diff options
author | charlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4> | 2003-10-21 13:42:24 +0000 |
---|---|---|
committer | charlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4> | 2003-10-21 13:42:24 +0000 |
commit | 9dfe12ae5b94d03c997ea2903022a5d2d5c5f266 (patch) | |
tree | bdfc70477b60f1220cb05dd233a4570dd9c6bb5c /gcc/ada/s-strxdr.adb | |
parent | 1c662558a1113238a624245a45382d3df90ccf13 (diff) | |
download | gcc-9dfe12ae5b94d03c997ea2903022a5d2d5c5f266.tar.gz |
2003-10-21 Arnaud Charlet <charlet@act-europe.fr>
* 3psoccon.ads, 3veacodu.adb, 3vexpect.adb, 3vsoccon.ads,
3vsocthi.adb, 3vsocthi.ads, 3vtrasym.adb, 3zsoccon.ads,
3zsocthi.adb, 3zsocthi.ads, 50system.ads, 51system.ads,
55system.ads, 56osinte.adb, 56osinte.ads, 56taprop.adb,
56taspri.ads, 56tpopsp.adb, 57system.ads, 58system.ads,
59system.ads, 5aml-tgt.adb, 5bml-tgt.adb, 5csystem.ads,
5dsystem.ads, 5fosinte.adb, 5gml-tgt.adb, 5hml-tgt.adb,
5isystem.ads, 5lparame.adb, 5msystem.ads, 5psystem.ads,
5sml-tgt.adb, 5sosprim.adb, 5stpopsp.adb, 5tsystem.ads,
5usystem.ads, 5vml-tgt.adb, 5vsymbol.adb, 5vtraent.adb,
5vtraent.ads, 5wml-tgt.adb, 5xparame.ads, 5xsystem.ads,
5xvxwork.ads, 5yparame.ads, 5ytiitho.adb, 5zinit.adb,
5zml-tgt.adb, 5zparame.ads, 5ztaspri.ads, 5ztfsetr.adb,
5zthrini.adb, 5ztiitho.adb, 5ztpopsp.adb, 7stfsetr.adb,
7straces.adb, 7strafor.adb, 7strafor.ads, 7stratas.adb,
a-excach.adb, a-exexda.adb, a-exexpr.adb, a-exextr.adb,
a-exstat.adb, a-strsup.adb, a-strsup.ads, a-stwisu.adb,
a-stwisu.ads, bld.adb, bld.ads, bld-io.adb,
bld-io.ads, clean.adb, clean.ads, ctrl_c.c,
erroutc.adb, erroutc.ads, errutil.adb, errutil.ads,
err_vars.ads, final.c, g-arrspl.adb, g-arrspl.ads,
g-boubuf.adb, g-boubuf.ads, g-boumai.ads, g-bubsor.adb,
g-bubsor.ads, g-comver.adb, g-comver.ads, g-ctrl_c.ads,
g-dynhta.adb, g-dynhta.ads, g-eacodu.adb, g-excact.adb,
g-excact.ads, g-heasor.adb, g-heasor.ads, g-memdum.adb,
g-memdum.ads, gnatclean.adb, gnatsym.adb, g-pehage.adb,
g-pehage.ads, g-perhas.ads, gpr2make.adb, gpr2make.ads,
gprcmd.adb, gprep.adb, gprep.ads, g-semaph.adb,
g-semaph.ads, g-string.adb, g-string.ads, g-strspl.ads,
g-wistsp.ads, i-vthrea.adb, i-vthrea.ads, i-vxwoio.adb,
i-vxwoio.ads, Makefile.generic, Makefile.prolog, Makefile.rtl,
prep.adb, prep.ads, prepcomp.adb, prepcomp.ads,
prj-err.adb, prj-err.ads, s-boarop.ads, s-carsi8.adb,
s-carsi8.ads, s-carun8.adb, s-carun8.ads, s-casi16.adb,
s-casi16.ads, s-casi32.adb, s-casi32.ads, s-casi64.adb,
s-casi64.ads, s-casuti.adb, s-casuti.ads, s-caun16.adb,
s-caun16.ads, s-caun32.adb, s-caun32.ads, s-caun64.adb,
s-caun64.ads, scng.adb, scng.ads, s-exnint.adb,
s-exnllf.adb, s-exnlli.adb, s-expint.adb, s-explli.adb,
s-geveop.adb, s-geveop.ads, s-hibaen.ads, s-htable.adb,
s-htable.ads, sinput-c.adb, sinput-c.ads, s-memcop.ads,
socket.c, s-purexc.ads, s-scaval.adb, s-stopoo.adb,
s-strcom.adb, s-strcom.ads, s-strxdr.adb, s-rident.ads,
s-thread.adb, s-thread.ads, s-tpae65.adb, s-tpae65.ads,
s-tporft.adb, s-traent.adb, s-traent.ads, styleg.adb,
styleg.ads, styleg-c.adb, styleg-c.ads, s-veboop.adb,
s-veboop.ads, s-vector.ads, symbols.adb, symbols.ads,
tb-alvms.c, tb-alvxw.c, tempdir.adb, tempdir.ads,
vms_conv.ads, vms_conv.adb, vms_data.ads,
vxaddr2line.adb: Files added. Merge with ACT tree.
* 4dintnam.ads, 4mintnam.ads, 4uintnam.ads, 52system.ads,
5dosinte.ads, 5etpopse.adb, 5mosinte.ads, 5qosinte.adb,
5qosinte.ads, 5qstache.adb, 5qtaprop.adb, 5qtaspri.ads,
5stpopse.adb, 5uintman.adb, 5uosinte.ads, adafinal.c,
g-enblsp.adb, io-aux.c, scn-nlit.adb, scn-slit.adb,
s-exnflt.ads, s-exngen.adb, s-exngen.ads, s-exnlfl.ads,
s-exnlin.ads, s-exnsfl.ads, s-exnsin.ads, s-exnssi.ads,
s-expflt.ads, s-expgen.adb, s-expgen.ads, s-explfl.ads,
s-explin.ads, s-expllf.ads, s-expsfl.ads, s-expsin.ads,
s-expssi.ads, style.adb: Files removed. Merge with ACT tree.
* 1ic.ads, 31soccon.ads, 31soliop.ads, 3asoccon.ads,
3bsoccon.ads, 3gsoccon.ads, 3hsoccon.ads, 3ssoccon.ads,
3ssoliop.ads, 3wsoccon.ads, 3wsocthi.adb, 3wsocthi.ads,
3wsoliop.ads, 41intnam.ads, 42intnam.ads, 4aintnam.ads,
4cintnam.ads, 4gintnam.ads, 4hexcpol.adb, 4hintnam.ads,
4lintnam.ads, 4nintnam.ads, 4ointnam.ads, 4onumaux.ads,
4pintnam.ads, 4sintnam.ads, 4vcaldel.adb, 4vcalend.adb,
4vintnam.ads, 4wexcpol.adb, 4wintnam.ads, 4zintnam.ads,
51osinte.adb, 51osinte.ads, 52osinte.adb, 52osinte.ads,
53osinte.ads, 54osinte.ads, 5aosinte.adb, 5aosinte.ads,
5asystem.ads, 5ataprop.adb, 5atasinf.ads, 5ataspri.ads,
5atpopsp.adb, 5avxwork.ads, 5bosinte.adb, 5bosinte.ads,
5bsystem.ads, 5cosinte.ads, 5esystem.ads, 5fintman.adb,
5fosinte.ads, 5fsystem.ads, 5ftaprop.adb, 5ftasinf.ads,
5ginterr.adb, 5gintman.adb, 5gmastop.adb, 5gosinte.ads,
5gproinf.ads, 5gsystem.ads, 5gtaprop.adb, 5gtasinf.ads,
5gtpgetc.adb, 5hosinte.adb, 5hosinte.ads, 5hsystem.ads,
5htaprop.adb, 5htaspri.ads, 5htraceb.adb, 5iosinte.adb,
5itaprop.adb, 5itaspri.ads, 5ksystem.ads, 5kvxwork.ads,
5lintman.adb, 5lml-tgt.adb, 5losinte.ads, 5lsystem.ads,
5mvxwork.ads, 5ninmaop.adb, 5nintman.adb, 5nosinte.ads,
5ntaprop.adb, 5ntaspri.ads, 5ointerr.adb, 5omastop.adb,
5oosinte.adb, 5oosinte.ads, 5oosprim.adb, 5oparame.adb,
5osystem.ads, 5otaprop.adb, 5otaspri.ads, 5posinte.ads,
5posprim.adb, 5pvxwork.ads, 5sintman.adb, 5sosinte.adb,
5sosinte.ads, 5ssystem.ads, 5staprop.adb, 5stasinf.ads,
5staspri.ads, 5svxwork.ads, 5tosinte.ads, 5vasthan.adb,
5vinmaop.adb, 5vinterr.adb, 5vintman.adb, 5vintman.ads,
5vmastop.adb, 5vosinte.adb, 5vosinte.ads, 5vosprim.adb,
5vsystem.ads, 5vtaprop.adb, 5vtaspri.ads, 5vtpopde.adb,
5vtpopde.ads, 5wgloloc.adb, 5wintman.adb, 5wmemory.adb,
5wosprim.adb, 5wsystem.ads, 5wtaprop.adb, 5wtaspri.ads,
5ysystem.ads, 5zinterr.adb, 5zintman.adb, 5zosinte.adb,
5zosinte.ads, 5zosprim.adb, 5zsystem.ads, 5ztaprop.adb,
6vcpp.adb, 6vcstrea.adb, 6vinterf.ads, 7sinmaop.adb,
7sintman.adb, 7sosinte.adb, 7sosprim.adb, 7staprop.adb,
7staspri.ads, 7stpopsp.adb, 7straceb.adb, 9drpc.adb,
a-caldel.adb, a-caldel.ads, a-charac.ads, a-colien.ads,
a-comlin.adb, adaint.c, adaint.h, ada-tree.def,
a-diocst.adb, a-diocst.ads, a-direio.adb, a-except.adb,
a-except.ads, a-excpol.adb, a-exctra.adb, a-exctra.ads,
a-filico.adb, a-interr.adb, a-intsig.adb, a-intsig.ads,
ali.adb, ali.ads, ali-util.adb, ali-util.ads,
a-ngcefu.adb, a-ngcoty.adb, a-ngelfu.adb, a-nudira.adb,
a-nudira.ads, a-nuflra.adb, a-nuflra.ads, a-reatim.adb,
a-reatim.ads, a-retide.ads, a-sequio.adb, a-siocst.adb,
a-siocst.ads, a-ssicst.adb, a-ssicst.ads, a-strbou.adb,
a-strbou.ads, a-strfix.adb, a-strmap.adb, a-strsea.ads,
a-strunb.adb, a-strunb.ads, a-ststio.adb, a-stunau.adb,
a-stunau.ads, a-stwibo.adb, a-stwibo.ads, a-stwifi.adb,
a-stwima.adb, a-stwiun.adb, a-stwiun.ads, a-tags.adb,
a-tags.ads, a-tasatt.adb, a-taside.adb, a-teioed.adb,
a-textio.adb, a-textio.ads, a-tienau.adb, a-tifiio.adb,
a-tiflau.adb, a-tiflio.adb, a-tigeau.adb, a-tigeau.ads,
a-tiinau.adb, a-timoau.adb, a-tiocst.adb, a-tiocst.ads,
atree.adb, atree.ads, a-witeio.adb, a-witeio.ads,
a-wtcstr.adb, a-wtcstr.ads, a-wtdeio.adb, a-wtedit.adb,
a-wtenau.adb, a-wtflau.adb, a-wtinau.adb, a-wtmoau.adb,
bcheck.adb, binde.adb, bindgen.adb, bindusg.adb,
checks.adb, checks.ads, cio.c, comperr.adb,
comperr.ads, csets.adb, cstand.adb, cstreams.c,
debug_a.adb, debug_a.ads, debug.adb, decl.c,
einfo.adb, einfo.ads, errout.adb, errout.ads,
eval_fat.adb, eval_fat.ads, exp_aggr.adb, expander.adb,
expander.ads, exp_attr.adb, exp_ch11.adb, exp_ch13.adb,
exp_ch2.adb, exp_ch3.adb, exp_ch3.ads, exp_ch4.adb,
exp_ch5.adb, exp_ch6.adb, exp_ch7.adb, exp_ch7.ads,
exp_ch8.adb, exp_ch9.adb, exp_code.adb, exp_dbug.adb,
exp_dbug.ads, exp_disp.adb, exp_dist.adb, expect.c,
exp_fixd.adb, exp_imgv.adb, exp_intr.adb, exp_pakd.adb,
exp_prag.adb, exp_strm.adb, exp_strm.ads, exp_tss.adb,
exp_tss.ads, exp_util.adb, exp_util.ads, exp_vfpt.adb,
fe.h, fmap.adb, fmap.ads, fname.adb,
fname.ads, fname-uf.adb, fname-uf.ads, freeze.adb,
freeze.ads, frontend.adb, g-awk.adb, g-awk.ads,
g-busora.adb, g-busora.ads, g-busorg.adb, g-busorg.ads,
g-casuti.adb, g-casuti.ads, g-catiio.adb, g-catiio.ads,
g-cgi.adb, g-cgi.ads, g-cgicoo.adb, g-cgicoo.ads,
g-cgideb.adb, g-cgideb.ads, g-comlin.adb, g-comlin.ads,
g-crc32.adb, g-crc32.ads, g-debpoo.adb, g-debpoo.ads,
g-debuti.adb, g-debuti.ads, g-diopit.adb, g-diopit.ads,
g-dirope.adb, g-dirope.ads, g-dyntab.adb, g-dyntab.ads,
g-except.ads, g-exctra.adb, g-exctra.ads, g-expect.adb,
g-expect.ads, g-hesora.adb, g-hesora.ads, g-hesorg.adb,
g-hesorg.ads, g-htable.adb, g-htable.ads, gigi.h,
g-io.adb, g-io.ads, g-io_aux.adb, g-io_aux.ads,
g-locfil.adb, g-locfil.ads, g-md5.adb, g-md5.ads,
gmem.c, gnat1drv.adb, gnatbind.adb, gnatchop.adb,
gnatcmd.adb, gnatfind.adb, gnatkr.adb, gnatlbr.adb,
gnatlink.adb, gnatls.adb, gnatmake.adb, gnatmem.adb,
gnatname.adb, gnatprep.adb, gnatprep.ads, gnatpsta.adb,
gnatxref.adb, g-os_lib.adb, g-os_lib.ads, g-regexp.adb,
g-regexp.ads, g-regist.adb, g-regist.ads, g-regpat.adb,
g-regpat.ads, g-soccon.ads, g-socket.adb, g-socket.ads,
g-socthi.adb, g-socthi.ads, g-soliop.ads, g-souinf.ads,
g-speche.adb, g-speche.ads, g-spipat.adb, g-spipat.ads,
g-spitbo.adb, g-spitbo.ads, g-sptabo.ads, g-sptain.ads,
g-sptavs.ads, g-table.adb, g-table.ads, g-tasloc.adb,
g-tasloc.ads, g-thread.adb, g-thread.ads, g-traceb.adb,
g-traceb.ads, g-trasym.adb, g-trasym.ads, hostparm.ads,
i-c.ads, i-cobol.adb, i-cpp.adb, i-cstrea.ads,
i-cstrin.adb, i-cstrin.ads, impunit.adb, init.c,
inline.adb, interfac.ads, i-pacdec.ads, itypes.adb,
itypes.ads, i-vxwork.ads, lang.opt, lang-specs.h,
layout.adb, lib.adb, lib.ads, lib-list.adb,
lib-load.adb, lib-load.ads, lib-sort.adb, lib-util.adb,
lib-writ.adb, lib-writ.ads, lib-xref.adb, lib-xref.ads,
link.c, live.adb, make.adb, make.ads,
Makefile.adalib, Makefile.in, Make-lang.in, makeusg.adb,
mdll.adb, mdll-fil.adb, mdll-fil.ads, mdll-utl.adb,
mdll-utl.ads, memroot.adb, memroot.ads, memtrack.adb,
misc.c, mkdir.c, mlib.adb, mlib.ads,
mlib-fil.adb, mlib-fil.ads, mlib-prj.adb, mlib-prj.ads,
mlib-tgt.adb, mlib-tgt.ads, mlib-utl.adb, mlib-utl.ads,
namet.adb, namet.ads, namet.h, nlists.ads,
nlists.h, nmake.adt, opt.adb, opt.ads,
osint.adb, osint.ads, osint-b.adb, osint-c.adb,
par.adb, par-ch10.adb, par-ch11.adb, par-ch2.adb,
par-ch3.adb, par-ch4.adb, par-ch5.adb, par-ch6.adb,
par-ch9.adb, par-endh.adb, par-labl.adb, par-load.adb,
par-prag.adb, par-sync.adb, par-tchk.adb, par-util.adb,
prj.adb, prj.ads, prj-attr.adb, prj-attr.ads,
prj-com.adb, prj-com.ads, prj-dect.adb, prj-dect.ads,
prj-env.adb, prj-env.ads, prj-ext.adb, prj-ext.ads,
prj-makr.adb, prj-makr.ads, prj-nmsc.adb, prj-nmsc.ads,
prj-pars.adb, prj-pars.ads, prj-part.adb, prj-part.ads,
prj-pp.adb, prj-pp.ads, prj-proc.adb, prj-proc.ads,
prj-strt.adb, prj-strt.ads, prj-tree.adb, prj-tree.ads,
prj-util.adb, prj-util.ads, raise.c, raise.h,
repinfo.adb, repinfo.h, restrict.adb, restrict.ads,
rident.ads, rtsfind.adb, rtsfind.ads, s-addima.ads,
s-arit64.adb, s-assert.adb, s-assert.ads, s-atacco.adb,
s-atacco.ads, s-auxdec.adb, s-auxdec.ads, s-bitops.adb,
scans.ads, scn.adb, scn.ads, s-crc32.adb,
s-crc32.ads, s-direio.adb, sem.adb, sem.ads,
sem_aggr.adb, sem_attr.adb, sem_attr.ads, sem_case.adb,
sem_case.ads, sem_cat.adb, sem_cat.ads, sem_ch10.adb,
sem_ch11.adb, sem_ch12.adb, sem_ch12.ads, sem_ch13.adb,
sem_ch13.ads, sem_ch3.adb, sem_ch3.ads, sem_ch4.adb,
sem_ch5.adb, sem_ch5.ads, sem_ch6.adb, sem_ch6.ads,
sem_ch7.adb, sem_ch7.ads, sem_ch8.adb, sem_ch8.ads,
sem_ch9.adb, sem_disp.adb, sem_disp.ads, sem_dist.adb,
sem_elab.adb, sem_eval.adb, sem_eval.ads, sem_intr.adb,
sem_maps.adb, sem_mech.adb, sem_prag.adb, sem_prag.ads,
sem_res.adb, sem_res.ads, sem_type.adb, sem_type.ads,
sem_util.adb, sem_util.ads, sem_warn.adb, s-errrep.adb,
s-errrep.ads, s-exctab.adb, s-exctab.ads, s-exnint.ads,
s-exnllf.ads, s-exnlli.ads, s-expint.ads, s-explli.ads,
s-expuns.ads, s-fatflt.ads, s-fatgen.adb, s-fatgen.ads,
s-fatlfl.ads, s-fatllf.ads, s-fatsfl.ads, s-fileio.adb,
s-fileio.ads, s-finimp.adb, s-finimp.ads, s-finroo.adb,
s-finroo.ads, sfn_scan.adb, s-gloloc.adb, s-gloloc.ads,
s-imgdec.adb, s-imgenu.adb, s-imgrea.adb, s-imgwch.adb,
sinfo.adb, sinfo.ads, s-inmaop.ads, sinput.adb,
sinput.ads, sinput-d.adb, sinput-l.adb, sinput-l.ads,
sinput-p.adb, sinput-p.ads, s-interr.adb, s-interr.ads,
s-intman.ads, s-maccod.ads, s-mastop.adb, s-mastop.ads,
s-memory.adb, s-memory.ads, snames.adb, snames.ads,
snames.h, s-osprim.ads, s-parame.ads, s-parint.ads,
s-pooloc.adb, s-pooloc.ads, s-poosiz.adb, sprint.adb,
s-proinf.ads, s-scaval.ads, s-secsta.adb, s-secsta.ads,
s-sequio.adb, s-shasto.adb, s-shasto.ads, s-soflin.ads,
s-stache.adb, s-stache.ads, s-stalib.adb, s-stalib.ads,
s-stoele.ads, s-stopoo.ads, s-stratt.adb, s-stratt.ads,
s-strops.adb, s-strops.ads, s-taasde.adb, s-taasde.ads,
s-tadeca.adb, s-tadeca.ads, s-tadert.adb, s-tadert.ads,
s-taenca.adb, s-taenca.ads, s-taprob.adb, s-taprob.ads,
s-taprop.ads, s-tarest.adb, s-tarest.ads, s-tasdeb.adb,
s-tasdeb.ads, s-tasinf.adb, s-tasinf.ads, s-tasini.adb,
s-tasini.ads, s-taskin.adb, s-taskin.ads, s-tasque.adb,
s-tasque.ads, s-tasren.adb, s-tasren.ads, s-tasres.ads,
s-tassta.adb, s-tassta.ads, s-tasuti.adb, s-tasuti.ads,
s-tataat.adb, s-tataat.ads, s-tpinop.adb, s-tpinop.ads,
s-tpoben.adb, s-tpoben.ads, s-tpobop.adb, s-tpobop.ads,
s-tposen.adb, s-tposen.ads, s-traceb.adb, s-traceb.ads,
stringt.adb, stringt.ads, stringt.h, style.ads,
stylesw.adb, stylesw.ads, s-unstyp.ads, s-vaflop.ads,
s-valrea.adb, s-valuti.adb, s-vercon.adb, s-vmexta.adb,
s-wchcnv.ads, s-wchcon.ads, s-widcha.adb, switch.adb,
switch.ads, switch-b.adb, switch-c.adb, switch-m.adb,
s-wwdcha.adb, s-wwdwch.adb, sysdep.c, system.ads,
table.adb, table.ads, targparm.adb, targparm.ads,
targtyps.c, tbuild.adb, tbuild.ads, tracebak.c,
trans.c, tree_io.adb, treepr.adb, treeprs.adt,
ttypes.ads, types.ads, types.h, uintp.adb,
uintp.ads, uintp.h, uname.adb, urealp.adb,
urealp.ads, urealp.h, usage.adb, utils2.c,
utils.c, validsw.adb, validsw.ads, widechar.adb,
xeinfo.adb, xnmake.adb, xref_lib.adb, xref_lib.ads,
xr_tabls.adb, xr_tabls.ads, xtreeprs.adb, xsnames.adb,
einfo.h, sinfo.h, treeprs.ads, nmake.ads, nmake.adb,
gnatvsn.ads: Merge with ACT tree.
* gnatvsn.adb: Rewritten in a simpler and more efficient way.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@72751 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/ada/s-strxdr.adb')
-rw-r--r-- | gcc/ada/s-strxdr.adb | 1811 |
1 files changed, 1811 insertions, 0 deletions
diff --git a/gcc/ada/s-strxdr.adb b/gcc/ada/s-strxdr.adb new file mode 100644 index 00000000000..0a13cf38850 --- /dev/null +++ b/gcc/ada/s-strxdr.adb @@ -0,0 +1,1811 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT RUNTIME COMPONENTS -- +-- -- +-- S Y S T E M . S T R E A M _ A T T R I B U T E S -- +-- -- +-- B o d y -- +-- -- +-- Copyright (C) 1996-2003 Free Software Foundation, Inc. -- +-- -- +-- GARLIC is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 2, or (at your option) any later ver- -- +-- sion. GARLIC is distributed in the hope that it will be useful, but -- +-- WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABI- -- +-- LITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public -- +-- License for more details. You should have received a copy of the GNU -- +-- General Public License distributed with GARLIC; see file COPYING. If -- +-- not, write to the Free Software Foundation, 59 Temple Place - Suite 330, -- +-- Boston, MA 02111-1307, USA. -- +-- -- +-- As a special exception, if other files instantiate generics from this -- +-- unit, or you link this unit with other files to produce an executable, -- +-- this unit does not by itself cause the resulting executable to be -- +-- covered by the GNU General Public License. This exception does not -- +-- however invalidate any other reasons why the executable file might be -- +-- covered by the GNU Public License. -- +-- -- +-- GNAT was originally developed by the GNAT team at New York University. -- +-- Extensive contributions were provided by Ada Core Technologies Inc. -- +-- -- +------------------------------------------------------------------------------ + +-- This file is an alternate version of s-stratt.adb based on the XDR +-- standard. It is especially useful for exchanging streams between two +-- different systems with different basic type representations and endianess. + +with Ada.Streams; use Ada.Streams; +with Ada.Unchecked_Conversion; + +package body System.Stream_Attributes is + + pragma Suppress (Range_Check); + pragma Suppress (Overflow_Check); + + use UST; + + Data_Error : exception; + -- Exception raised if insufficient data read. + + SU : constant := System.Storage_Unit; + -- XXXXX pragma Assert (SU = 8); + + BB : constant := 2 ** SU; -- Byte base + BL : constant := 2 ** SU - 1; -- Byte last + BS : constant := 2 ** (SU - 1); -- Byte sign + + US : constant := Unsigned'Size; -- Unsigned size + UB : constant := (US - 1) / SU + 1; -- Unsigned byte + UL : constant := 2 ** US - 1; -- Unsigned last + + subtype SE is Ada.Streams.Stream_Element; + subtype SEA is Ada.Streams.Stream_Element_Array; + subtype SEO is Ada.Streams.Stream_Element_Offset; + + generic function UC renames Ada.Unchecked_Conversion; + + type Field_Type is + record + E_Size : Integer; -- Exponent bit size + E_Bias : Integer; -- Exponent bias + F_Size : Integer; -- Fraction bit size + E_Last : Integer; -- Max exponent value + F_Mask : SE; -- Mask to apply on first fraction byte + E_Bytes : SEO; -- N. of exponent bytes completly used + F_Bytes : SEO; -- N. of fraction bytes completly used + F_Bits : Integer; -- N. of bits used on first fraction word + end record; + + type Precision is (Single, Double, Quadruple); + + Fields : constant array (Precision) of Field_Type := ( + + -- Single precision + + (E_Size => 8, + E_Bias => 127, + F_Size => 23, + E_Last => 2 ** 8 - 1, + F_Mask => 16#7F#, -- 2 ** 7 - 1, + E_Bytes => 2, + F_Bytes => 3, + F_Bits => 23 mod US), + + -- Double precision + + (E_Size => 11, + E_Bias => 1023, + F_Size => 52, + E_Last => 2 ** 11 - 1, + F_Mask => 16#0F#, -- 2 ** 4 - 1, + E_Bytes => 2, + F_Bytes => 7, + F_Bits => 52 mod US), + + -- Quadruple precision + + (E_Size => 15, + E_Bias => 16383, + F_Size => 112, + E_Last => 2 ** 8 - 1, + F_Mask => 16#FF#, -- 2 ** 8 - 1, + E_Bytes => 2, + F_Bytes => 14, + F_Bits => 112 mod US)); + + -- The representation of all items requires a multiple of four bytes + -- (or 32 bits) of data. The bytes are numbered 0 through n-1. The bytes + -- are read or written to some byte stream such that byte m always + -- precedes byte m+1. If the n bytes needed to contain the data are not + -- a multiple of four, then the n bytes are followed by enough (0 to 3) + -- residual zero bytes, r, to make the total byte count a multiple of 4. + + -- An XDR signed integer is a 32-bit datum that encodes an integer + -- in the range [-2147483648,2147483647]. The integer is represented + -- in two's complement notation. The most and least significant bytes + -- are 0 and 3, respectively. Integers are declared as follows: + -- + -- (MSB) (LSB) + -- +-------+-------+-------+-------+ + -- |byte 0 |byte 1 |byte 2 |byte 3 | + -- +-------+-------+-------+-------+ + -- <------------32 bits------------> + + SSI_L : constant := 1; + SI_L : constant := 2; + I_L : constant := 4; + LI_L : constant := 8; + LLI_L : constant := 8; + + subtype XDR_S_SSI is SEA (1 .. SSI_L); + subtype XDR_S_SI is SEA (1 .. SI_L); + subtype XDR_S_I is SEA (1 .. I_L); + subtype XDR_S_LI is SEA (1 .. LI_L); + subtype XDR_S_LLI is SEA (1 .. LLI_L); + + function Short_Short_Integer_To_XDR_S_SSI is + new Ada.Unchecked_Conversion (Short_Short_Integer, XDR_S_SSI); + function XDR_S_SSI_To_Short_Short_Integer is + new Ada.Unchecked_Conversion (XDR_S_SSI, Short_Short_Integer); + + function Short_Integer_To_XDR_S_SI is + new Ada.Unchecked_Conversion (Short_Integer, XDR_S_SI); + function XDR_S_SI_To_Short_Integer is + new Ada.Unchecked_Conversion (XDR_S_SI, Short_Integer); + + function Integer_To_XDR_S_I is + new Ada.Unchecked_Conversion (Integer, XDR_S_I); + function XDR_S_I_To_Integer is + new Ada.Unchecked_Conversion (XDR_S_I, Integer); + + function Long_Long_Integer_To_XDR_S_LI is + new Ada.Unchecked_Conversion (Long_Long_Integer, XDR_S_LI); + function XDR_S_LI_To_Long_Long_Integer is + new Ada.Unchecked_Conversion (XDR_S_LI, Long_Long_Integer); + + function Long_Long_Integer_To_XDR_S_LLI is + new Ada.Unchecked_Conversion (Long_Long_Integer, XDR_S_LLI); + function XDR_S_LLI_To_Long_Long_Integer is + new Ada.Unchecked_Conversion (XDR_S_LLI, Long_Long_Integer); + + -- An XDR unsigned integer is a 32-bit datum that encodes a nonnegative + -- integer in the range [0,4294967295]. It is represented by an unsigned + -- binary number whose most and least significant bytes are 0 and 3, + -- respectively. An unsigned integer is declared as follows: + -- + -- (MSB) (LSB) + -- +-------+-------+-------+-------+ + -- |byte 0 |byte 1 |byte 2 |byte 3 | + -- +-------+-------+-------+-------+ + -- <------------32 bits------------> + + SSU_L : constant := 1; + SU_L : constant := 2; + U_L : constant := 4; + LU_L : constant := 8; + LLU_L : constant := 8; + + subtype XDR_S_SSU is SEA (1 .. SSU_L); + subtype XDR_S_SU is SEA (1 .. SU_L); + subtype XDR_S_U is SEA (1 .. U_L); + subtype XDR_S_LU is SEA (1 .. LU_L); + subtype XDR_S_LLU is SEA (1 .. LLU_L); + + type XDR_SSU is mod BB ** SSU_L; + type XDR_SU is mod BB ** SU_L; + type XDR_U is mod BB ** U_L; + + function Short_Unsigned_To_XDR_S_SU is + new Ada.Unchecked_Conversion (Short_Unsigned, XDR_S_SU); + function XDR_S_SU_To_Short_Unsigned is + new Ada.Unchecked_Conversion (XDR_S_SU, Short_Unsigned); + + function Unsigned_To_XDR_S_U is + new Ada.Unchecked_Conversion (Unsigned, XDR_S_U); + function XDR_S_U_To_Unsigned is + new Ada.Unchecked_Conversion (XDR_S_U, Unsigned); + + function Long_Long_Unsigned_To_XDR_S_LU is + new Ada.Unchecked_Conversion (Long_Long_Unsigned, XDR_S_LU); + function XDR_S_LU_To_Long_Long_Unsigned is + new Ada.Unchecked_Conversion (XDR_S_LU, Long_Long_Unsigned); + + function Long_Long_Unsigned_To_XDR_S_LLU is + new Ada.Unchecked_Conversion (Long_Long_Unsigned, XDR_S_LLU); + function XDR_S_LLU_To_Long_Long_Unsigned is + new Ada.Unchecked_Conversion (XDR_S_LLU, Long_Long_Unsigned); + + -- The standard defines the floating-point data type "float" (32 bits + -- or 4 bytes). The encoding used is the IEEE standard for normalized + -- single-precision floating-point numbers. + + -- The standard defines the encoding for the double-precision + -- floating-point data type "double" (64 bits or 8 bytes). The + -- encoding used is the IEEE standard for normalized double-precision + -- floating-point numbers. + + SF_L : constant := 4; -- Single precision + F_L : constant := 4; -- Single precision + LF_L : constant := 8; -- Double precision + LLF_L : constant := 16; -- Quadruple precision + + TM_L : constant := 8; + subtype XDR_S_TM is SEA (1 .. TM_L); + type XDR_TM is mod BB ** TM_L; + + type XDR_SA is mod 2 ** Standard'Address_Size; + function To_XDR_SA is new UC (System.Address, XDR_SA); + function To_XDR_SA is new UC (XDR_SA, System.Address); + + -- Enumerations have the same representation as signed integers. + -- Enumerations are handy for describing subsets of the integers. + + -- Booleans are important enough and occur frequently enough to warrant + -- their own explicit type in the standard. Booleans are declared as + -- an enumeration, with FALSE = 0 and TRUE = 1. + + -- The standard defines a string of n (numbered 0 through n-1) ASCII + -- bytes to be the number n encoded as an unsigned integer (as described + -- above), and followed by the n bytes of the string. Byte m of the string + -- always precedes byte m+1 of the string, and byte 0 of the string always + -- follows the string's length. If n is not a multiple of four, then the + -- n bytes are followed by enough (0 to 3) residual zero bytes, r, to make + -- the total byte count a multiple of four. + + -- To fit with XDR string, do not consider character as an enumeration + -- type. + + C_L : constant := 1; + subtype XDR_S_C is SEA (1 .. C_L); + + -- Consider Wide_Character as an enumeration type + + WC_L : constant := 4; + subtype XDR_S_WC is SEA (1 .. WC_L); + type XDR_WC is mod BB ** WC_L; + + -- Optimization: if we already have the correct Bit_Order, then some + -- computations can be avoided since the source and the target will be + -- identical anyway. They will be replaced by direct unchecked + -- conversions. + + Optimize_Integers : constant Boolean := + Default_Bit_Order = High_Order_First; + + ---------- + -- I_AD -- + ---------- + + function I_AD (Stream : access RST) return Fat_Pointer is + FP : Fat_Pointer; + + begin + FP.P1 := I_AS (Stream).P1; + FP.P2 := I_AS (Stream).P1; + + return FP; + end I_AD; + + ---------- + -- I_AS -- + ---------- + + function I_AS (Stream : access RST) return Thin_Pointer is + S : XDR_S_TM; + L : SEO; + U : XDR_TM := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + else + for N in S'Range loop + U := U * BB + XDR_TM (S (N)); + end loop; + + return (P1 => To_XDR_SA (XDR_SA (U))); + end if; + end I_AS; + + --------- + -- I_B -- + --------- + + function I_B (Stream : access RST) return Boolean is + begin + case I_SSU (Stream) is + when 0 => return False; + when 1 => return True; + when others => raise Data_Error; + end case; + end I_B; + + --------- + -- I_C -- + --------- + + function I_C (Stream : access RST) return Character is + S : XDR_S_C; + L : SEO; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + else + + -- Use Ada requirements on Character representation clause + + return Character'Val (S (1)); + end if; + end I_C; + + --------- + -- I_F -- + --------- + + function I_F (Stream : access RST) return Float is + I : constant Precision := Single; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Last : Integer renames Fields (I).E_Last; + F_Mask : SE renames Fields (I).F_Mask; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + + Positive : Boolean; + Exponent : Long_Unsigned; + Fraction : Long_Unsigned; + Result : Float; + S : SEA (1 .. F_L); + L : SEO; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + end if; + + -- Extract Fraction, Sign and Exponent + + Fraction := Long_Unsigned (S (F_L + 1 - F_Bytes) and F_Mask); + for N in F_L + 2 - F_Bytes .. F_L loop + Fraction := Fraction * BB + Long_Unsigned (S (N)); + end loop; + Result := Float'Scaling (Float (Fraction), -F_Size); + + if BS <= S (1) then + Positive := False; + Exponent := Long_Unsigned (S (1) - BS); + else + Positive := True; + Exponent := Long_Unsigned (S (1)); + end if; + + for N in 2 .. E_Bytes loop + Exponent := Exponent * BB + Long_Unsigned (S (N)); + end loop; + Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + + -- NaN or Infinities + + if Integer (Exponent) = E_Last then + raise Constraint_Error; + + elsif Exponent = 0 then + + -- Signed zeros + + if Fraction = 0 then + null; + + -- Denormalized float + + else + Result := Float'Scaling (Result, 1 - E_Bias); + end if; + + -- Normalized float + + else + Result := Float'Scaling + (1.0 + Result, Integer (Exponent) - E_Bias); + end if; + + if not Positive then + Result := -Result; + end if; + + return Result; + end I_F; + + --------- + -- I_I -- + --------- + + function I_I (Stream : access RST) return Integer is + S : XDR_S_I; + L : SEO; + U : XDR_U := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + + elsif Optimize_Integers then + return XDR_S_I_To_Integer (S); + + else + for N in S'Range loop + U := U * BB + XDR_U (S (N)); + end loop; + + -- Test sign and apply two complement notation + + if S (1) < BL then + return Integer (U); + + else + return Integer (-((XDR_U'Last xor U) + 1)); + end if; + end if; + end I_I; + + ---------- + -- I_LF -- + ---------- + + function I_LF (Stream : access RST) return Long_Float is + I : constant Precision := Double; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Last : Integer renames Fields (I).E_Last; + F_Mask : SE renames Fields (I).F_Mask; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + + Positive : Boolean; + Exponent : Long_Unsigned; + Fraction : Long_Long_Unsigned; + Result : Long_Float; + S : SEA (1 .. LF_L); + L : SEO; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + end if; + + -- Extract Fraction, Sign and Exponent + + Fraction := Long_Long_Unsigned (S (LF_L + 1 - F_Bytes) and F_Mask); + for N in LF_L + 2 - F_Bytes .. LF_L loop + Fraction := Fraction * BB + Long_Long_Unsigned (S (N)); + end loop; + + Result := Long_Float'Scaling (Long_Float (Fraction), -F_Size); + + if BS <= S (1) then + Positive := False; + Exponent := Long_Unsigned (S (1) - BS); + else + Positive := True; + Exponent := Long_Unsigned (S (1)); + end if; + + for N in 2 .. E_Bytes loop + Exponent := Exponent * BB + Long_Unsigned (S (N)); + end loop; + + Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + + -- NaN or Infinities + + if Integer (Exponent) = E_Last then + raise Constraint_Error; + + elsif Exponent = 0 then + + -- Signed zeros + + if Fraction = 0 then + null; + + -- Denormalized float + + else + Result := Long_Float'Scaling (Result, 1 - E_Bias); + end if; + + -- Normalized float + + else + Result := Long_Float'Scaling + (1.0 + Result, Integer (Exponent) - E_Bias); + end if; + + if not Positive then + Result := -Result; + end if; + + return Result; + end I_LF; + + ---------- + -- I_LI -- + ---------- + + function I_LI (Stream : access RST) return Long_Integer is + S : XDR_S_LI; + L : SEO; + U : Unsigned := 0; + X : Long_Unsigned := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + + elsif Optimize_Integers then + return Long_Integer (XDR_S_LI_To_Long_Long_Integer (S)); + + else + + -- Compute using machine unsigned + -- rather than long_long_unsigned + + for N in S'Range loop + U := U * BB + Unsigned (S (N)); + + -- We have filled an unsigned + + if N mod UB = 0 then + X := Shift_Left (X, US) + Long_Unsigned (U); + U := 0; + end if; + end loop; + + -- Test sign and apply two complement notation + + if S (1) < BL then + return Long_Integer (X); + else + return Long_Integer (-((Long_Unsigned'Last xor X) + 1)); + end if; + + end if; + end I_LI; + + ----------- + -- I_LLF -- + ----------- + + function I_LLF (Stream : access RST) return Long_Long_Float is + I : constant Precision := Quadruple; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Last : Integer renames Fields (I).E_Last; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + + Positive : Boolean; + Exponent : Long_Unsigned; + Fraction_1 : Long_Long_Unsigned := 0; + Fraction_2 : Long_Long_Unsigned := 0; + Result : Long_Long_Float; + HF : constant Natural := F_Size / 2; + S : SEA (1 .. LLF_L); + L : SEO; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + end if; + + -- Extract Fraction, Sign and Exponent + + for I in LLF_L - F_Bytes + 1 .. LLF_L - 7 loop + Fraction_1 := Fraction_1 * BB + Long_Long_Unsigned (S (I)); + end loop; + + for I in SEO (LLF_L - 6) .. SEO (LLF_L) loop + Fraction_2 := Fraction_2 * BB + Long_Long_Unsigned (S (I)); + end loop; + + Result := Long_Long_Float'Scaling (Long_Long_Float (Fraction_2), -HF); + Result := Long_Long_Float (Fraction_1) + Result; + Result := Long_Long_Float'Scaling (Result, HF - F_Size); + + if BS <= S (1) then + Positive := False; + Exponent := Long_Unsigned (S (1) - BS); + else + Positive := True; + Exponent := Long_Unsigned (S (1)); + end if; + + for N in 2 .. E_Bytes loop + Exponent := Exponent * BB + Long_Unsigned (S (N)); + end loop; + + Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + + -- NaN or Infinities + + if Integer (Exponent) = E_Last then + raise Constraint_Error; + + elsif Exponent = 0 then + + -- Signed zeros + + if Fraction_1 = 0 and then Fraction_2 = 0 then + null; + + -- Denormalized float + + else + Result := Long_Long_Float'Scaling (Result, 1 - E_Bias); + end if; + + -- Normalized float + + else + Result := Long_Long_Float'Scaling + (1.0 + Result, Integer (Exponent) - E_Bias); + end if; + + if not Positive then + Result := -Result; + end if; + + return Result; + end I_LLF; + + ----------- + -- I_LLI -- + ----------- + + function I_LLI (Stream : access RST) return Long_Long_Integer is + S : XDR_S_LLI; + L : SEO; + U : Unsigned := 0; + X : Long_Long_Unsigned := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + elsif Optimize_Integers then + return XDR_S_LLI_To_Long_Long_Integer (S); + else + + -- Compute using machine unsigned for computing + -- rather than long_long_unsigned. + + for N in S'Range loop + U := U * BB + Unsigned (S (N)); + + -- We have filled an unsigned + + if N mod UB = 0 then + X := Shift_Left (X, US) + Long_Long_Unsigned (U); + U := 0; + end if; + end loop; + + -- Test sign and apply two complement notation + + if S (1) < BL then + return Long_Long_Integer (X); + else + return Long_Long_Integer (-((Long_Long_Unsigned'Last xor X) + 1)); + end if; + end if; + end I_LLI; + + ----------- + -- I_LLU -- + ----------- + + function I_LLU (Stream : access RST) return Long_Long_Unsigned is + S : XDR_S_LLU; + L : SEO; + U : Unsigned := 0; + X : Long_Long_Unsigned := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + elsif Optimize_Integers then + return XDR_S_LLU_To_Long_Long_Unsigned (S); + else + + -- Compute using machine unsigned + -- rather than long_long_unsigned. + + for N in S'Range loop + U := U * BB + Unsigned (S (N)); + + -- We have filled an unsigned + + if N mod UB = 0 then + X := Shift_Left (X, US) + Long_Long_Unsigned (U); + U := 0; + end if; + end loop; + + return X; + end if; + end I_LLU; + + ---------- + -- I_LU -- + ---------- + + function I_LU (Stream : access RST) return Long_Unsigned is + S : XDR_S_LU; + L : SEO; + U : Unsigned := 0; + X : Long_Unsigned := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + elsif Optimize_Integers then + return Long_Unsigned (XDR_S_LU_To_Long_Long_Unsigned (S)); + else + + -- Compute using machine unsigned + -- rather than long_unsigned. + + for N in S'Range loop + U := U * BB + Unsigned (S (N)); + + -- We have filled an unsigned + + if N mod UB = 0 then + X := Shift_Left (X, US) + Long_Unsigned (U); + U := 0; + end if; + end loop; + + return X; + end if; + end I_LU; + + ---------- + -- I_SF -- + ---------- + + function I_SF (Stream : access RST) return Short_Float is + I : constant Precision := Single; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Last : Integer renames Fields (I).E_Last; + F_Mask : SE renames Fields (I).F_Mask; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + + Exponent : Long_Unsigned; + Fraction : Long_Unsigned; + Positive : Boolean; + Result : Short_Float; + S : SEA (1 .. SF_L); + L : SEO; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + end if; + + -- Extract Fraction, Sign and Exponent + + Fraction := Long_Unsigned (S (SF_L + 1 - F_Bytes) and F_Mask); + for N in SF_L + 2 - F_Bytes .. SF_L loop + Fraction := Fraction * BB + Long_Unsigned (S (N)); + end loop; + Result := Short_Float'Scaling (Short_Float (Fraction), -F_Size); + + if BS <= S (1) then + Positive := False; + Exponent := Long_Unsigned (S (1) - BS); + else + Positive := True; + Exponent := Long_Unsigned (S (1)); + end if; + + for N in 2 .. E_Bytes loop + Exponent := Exponent * BB + Long_Unsigned (S (N)); + end loop; + Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + + -- NaN or Infinities + + if Integer (Exponent) = E_Last then + raise Constraint_Error; + + elsif Exponent = 0 then + + -- Signed zeros + + if Fraction = 0 then + null; + + -- Denormalized float + + else + Result := Short_Float'Scaling (Result, 1 - E_Bias); + end if; + + -- Normalized float + + else + Result := Short_Float'Scaling + (1.0 + Result, Integer (Exponent) - E_Bias); + end if; + + if not Positive then + Result := -Result; + end if; + + return Result; + end I_SF; + + ---------- + -- I_SI -- + ---------- + + function I_SI (Stream : access RST) return Short_Integer is + S : XDR_S_SI; + L : SEO; + U : XDR_SU := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + + elsif Optimize_Integers then + return XDR_S_SI_To_Short_Integer (S); + + else + for N in S'Range loop + U := U * BB + XDR_SU (S (N)); + end loop; + + -- Test sign and apply two complement notation + + if S (1) < BL then + return Short_Integer (U); + else + return Short_Integer (-((XDR_SU'Last xor U) + 1)); + end if; + end if; + end I_SI; + + ----------- + -- I_SSI -- + ----------- + + function I_SSI (Stream : access RST) return Short_Short_Integer is + S : XDR_S_SSI; + L : SEO; + U : XDR_SSU; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + elsif Optimize_Integers then + return XDR_S_SSI_To_Short_Short_Integer (S); + else + U := XDR_SSU (S (1)); + + -- Test sign and apply two complement notation + + if S (1) < BL then + return Short_Short_Integer (U); + else + return Short_Short_Integer (-((XDR_SSU'Last xor U) + 1)); + end if; + end if; + end I_SSI; + + ----------- + -- I_SSU -- + ----------- + + function I_SSU (Stream : access RST) return Short_Short_Unsigned is + S : XDR_S_SSU; + L : SEO; + U : XDR_SSU := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + else + U := XDR_SSU (S (1)); + + return Short_Short_Unsigned (U); + end if; + end I_SSU; + + ---------- + -- I_SU -- + ---------- + + function I_SU (Stream : access RST) return Short_Unsigned is + S : XDR_S_SU; + L : SEO; + U : XDR_SU := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + elsif Optimize_Integers then + return XDR_S_SU_To_Short_Unsigned (S); + else + for N in S'Range loop + U := U * BB + XDR_SU (S (N)); + end loop; + + return Short_Unsigned (U); + end if; + end I_SU; + + --------- + -- I_U -- + --------- + + function I_U (Stream : access RST) return Unsigned is + S : XDR_S_U; + L : SEO; + U : XDR_U := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + + elsif Optimize_Integers then + return XDR_S_U_To_Unsigned (S); + + else + for N in S'Range loop + U := U * BB + XDR_U (S (N)); + end loop; + + return Unsigned (U); + end if; + end I_U; + + ---------- + -- I_WC -- + ---------- + + function I_WC (Stream : access RST) return Wide_Character is + S : XDR_S_WC; + L : SEO; + U : XDR_WC := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + else + for N in S'Range loop + U := U * BB + XDR_WC (S (N)); + end loop; + + -- Use Ada requirements on Wide_Character representation clause + + return Wide_Character'Val (U); + end if; + end I_WC; + + ---------- + -- W_AD -- + ---------- + + procedure W_AD (Stream : access RST; Item : in Fat_Pointer) is + S : XDR_S_TM; + U : XDR_TM; + + begin + U := XDR_TM (To_XDR_SA (Item.P1)); + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + Ada.Streams.Write (Stream.all, S); + + U := XDR_TM (To_XDR_SA (Item.P2)); + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + Ada.Streams.Write (Stream.all, S); + + if U /= 0 then + raise Data_Error; + end if; + end W_AD; + + ---------- + -- W_AS -- + ---------- + + procedure W_AS (Stream : access RST; Item : in Thin_Pointer) is + S : XDR_S_TM; + U : XDR_TM := XDR_TM (To_XDR_SA (Item.P1)); + + begin + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + Ada.Streams.Write (Stream.all, S); + + if U /= 0 then + raise Data_Error; + end if; + end W_AS; + + --------- + -- W_B -- + --------- + + procedure W_B (Stream : access RST; Item : in Boolean) is + begin + if Item then + W_SSU (Stream, 1); + else + W_SSU (Stream, 0); + end if; + end W_B; + + --------- + -- W_C -- + --------- + + procedure W_C (Stream : access RST; Item : in Character) is + S : XDR_S_C; + + pragma Assert (C_L = 1); + + begin + + -- Use Ada requirements on Character representation clause + + S (1) := SE (Character'Pos (Item)); + + Ada.Streams.Write (Stream.all, S); + end W_C; + + --------- + -- W_F -- + --------- + + procedure W_F (Stream : access RST; Item : in Float) is + I : constant Precision := Single; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + F_Mask : SE renames Fields (I).F_Mask; + + Exponent : Long_Unsigned; + Fraction : Long_Unsigned; + Positive : Boolean; + E : Integer; + F : Float; + S : SEA (1 .. F_L) := (others => 0); + + begin + if not Item'Valid then + raise Constraint_Error; + end if; + + -- Compute Sign + + Positive := (0.0 <= Item); + F := abs (Item); + + -- Signed zero + + if F = 0.0 then + Exponent := 0; + Fraction := 0; + + else + E := Float'Exponent (F) - 1; + + -- Denormalized float + + if E <= -E_Bias then + F := Float'Scaling (F, F_Size + E_Bias - 1); + E := -E_Bias; + else + F := Float'Scaling (Float'Fraction (F), F_Size + 1); + end if; + + -- Compute Exponent and Fraction + + Exponent := Long_Unsigned (E + E_Bias); + Fraction := Long_Unsigned (F * 2.0) / 2; + end if; + + -- Store Fraction + + for I in reverse F_L - F_Bytes + 1 .. F_L loop + S (I) := SE (Fraction mod BB); + Fraction := Fraction / BB; + end loop; + + -- Remove implicit bit + + S (F_L - F_Bytes + 1) := S (F_L - F_Bytes + 1) and F_Mask; + + -- Store Exponent (not always at the beginning of a byte) + + Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + for N in reverse 1 .. E_Bytes loop + S (N) := SE (Exponent mod BB) + S (N); + Exponent := Exponent / BB; + end loop; + + -- Store Sign + + if not Positive then + S (1) := S (1) + BS; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_F; + + --------- + -- W_I -- + --------- + + procedure W_I (Stream : access RST; Item : in Integer) is + S : XDR_S_I; + U : XDR_U; + + begin + if Optimize_Integers then + S := Integer_To_XDR_S_I (Item); + else + + -- Test sign and apply two complement notation + + if Item < 0 then + U := XDR_U'Last xor XDR_U (-(Item + 1)); + else + U := XDR_U (Item); + end if; + + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_I; + + ---------- + -- W_LF -- + ---------- + + procedure W_LF (Stream : access RST; Item : in Long_Float) is + I : constant Precision := Double; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + F_Mask : SE renames Fields (I).F_Mask; + + Exponent : Long_Unsigned; + Fraction : Long_Long_Unsigned; + Positive : Boolean; + E : Integer; + F : Long_Float; + S : SEA (1 .. LF_L) := (others => 0); + + begin + if not Item'Valid then + raise Constraint_Error; + end if; + + -- Compute Sign + + Positive := (0.0 <= Item); + F := abs (Item); + + -- Signed zero + + if F = 0.0 then + Exponent := 0; + Fraction := 0; + + else + E := Long_Float'Exponent (F) - 1; + + -- Denormalized float + + if E <= -E_Bias then + E := -E_Bias; + F := Long_Float'Scaling (F, F_Size + E_Bias - 1); + else + F := Long_Float'Scaling (F, F_Size - E); + end if; + + -- Compute Exponent and Fraction + + Exponent := Long_Unsigned (E + E_Bias); + Fraction := Long_Long_Unsigned (F * 2.0) / 2; + end if; + + -- Store Fraction + + for I in reverse LF_L - F_Bytes + 1 .. LF_L loop + S (I) := SE (Fraction mod BB); + Fraction := Fraction / BB; + end loop; + + -- Remove implicit bit + + S (LF_L - F_Bytes + 1) := S (LF_L - F_Bytes + 1) and F_Mask; + + -- Store Exponent (not always at the beginning of a byte) + + Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + for N in reverse 1 .. E_Bytes loop + S (N) := SE (Exponent mod BB) + S (N); + Exponent := Exponent / BB; + end loop; + + -- Store Sign + + if not Positive then + S (1) := S (1) + BS; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_LF; + + ---------- + -- W_LI -- + ---------- + + procedure W_LI (Stream : access RST; Item : in Long_Integer) is + S : XDR_S_LI; + U : Unsigned; + X : Long_Unsigned; + + begin + if Optimize_Integers then + S := Long_Long_Integer_To_XDR_S_LI (Long_Long_Integer (Item)); + else + + -- Test sign and apply two complement notation + + if Item < 0 then + X := Long_Unsigned'Last xor Long_Unsigned (-(Item + 1)); + else + X := Long_Unsigned (Item); + end if; + + -- Compute using machine unsigned + -- rather than long_unsigned. + + for N in reverse S'Range loop + + -- We have filled an unsigned + + if (LU_L - N) mod UB = 0 then + U := Unsigned (X and UL); + X := Shift_Right (X, US); + end if; + + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_LI; + + ----------- + -- W_LLF -- + ----------- + + procedure W_LLF (Stream : access RST; Item : in Long_Long_Float) is + I : constant Precision := Quadruple; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + + HFS : constant Integer := F_Size / 2; + + Exponent : Long_Unsigned; + Fraction_1 : Long_Long_Unsigned; + Fraction_2 : Long_Long_Unsigned; + Positive : Boolean; + E : Integer; + F : Long_Long_Float := Item; + S : SEA (1 .. LLF_L) := (others => 0); + + begin + if not Item'Valid then + raise Constraint_Error; + end if; + + -- Compute Sign + + Positive := (0.0 <= Item); + if F < 0.0 then + F := -Item; + end if; + + -- Signed zero + + if F = 0.0 then + Exponent := 0; + Fraction_1 := 0; + Fraction_2 := 0; + + else + E := Long_Long_Float'Exponent (F) - 1; + + -- Denormalized float + + if E <= -E_Bias then + F := Long_Long_Float'Scaling (F, E_Bias - 1); + E := -E_Bias; + else + F := Long_Long_Float'Scaling + (Long_Long_Float'Fraction (F), 1); + end if; + + -- Compute Exponent and Fraction + + Exponent := Long_Unsigned (E + E_Bias); + F := Long_Long_Float'Scaling (F, F_Size - HFS); + Fraction_1 := Long_Long_Unsigned (Long_Long_Float'Floor (F)); + F := Long_Long_Float (F - Long_Long_Float (Fraction_1)); + F := Long_Long_Float'Scaling (F, HFS); + Fraction_2 := Long_Long_Unsigned (Long_Long_Float'Floor (F)); + end if; + + -- Store Fraction_1 + + for I in reverse LLF_L - F_Bytes + 1 .. LLF_L - 7 loop + S (I) := SE (Fraction_1 mod BB); + Fraction_1 := Fraction_1 / BB; + end loop; + + -- Store Fraction_2 + + for I in reverse LLF_L - 6 .. LLF_L loop + S (SEO (I)) := SE (Fraction_2 mod BB); + Fraction_2 := Fraction_2 / BB; + end loop; + + -- Store Exponent (not always at the beginning of a byte) + + Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + for N in reverse 1 .. E_Bytes loop + S (N) := SE (Exponent mod BB) + S (N); + Exponent := Exponent / BB; + end loop; + + -- Store Sign + + if not Positive then + S (1) := S (1) + BS; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_LLF; + + ----------- + -- W_LLI -- + ----------- + + procedure W_LLI (Stream : access RST; Item : in Long_Long_Integer) is + S : XDR_S_LLI; + U : Unsigned; + X : Long_Long_Unsigned; + + begin + if Optimize_Integers then + S := Long_Long_Integer_To_XDR_S_LLI (Item); + else + + -- Test sign and apply two complement notation + + if Item < 0 then + X := Long_Long_Unsigned'Last xor Long_Long_Unsigned (-(Item + 1)); + else + X := Long_Long_Unsigned (Item); + end if; + + -- Compute using machine unsigned + -- rather than long_long_unsigned. + + for N in reverse S'Range loop + + -- We have filled an unsigned + + if (LLU_L - N) mod UB = 0 then + U := Unsigned (X and UL); + X := Shift_Right (X, US); + end if; + + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_LLI; + + ----------- + -- W_LLU -- + ----------- + + procedure W_LLU (Stream : access RST; Item : in Long_Long_Unsigned) is + S : XDR_S_LLU; + U : Unsigned; + X : Long_Long_Unsigned := Item; + + begin + if Optimize_Integers then + S := Long_Long_Unsigned_To_XDR_S_LLU (Item); + else + -- Compute using machine unsigned + -- rather than long_long_unsigned. + + for N in reverse S'Range loop + + -- We have filled an unsigned + + if (LLU_L - N) mod UB = 0 then + U := Unsigned (X and UL); + X := Shift_Right (X, US); + end if; + + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_LLU; + + ---------- + -- W_LU -- + ---------- + + procedure W_LU (Stream : access RST; Item : in Long_Unsigned) is + S : XDR_S_LU; + U : Unsigned; + X : Long_Unsigned := Item; + + begin + if Optimize_Integers then + S := Long_Long_Unsigned_To_XDR_S_LU (Long_Long_Unsigned (Item)); + else + -- Compute using machine unsigned + -- rather than long_unsigned. + + for N in reverse S'Range loop + + -- We have filled an unsigned + + if (LU_L - N) mod UB = 0 then + U := Unsigned (X and UL); + X := Shift_Right (X, US); + end if; + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_LU; + + ---------- + -- W_SF -- + ---------- + + procedure W_SF (Stream : access RST; Item : in Short_Float) is + I : constant Precision := Single; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + F_Mask : SE renames Fields (I).F_Mask; + + Exponent : Long_Unsigned; + Fraction : Long_Unsigned; + Positive : Boolean; + E : Integer; + F : Short_Float; + S : SEA (1 .. SF_L) := (others => 0); + + begin + if not Item'Valid then + raise Constraint_Error; + end if; + + -- Compute Sign + + Positive := (0.0 <= Item); + F := abs (Item); + + -- Signed zero + + if F = 0.0 then + Exponent := 0; + Fraction := 0; + + else + E := Short_Float'Exponent (F) - 1; + + -- Denormalized float + + if E <= -E_Bias then + E := -E_Bias; + F := Short_Float'Scaling (F, F_Size + E_Bias - 1); + else + F := Short_Float'Scaling (F, F_Size - E); + end if; + + -- Compute Exponent and Fraction + + Exponent := Long_Unsigned (E + E_Bias); + Fraction := Long_Unsigned (F * 2.0) / 2; + end if; + + -- Store Fraction + + for I in reverse SF_L - F_Bytes + 1 .. SF_L loop + S (I) := SE (Fraction mod BB); + Fraction := Fraction / BB; + end loop; + + -- Remove implicit bit + + S (SF_L - F_Bytes + 1) := S (SF_L - F_Bytes + 1) and F_Mask; + + -- Store Exponent (not always at the beginning of a byte) + + Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + for N in reverse 1 .. E_Bytes loop + S (N) := SE (Exponent mod BB) + S (N); + Exponent := Exponent / BB; + end loop; + + -- Store Sign + + if not Positive then + S (1) := S (1) + BS; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_SF; + + ---------- + -- W_SI -- + ---------- + + procedure W_SI (Stream : access RST; Item : in Short_Integer) is + S : XDR_S_SI; + U : XDR_SU; + + begin + if Optimize_Integers then + S := Short_Integer_To_XDR_S_SI (Item); + else + + -- Test sign and apply two complement's notation + + if Item < 0 then + U := XDR_SU'Last xor XDR_SU (-(Item + 1)); + else + U := XDR_SU (Item); + end if; + + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_SI; + + ----------- + -- W_SSI -- + ----------- + + procedure W_SSI (Stream : access RST; Item : in Short_Short_Integer) is + S : XDR_S_SSI; + U : XDR_SSU; + + begin + if Optimize_Integers then + S := Short_Short_Integer_To_XDR_S_SSI (Item); + else + + -- Test sign and apply two complement's notation + + if Item < 0 then + U := XDR_SSU'Last xor XDR_SSU (-(Item + 1)); + else + U := XDR_SSU (Item); + end if; + + S (1) := SE (U); + end if; + + Ada.Streams.Write (Stream.all, S); + end W_SSI; + + ----------- + -- W_SSU -- + ----------- + + procedure W_SSU (Stream : access RST; Item : in Short_Short_Unsigned) is + S : XDR_S_SSU; + U : XDR_SSU := XDR_SSU (Item); + + begin + S (1) := SE (U); + + Ada.Streams.Write (Stream.all, S); + end W_SSU; + + ---------- + -- W_SU -- + ---------- + + procedure W_SU (Stream : access RST; Item : in Short_Unsigned) is + S : XDR_S_SU; + U : XDR_SU := XDR_SU (Item); + + begin + if Optimize_Integers then + S := Short_Unsigned_To_XDR_S_SU (Item); + else + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_SU; + + --------- + -- W_U -- + --------- + + procedure W_U (Stream : access RST; Item : in Unsigned) is + S : XDR_S_U; + U : XDR_U := XDR_U (Item); + + begin + if Optimize_Integers then + S := Unsigned_To_XDR_S_U (Item); + else + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_U; + + ---------- + -- W_WC -- + ---------- + + procedure W_WC (Stream : access RST; Item : in Wide_Character) is + S : XDR_S_WC; + U : XDR_WC; + + begin + + -- Use Ada requirements on Wide_Character representation clause + + U := XDR_WC (Wide_Character'Pos (Item)); + + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + Ada.Streams.Write (Stream.all, S); + + if U /= 0 then + raise Data_Error; + end if; + end W_WC; + +end System.Stream_Attributes; |