + return 0; + break; + + case 'V': + case 'E': + /* Two vectors must have the same length. */ + if (XVECLEN (x, i) != XVECLEN (y, i)) + return 0; + + /* And the corresponding elements must match. */ + for (j = 0; j < XVECLEN (x, i); j++) + if (rtx_equal_for_memref_p (XVECEXP (x, i, j), XVECEXP (y, i, j)) == 0) + return 0; + break; + + case 'e': + if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0) + return 0; + break; + + case 'S': + case 's': + if (strcmp (XSTR (x, i), XSTR (y, i))) + return 0; + break; + + case 'u': + /* These are just backpointers, so they don't matter. */ + break; + + case '0': + break; + + /* It is believed that rtx's at this level will never + contain anything but integers and other rtx's, + except for within LABEL_REFs and SYMBOL_REFs. */ + default: + abort (); + } + } + return 1; +} + +/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within + X and return it, or return 0 if none found. */ + +static rtx +find_symbolic_term (x) + rtx x; +{ + register int i; + register enum rtx_code code; + register char *fmt; + + code = GET_CODE (x); + if (code == SYMBOL_REF || code == LABEL_REF) + return x; + if (GET_RTX_CLASS (code) == 'o') + return 0; + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + rtx t; + + if (fmt[i] == 'e') + { + t = find_symbolic_term (XEXP (x, i)); + if (t != 0) + return t; + } + else if (fmt[i] == 'E') + break; + } + return 0; +} + +static rtx +find_base_term (x) + register rtx x; +{ + switch (GET_CODE (x)) + { + case REG: + return REG_BASE_VALUE (x); + + case HIGH: + return find_base_term (XEXP (x, 0)); + + case CONST: + x = XEXP (x, 0); + if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS) + return 0; + /* fall through */ + case LO_SUM: + case PLUS: + case MINUS: + { + rtx tmp = find_base_term (XEXP (x, 0)); + if (tmp) + return tmp; + return find_base_term (XEXP (x, 1)); + } + + case AND: + if (GET_CODE (XEXP (x, 0)) == REG && GET_CODE (XEXP (x, 1)) == CONST_INT) + return REG_BASE_VALUE (XEXP (x, 0)); + return 0; + + case SYMBOL_REF: + case LABEL_REF: + return x; + + default: + return 0; + } +} + +/* Return 0 if the addresses X and Y are known to point to different + objects, 1 if they might be pointers to the same object. */ + +static int +base_alias_check (x, y) + rtx x, y; +{ + rtx x_base = find_base_term (x); + rtx y_base = find_base_term (y); + + /* If either base address is unknown or the base addresses are equal, + nothing is known about aliasing. */ + + if (x_base == 0 || y_base == 0 || rtx_equal_p (x_base, y_base)) + return 1; + + /* The base addresses of the read and write are different + expressions. If they are both symbols there is no + conflict. */ + if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS) + return 0; + + /* If one address is a stack reference there can be no alias: + stack references using different base registers do not alias, + a stack reference can not alias a parameter, and a stack reference + can not alias a global. */ + if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode) + || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode)) + return 0; + + if (! flag_argument_noalias) + return 1; + + if (flag_argument_noalias > 1) + return 0; + + /* Weak noalias assertion (arguments are distinct, but may match globals). */ + return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode); +} + +/* Return nonzero if X and Y (memory addresses) could reference the + same location in memory. C is an offset accumulator. When + C is nonzero, we are testing aliases between X and Y + C. + XSIZE is the size in bytes of the X reference, + similarly YSIZE is the size in bytes for Y. + + If XSIZE or YSIZE is zero, we do not know the amount of memory being + referenced (the reference was BLKmode), so make the most pessimistic + assumptions. + + We recognize the following cases of non-conflicting memory: + + (1) addresses involving the frame pointer cannot conflict + with addresses involving static variables. + (2) static variables with different addresses cannot conflict. + + Nice to notice that varying addresses cannot conflict with fp if no + local variables had their addresses taken, but that's too hard now. */ + + +static int +memrefs_conflict_p (xsize, x, ysize, y, c) + register rtx x, y; + int xsize, ysize; + HOST_WIDE_INT c; +{ + if (GET_CODE (x) == HIGH) + x = XEXP (x, 0); + else if (GET_CODE (x) == LO_SUM) + x = XEXP (x, 1); + else + x = canon_rtx (x); + if (GET_CODE (y) == HIGH) + y = XEXP (y, 0); + else if (GET_CODE (y) == LO_SUM) + y = XEXP (y, 1); + else + y = canon_rtx (y); + + if (rtx_equal_for_memref_p (x, y)) + { + if (xsize == 0 || ysize == 0) + return 1; + if (c >= 0 && xsize > c) + return 1; + if (c < 0 && ysize+c > 0) + return 1; + return 0; + } + + if (y == frame_pointer_rtx || y == hard_frame_pointer_rtx + || y == stack_pointer_rtx) + { + rtx t = y; + int tsize = ysize; + y = x; ysize = xsize; + x = t; xsize = tsize; + } + + if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx + || x == stack_pointer_rtx) + { + rtx y1; + + if (CONSTANT_P (y)) + return 0; + + if (GET_CODE (y) == PLUS + && canon_rtx (XEXP (y, 0)) == x + && (y1 = canon_rtx (XEXP (y, 1))) + && GET_CODE (y1) == CONST_INT) + { + c += INTVAL (y1); + return (xsize == 0 || ysize == 0 + || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)); + } + + if (GET_CODE (y) == PLUS + && (y1 = canon_rtx (XEXP (y, 0))) + && CONSTANT_P (y1)) + return 0; + + return 1; + } + + if (GET_CODE (x) == PLUS) + { + /* The fact that X is canonicalized means that this + PLUS rtx is canonicalized. */ + rtx x0 = XEXP (x, 0); + rtx x1 = XEXP (x, 1); + + if (GET_CODE (y) == PLUS) + { + /* The fact that Y is canonicalized means that this + PLUS rtx is canonicalized. */ + rtx y0 = XEXP (y, 0); + rtx y1 = XEXP (y, 1); + + if (rtx_equal_for_memref_p (x1, y1)) + return memrefs_conflict_p (xsize, x0, ysize, y0, c); + if (rtx_equal_for_memref_p (x0, y0)) + return memrefs_conflict_p (xsize, x1, ysize, y1, c); + if (GET_CODE (x1) == CONST_INT) + if (GET_CODE (y1) == CONST_INT) + return memrefs_conflict_p (xsize, x0, ysize, y0, + c - INTVAL (x1) + INTVAL (y1)); + else + return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1)); + else if (GET_CODE (y1) == CONST_INT) + return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1)); + + /* Handle case where we cannot understand iteration operators, + but we notice that the base addresses are distinct objects. */ + /* ??? Is this still necessary? */ + x = find_symbolic_term (x); + if (x == 0) + return 1; + y = find_symbolic_term (y); + if (y == 0) + return 1; + return rtx_equal_for_memref_p (x, y); + } + else if (GET_CODE (x1) == CONST_INT) + return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1)); + } + else if (GET_CODE (y) == PLUS) + { + /* The fact that Y is canonicalized means that this + PLUS rtx is canonicalized. */ + rtx y0 = XEXP (y, 0); + rtx y1 = XEXP (y, 1); + + if (GET_CODE (y1) == CONST_INT) + return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1)); + else + return 1; + } + + if (GET_CODE (x) == GET_CODE (y)) + switch (GET_CODE (x)) + { + case MULT: + { + /* Handle cases where we expect the second operands to be the + same, and check only whether the first operand would conflict + or not. */ + rtx x0, y0; + rtx x1 = canon_rtx (XEXP (x, 1)); + rtx y1 = canon_rtx (XEXP (y, 1)); + if (! rtx_equal_for_memref_p (x1, y1)) + return 1; + x0 = canon_rtx (XEXP (x, 0)); + y0 = canon_rtx (XEXP (y, 0)); + if (rtx_equal_for_memref_p (x0, y0)) + return (xsize == 0 || ysize == 0 + || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)); + + /* Can't properly adjust our sizes. */ + if (GET_CODE (x1) != CONST_INT) + return 1; + xsize /= INTVAL (x1); + ysize /= INTVAL (x1); + c /= INTVAL (x1); + return memrefs_conflict_p (xsize, x0, ysize, y0, c); + } + } + + /* Treat an access through an AND (e.g. a subword access on an Alpha) + as an access with indeterminate size. */ + if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT) + return memrefs_conflict_p (0, XEXP (x, 0), ysize, y, c); + if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT) + return memrefs_conflict_p (xsize, x, 0, XEXP (y, 0), c); + + if (CONSTANT_P (x)) + { + if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT) + { + c += (INTVAL (y) - INTVAL (x)); + return (xsize == 0 || ysize == 0 + || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)); + } + + if (GET_CODE (x) == CONST) + { + if (GET_CODE (y) == CONST) + return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), + ysize, canon_rtx (XEXP (y, 0)), c); + else + return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), + ysize, y, c); + } + if (GET_CODE (y) == CONST) + return memrefs_conflict_p (xsize, x, ysize, + canon_rtx (XEXP (y, 0)), c); + + if (CONSTANT_P (y)) + return (rtx_equal_for_memref_p (x, y) + && (xsize == 0 || ysize == 0 + || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))); + + return 1; + } + return 1; +} + +/* Functions to compute memory dependencies. + + Since we process the insns in execution order, we can build tables + to keep track of what registers are fixed (and not aliased), what registers + are varying in known ways, and what registers are varying in unknown + ways. + + If both memory references are volatile, then there must always be a + dependence between the two references, since their order can not be + changed. A volatile and non-volatile reference can be interchanged + though. + + A MEM_IN_STRUCT reference at a non-QImode varying address can never + conflict with a non-MEM_IN_STRUCT reference at a fixed address. We must + allow QImode aliasing because the ANSI C standard allows character + pointers to alias anything. We are assuming that characters are + always QImode here. */ + +/* Read dependence: X is read after read in MEM takes place. There can + only be a dependence here if both reads are volatile. */ + +int +read_dependence (mem, x) + rtx mem; + rtx x; +{ + return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem); +} + +/* True dependence: X is read after store in MEM takes place. */ + +int +true_dependence (mem, mem_mode, x, varies) + rtx mem; + enum machine_mode mem_mode; + rtx x; + int (*varies)(); +{ + rtx x_addr, mem_addr; + + if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) + return 1; + + x_addr = XEXP (x, 0); + mem_addr = XEXP (mem, 0); + + if (flag_alias_check && ! base_alias_check (x_addr, mem_addr)) + return 0; + + /* If X is an unchanging read, then it can't possibly conflict with any + non-unchanging store. It may conflict with an unchanging write though, + because there may be a single store to this address to initialize it. + Just fall through to the code below to resolve the case where we have + both an unchanging read and an unchanging write. This won't handle all + cases optimally, but the possible performance loss should be + negligible. */ + if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem)) + return 0; + + x_addr = canon_rtx (x_addr); + mem_addr = canon_rtx (mem_addr); + if (mem_mode == VOIDmode) + mem_mode = GET_MODE (mem); + + if (! memrefs_conflict_p (mem_mode, mem_addr, SIZE_FOR_MODE (x), x_addr, 0)) + return 0; + + /* If both references are struct references, or both are not, nothing + is known about aliasing. + + If either reference is QImode or BLKmode, ANSI C permits aliasing. + + If both addresses are constant, or both are not, nothing is known + about aliasing. */ + if (MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (mem) + || mem_mode == QImode || mem_mode == BLKmode + || GET_MODE (x) == QImode || GET_MODE (mem) == BLKmode + || varies (x_addr) == varies (mem_addr)) + return 1; + + /* One memory reference is to a constant address, one is not. + One is to a structure, the other is not. + + If either memory reference is a variable structure the other is a + fixed scalar and there is no aliasing. */ + if ((MEM_IN_STRUCT_P (mem) && varies (mem_addr)) + || (MEM_IN_STRUCT_P (x) && varies (x))) + return 0; + + return 1; +} + +/* Anti dependence: X is written after read in MEM takes place. */ + +int +anti_dependence (mem, x) + rtx mem; + rtx x; +{ + if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) + return 1; + + if (flag_alias_check && ! base_alias_check (XEXP (x, 0), XEXP (mem, 0))) + return 0; + + /* If MEM is an unchanging read, then it can't possibly conflict with + the store to X, because there is at most one store to MEM, and it must + have occurred somewhere before MEM. */ + x = canon_rtx (x); + mem = canon_rtx (mem); + if (RTX_UNCHANGING_P (mem)) + return 0; + + return (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0), + SIZE_FOR_MODE (x), XEXP (x, 0), 0) + && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem) + && GET_MODE (mem) != QImode + && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x)) + && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x) + && GET_MODE (x) != QImode + && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))); +} + +/* Output dependence: X is written after store in MEM takes place. */ + +int +output_dependence (mem, x) + register rtx mem; + register rtx x; +{ + if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) + return 1; + + if (flag_alias_check && !base_alias_check (XEXP (x, 0), XEXP (mem, 0))) + return 0; + + x = canon_rtx (x); + mem = canon_rtx (mem); + return (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0), + SIZE_FOR_MODE (x), XEXP (x, 0), 0) + && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem) + && GET_MODE (mem) != QImode + && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x)) + && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x) + && GET_MODE (x) != QImode + && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))); +} + +void +init_alias_analysis () +{ + int maxreg = max_reg_num (); + int changed; + register int i; + register rtx insn; + rtx note; + rtx set; + + reg_known_value_size = maxreg; + + reg_known_value + = (rtx *) oballoc ((maxreg - FIRST_PSEUDO_REGISTER) * sizeof (rtx)) + - FIRST_PSEUDO_REGISTER; + reg_known_equiv_p = + oballoc (maxreg - FIRST_PSEUDO_REGISTER) - FIRST_PSEUDO_REGISTER; + bzero ((char *) (reg_known_value + FIRST_PSEUDO_REGISTER), + (maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx)); + bzero (reg_known_equiv_p + FIRST_PSEUDO_REGISTER, + (maxreg - FIRST_PSEUDO_REGISTER) * sizeof (char)); + + if (flag_alias_check) + { + /* Overallocate reg_base_value to allow some growth during loop + optimization. Loop unrolling can create a large number of + registers. */ + reg_base_value_size = maxreg * 2; + reg_base_value = (rtx *)oballoc (reg_base_value_size * sizeof (rtx)); + reg_seen = (char *)alloca (reg_base_value_size); + bzero (reg_base_value, reg_base_value_size * sizeof (rtx)); + bzero (reg_seen, reg_base_value_size); + + /* Mark all hard registers which may contain an address. + The stack, frame and argument pointers may contain an address. + An argument register which can hold a Pmode value may contain + an address even if it is not in BASE_REGS. + + The address expression is VOIDmode for an argument and + Pmode for other registers. */ +#ifndef OUTGOING_REGNO +#define OUTGOING_REGNO(N) N +#endif + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + /* Check whether this register can hold an incoming pointer + argument. FUNCTION_ARG_REGNO_P tests outgoing register + numbers, so translate if necessary due to register windows. */ + if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i)) && HARD_REGNO_MODE_OK (i, Pmode)) + reg_base_value[i] = gen_rtx (ADDRESS, VOIDmode, + gen_rtx (REG, Pmode, i)); + + reg_base_value[STACK_POINTER_REGNUM] + = gen_rtx (ADDRESS, Pmode, stack_pointer_rtx); + reg_base_value[ARG_POINTER_REGNUM] + = gen_rtx (ADDRESS, Pmode, arg_pointer_rtx); + reg_base_value[FRAME_POINTER_REGNUM] + = gen_rtx (ADDRESS, Pmode, frame_pointer_rtx); + reg_base_value[HARD_FRAME_POINTER_REGNUM] + = gen_rtx (ADDRESS, Pmode, hard_frame_pointer_rtx); + } + + copying_arguments = 1; + /* Fill in the entries with known constant values. */ + for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) + { + if (flag_alias_check && GET_RTX_CLASS (GET_CODE (insn)) == 'i') + { + /* If this insn has a noalias note, process it, Otherwise, + scan for sets. A simple set will have no side effects + which could change the base value of any other register. */ + rtx noalias_note; + if (GET_CODE (PATTERN (insn)) == SET + && (noalias_note = find_reg_note (insn, REG_NOALIAS, NULL_RTX))) + record_set (SET_DEST (PATTERN (insn)), 0); + else + note_stores (PATTERN (insn), record_set); + } + else if (GET_CODE (insn) == NOTE + && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG) + copying_arguments = 0; + + if ((set = single_set (insn)) != 0 + && GET_CODE (SET_DEST (set)) == REG + && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER + && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0 + && REG_N_SETS (REGNO (SET_DEST (set))) == 1) + || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0) + && GET_CODE (XEXP (note, 0)) != EXPR_LIST) + { + int regno = REGNO (SET_DEST (set)); + reg_known_value[regno] = XEXP (note, 0); + reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV; + } + } + + /* Fill in the remaining entries. */ + for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++) + if (reg_known_value[i] == 0) + reg_known_value[i] = regno_reg_rtx[i]; + + if (! flag_alias_check) + return; + + /* Simplify the reg_base_value array so that no register refers to + another register, except to special registers indirectly through + ADDRESS expressions. + + In theory this loop can take as long as O(registers^2), but unless + there are very long dependency chains it will run in close to linear + time. */ + do + { + changed = 0; + for (i = FIRST_PSEUDO_REGISTER; i < reg_base_value_size; i++) + { + rtx base = reg_base_value[i]; + if (base && GET_CODE (base) == REG) + { + int base_regno = REGNO (base); + if (base_regno == i) /* register set from itself */ + reg_base_value[i] = 0; + else + reg_base_value[i] = reg_base_value[base_regno]; + changed = 1; + } + } + } + while (changed); + + reg_seen = 0; +} + +void +end_alias_analysis () +{ + reg_known_value = 0; + reg_base_value = 0; + reg_base_value_size = 0; +} |