summaryrefslogtreecommitdiff
path: root/gcc/ada/sem_ch5.adb
diff options
context:
space:
mode:
authorkenner <kenner@138bc75d-0d04-0410-961f-82ee72b054a4>2001-10-02 14:52:00 +0000
committerkenner <kenner@138bc75d-0d04-0410-961f-82ee72b054a4>2001-10-02 14:52:00 +0000
commitd6f39728ae3cc12d4f867eeb4659d01322643264 (patch)
tree2e58881ac983eb14cefbc37dcb02b8fd6e9f6990 /gcc/ada/sem_ch5.adb
parentb1a749bacce901a0cad8abbbfc0addb482a8adfa (diff)
downloadgcc-d6f39728ae3cc12d4f867eeb4659d01322643264.tar.gz
New Language: Ada
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@45959 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/ada/sem_ch5.adb')
-rw-r--r--gcc/ada/sem_ch5.adb1256
1 files changed, 1256 insertions, 0 deletions
diff --git a/gcc/ada/sem_ch5.adb b/gcc/ada/sem_ch5.adb
new file mode 100644
index 00000000000..658a685ced7
--- /dev/null
+++ b/gcc/ada/sem_ch5.adb
@@ -0,0 +1,1256 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ C H 5 --
+-- --
+-- B o d y --
+-- --
+-- $Revision: 1.262 $
+-- --
+-- Copyright (C) 1992-2001 Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
+-- MA 02111-1307, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Einfo; use Einfo;
+with Errout; use Errout;
+with Expander; use Expander;
+with Exp_Util; use Exp_Util;
+with Freeze; use Freeze;
+with Lib.Xref; use Lib.Xref;
+with Nlists; use Nlists;
+with Opt; use Opt;
+with Sem; use Sem;
+with Sem_Case; use Sem_Case;
+with Sem_Ch3; use Sem_Ch3;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Disp; use Sem_Disp;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Type; use Sem_Type;
+with Sem_Util; use Sem_Util;
+with Sem_Warn; use Sem_Warn;
+with Stand; use Stand;
+with Sinfo; use Sinfo;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+
+package body Sem_Ch5 is
+
+ Unblocked_Exit_Count : Nat := 0;
+ -- This variable is used when processing if statements or case
+ -- statements, it counts the number of branches of the conditional
+ -- that are not blocked by unconditional transfer instructions. At
+ -- the end of processing, if the count is zero, it means that control
+ -- cannot fall through the conditional statement. This is used for
+ -- the generation of warning messages. This variable is recursively
+ -- saved on entry to processing an if or case, and restored on exit.
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Analyze_Iteration_Scheme (N : Node_Id);
+
+ ------------------------
+ -- Analyze_Assignment --
+ ------------------------
+
+ procedure Analyze_Assignment (N : Node_Id) is
+ Lhs : constant Node_Id := Name (N);
+ Rhs : constant Node_Id := Expression (N);
+ T1, T2 : Entity_Id;
+ Decl : Node_Id;
+
+ procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
+ -- N is the node for the left hand side of an assignment, and it
+ -- is not a variable. This routine issues an appropriate diagnostic.
+
+ procedure Set_Assignment_Type
+ (Opnd : Node_Id;
+ Opnd_Type : in out Entity_Id);
+ -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
+ -- is the nominal subtype. This procedure is used to deal with cases
+ -- where the nominal subtype must be replaced by the actual subtype.
+
+ -------------------------------
+ -- Diagnose_Non_Variable_Lhs --
+ -------------------------------
+
+ procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
+ begin
+ -- Not worth posting another error if left hand side already
+ -- flagged as being illegal in some respect
+
+ if Error_Posted (N) then
+ return;
+
+ -- Some special bad cases of entity names
+
+ elsif Is_Entity_Name (N) then
+
+ if Ekind (Entity (N)) = E_In_Parameter then
+ Error_Msg_N
+ ("assignment to IN mode parameter not allowed", N);
+ return;
+
+ -- Private declarations in a protected object are turned into
+ -- constants when compiling a protected function.
+
+ elsif Present (Scope (Entity (N)))
+ and then Is_Protected_Type (Scope (Entity (N)))
+ and then
+ (Ekind (Current_Scope) = E_Function
+ or else
+ Ekind (Enclosing_Dynamic_Scope (Current_Scope)) = E_Function)
+ then
+ Error_Msg_N
+ ("protected function cannot modify protected object", N);
+ return;
+
+ elsif Ekind (Entity (N)) = E_Loop_Parameter then
+ Error_Msg_N
+ ("assignment to loop parameter not allowed", N);
+ return;
+
+ end if;
+
+ -- For indexed components, or selected components, test prefix
+
+ elsif Nkind (N) = N_Indexed_Component
+ or else Nkind (N) = N_Selected_Component
+ then
+ Diagnose_Non_Variable_Lhs (Prefix (N));
+ return;
+ end if;
+
+ -- If we fall through, we have no special message to issue!
+
+ Error_Msg_N ("left hand side of assignment must be a variable", N);
+
+ end Diagnose_Non_Variable_Lhs;
+
+ -------------------------
+ -- Set_Assignment_Type --
+ -------------------------
+
+ procedure Set_Assignment_Type
+ (Opnd : Node_Id;
+ Opnd_Type : in out Entity_Id)
+ is
+ begin
+ -- If the assignment operand is an in-out or out parameter, then we
+ -- get the actual subtype (needed for the unconstrained case).
+
+ if Is_Entity_Name (Opnd)
+ and then (Ekind (Entity (Opnd)) = E_Out_Parameter
+ or else Ekind (Entity (Opnd)) =
+ E_In_Out_Parameter
+ or else Ekind (Entity (Opnd)) =
+ E_Generic_In_Out_Parameter)
+ then
+ Opnd_Type := Get_Actual_Subtype (Opnd);
+
+ -- If assignment operand is a component reference, then we get the
+ -- actual subtype of the component for the unconstrained case.
+
+ elsif Nkind (Opnd) = N_Selected_Component
+ or else Nkind (Opnd) = N_Explicit_Dereference
+ then
+ Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
+
+ if Present (Decl) then
+ Insert_Action (N, Decl);
+ Mark_Rewrite_Insertion (Decl);
+ Analyze (Decl);
+ Opnd_Type := Defining_Identifier (Decl);
+ Set_Etype (Opnd, Opnd_Type);
+ Freeze_Itype (Opnd_Type, N);
+
+ elsif Is_Constrained (Etype (Opnd)) then
+ Opnd_Type := Etype (Opnd);
+ end if;
+
+ -- For slice, use the constrained subtype created for the slice
+
+ elsif Nkind (Opnd) = N_Slice then
+ Opnd_Type := Etype (Opnd);
+ end if;
+ end Set_Assignment_Type;
+
+ -- Start of processing for Analyze_Assignment
+
+ begin
+ Analyze (Rhs);
+ Analyze (Lhs);
+ T1 := Etype (Lhs);
+
+ -- In the most general case, both Lhs and Rhs can be overloaded, and we
+ -- must compute the intersection of the possible types on each side.
+
+ if Is_Overloaded (Lhs) then
+ declare
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ T1 := Any_Type;
+ Get_First_Interp (Lhs, I, It);
+
+ while Present (It.Typ) loop
+ if Has_Compatible_Type (Rhs, It.Typ) then
+
+ if T1 /= Any_Type then
+
+ -- An explicit dereference is overloaded if the prefix
+ -- is. Try to remove the ambiguity on the prefix, the
+ -- error will be posted there if the ambiguity is real.
+
+ if Nkind (Lhs) = N_Explicit_Dereference then
+ declare
+ PI : Interp_Index;
+ PI1 : Interp_Index := 0;
+ PIt : Interp;
+ Found : Boolean;
+
+ begin
+ Found := False;
+ Get_First_Interp (Prefix (Lhs), PI, PIt);
+
+ while Present (PIt.Typ) loop
+ if Has_Compatible_Type (Rhs,
+ Designated_Type (PIt.Typ))
+ then
+ if Found then
+ PIt :=
+ Disambiguate (Prefix (Lhs),
+ PI1, PI, Any_Type);
+
+ if PIt = No_Interp then
+ return;
+ else
+ Resolve (Prefix (Lhs), PIt.Typ);
+ end if;
+
+ exit;
+ else
+ Found := True;
+ PI1 := PI;
+ end if;
+ end if;
+
+ Get_Next_Interp (PI, PIt);
+ end loop;
+ end;
+
+ else
+ Error_Msg_N
+ ("ambiguous left-hand side in assignment", Lhs);
+ exit;
+ end if;
+ else
+ T1 := It.Typ;
+ end if;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+
+ if T1 = Any_Type then
+ Error_Msg_N
+ ("no valid types for left-hand side for assignment", Lhs);
+ return;
+ end if;
+ end if;
+
+ Resolve (Lhs, T1);
+
+ if not Is_Variable (Lhs) then
+ Diagnose_Non_Variable_Lhs (Lhs);
+ return;
+
+ elsif Is_Limited_Type (T1)
+ and then not Assignment_OK (Lhs)
+ and then not Assignment_OK (Original_Node (Lhs))
+ then
+ Error_Msg_N
+ ("left hand of assignment must not be limited type", Lhs);
+ return;
+ end if;
+
+ -- Resolution may have updated the subtype, in case the left-hand
+ -- side is a private protected component. Use the correct subtype
+ -- to avoid scoping issues in the back-end.
+
+ T1 := Etype (Lhs);
+ Set_Assignment_Type (Lhs, T1);
+
+ Resolve (Rhs, T1);
+
+ -- Remaining steps are skipped if Rhs was synatactically in error
+
+ if Rhs = Error then
+ return;
+ end if;
+
+ T2 := Etype (Rhs);
+ Check_Unset_Reference (Rhs);
+ Note_Possible_Modification (Lhs);
+
+ if Covers (T1, T2) then
+ null;
+ else
+ Wrong_Type (Rhs, Etype (Lhs));
+ return;
+ end if;
+
+ Set_Assignment_Type (Rhs, T2);
+
+ if T1 = Any_Type or else T2 = Any_Type then
+ return;
+ end if;
+
+ if (Is_Class_Wide_Type (T2) or else Is_Dynamically_Tagged (Rhs))
+ and then not Is_Class_Wide_Type (T1)
+ then
+ Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
+
+ elsif Is_Class_Wide_Type (T1)
+ and then not Is_Class_Wide_Type (T2)
+ and then not Is_Tag_Indeterminate (Rhs)
+ and then not Is_Dynamically_Tagged (Rhs)
+ then
+ Error_Msg_N ("dynamically tagged expression required!", Rhs);
+ end if;
+
+ -- Tag propagation is done only in semantics mode only. If expansion
+ -- is on, the rhs tag indeterminate function call has been expanded
+ -- and tag propagation would have happened too late, so the
+ -- propagation take place in expand_call instead.
+
+ if not Expander_Active
+ and then Is_Class_Wide_Type (T1)
+ and then Is_Tag_Indeterminate (Rhs)
+ then
+ Propagate_Tag (Lhs, Rhs);
+ end if;
+
+ if Is_Scalar_Type (T1) then
+ Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
+
+ elsif Is_Array_Type (T1) then
+
+ -- Assignment verifies that the length of the Lsh and Rhs are equal,
+ -- but of course the indices do not have to match.
+
+ Apply_Length_Check (Rhs, Etype (Lhs));
+
+ else
+ -- Discriminant checks are applied in the course of expansion.
+ null;
+ end if;
+
+ -- ??? a real accessibility check is needed when ???
+
+ -- Post warning for useless assignment
+
+ if Warn_On_Redundant_Constructs
+
+ -- We only warn for source constructs
+
+ and then Comes_From_Source (N)
+
+ -- Where the entity is the same on both sides
+
+ and then Is_Entity_Name (Lhs)
+ and then Is_Entity_Name (Rhs)
+ and then Entity (Lhs) = Entity (Rhs)
+
+ -- But exclude the case where the right side was an operation
+ -- that got rewritten (e.g. JUNK + K, where K was known to be
+ -- zero). We don't want to warn in such a case, since it is
+ -- reasonable to write such expressions especially when K is
+ -- defined symbolically in some other package.
+
+ and then Nkind (Original_Node (Rhs)) not in N_Op
+ then
+ Error_Msg_NE
+ ("?useless assignment of & to itself", N, Entity (Lhs));
+ end if;
+ end Analyze_Assignment;
+
+ -----------------------------
+ -- Analyze_Block_Statement --
+ -----------------------------
+
+ procedure Analyze_Block_Statement (N : Node_Id) is
+ Decls : constant List_Id := Declarations (N);
+ Id : constant Node_Id := Identifier (N);
+ Ent : Entity_Id;
+
+ begin
+ -- If a label is present analyze it and mark it as referenced
+
+ if Present (Id) then
+ Analyze (Id);
+ Ent := Entity (Id);
+ Set_Ekind (Ent, E_Block);
+ Generate_Reference (Ent, N, ' ');
+ Generate_Definition (Ent);
+
+ if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
+ Set_Label_Construct (Parent (Ent), N);
+ end if;
+
+ -- Otherwise create a label entity
+
+ else
+ Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
+ Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
+ end if;
+
+ Set_Etype (Ent, Standard_Void_Type);
+ Set_Block_Node (Ent, N);
+ New_Scope (Ent);
+
+ if Present (Decls) then
+ Analyze_Declarations (Decls);
+ Check_Completion;
+ end if;
+
+ Analyze (Handled_Statement_Sequence (N));
+ Process_End_Label (Handled_Statement_Sequence (N), 'e');
+
+ -- Analyze exception handlers if present. Note that the test for
+ -- HSS being present is an error defence against previous errors.
+
+ if Present (Handled_Statement_Sequence (N))
+ and then Present (Exception_Handlers (Handled_Statement_Sequence (N)))
+ then
+ declare
+ S : Entity_Id := Scope (Ent);
+
+ begin
+ -- Indicate that enclosing scopes contain a block with handlers.
+ -- Only non-generic scopes need to be marked.
+
+ loop
+ Set_Has_Nested_Block_With_Handler (S);
+ exit when Is_Overloadable (S)
+ or else Ekind (S) = E_Package
+ or else Ekind (S) = E_Generic_Function
+ or else Ekind (S) = E_Generic_Package
+ or else Ekind (S) = E_Generic_Procedure;
+ S := Scope (S);
+ end loop;
+ end;
+ end if;
+
+ Check_References (Ent);
+ End_Scope;
+ end Analyze_Block_Statement;
+
+ ----------------------------
+ -- Analyze_Case_Statement --
+ ----------------------------
+
+ procedure Analyze_Case_Statement (N : Node_Id) is
+
+ Statements_Analyzed : Boolean := False;
+ -- Set True if at least some statement sequences get analyzed.
+ -- If False on exit, means we had a serious error that prevented
+ -- full analysis of the case statement, and as a result it is not
+ -- a good idea to output warning messages about unreachable code.
+
+ Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
+ -- Recursively save value of this global, will be restored on exit
+
+ procedure Non_Static_Choice_Error (Choice : Node_Id);
+ -- Error routine invoked by the generic instantiation below when
+ -- the case statment has a non static choice.
+
+ procedure Process_Statements (Alternative : Node_Id);
+ -- Analyzes all the statements associated to a case alternative.
+ -- Needed by the generic instantiation below.
+
+ package Case_Choices_Processing is new
+ Generic_Choices_Processing
+ (Get_Alternatives => Alternatives,
+ Get_Choices => Discrete_Choices,
+ Process_Empty_Choice => No_OP,
+ Process_Non_Static_Choice => Non_Static_Choice_Error,
+ Process_Associated_Node => Process_Statements);
+ use Case_Choices_Processing;
+ -- Instantiation of the generic choice processing package.
+
+ -----------------------------
+ -- Non_Static_Choice_Error --
+ -----------------------------
+
+ procedure Non_Static_Choice_Error (Choice : Node_Id) is
+ begin
+ Error_Msg_N ("choice given in case statement is not static", Choice);
+ end Non_Static_Choice_Error;
+
+ ------------------------
+ -- Process_Statements --
+ ------------------------
+
+ procedure Process_Statements (Alternative : Node_Id) is
+ begin
+ Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
+ Statements_Analyzed := True;
+ Analyze_Statements (Statements (Alternative));
+ end Process_Statements;
+
+ -- Variables local to Analyze_Case_Statement.
+
+ Exp : Node_Id;
+ Exp_Type : Entity_Id;
+ Exp_Btype : Entity_Id;
+
+ Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
+ Last_Choice : Nat;
+ Dont_Care : Boolean;
+ Others_Present : Boolean;
+
+ -- Start of processing for Analyze_Case_Statement
+
+ begin
+ Unblocked_Exit_Count := 0;
+ Exp := Expression (N);
+ Analyze_And_Resolve (Exp, Any_Discrete);
+ Check_Unset_Reference (Exp);
+ Exp_Type := Etype (Exp);
+ Exp_Btype := Base_Type (Exp_Type);
+
+ -- The expression must be of a discrete type which must be determinable
+ -- independently of the context in which the expression occurs, but
+ -- using the fact that the expression must be of a discrete type.
+ -- Moreover, the type this expression must not be a character literal
+ -- (which is always ambiguous) or, for Ada-83, a generic formal type.
+
+ -- If error already reported by Resolve, nothing more to do
+
+ if Exp_Btype = Any_Discrete
+ or else Exp_Btype = Any_Type
+ then
+ return;
+
+ elsif Exp_Btype = Any_Character then
+ Error_Msg_N
+ ("character literal as case expression is ambiguous", Exp);
+ return;
+
+ elsif Ada_83
+ and then (Is_Generic_Type (Exp_Btype)
+ or else Is_Generic_Type (Root_Type (Exp_Btype)))
+ then
+ Error_Msg_N
+ ("(Ada 83) case expression cannot be of a generic type", Exp);
+ return;
+ end if;
+
+ -- If the case expression is a formal object of mode in out,
+ -- then treat it as having a nonstatic subtype by forcing
+ -- use of the base type (which has to get passed to
+ -- Check_Case_Choices below). Also use base type when
+ -- the case expression is parenthesized.
+
+ if Paren_Count (Exp) > 0
+ or else (Is_Entity_Name (Exp)
+ and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
+ then
+ Exp_Type := Exp_Btype;
+ end if;
+
+ -- Call the instantiated Analyze_Choices which does the rest of the work
+
+ Analyze_Choices
+ (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
+
+ if Exp_Type = Universal_Integer and then not Others_Present then
+ Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
+ end if;
+
+ -- If all our exits were blocked by unconditional transfers of control,
+ -- then the entire CASE statement acts as an unconditional transfer of
+ -- control, so treat it like one, and check unreachable code. Skip this
+ -- test if we had serious errors preventing any statement analysis.
+
+ if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
+ Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+ Check_Unreachable_Code (N);
+ else
+ Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+ end if;
+ end Analyze_Case_Statement;
+
+ ----------------------------
+ -- Analyze_Exit_Statement --
+ ----------------------------
+
+ -- If the exit includes a name, it must be the name of a currently open
+ -- loop. Otherwise there must be an innermost open loop on the stack,
+ -- to which the statement implicitly refers.
+
+ procedure Analyze_Exit_Statement (N : Node_Id) is
+ Target : constant Node_Id := Name (N);
+ Cond : constant Node_Id := Condition (N);
+ Scope_Id : Entity_Id;
+ U_Name : Entity_Id;
+ Kind : Entity_Kind;
+
+ begin
+ if No (Cond) then
+ Check_Unreachable_Code (N);
+ end if;
+
+ if Present (Target) then
+ Analyze (Target);
+ U_Name := Entity (Target);
+
+ if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
+ Error_Msg_N ("invalid loop name in exit statement", N);
+ return;
+ else
+ Set_Has_Exit (U_Name);
+ end if;
+
+ else
+ U_Name := Empty;
+ end if;
+
+ for J in reverse 0 .. Scope_Stack.Last loop
+ Scope_Id := Scope_Stack.Table (J).Entity;
+ Kind := Ekind (Scope_Id);
+
+ if Kind = E_Loop
+ and then (No (Target) or else Scope_Id = U_Name) then
+ Set_Has_Exit (Scope_Id);
+ exit;
+
+ elsif Kind = E_Block or else Kind = E_Loop then
+ null;
+
+ else
+ Error_Msg_N
+ ("cannot exit from program unit or accept statement", N);
+ exit;
+ end if;
+ end loop;
+
+ -- Verify that if present the condition is a Boolean expression.
+
+ if Present (Cond) then
+ Analyze_And_Resolve (Cond, Any_Boolean);
+ Check_Unset_Reference (Cond);
+ end if;
+ end Analyze_Exit_Statement;
+
+ ----------------------------
+ -- Analyze_Goto_Statement --
+ ----------------------------
+
+ procedure Analyze_Goto_Statement (N : Node_Id) is
+ Label : constant Node_Id := Name (N);
+ Scope_Id : Entity_Id;
+ Label_Scope : Entity_Id;
+
+ begin
+ Check_Unreachable_Code (N);
+
+ Analyze (Label);
+
+ if Entity (Label) = Any_Id then
+ return;
+
+ elsif Ekind (Entity (Label)) /= E_Label then
+ Error_Msg_N ("target of goto statement must be a label", Label);
+ return;
+
+ elsif not Reachable (Entity (Label)) then
+ Error_Msg_N ("target of goto statement is not reachable", Label);
+ return;
+ end if;
+
+ Label_Scope := Enclosing_Scope (Entity (Label));
+
+ for J in reverse 0 .. Scope_Stack.Last loop
+ Scope_Id := Scope_Stack.Table (J).Entity;
+
+ if Label_Scope = Scope_Id
+ or else (Ekind (Scope_Id) /= E_Block
+ and then Ekind (Scope_Id) /= E_Loop)
+ then
+ if Scope_Id /= Label_Scope then
+ Error_Msg_N
+ ("cannot exit from program unit or accept statement", N);
+ end if;
+
+ return;
+ end if;
+ end loop;
+
+ raise Program_Error;
+
+ end Analyze_Goto_Statement;
+
+ --------------------------
+ -- Analyze_If_Statement --
+ --------------------------
+
+ -- A special complication arises in the analysis of if statements.
+ -- The expander has circuitry to completely deleted code that it
+ -- can tell will not be executed (as a result of compile time known
+ -- conditions). In the analyzer, we ensure that code that will be
+ -- deleted in this manner is analyzed but not expanded. This is
+ -- obviously more efficient, but more significantly, difficulties
+ -- arise if code is expanded and then eliminated (e.g. exception
+ -- table entries disappear).
+
+ procedure Analyze_If_Statement (N : Node_Id) is
+ E : Node_Id;
+
+ Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
+ -- Recursively save value of this global, will be restored on exit
+
+ Del : Boolean := False;
+ -- This flag gets set True if a True condition has been found,
+ -- which means that remaining ELSE/ELSIF parts are deleted.
+
+ procedure Analyze_Cond_Then (Cnode : Node_Id);
+ -- This is applied to either the N_If_Statement node itself or
+ -- to an N_Elsif_Part node. It deals with analyzing the condition
+ -- and the THEN statements associated with it.
+
+ procedure Analyze_Cond_Then (Cnode : Node_Id) is
+ Cond : constant Node_Id := Condition (Cnode);
+ Tstm : constant List_Id := Then_Statements (Cnode);
+
+ begin
+ Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
+ Analyze_And_Resolve (Cond, Any_Boolean);
+ Check_Unset_Reference (Cond);
+
+ -- If already deleting, then just analyze then statements
+
+ if Del then
+ Analyze_Statements (Tstm);
+
+ -- Compile time known value, not deleting yet
+
+ elsif Compile_Time_Known_Value (Cond) then
+
+ -- If condition is True, then analyze the THEN statements
+ -- and set no expansion for ELSE and ELSIF parts.
+
+ if Is_True (Expr_Value (Cond)) then
+ Analyze_Statements (Tstm);
+ Del := True;
+ Expander_Mode_Save_And_Set (False);
+
+ -- If condition is False, analyze THEN with expansion off
+
+ else -- Is_False (Expr_Value (Cond))
+ Expander_Mode_Save_And_Set (False);
+ Analyze_Statements (Tstm);
+ Expander_Mode_Restore;
+ end if;
+
+ -- Not known at compile time, not deleting, normal analysis
+
+ else
+ Analyze_Statements (Tstm);
+ end if;
+ end Analyze_Cond_Then;
+
+ -- Start of Analyze_If_Statement
+
+ begin
+ -- Initialize exit count for else statements. If there is no else
+ -- part, this count will stay non-zero reflecting the fact that the
+ -- uncovered else case is an unblocked exit.
+
+ Unblocked_Exit_Count := 1;
+ Analyze_Cond_Then (N);
+
+ -- Now to analyze the elsif parts if any are present
+
+ if Present (Elsif_Parts (N)) then
+ E := First (Elsif_Parts (N));
+ while Present (E) loop
+ Analyze_Cond_Then (E);
+ Next (E);
+ end loop;
+ end if;
+
+ if Present (Else_Statements (N)) then
+ Analyze_Statements (Else_Statements (N));
+ end if;
+
+ -- If all our exits were blocked by unconditional transfers of control,
+ -- then the entire IF statement acts as an unconditional transfer of
+ -- control, so treat it like one, and check unreachable code.
+
+ if Unblocked_Exit_Count = 0 then
+ Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+ Check_Unreachable_Code (N);
+ else
+ Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+ end if;
+
+ if Del then
+ Expander_Mode_Restore;
+ end if;
+
+ end Analyze_If_Statement;
+
+ ----------------------------------------
+ -- Analyze_Implicit_Label_Declaration --
+ ----------------------------------------
+
+ -- An implicit label declaration is generated in the innermost
+ -- enclosing declarative part. This is done for labels as well as
+ -- block and loop names.
+
+ -- Note: any changes in this routine may need to be reflected in
+ -- Analyze_Label_Entity.
+
+ procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
+ Id : Node_Id := Defining_Identifier (N);
+
+ begin
+ Enter_Name (Id);
+ Set_Ekind (Id, E_Label);
+ Set_Etype (Id, Standard_Void_Type);
+ Set_Enclosing_Scope (Id, Current_Scope);
+ end Analyze_Implicit_Label_Declaration;
+
+ ------------------------------
+ -- Analyze_Iteration_Scheme --
+ ------------------------------
+
+ procedure Analyze_Iteration_Scheme (N : Node_Id) is
+ begin
+ -- For an infinite loop, there is no iteration scheme
+
+ if No (N) then
+ return;
+
+ else
+ declare
+ Cond : constant Node_Id := Condition (N);
+
+ begin
+ -- For WHILE loop, verify that the condition is a Boolean
+ -- expression and resolve and check it.
+
+ if Present (Cond) then
+ Analyze_And_Resolve (Cond, Any_Boolean);
+ Check_Unset_Reference (Cond);
+
+ -- Else we have a FOR loop
+
+ else
+ declare
+ LP : constant Node_Id := Loop_Parameter_Specification (N);
+ Id : constant Entity_Id := Defining_Identifier (LP);
+ DS : constant Node_Id := Discrete_Subtype_Definition (LP);
+ F : List_Id;
+
+ begin
+ Enter_Name (Id);
+
+ -- We always consider the loop variable to be referenced,
+ -- since the loop may be used just for counting purposes.
+
+ Generate_Reference (Id, N, ' ');
+
+ -- Check for case of loop variable hiding a local
+ -- variable (used later on to give a nice warning
+ -- if the hidden variable is never assigned).
+
+ declare
+ H : constant Entity_Id := Homonym (Id);
+
+ begin
+ if Present (H)
+ and then Enclosing_Dynamic_Scope (H) =
+ Enclosing_Dynamic_Scope (Id)
+ and then Ekind (H) = E_Variable
+ and then Is_Discrete_Type (Etype (H))
+ then
+ Set_Hiding_Loop_Variable (H, Id);
+ end if;
+ end;
+
+ -- Now analyze the subtype definition
+
+ Analyze (DS);
+
+ if DS = Error then
+ return;
+ end if;
+
+ -- The subtype indication may denote the completion
+ -- of an incomplete type declaration.
+
+ if Is_Entity_Name (DS)
+ and then Present (Entity (DS))
+ and then Is_Type (Entity (DS))
+ and then Ekind (Entity (DS)) = E_Incomplete_Type
+ then
+ Set_Entity (DS, Get_Full_View (Entity (DS)));
+ Set_Etype (DS, Entity (DS));
+ end if;
+
+ if not Is_Discrete_Type (Etype (DS)) then
+ Wrong_Type (DS, Any_Discrete);
+ Set_Etype (DS, Any_Type);
+ end if;
+
+ Make_Index (DS, LP);
+
+ Set_Ekind (Id, E_Loop_Parameter);
+ Set_Etype (Id, Etype (DS));
+ Set_Is_Known_Valid (Id, True);
+
+ -- The loop is not a declarative part, so the only entity
+ -- declared "within" must be frozen explicitly. Since the
+ -- type of this entity has already been frozen, this cannot
+ -- generate any freezing actions.
+
+ F := Freeze_Entity (Id, Sloc (LP));
+ pragma Assert (F = No_List);
+
+ -- Check for null or possibly null range and issue warning
+
+ if Nkind (DS) = N_Range
+ and then Comes_From_Source (N)
+ and then not Inside_A_Generic
+ then
+ declare
+ L : constant Node_Id := Low_Bound (DS);
+ H : constant Node_Id := High_Bound (DS);
+
+ Llo : Uint;
+ Lhi : Uint;
+ LOK : Boolean;
+ Hlo : Uint;
+ Hhi : Uint;
+ HOK : Boolean;
+
+ begin
+ Determine_Range (L, LOK, Llo, Lhi);
+ Determine_Range (H, HOK, Hlo, Hhi);
+
+ -- If range of loop is null, issue warning
+
+ if (LOK and HOK) and then Llo > Hhi then
+ Warn_On_Instance := True;
+ Error_Msg_N
+ ("?loop range is null, loop will not execute",
+ DS);
+ Warn_On_Instance := False;
+
+ -- The other case for a warning is a reverse loop
+ -- where the upper bound is the integer literal
+ -- zero or one, and the lower bound can be positive.
+
+ elsif Reverse_Present (LP)
+ and then Nkind (H) = N_Integer_Literal
+ and then (Intval (H) = Uint_0
+ or else
+ Intval (H) = Uint_1)
+ and then Lhi > Hhi
+ then
+ Warn_On_Instance := True;
+ Error_Msg_N ("?loop range may be null", DS);
+ Warn_On_Instance := False;
+ end if;
+ end;
+ end if;
+ end;
+ end if;
+ end;
+ end if;
+ end Analyze_Iteration_Scheme;
+
+ -------------------
+ -- Analyze_Label --
+ -------------------
+
+ -- Important note: normally this routine is called from Analyze_Statements
+ -- which does a prescan, to make sure that the Reachable flags are set on
+ -- all labels before encountering a possible goto to one of these labels.
+ -- If expanded code analyzes labels via the normal Sem path, then it must
+ -- ensure that Reachable is set early enough to avoid problems in the case
+ -- of a forward goto.
+
+ procedure Analyze_Label (N : Node_Id) is
+ Lab : Entity_Id;
+
+ begin
+ Analyze (Identifier (N));
+ Lab := Entity (Identifier (N));
+
+ -- If we found a label mark it as reachable.
+
+ if Ekind (Lab) = E_Label then
+ Generate_Definition (Lab);
+ Set_Reachable (Lab);
+
+ if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
+ Set_Label_Construct (Parent (Lab), N);
+ end if;
+
+ -- If we failed to find a label, it means the implicit declaration
+ -- of the label was hidden. A for-loop parameter can do this to a
+ -- label with the same name inside the loop, since the implicit label
+ -- declaration is in the innermost enclosing body or block statement.
+
+ else
+ Error_Msg_Sloc := Sloc (Lab);
+ Error_Msg_N
+ ("implicit label declaration for & is hidden#",
+ Identifier (N));
+ end if;
+ end Analyze_Label;
+
+ --------------------------
+ -- Analyze_Label_Entity --
+ --------------------------
+
+ procedure Analyze_Label_Entity (E : Entity_Id) is
+ begin
+ Set_Ekind (E, E_Label);
+ Set_Etype (E, Standard_Void_Type);
+ Set_Enclosing_Scope (E, Current_Scope);
+ Set_Reachable (E, True);
+ end Analyze_Label_Entity;
+
+ ----------------------------
+ -- Analyze_Loop_Statement --
+ ----------------------------
+
+ procedure Analyze_Loop_Statement (N : Node_Id) is
+ Id : constant Node_Id := Identifier (N);
+ Ent : Entity_Id;
+
+ begin
+ if Present (Id) then
+
+ -- Make name visible, e.g. for use in exit statements. Loop
+ -- labels are always considered to be referenced.
+
+ Analyze (Id);
+ Ent := Entity (Id);
+ Generate_Reference (Ent, N, ' ');
+ Generate_Definition (Ent);
+
+ -- If we found a label, mark its type. If not, ignore it, since it
+ -- means we have a conflicting declaration, which would already have
+ -- been diagnosed at declaration time. Set Label_Construct of the
+ -- implicit label declaration, which is not created by the parser
+ -- for generic units.
+
+ if Ekind (Ent) = E_Label then
+ Set_Ekind (Ent, E_Loop);
+
+ if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
+ Set_Label_Construct (Parent (Ent), N);
+ end if;
+ end if;
+
+ -- Case of no identifier present
+
+ else
+ Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
+ Set_Etype (Ent, Standard_Void_Type);
+ Set_Parent (Ent, N);
+ end if;
+
+ New_Scope (Ent);
+ Analyze_Iteration_Scheme (Iteration_Scheme (N));
+ Analyze_Statements (Statements (N));
+ Process_End_Label (N, 'e');
+ End_Scope;
+ end Analyze_Loop_Statement;
+
+ ----------------------------
+ -- Analyze_Null_Statement --
+ ----------------------------
+
+ -- Note: the semantics of the null statement is implemented by a single
+ -- null statement, too bad everything isn't as simple as this!
+
+ procedure Analyze_Null_Statement (N : Node_Id) is
+ begin
+ null;
+ end Analyze_Null_Statement;
+
+ ------------------------
+ -- Analyze_Statements --
+ ------------------------
+
+ procedure Analyze_Statements (L : List_Id) is
+ S : Node_Id;
+
+ begin
+ -- The labels declared in the statement list are reachable from
+ -- statements in the list. We do this as a prepass so that any
+ -- goto statement will be properly flagged if its target is not
+ -- reachable. This is not required, but is nice behavior!
+
+ S := First (L);
+
+ while Present (S) loop
+ if Nkind (S) = N_Label then
+ Analyze_Label (S);
+ end if;
+
+ Next (S);
+ end loop;
+
+ -- Perform semantic analysis on all statements
+
+ S := First (L);
+
+ while Present (S) loop
+
+ if Nkind (S) /= N_Label then
+ Analyze (S);
+ end if;
+
+ Next (S);
+ end loop;
+
+ -- Make labels unreachable. Visibility is not sufficient, because
+ -- labels in one if-branch for example are not reachable from the
+ -- other branch, even though their declarations are in the enclosing
+ -- declarative part.
+
+ S := First (L);
+
+ while Present (S) loop
+ if Nkind (S) = N_Label then
+ Set_Reachable (Entity (Identifier (S)), False);
+ end if;
+
+ Next (S);
+ end loop;
+ end Analyze_Statements;
+
+ ----------------------------
+ -- Check_Unreachable_Code --
+ ----------------------------
+
+ procedure Check_Unreachable_Code (N : Node_Id) is
+ Error_Loc : Source_Ptr;
+ P : Node_Id;
+
+ begin
+ if Is_List_Member (N)
+ and then Comes_From_Source (N)
+ then
+ declare
+ Nxt : Node_Id;
+
+ begin
+ Nxt := Original_Node (Next (N));
+
+ if Present (Nxt)
+ and then Comes_From_Source (Nxt)
+ and then Is_Statement (Nxt)
+ then
+ -- Special very annoying exception. If we have a return that
+ -- follows a raise, then we allow it without a warning, since
+ -- the Ada RM annoyingly requires a useless return here!
+
+ if Nkind (Original_Node (N)) /= N_Raise_Statement
+ or else Nkind (Nxt) /= N_Return_Statement
+ then
+ -- The rather strange shenanigans with the warning message
+ -- here reflects the fact that Kill_Dead_Code is very good
+ -- at removing warnings in deleted code, and this is one
+ -- warning we would prefer NOT to have removed :-)
+
+ Error_Loc := Sloc (Nxt);
+
+ -- If we have unreachable code, analyze and remove the
+ -- unreachable code, since it is useless and we don't
+ -- want to generate junk warnings.
+
+ -- We skip this step if we are not in code generation mode.
+ -- This is the one case where we remove dead code in the
+ -- semantics as opposed to the expander, and we do not want
+ -- to remove code if we are not in code generation mode,
+ -- since this messes up the ASIS trees.
+
+ -- Note that one might react by moving the whole circuit to
+ -- exp_ch5, but then we lose the warning in -gnatc mode.
+
+ if Operating_Mode = Generate_Code then
+ loop
+ Nxt := Next (N);
+ exit when No (Nxt) or else not Is_Statement (Nxt);
+ Analyze (Nxt);
+ Remove (Nxt);
+ Kill_Dead_Code (Nxt);
+ end loop;
+ end if;
+
+ -- Now issue the warning
+
+ Error_Msg ("?unreachable code", Error_Loc);
+ end if;
+
+ -- If the unconditional transfer of control instruction is
+ -- the last statement of a sequence, then see if our parent
+ -- is an IF statement, and if so adjust the unblocked exit
+ -- count of the if statement to reflect the fact that this
+ -- branch of the if is indeed blocked by a transfer of control.
+
+ else
+ P := Parent (N);
+
+ if Nkind (P) = N_If_Statement then
+ null;
+
+ elsif Nkind (P) = N_Elsif_Part then
+ P := Parent (P);
+ pragma Assert (Nkind (P) = N_If_Statement);
+
+ elsif Nkind (P) = N_Case_Statement_Alternative then
+ P := Parent (P);
+ pragma Assert (Nkind (P) = N_Case_Statement);
+
+ else
+ return;
+ end if;
+
+ Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
+ end if;
+ end;
+ end if;
+ end Check_Unreachable_Code;
+
+end Sem_Ch5;