summaryrefslogtreecommitdiff
path: root/gcc/ada/exp_ch5.adb
diff options
context:
space:
mode:
authorkenner <kenner@138bc75d-0d04-0410-961f-82ee72b054a4>2001-10-02 14:08:34 +0000
committerkenner <kenner@138bc75d-0d04-0410-961f-82ee72b054a4>2001-10-02 14:08:34 +0000
commitee6ba406bdc83a0b016ec0099d84035d7fd26fd7 (patch)
tree133a71d6793865f2028234c0125afcfa4c7afc76 /gcc/ada/exp_ch5.adb
parent1fac938ee5fb71eb038b3b33e393a02d5ea33190 (diff)
downloadgcc-ee6ba406bdc83a0b016ec0099d84035d7fd26fd7.tar.gz
New Language: Ada
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@45954 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/ada/exp_ch5.adb')
-rw-r--r--gcc/ada/exp_ch5.adb2858
1 files changed, 2858 insertions, 0 deletions
diff --git a/gcc/ada/exp_ch5.adb b/gcc/ada/exp_ch5.adb
new file mode 100644
index 00000000000..8c56fe386b0
--- /dev/null
+++ b/gcc/ada/exp_ch5.adb
@@ -0,0 +1,2858 @@
+-----------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- E X P _ C H 5 --
+-- --
+-- B o d y --
+-- --
+-- $Revision: 1.216 $
+-- --
+-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
+-- MA 02111-1307, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Einfo; use Einfo;
+with Exp_Aggr; use Exp_Aggr;
+with Exp_Ch7; use Exp_Ch7;
+with Exp_Ch11; use Exp_Ch11;
+with Exp_Dbug; use Exp_Dbug;
+with Exp_Pakd; use Exp_Pakd;
+with Exp_Util; use Exp_Util;
+with Hostparm; use Hostparm;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Rtsfind; use Rtsfind;
+with Sinfo; use Sinfo;
+with Sem; use Sem;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Snames; use Snames;
+with Stand; use Stand;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Uintp; use Uintp;
+with Validsw; use Validsw;
+
+package body Exp_Ch5 is
+
+ function Change_Of_Representation (N : Node_Id) return Boolean;
+ -- Determine if the right hand side of the assignment N is a type
+ -- conversion which requires a change of representation. Called
+ -- only for the array and record cases.
+
+ procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
+ -- N is an assignment which assigns an array value. This routine process
+ -- the various special cases and checks required for such assignments,
+ -- including change of representation. Rhs is normally simply the right
+ -- hand side of the assignment, except that if the right hand side is
+ -- a type conversion or a qualified expression, then the Rhs is the
+ -- actual expression inside any such type conversions or qualifications.
+
+ function Expand_Assign_Array_Loop
+ (N : Node_Id;
+ Larray : Entity_Id;
+ Rarray : Entity_Id;
+ L_Type : Entity_Id;
+ R_Type : Entity_Id;
+ Ndim : Pos;
+ Rev : Boolean)
+ return Node_Id;
+ -- N is an assignment statement which assigns an array value. This routine
+ -- expands the assignment into a loop (or nested loops for the case of a
+ -- multi-dimensional array) to do the assignment component by component.
+ -- Larray and Rarray are the entities of the actual arrays on the left
+ -- hand and right hand sides. L_Type and R_Type are the types of these
+ -- arrays (which may not be the same, due to either sliding, or to a
+ -- change of representation case). Ndim is the number of dimensions and
+ -- the parameter Rev indicates if the loops run normally (Rev = False),
+ -- or reversed (Rev = True). The value returned is the constructed
+ -- loop statement. Auxiliary declarations are inserted before node N
+ -- using the standard Insert_Actions mechanism.
+
+ procedure Expand_Assign_Record (N : Node_Id);
+ -- N is an assignment of a non-tagged record value. This routine handles
+ -- the special cases and checks required for such assignments, including
+ -- change of representation.
+
+ function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
+ -- Generate the necessary code for controlled and Tagged assignment,
+ -- that is to say, finalization of the target before, adjustement of
+ -- the target after and save and restore of the tag and finalization
+ -- pointers which are not 'part of the value' and must not be changed
+ -- upon assignment. N is the original Assignment node.
+
+ ------------------------------
+ -- Change_Of_Representation --
+ ------------------------------
+
+ function Change_Of_Representation (N : Node_Id) return Boolean is
+ Rhs : constant Node_Id := Expression (N);
+
+ begin
+ return
+ Nkind (Rhs) = N_Type_Conversion
+ and then
+ not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
+ end Change_Of_Representation;
+
+ -------------------------
+ -- Expand_Assign_Array --
+ -------------------------
+
+ -- There are two issues here. First, do we let Gigi do a block move, or
+ -- do we expand out into a loop? Second, we need to set the two flags
+ -- Forwards_OK and Backwards_OK which show whether the block move (or
+ -- corresponding loops) can be legitimately done in a forwards (low to
+ -- high) or backwards (high to low) manner.
+
+ procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ Lhs : constant Node_Id := Name (N);
+
+ Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
+ Act_Rhs : Node_Id := Get_Referenced_Object (Rhs);
+
+ L_Type : constant Entity_Id :=
+ Underlying_Type (Get_Actual_Subtype (Act_Lhs));
+ R_Type : Entity_Id :=
+ Underlying_Type (Get_Actual_Subtype (Act_Rhs));
+
+ L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
+ R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
+
+ Crep : constant Boolean := Change_Of_Representation (N);
+
+ Larray : Node_Id;
+ Rarray : Node_Id;
+
+ Ndim : constant Pos := Number_Dimensions (L_Type);
+
+ Loop_Required : Boolean := False;
+ -- This switch is set to True if the array move must be done using
+ -- an explicit front end generated loop.
+
+ function Has_Address_Clause (Exp : Node_Id) return Boolean;
+ -- Test if Exp is a reference to an array whose declaration has
+ -- an address clause, or it is a slice of such an array.
+
+ function Is_Formal_Array (Exp : Node_Id) return Boolean;
+ -- Test if Exp is a reference to an array which is either a formal
+ -- parameter or a slice of a formal parameter. These are the cases
+ -- where hidden aliasing can occur.
+
+ function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
+ -- Determine if Exp is a reference to an array variable which is other
+ -- than an object defined in the current scope, or a slice of such
+ -- an object. Such objects can be aliased to parameters (unlike local
+ -- array references).
+
+ function Possible_Unaligned_Slice (Arg : Node_Id) return Boolean;
+ -- Returns True if Arg (either the left or right hand side of the
+ -- assignment) is a slice that could be unaligned wrt the array type.
+ -- This is true if Arg is a component of a packed record, or is
+ -- a record component to which a component clause applies. This
+ -- is a little pessimistic, but the result of an unnecessary
+ -- decision that something is possibly unaligned is only to
+ -- generate a front end loop, which is not so terrible.
+ -- It would really be better if backend handled this ???
+
+ ------------------------
+ -- Has_Address_Clause --
+ ------------------------
+
+ function Has_Address_Clause (Exp : Node_Id) return Boolean is
+ begin
+ return
+ (Is_Entity_Name (Exp) and then
+ Present (Address_Clause (Entity (Exp))))
+ or else
+ (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
+ end Has_Address_Clause;
+
+ ---------------------
+ -- Is_Formal_Array --
+ ---------------------
+
+ function Is_Formal_Array (Exp : Node_Id) return Boolean is
+ begin
+ return
+ (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
+ or else
+ (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
+ end Is_Formal_Array;
+
+ ------------------------
+ -- Is_Non_Local_Array --
+ ------------------------
+
+ function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
+ begin
+ return (Is_Entity_Name (Exp)
+ and then Scope (Entity (Exp)) /= Current_Scope)
+ or else (Nkind (Exp) = N_Slice
+ and then Is_Non_Local_Array (Prefix (Exp)));
+ end Is_Non_Local_Array;
+
+ ------------------------------
+ -- Possible_Unaligned_Slice --
+ ------------------------------
+
+ function Possible_Unaligned_Slice (Arg : Node_Id) return Boolean is
+ begin
+ -- No issue if this is not a slice, or else strict alignment
+ -- is not required in any case.
+
+ if Nkind (Arg) /= N_Slice
+ or else not Target_Strict_Alignment
+ then
+ return False;
+ end if;
+
+ -- No issue if the component type is a byte or byte aligned
+
+ declare
+ Array_Typ : constant Entity_Id := Etype (Arg);
+ Comp_Typ : constant Entity_Id := Component_Type (Array_Typ);
+ Pref : constant Node_Id := Prefix (Arg);
+
+ begin
+ if Known_Alignment (Array_Typ) then
+ if Alignment (Array_Typ) = 1 then
+ return False;
+ end if;
+
+ elsif Known_Component_Size (Array_Typ) then
+ if Component_Size (Array_Typ) = 1 then
+ return False;
+ end if;
+
+ elsif Known_Esize (Comp_Typ) then
+ if Esize (Comp_Typ) <= System_Storage_Unit then
+ return False;
+ end if;
+ end if;
+
+ -- No issue if this is not a selected component
+
+ if Nkind (Pref) /= N_Selected_Component then
+ return False;
+ end if;
+
+ -- Else we test for a possibly unaligned component
+
+ return
+ Is_Packed (Etype (Pref))
+ or else
+ Present (Component_Clause (Entity (Selector_Name (Pref))));
+ end;
+ end Possible_Unaligned_Slice;
+
+ -- Determine if Lhs, Rhs are formal arrays or non-local arrays
+
+ Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
+ Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
+
+ Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
+ Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
+
+ -- Start of processing for Expand_Assign_Array
+
+ begin
+ -- Deal with length check, note that the length check is done with
+ -- respect to the right hand side as given, not a possible underlying
+ -- renamed object, since this would generate incorrect extra checks.
+
+ Apply_Length_Check (Rhs, L_Type);
+
+ -- We start by assuming that the move can be done in either
+ -- direction, i.e. that the two sides are completely disjoint.
+
+ Set_Forwards_OK (N, True);
+ Set_Backwards_OK (N, True);
+
+ -- Normally it is only the slice case that can lead to overlap,
+ -- and explicit checks for slices are made below. But there is
+ -- one case where the slice can be implicit and invisible to us
+ -- and that is the case where we have a one dimensional array,
+ -- and either both operands are parameters, or one is a parameter
+ -- and the other is a global variable. In this case the parameter
+ -- could be a slice that overlaps with the other parameter.
+
+ -- Check for the case of slices requiring an explicit loop. Normally
+ -- it is only the explicit slice cases that bother us, but in the
+ -- case of one dimensional arrays, parameters can be slices that
+ -- are passed by reference, so we can have aliasing for assignments
+ -- from one parameter to another, or assignments between parameters
+ -- and non-local variables.
+
+ -- Note: overlap is never possible if there is a change of
+ -- representation, so we can exclude this case
+
+ -- In the case of compiling for the Java Virtual Machine,
+ -- slices are always passed by making a copy, so we don't
+ -- have to worry about overlap. We also want to prevent
+ -- generation of "<" comparisons for array addresses,
+ -- since that's a meaningless operation on the JVM.
+
+ if Ndim = 1
+ and then not Crep
+ and then
+ ((Lhs_Formal and Rhs_Formal)
+ or else
+ (Lhs_Formal and Rhs_Non_Local_Var)
+ or else
+ (Rhs_Formal and Lhs_Non_Local_Var))
+ and then not Java_VM
+ then
+ Set_Forwards_OK (N, False);
+ Set_Backwards_OK (N, False);
+
+ -- Note: the bit-packed case is not worrisome here, since if
+ -- we have a slice passed as a parameter, it is always aligned
+ -- on a byte boundary, and if there are no explicit slices, the
+ -- assignment can be performed directly.
+ end if;
+
+ -- We certainly must use a loop for change of representation
+ -- and also we use the operand of the conversion on the right
+ -- hand side as the effective right hand side (the component
+ -- types must match in this situation).
+
+ if Crep then
+ Act_Rhs := Get_Referenced_Object (Rhs);
+ R_Type := Get_Actual_Subtype (Act_Rhs);
+ Loop_Required := True;
+
+ -- Arrays with controlled components are expanded into a loop
+ -- to force calls to adjust at the component level.
+
+ elsif Has_Controlled_Component (L_Type) then
+ Loop_Required := True;
+
+ -- The only remaining cases involve slice assignments. If no slices
+ -- are involved, then the assignment can definitely be handled by gigi.
+ -- unless we have the parameter case mentioned above.
+
+ elsif not L_Slice and not R_Slice then
+
+ -- The following is temporary code??? It is not clear why it is
+ -- necessary. For further investigation, look at the following
+ -- short program which fails:
+
+ -- procedure C52 is
+ -- type BITS is array(INTEGER range <>) of BOOLEAN;
+ -- pragma PACK(BITS);
+ -- type A is access BITS;
+ -- P1,P2 : A;
+ -- begin
+ -- P1 := new BITS (1 .. 65_535);
+ -- P2 := new BITS (1 .. 65_535);
+ -- P2.ALL := P1.ALL;
+ -- end C52;
+
+ -- To deal with the above, we expand out if either of the operands
+ -- is an explicit dereference to an unconstrained bit packed array.
+
+ Temporary_Code : declare
+ function Is_Deref_Of_UBP (Opnd : Node_Id) return Boolean;
+ -- Function to perform required test for special case above
+
+ function Is_Deref_Of_UBP (Opnd : Node_Id) return Boolean is
+ P_Type : Entity_Id;
+ Des_Type : Entity_Id;
+
+ begin
+ if Nkind (Opnd) /= N_Explicit_Dereference then
+ return False;
+ else
+ P_Type := Etype (Prefix (Opnd));
+
+ if not Is_Access_Type (P_Type) then
+ return False;
+
+ else
+ Des_Type := Designated_Type (P_Type);
+ return
+ Is_Bit_Packed_Array (Des_Type)
+ and then not Is_Constrained (Des_Type);
+ end if;
+ end if;
+ end Is_Deref_Of_UBP;
+
+ -- Start of processing for temporary code
+
+ begin
+ if Is_Deref_Of_UBP (Lhs)
+ or else
+ Is_Deref_Of_UBP (Rhs)
+ then
+ Loop_Required := True;
+
+ -- Normal case (will be only case when above temp code removed ???
+
+ elsif Forwards_OK (N) then
+ return;
+ end if;
+ end Temporary_Code;
+
+ -- Gigi can always handle the assignment if the right side is a string
+ -- literal (note that overlap is definitely impossible in this case).
+
+ elsif Nkind (Rhs) = N_String_Literal then
+ return;
+
+ -- If either operand is bit packed, then we need a loop, since we
+ -- can't be sure that the slice is byte aligned. Similarly, if either
+ -- operand is a possibly unaligned slice, then we need a loop (since
+ -- gigi cannot handle unaligned slices).
+
+ elsif Is_Bit_Packed_Array (L_Type)
+ or else Is_Bit_Packed_Array (R_Type)
+ or else Possible_Unaligned_Slice (Lhs)
+ or else Possible_Unaligned_Slice (Rhs)
+ then
+ Loop_Required := True;
+
+ -- If we are not bit-packed, and we have only one slice, then no
+ -- overlap is possible except in the parameter case, so we can let
+ -- gigi handle things.
+
+ elsif not (L_Slice and R_Slice) then
+ if Forwards_OK (N) then
+ return;
+ end if;
+ end if;
+
+ -- Come here to compelete the analysis
+
+ -- Loop_Required: Set to True if we know that a loop is required
+ -- regardless of overlap considerations.
+
+ -- Forwards_OK: Set to False if we already know that a forwards
+ -- move is not safe, else set to True.
+
+ -- Backwards_OK: Set to False if we already know that a backwards
+ -- move is not safe, else set to True
+
+ -- Our task at this stage is to complete the overlap analysis, which
+ -- can result in possibly setting Forwards_OK or Backwards_OK to
+ -- False, and then generating the final code, either by deciding
+ -- that it is OK after all to let Gigi handle it, or by generating
+ -- appropriate code in the front end.
+
+ declare
+ L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
+ R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
+
+ Left_Lo : constant Node_Id := Type_Low_Bound (L_Index_Typ);
+ Left_Hi : constant Node_Id := Type_High_Bound (L_Index_Typ);
+ Right_Lo : constant Node_Id := Type_Low_Bound (R_Index_Typ);
+ Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
+
+ Act_L_Array : Node_Id;
+ Act_R_Array : Node_Id;
+
+ Cleft_Lo : Node_Id;
+ Cright_Lo : Node_Id;
+ Condition : Node_Id;
+
+ Cresult : Compare_Result;
+
+ begin
+ -- Get the expressions for the arrays. If we are dealing with a
+ -- private type, then convert to the underlying type. We can do
+ -- direct assignments to an array that is a private type, but
+ -- we cannot assign to elements of the array without this extra
+ -- unchecked conversion.
+
+ if Nkind (Act_Lhs) = N_Slice then
+ Larray := Prefix (Act_Lhs);
+ else
+ Larray := Act_Lhs;
+
+ if Is_Private_Type (Etype (Larray)) then
+ Larray :=
+ Unchecked_Convert_To
+ (Underlying_Type (Etype (Larray)), Larray);
+ end if;
+ end if;
+
+ if Nkind (Act_Rhs) = N_Slice then
+ Rarray := Prefix (Act_Rhs);
+ else
+ Rarray := Act_Rhs;
+
+ if Is_Private_Type (Etype (Rarray)) then
+ Rarray :=
+ Unchecked_Convert_To
+ (Underlying_Type (Etype (Rarray)), Rarray);
+ end if;
+ end if;
+
+ -- If both sides are slices, we must figure out whether
+ -- it is safe to do the move in one direction or the other
+ -- It is always safe if there is a change of representation
+ -- since obviously two arrays with different representations
+ -- cannot possibly overlap.
+
+ if (not Crep) and L_Slice and R_Slice then
+ Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
+ Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
+
+ -- If both left and right hand arrays are entity names, and
+ -- refer to different entities, then we know that the move
+ -- is safe (the two storage areas are completely disjoint).
+
+ if Is_Entity_Name (Act_L_Array)
+ and then Is_Entity_Name (Act_R_Array)
+ and then Entity (Act_L_Array) /= Entity (Act_R_Array)
+ then
+ null;
+
+ -- Otherwise, we assume the worst, which is that the two
+ -- arrays are the same array. There is no need to check if
+ -- we know that is the case, because if we don't know it,
+ -- we still have to assume it!
+
+ -- Generally if the same array is involved, then we have
+ -- an overlapping case. We will have to really assume the
+ -- worst (i.e. set neither of the OK flags) unless we can
+ -- determine the lower or upper bounds at compile time and
+ -- compare them.
+
+ else
+ Cresult := Compile_Time_Compare (Left_Lo, Right_Lo);
+
+ if Cresult = Unknown then
+ Cresult := Compile_Time_Compare (Left_Hi, Right_Hi);
+ end if;
+
+ case Cresult is
+ when LT | LE | EQ => Set_Backwards_OK (N, False);
+ when GT | GE => Set_Forwards_OK (N, False);
+ when NE | Unknown => Set_Backwards_OK (N, False);
+ Set_Forwards_OK (N, False);
+ end case;
+ end if;
+ end if;
+
+ -- If after that analysis, Forwards_OK is still True, and
+ -- Loop_Required is False, meaning that we have not discovered
+ -- some non-overlap reason for requiring a loop, then we can
+ -- still let gigi handle it.
+
+ if not Loop_Required then
+ if Forwards_OK (N) then
+ return;
+
+ else
+ null;
+ -- Here is where a memmove would be appropriate ???
+ end if;
+ end if;
+
+ -- At this stage we have to generate an explicit loop, and
+ -- we have the following cases:
+
+ -- Forwards_OK = True
+
+ -- Rnn : right_index := right_index'First;
+ -- for Lnn in left-index loop
+ -- left (Lnn) := right (Rnn);
+ -- Rnn := right_index'Succ (Rnn);
+ -- end loop;
+
+ -- Note: the above code MUST be analyzed with checks off,
+ -- because otherwise the Succ could overflow. But in any
+ -- case this is more efficient!
+
+ -- Forwards_OK = False, Backwards_OK = True
+
+ -- Rnn : right_index := right_index'Last;
+ -- for Lnn in reverse left-index loop
+ -- left (Lnn) := right (Rnn);
+ -- Rnn := right_index'Pred (Rnn);
+ -- end loop;
+
+ -- Note: the above code MUST be analyzed with checks off,
+ -- because otherwise the Pred could overflow. But in any
+ -- case this is more efficient!
+
+ -- Forwards_OK = Backwards_OK = False
+
+ -- This only happens if we have the same array on each side. It is
+ -- possible to create situations using overlays that violate this,
+ -- but we simply do not promise to get this "right" in this case.
+
+ -- There are two possible subcases. If the No_Implicit_Conditionals
+ -- restriction is set, then we generate the following code:
+
+ -- declare
+ -- T : constant <operand-type> := rhs;
+ -- begin
+ -- lhs := T;
+ -- end;
+
+ -- If implicit conditionals are permitted, then we generate:
+
+ -- if Left_Lo <= Right_Lo then
+ -- <code for Forwards_OK = True above>
+ -- else
+ -- <code for Backwards_OK = True above>
+ -- end if;
+
+ -- Cases where either Forwards_OK or Backwards_OK is true
+
+ if Forwards_OK (N) or else Backwards_OK (N) then
+ Rewrite (N,
+ Expand_Assign_Array_Loop
+ (N, Larray, Rarray, L_Type, R_Type, Ndim,
+ Rev => not Forwards_OK (N)));
+
+ -- Case of both are false with No_Implicit_Conditionals
+
+ elsif Restrictions (No_Implicit_Conditionals) then
+ declare
+ T : Entity_Id := Make_Defining_Identifier (Loc,
+ Chars => Name_T);
+
+ begin
+ Rewrite (N,
+ Make_Block_Statement (Loc,
+ Declarations => New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => T,
+ Constant_Present => True,
+ Object_Definition =>
+ New_Occurrence_Of (Etype (Rhs), Loc),
+ Expression => Relocate_Node (Rhs))),
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Make_Assignment_Statement (Loc,
+ Name => Relocate_Node (Lhs),
+ Expression => New_Occurrence_Of (T, Loc))))));
+ end;
+
+ -- Case of both are false with implicit conditionals allowed
+
+ else
+ -- Before we generate this code, we must ensure that the
+ -- left and right side array types are defined. They may
+ -- be itypes, and we cannot let them be defined inside the
+ -- if, since the first use in the then may not be executed.
+
+ Ensure_Defined (L_Type, N);
+ Ensure_Defined (R_Type, N);
+
+ -- We normally compare addresses to find out which way round
+ -- to do the loop, since this is realiable, and handles the
+ -- cases of parameters, conversions etc. But we can't do that
+ -- in the bit packed case or the Java VM case, because addresses
+ -- don't work there.
+
+ if not Is_Bit_Packed_Array (L_Type) and then not Java_VM then
+ Condition :=
+ Make_Op_Le (Loc,
+ Left_Opnd =>
+ Unchecked_Convert_To (RTE (RE_Integer_Address),
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Make_Indexed_Component (Loc,
+ Prefix =>
+ Duplicate_Subexpr (Larray, True),
+ Expressions => New_List (
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Reference_To
+ (L_Index_Typ, Loc),
+ Attribute_Name => Name_First))),
+ Attribute_Name => Name_Address)),
+
+ Right_Opnd =>
+ Unchecked_Convert_To (RTE (RE_Integer_Address),
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Make_Indexed_Component (Loc,
+ Prefix =>
+ Duplicate_Subexpr (Rarray, True),
+ Expressions => New_List (
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Reference_To
+ (R_Index_Typ, Loc),
+ Attribute_Name => Name_First))),
+ Attribute_Name => Name_Address)));
+
+ -- For the bit packed and Java VM cases we use the bounds.
+ -- That's OK, because we don't have to worry about parameters,
+ -- since they cannot cause overlap. Perhaps we should worry
+ -- about weird slice conversions ???
+
+ else
+ -- Copy the bounds and reset the Analyzed flag, because the
+ -- bounds of the index type itself may be universal, and must
+ -- must be reaanalyzed to acquire the proper type for Gigi.
+
+ Cleft_Lo := New_Copy_Tree (Left_Lo);
+ Cright_Lo := New_Copy_Tree (Right_Lo);
+ Set_Analyzed (Cleft_Lo, False);
+ Set_Analyzed (Cright_Lo, False);
+
+ Condition :=
+ Make_Op_Le (Loc,
+ Left_Opnd => Cleft_Lo,
+ Right_Opnd => Cright_Lo);
+ end if;
+
+ Rewrite (N,
+ Make_Implicit_If_Statement (N,
+ Condition => Condition,
+
+ Then_Statements => New_List (
+ Expand_Assign_Array_Loop
+ (N, Larray, Rarray, L_Type, R_Type, Ndim,
+ Rev => False)),
+
+ Else_Statements => New_List (
+ Expand_Assign_Array_Loop
+ (N, Larray, Rarray, L_Type, R_Type, Ndim,
+ Rev => True))));
+ end if;
+
+ Analyze (N, Suppress => All_Checks);
+ end;
+ end Expand_Assign_Array;
+
+ ------------------------------
+ -- Expand_Assign_Array_Loop --
+ ------------------------------
+
+ -- The following is an example of the loop generated for the case of
+ -- a two-dimensional array:
+
+ -- declare
+ -- R2b : Tm1X1 := 1;
+ -- begin
+ -- for L1b in 1 .. 100 loop
+ -- declare
+ -- R4b : Tm1X2 := 1;
+ -- begin
+ -- for L3b in 1 .. 100 loop
+ -- vm1 (L1b, L3b) := vm2 (R2b, R4b);
+ -- R4b := Tm1X2'succ(R4b);
+ -- end loop;
+ -- end;
+ -- R2b := Tm1X1'succ(R2b);
+ -- end loop;
+ -- end;
+
+ -- Here Rev is False, and Tm1Xn are the subscript types for the right
+ -- hand side. The declarations of R2b and R4b are inserted before the
+ -- original assignment statement.
+
+ function Expand_Assign_Array_Loop
+ (N : Node_Id;
+ Larray : Entity_Id;
+ Rarray : Entity_Id;
+ L_Type : Entity_Id;
+ R_Type : Entity_Id;
+ Ndim : Pos;
+ Rev : Boolean)
+ return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ Lnn : array (1 .. Ndim) of Entity_Id;
+ Rnn : array (1 .. Ndim) of Entity_Id;
+ -- Entities used as subscripts on left and right sides
+
+ L_Index_Type : array (1 .. Ndim) of Entity_Id;
+ R_Index_Type : array (1 .. Ndim) of Entity_Id;
+ -- Left and right index types
+
+ Assign : Node_Id;
+
+ F_Or_L : Name_Id;
+ S_Or_P : Name_Id;
+
+ begin
+ if Rev then
+ F_Or_L := Name_Last;
+ S_Or_P := Name_Pred;
+ else
+ F_Or_L := Name_First;
+ S_Or_P := Name_Succ;
+ end if;
+
+ -- Setup index types and subscript entities
+
+ declare
+ L_Index : Node_Id;
+ R_Index : Node_Id;
+
+ begin
+ L_Index := First_Index (L_Type);
+ R_Index := First_Index (R_Type);
+
+ for J in 1 .. Ndim loop
+ Lnn (J) :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('L'));
+
+ Rnn (J) :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('R'));
+
+ L_Index_Type (J) := Etype (L_Index);
+ R_Index_Type (J) := Etype (R_Index);
+
+ Next_Index (L_Index);
+ Next_Index (R_Index);
+ end loop;
+ end;
+
+ -- Now construct the assignment statement
+
+ declare
+ ExprL : List_Id := New_List;
+ ExprR : List_Id := New_List;
+
+ begin
+ for J in 1 .. Ndim loop
+ Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
+ Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
+ end loop;
+
+ Assign :=
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Indexed_Component (Loc,
+ Prefix => Duplicate_Subexpr (Larray, Name_Req => True),
+ Expressions => ExprL),
+ Expression =>
+ Make_Indexed_Component (Loc,
+ Prefix => Duplicate_Subexpr (Rarray, Name_Req => True),
+ Expressions => ExprR));
+
+ -- Propagate the No_Ctrl_Actions flag to individual assignments
+
+ Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
+ end;
+
+ -- Now construct the loop from the inside out, with the last subscript
+ -- varying most rapidly. Note that Assign is first the raw assignment
+ -- statement, and then subsequently the loop that wraps it up.
+
+ for J in reverse 1 .. Ndim loop
+ Assign :=
+ Make_Block_Statement (Loc,
+ Declarations => New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Rnn (J),
+ Object_Definition =>
+ New_Occurrence_Of (R_Index_Type (J), Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
+ Attribute_Name => F_Or_L))),
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Make_Implicit_Loop_Statement (N,
+ Iteration_Scheme =>
+ Make_Iteration_Scheme (Loc,
+ Loop_Parameter_Specification =>
+ Make_Loop_Parameter_Specification (Loc,
+ Defining_Identifier => Lnn (J),
+ Reverse_Present => Rev,
+ Discrete_Subtype_Definition =>
+ New_Reference_To (L_Index_Type (J), Loc))),
+
+ Statements => New_List (
+ Assign,
+
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Rnn (J), Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (R_Index_Type (J), Loc),
+ Attribute_Name => S_Or_P,
+ Expressions => New_List (
+ New_Occurrence_Of (Rnn (J), Loc)))))))));
+ end loop;
+
+ return Assign;
+ end Expand_Assign_Array_Loop;
+
+ --------------------------
+ -- Expand_Assign_Record --
+ --------------------------
+
+ -- The only processing required is in the change of representation
+ -- case, where we must expand the assignment to a series of field
+ -- by field assignments.
+
+ procedure Expand_Assign_Record (N : Node_Id) is
+ begin
+ if not Change_Of_Representation (N) then
+ return;
+ end if;
+
+ -- At this stage we know that the right hand side is a conversion
+
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ Lhs : constant Node_Id := Name (N);
+ Rhs : constant Node_Id := Expression (Expression (N));
+ R_Rec : constant Node_Id := Expression (Expression (N));
+ R_Typ : constant Entity_Id := Base_Type (Etype (R_Rec));
+ L_Typ : constant Entity_Id := Etype (Lhs);
+ Decl : constant Node_Id := Declaration_Node (R_Typ);
+ RDef : Node_Id;
+ F : Entity_Id;
+
+ function Find_Component
+ (Typ : Entity_Id;
+ Comp : Entity_Id)
+ return Entity_Id;
+ -- Find the component with the given name in the underlying record
+ -- declaration for Typ. We need to use the actual entity because
+ -- the type may be private and resolution by identifier alone would
+ -- fail.
+
+ function Make_Component_List_Assign (CL : Node_Id) return List_Id;
+ -- Returns a sequence of statements to assign the components that
+ -- are referenced in the given component list.
+
+ function Make_Field_Assign (C : Entity_Id) return Node_Id;
+ -- Given C, the entity for a discriminant or component, build
+ -- an assignment for the corresponding field values.
+
+ function Make_Field_Assigns (CI : List_Id) return List_Id;
+ -- Given CI, a component items list, construct series of statements
+ -- for fieldwise assignment of the corresponding components.
+
+ --------------------
+ -- Find_Component --
+ --------------------
+
+ function Find_Component
+ (Typ : Entity_Id;
+ Comp : Entity_Id)
+ return Entity_Id
+
+ is
+ Utyp : constant Entity_Id := Underlying_Type (Typ);
+ C : Entity_Id;
+
+ begin
+ C := First_Entity (Utyp);
+
+ while Present (C) loop
+ if Chars (C) = Chars (Comp) then
+ return C;
+ end if;
+ Next_Entity (C);
+ end loop;
+
+ raise Program_Error;
+ end Find_Component;
+
+ --------------------------------
+ -- Make_Component_List_Assign --
+ --------------------------------
+
+ function Make_Component_List_Assign (CL : Node_Id) return List_Id is
+ CI : constant List_Id := Component_Items (CL);
+ VP : constant Node_Id := Variant_Part (CL);
+
+ Result : List_Id;
+ Alts : List_Id;
+ V : Node_Id;
+ DC : Node_Id;
+ DCH : List_Id;
+
+ begin
+ Result := Make_Field_Assigns (CI);
+
+ if Present (VP) then
+
+ V := First_Non_Pragma (Variants (VP));
+ Alts := New_List;
+ while Present (V) loop
+
+ DCH := New_List;
+ DC := First (Discrete_Choices (V));
+ while Present (DC) loop
+ Append_To (DCH, New_Copy_Tree (DC));
+ Next (DC);
+ end loop;
+
+ Append_To (Alts,
+ Make_Case_Statement_Alternative (Loc,
+ Discrete_Choices => DCH,
+ Statements =>
+ Make_Component_List_Assign (Component_List (V))));
+ Next_Non_Pragma (V);
+ end loop;
+
+ Append_To (Result,
+ Make_Case_Statement (Loc,
+ Expression =>
+ Make_Selected_Component (Loc,
+ Prefix => Duplicate_Subexpr (Rhs),
+ Selector_Name =>
+ Make_Identifier (Loc, Chars (Name (VP)))),
+ Alternatives => Alts));
+
+ end if;
+
+ return Result;
+ end Make_Component_List_Assign;
+
+ -----------------------
+ -- Make_Field_Assign --
+ -----------------------
+
+ function Make_Field_Assign (C : Entity_Id) return Node_Id is
+ A : Node_Id;
+
+ begin
+ A :=
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix => Duplicate_Subexpr (Lhs),
+ Selector_Name =>
+ New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
+ Expression =>
+ Make_Selected_Component (Loc,
+ Prefix => Duplicate_Subexpr (Rhs),
+ Selector_Name => New_Occurrence_Of (C, Loc)));
+
+ -- Set Assignment_OK, so discriminants can be assigned
+
+ Set_Assignment_OK (Name (A), True);
+ return A;
+ end Make_Field_Assign;
+
+ ------------------------
+ -- Make_Field_Assigns --
+ ------------------------
+
+ function Make_Field_Assigns (CI : List_Id) return List_Id is
+ Item : Node_Id;
+ Result : List_Id;
+
+ begin
+ Item := First (CI);
+ Result := New_List;
+
+ while Present (Item) loop
+ if Nkind (Item) = N_Component_Declaration then
+ Append_To
+ (Result, Make_Field_Assign (Defining_Identifier (Item)));
+ end if;
+
+ Next (Item);
+ end loop;
+
+ return Result;
+ end Make_Field_Assigns;
+
+ -- Start of processing for Expand_Assign_Record
+
+ begin
+ -- Note that we use the base type for this processing. This results
+ -- in some extra work in the constrained case, but the change of
+ -- representation case is so unusual that it is not worth the effort.
+
+ -- First copy the discriminants. This is done unconditionally. It
+ -- is required in the unconstrained left side case, and also in the
+ -- case where this assignment was constructed during the expansion
+ -- of a type conversion (since initialization of discriminants is
+ -- suppressed in this case). It is unnecessary but harmless in
+ -- other cases.
+
+ if Has_Discriminants (L_Typ) then
+ F := First_Discriminant (R_Typ);
+ while Present (F) loop
+ Insert_Action (N, Make_Field_Assign (F));
+ Next_Discriminant (F);
+ end loop;
+ end if;
+
+ -- We know the underlying type is a record, but its current view
+ -- may be private. We must retrieve the usable record declaration.
+
+ if Nkind (Decl) = N_Private_Type_Declaration
+ and then Present (Full_View (R_Typ))
+ then
+ RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
+ else
+ RDef := Type_Definition (Decl);
+ end if;
+
+ if Nkind (RDef) = N_Record_Definition
+ and then Present (Component_List (RDef))
+ then
+ Insert_Actions
+ (N, Make_Component_List_Assign (Component_List (RDef)));
+
+ Rewrite (N, Make_Null_Statement (Loc));
+ end if;
+
+ end;
+ end Expand_Assign_Record;
+
+ -----------------------------------
+ -- Expand_N_Assignment_Statement --
+ -----------------------------------
+
+ -- For array types, deal with slice assignments and setting the flags
+ -- to indicate if it can be statically determined which direction the
+ -- move should go in. Also deal with generating length checks.
+
+ procedure Expand_N_Assignment_Statement (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Lhs : constant Node_Id := Name (N);
+ Rhs : constant Node_Id := Expression (N);
+ Typ : constant Entity_Id := Underlying_Type (Etype (Lhs));
+ Exp : Node_Id;
+
+ begin
+ -- Check for a special case where a high level transformation is
+ -- required. If we have either of:
+
+ -- P.field := rhs;
+ -- P (sub) := rhs;
+
+ -- where P is a reference to a bit packed array, then we have to unwind
+ -- the assignment. The exact meaning of being a reference to a bit
+ -- packed array is as follows:
+
+ -- An indexed component whose prefix is a bit packed array is a
+ -- reference to a bit packed array.
+
+ -- An indexed component or selected component whose prefix is a
+ -- reference to a bit packed array is itself a reference ot a
+ -- bit packed array.
+
+ -- The required transformation is
+
+ -- Tnn : prefix_type := P;
+ -- Tnn.field := rhs;
+ -- P := Tnn;
+
+ -- or
+
+ -- Tnn : prefix_type := P;
+ -- Tnn (subscr) := rhs;
+ -- P := Tnn;
+
+ -- Since P is going to be evaluated more than once, any subscripts
+ -- in P must have their evaluation forced.
+
+ if (Nkind (Lhs) = N_Indexed_Component
+ or else
+ Nkind (Lhs) = N_Selected_Component)
+ and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
+ then
+ declare
+ BPAR_Expr : constant Node_Id := Relocate_Node (Prefix (Lhs));
+ BPAR_Typ : constant Entity_Id := Etype (BPAR_Expr);
+ Tnn : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('T'));
+
+ begin
+ -- Insert the post assignment first, because we want to copy
+ -- the BPAR_Expr tree before it gets analyzed in the context
+ -- of the pre assignment. Note that we do not analyze the
+ -- post assignment yet (we cannot till we have completed the
+ -- analysis of the pre assignment). As usual, the analysis
+ -- of this post assignment will happen on its own when we
+ -- "run into" it after finishing the current assignment.
+
+ Insert_After (N,
+ Make_Assignment_Statement (Loc,
+ Name => New_Copy_Tree (BPAR_Expr),
+ Expression => New_Occurrence_Of (Tnn, Loc)));
+
+ -- At this stage BPAR_Expr is a reference to a bit packed
+ -- array where the reference was not expanded in the original
+ -- tree, since it was on the left side of an assignment. But
+ -- in the pre-assignment statement (the object definition),
+ -- BPAR_Expr will end up on the right hand side, and must be
+ -- reexpanded. To achieve this, we reset the analyzed flag
+ -- of all selected and indexed components down to the actual
+ -- indexed component for the packed array.
+
+ Exp := BPAR_Expr;
+ loop
+ Set_Analyzed (Exp, False);
+
+ if Nkind (Exp) = N_Selected_Component
+ or else
+ Nkind (Exp) = N_Indexed_Component
+ then
+ Exp := Prefix (Exp);
+ else
+ exit;
+ end if;
+ end loop;
+
+ -- Now we can insert and analyze the pre-assignment.
+
+ -- If the right-hand side requires a transient scope, it has
+ -- already been placed on the stack. However, the declaration is
+ -- inserted in the tree outside of this scope, and must reflect
+ -- the proper scope for its variable. This awkward bit is forced
+ -- by the stricter scope discipline imposed by GCC 2.97.
+
+ declare
+ Uses_Transient_Scope : constant Boolean :=
+ Scope_Is_Transient and then N = Node_To_Be_Wrapped;
+
+ begin
+ if Uses_Transient_Scope then
+ New_Scope (Scope (Current_Scope));
+ end if;
+
+ Insert_Before_And_Analyze (N,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Tnn,
+ Object_Definition => New_Occurrence_Of (BPAR_Typ, Loc),
+ Expression => BPAR_Expr));
+
+ if Uses_Transient_Scope then
+ Pop_Scope;
+ end if;
+ end;
+
+ -- Now fix up the original assignment and continue processing
+
+ Rewrite (Prefix (Lhs),
+ New_Occurrence_Of (Tnn, Loc));
+ end;
+ end if;
+
+ -- When we have the appropriate type of aggregate in the
+ -- expression (it has been determined during analysis of the
+ -- aggregate by setting the delay flag), let's perform in place
+ -- assignment and thus avoid creating a temporay.
+
+ if Is_Delayed_Aggregate (Rhs) then
+ Convert_Aggr_In_Assignment (N);
+ Rewrite (N, Make_Null_Statement (Loc));
+ Analyze (N);
+ return;
+ end if;
+
+ -- Apply discriminant check if required. If Lhs is an access type
+ -- to a designated type with discriminants, we must always check.
+
+ if Has_Discriminants (Etype (Lhs)) then
+
+ -- Skip discriminant check if change of representation. Will be
+ -- done when the change of representation is expanded out.
+
+ if not Change_Of_Representation (N) then
+ Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
+ end if;
+
+ -- If the type is private without discriminants, and the full type
+ -- has discriminants (necessarily with defaults) a check may still be
+ -- necessary if the Lhs is aliased. The private determinants must be
+ -- visible to build the discriminant constraints.
+
+ elsif Is_Private_Type (Etype (Lhs))
+ and then Has_Discriminants (Typ)
+ and then Nkind (Lhs) = N_Explicit_Dereference
+ then
+ declare
+ Lt : constant Entity_Id := Etype (Lhs);
+ begin
+ Set_Etype (Lhs, Typ);
+ Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
+ Apply_Discriminant_Check (Rhs, Typ, Lhs);
+ Set_Etype (Lhs, Lt);
+ end;
+
+ -- If the Lhs has a private type with unknown discriminants, it
+ -- may have a full view with discriminants, but those are nameable
+ -- only in the underlying type, so convert the Rhs to it before
+ -- potential checking.
+
+ elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
+ and then Has_Discriminants (Typ)
+ then
+ Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
+ Apply_Discriminant_Check (Rhs, Typ, Lhs);
+
+ -- In the access type case, we need the same discriminant check,
+ -- and also range checks if we have an access to constrained array.
+
+ elsif Is_Access_Type (Etype (Lhs))
+ and then Is_Constrained (Designated_Type (Etype (Lhs)))
+ then
+ if Has_Discriminants (Designated_Type (Etype (Lhs))) then
+
+ -- Skip discriminant check if change of representation. Will be
+ -- done when the change of representation is expanded out.
+
+ if not Change_Of_Representation (N) then
+ Apply_Discriminant_Check (Rhs, Etype (Lhs));
+ end if;
+
+ elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
+ Apply_Range_Check (Rhs, Etype (Lhs));
+
+ if Is_Constrained (Etype (Lhs)) then
+ Apply_Length_Check (Rhs, Etype (Lhs));
+ end if;
+
+ if Nkind (Rhs) = N_Allocator then
+ declare
+ Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
+ C_Es : Check_Result;
+
+ begin
+ C_Es :=
+ Range_Check
+ (Lhs,
+ Target_Typ,
+ Etype (Designated_Type (Etype (Lhs))));
+
+ Insert_Range_Checks
+ (C_Es,
+ N,
+ Target_Typ,
+ Sloc (Lhs),
+ Lhs);
+ end;
+ end if;
+ end if;
+
+ -- Apply range check for access type case
+
+ elsif Is_Access_Type (Etype (Lhs))
+ and then Nkind (Rhs) = N_Allocator
+ and then Nkind (Expression (Rhs)) = N_Qualified_Expression
+ then
+ Analyze_And_Resolve (Expression (Rhs));
+ Apply_Range_Check
+ (Expression (Rhs), Designated_Type (Etype (Lhs)));
+ end if;
+
+ -- Case of assignment to a bit packed array element
+
+ if Nkind (Lhs) = N_Indexed_Component
+ and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
+ then
+ Expand_Bit_Packed_Element_Set (N);
+ return;
+
+ -- Case of tagged type assignment
+
+ elsif Is_Tagged_Type (Typ)
+ or else (Controlled_Type (Typ) and then not Is_Array_Type (Typ))
+ then
+ Tagged_Case : declare
+ L : List_Id := No_List;
+ Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
+
+ begin
+ -- In the controlled case, we need to make sure that function
+ -- calls are evaluated before finalizing the target. In all
+ -- cases, it makes the expansion easier if the side-effects
+ -- are removed first.
+
+ Remove_Side_Effects (Lhs);
+ Remove_Side_Effects (Rhs);
+
+ -- Avoid recursion in the mechanism
+
+ Set_Analyzed (N);
+
+ -- If dispatching assignment, we need to dispatch to _assign
+
+ if Is_Class_Wide_Type (Typ)
+
+ -- If the type is tagged, we may as well use the predefined
+ -- primitive assignment. This avoids inlining a lot of code
+ -- and in the class-wide case, the assignment is replaced by
+ -- a dispatch call to _assign. Note that this cannot be done
+ -- when discriminant checks are locally suppressed (as in
+ -- extension aggregate expansions) because otherwise the
+ -- discriminant check will be performed within the _assign
+ -- call.
+
+ or else (Is_Tagged_Type (Typ)
+ and then Chars (Current_Scope) /= Name_uAssign
+ and then Expand_Ctrl_Actions
+ and then not Discriminant_Checks_Suppressed (Empty))
+ then
+ -- Fetch the primitive op _assign and proper type to call
+ -- it. Because of possible conflits between private and
+ -- full view the proper type is fetched directly from the
+ -- operation profile.
+
+ declare
+ Op : constant Entity_Id
+ := Find_Prim_Op (Typ, Name_uAssign);
+ F_Typ : Entity_Id := Etype (First_Formal (Op));
+
+ begin
+ -- If the assignment is dispatching, make sure to use the
+ -- ??? where is rest of this comment ???
+
+ if Is_Class_Wide_Type (Typ) then
+ F_Typ := Class_Wide_Type (F_Typ);
+ end if;
+
+ L := New_List (
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Reference_To (Op, Loc),
+ Parameter_Associations => New_List (
+ Unchecked_Convert_To (F_Typ, Duplicate_Subexpr (Lhs)),
+ Unchecked_Convert_To (F_Typ,
+ Duplicate_Subexpr (Rhs)))));
+ end;
+
+ else
+ L := Make_Tag_Ctrl_Assignment (N);
+
+ -- We can't afford to have destructive Finalization Actions
+ -- in the Self assignment case, so if the target and the
+ -- source are not obviously different, code is generated to
+ -- avoid the self assignment case
+ --
+ -- if lhs'address /= rhs'address then
+ -- <code for controlled and/or tagged assignment>
+ -- end if;
+
+ if not Statically_Different (Lhs, Rhs)
+ and then Expand_Ctrl_Actions
+ then
+ L := New_List (
+ Make_Implicit_If_Statement (N,
+ Condition =>
+ Make_Op_Ne (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Duplicate_Subexpr (Lhs),
+ Attribute_Name => Name_Address),
+
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Duplicate_Subexpr (Rhs),
+ Attribute_Name => Name_Address)),
+
+ Then_Statements => L));
+ end if;
+
+ -- We need to set up an exception handler for implementing
+ -- 7.6.1 (18). The remaining adjustments are tackled by the
+ -- implementation of adjust for record_controllers (see
+ -- s-finimp.adb)
+
+ -- This is skipped in No_Run_Time mode, where we in any
+ -- case exclude the possibility of finalization going on!
+
+ if Expand_Ctrl_Actions and then not No_Run_Time then
+ L := New_List (
+ Make_Block_Statement (Loc,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => L,
+ Exception_Handlers => New_List (
+ Make_Exception_Handler (Loc,
+ Exception_Choices =>
+ New_List (Make_Others_Choice (Loc)),
+ Statements => New_List (
+ Make_Raise_Program_Error (Loc)))))));
+ end if;
+ end if;
+
+ Rewrite (N,
+ Make_Block_Statement (Loc,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
+
+ -- If no restrictions on aborts, protect the whole assignement
+ -- for controlled objects as per 9.8(11)
+
+ if Controlled_Type (Typ)
+ and then Expand_Ctrl_Actions
+ and then Abort_Allowed
+ then
+ declare
+ Blk : constant Entity_Id :=
+ New_Internal_Entity (
+ E_Block, Current_Scope, Sloc (N), 'B');
+
+ begin
+ Set_Scope (Blk, Current_Scope);
+ Set_Etype (Blk, Standard_Void_Type);
+ Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
+
+ Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
+ Set_At_End_Proc (Handled_Statement_Sequence (N),
+ New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
+ Expand_At_End_Handler
+ (Handled_Statement_Sequence (N), Blk);
+ end;
+ end if;
+
+ Analyze (N);
+ return;
+ end Tagged_Case;
+
+ -- Array types
+
+ elsif Is_Array_Type (Typ) then
+ declare
+ Actual_Rhs : Node_Id := Rhs;
+
+ begin
+ while Nkind (Actual_Rhs) = N_Type_Conversion
+ or else
+ Nkind (Actual_Rhs) = N_Qualified_Expression
+ loop
+ Actual_Rhs := Expression (Actual_Rhs);
+ end loop;
+
+ Expand_Assign_Array (N, Actual_Rhs);
+ return;
+ end;
+
+ -- Record types
+
+ elsif Is_Record_Type (Typ) then
+ Expand_Assign_Record (N);
+ return;
+
+ -- Scalar types. This is where we perform the processing related
+ -- to the requirements of (RM 13.9.1(9-11)) concerning the handling
+ -- of invalid scalar values.
+
+ elsif Is_Scalar_Type (Typ) then
+
+ -- Case where right side is known valid
+
+ if Expr_Known_Valid (Rhs) then
+
+ -- Here the right side is valid, so it is fine. The case to
+ -- deal with is when the left side is a local variable reference
+ -- whose value is not currently known to be valid. If this is
+ -- the case, and the assignment appears in an unconditional
+ -- context, then we can mark the left side as now being valid.
+
+ if Is_Local_Variable_Reference (Lhs)
+ and then not Is_Known_Valid (Entity (Lhs))
+ and then In_Unconditional_Context (N)
+ then
+ Set_Is_Known_Valid (Entity (Lhs), True);
+ end if;
+
+ -- Case where right side may be invalid in the sense of the RM
+ -- reference above. The RM does not require that we check for
+ -- the validity on an assignment, but it does require that the
+ -- assignment of an invalid value not cause erroneous behavior.
+
+ -- The general approach in GNAT is to use the Is_Known_Valid flag
+ -- to avoid the need for validity checking on assignments. However
+ -- in some cases, we have to do validity checking in order to make
+ -- sure that the setting of this flag is correct.
+
+ else
+ -- Validate right side if we are validating copies
+
+ if Validity_Checks_On
+ and then Validity_Check_Copies
+ then
+ Ensure_Valid (Rhs);
+
+ -- We can propagate this to the left side where appropriate
+
+ if Is_Local_Variable_Reference (Lhs)
+ and then not Is_Known_Valid (Entity (Lhs))
+ and then In_Unconditional_Context (N)
+ then
+ Set_Is_Known_Valid (Entity (Lhs), True);
+ end if;
+
+ -- Otherwise check to see what should be done
+
+ -- If left side is a local variable, then we just set its
+ -- flag to indicate that its value may no longer be valid,
+ -- since we are copying a potentially invalid value.
+
+ elsif Is_Local_Variable_Reference (Lhs) then
+ Set_Is_Known_Valid (Entity (Lhs), False);
+
+ -- Check for case of a non-local variable on the left side
+ -- which is currently known to be valid. In this case, we
+ -- simply ensure that the right side is valid. We only play
+ -- the game of copying validity status for local variables,
+ -- since we are doing this statically, not by tracing the
+ -- full flow graph.
+
+ elsif Is_Entity_Name (Lhs)
+ and then Is_Known_Valid (Entity (Lhs))
+ then
+ -- Note that the Ensure_Valid call is ignored if the
+ -- Validity_Checking mode is set to none so we do not
+ -- need to worry about that case here.
+
+ Ensure_Valid (Rhs);
+
+ -- In all other cases, we can safely copy an invalid value
+ -- without worrying about the status of the left side. Since
+ -- it is not a variable reference it will not be considered
+ -- as being known to be valid in any case.
+
+ else
+ null;
+ end if;
+ end if;
+ end if;
+
+ -- Defend against invalid subscripts on left side if we are in
+ -- standard validity checking mode. No need to do this if we
+ -- are checking all subscripts.
+
+ if Validity_Checks_On
+ and then Validity_Check_Default
+ and then not Validity_Check_Subscripts
+ then
+ Check_Valid_Lvalue_Subscripts (Lhs);
+ end if;
+ end Expand_N_Assignment_Statement;
+
+ ------------------------------
+ -- Expand_N_Block_Statement --
+ ------------------------------
+
+ -- Encode entity names defined in block statement
+
+ procedure Expand_N_Block_Statement (N : Node_Id) is
+ begin
+ Qualify_Entity_Names (N);
+ end Expand_N_Block_Statement;
+
+ -----------------------------
+ -- Expand_N_Case_Statement --
+ -----------------------------
+
+ procedure Expand_N_Case_Statement (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Expr : constant Node_Id := Expression (N);
+
+ begin
+ -- Check for the situation where we know at compile time which
+ -- branch will be taken
+
+ if Compile_Time_Known_Value (Expr) then
+ declare
+ Val : constant Uint := Expr_Value (Expr);
+ Alt : Node_Id;
+ Choice : Node_Id;
+
+ begin
+ Alt := First (Alternatives (N));
+ Search : loop
+ Choice := First (Discrete_Choices (Alt));
+ while Present (Choice) loop
+
+ -- Others choice, always matches
+
+ if Nkind (Choice) = N_Others_Choice then
+ exit Search;
+
+ -- Range, check if value is in the range
+
+ elsif Nkind (Choice) = N_Range then
+ exit Search when
+ Val >= Expr_Value (Low_Bound (Choice))
+ and then
+ Val <= Expr_Value (High_Bound (Choice));
+
+ -- Choice is a subtype name. Note that we know it must
+ -- be a static subtype, since otherwise it would have
+ -- been diagnosed as illegal.
+
+ elsif Is_Entity_Name (Choice)
+ and then Is_Type (Entity (Choice))
+ then
+ exit when Is_In_Range (Expr, Etype (Choice));
+
+ -- Choice is a subtype indication
+
+ elsif Nkind (Choice) = N_Subtype_Indication then
+ declare
+ C : constant Node_Id := Constraint (Choice);
+ R : constant Node_Id := Range_Expression (C);
+
+ begin
+ exit Search when
+ Val >= Expr_Value (Low_Bound (R))
+ and then
+ Val <= Expr_Value (High_Bound (R));
+ end;
+
+ -- Choice is a simple expression
+
+ else
+ exit Search when Val = Expr_Value (Choice);
+ end if;
+
+ Next (Choice);
+ end loop;
+
+ Next (Alt);
+ pragma Assert (Present (Alt));
+ end loop Search;
+
+ -- The above loop *must* terminate by finding a match, since
+ -- we know the case statement is valid, and the value of the
+ -- expression is known at compile time. When we fall out of
+ -- the loop, Alt points to the alternative that we know will
+ -- be selected at run time.
+
+ -- Move the statements from this alternative after the case
+ -- statement. They are already analyzed, so will be skipped
+ -- by the analyzer.
+
+ Insert_List_After (N, Statements (Alt));
+
+ -- That leaves the case statement as a shell. The alternative
+ -- that wlil be executed is reset to a null list. So now we can
+ -- kill the entire case statement.
+
+ Kill_Dead_Code (Expression (N));
+ Kill_Dead_Code (Alternatives (N));
+ Rewrite (N, Make_Null_Statement (Loc));
+ end;
+
+ -- Here if the choice is not determined at compile time
+
+ -- If the last alternative is not an Others choice, replace it with an
+ -- N_Others_Choice. Note that we do not bother to call Analyze on the
+ -- modified case statement, since it's only effect would be to compute
+ -- the contents of the Others_Discrete_Choices node laboriously, and of
+ -- course we already know the list of choices that corresponds to the
+ -- others choice (it's the list we are replacing!)
+
+ else
+ declare
+ Altnode : constant Node_Id := Last (Alternatives (N));
+ Others_Node : Node_Id;
+
+ begin
+ if Nkind (First (Discrete_Choices (Altnode)))
+ /= N_Others_Choice
+ then
+ Others_Node := Make_Others_Choice (Sloc (Altnode));
+ Set_Others_Discrete_Choices
+ (Others_Node, Discrete_Choices (Altnode));
+ Set_Discrete_Choices (Altnode, New_List (Others_Node));
+ end if;
+
+ -- If checks are on, ensure argument is valid (RM 5.4(13)). This
+ -- is only done for case statements frpm in the source program.
+ -- We don't just call Ensure_Valid here, because the requirement
+ -- is more strenous than usual, in that it is required that
+ -- Constraint_Error be raised.
+
+ if Comes_From_Source (N)
+ and then Validity_Checks_On
+ and then Validity_Check_Default
+ and then not Expr_Known_Valid (Expr)
+ then
+ Insert_Valid_Check (Expr);
+ end if;
+ end;
+ end if;
+ end Expand_N_Case_Statement;
+
+ -----------------------------
+ -- Expand_N_Exit_Statement --
+ -----------------------------
+
+ -- The only processing required is to deal with a possible C/Fortran
+ -- boolean value used as the condition for the exit statement.
+
+ procedure Expand_N_Exit_Statement (N : Node_Id) is
+ begin
+ Adjust_Condition (Condition (N));
+ end Expand_N_Exit_Statement;
+
+ -----------------------------
+ -- Expand_N_Goto_Statement --
+ -----------------------------
+
+ -- Add poll before goto if polling active
+
+ procedure Expand_N_Goto_Statement (N : Node_Id) is
+ begin
+ Generate_Poll_Call (N);
+ end Expand_N_Goto_Statement;
+
+ ---------------------------
+ -- Expand_N_If_Statement --
+ ---------------------------
+
+ -- First we deal with the case of C and Fortran convention boolean
+ -- values, with zero/non-zero semantics.
+
+ -- Second, we deal with the obvious rewriting for the cases where the
+ -- condition of the IF is known at compile time to be True or False.
+
+ -- Third, we remove elsif parts which have non-empty Condition_Actions
+ -- and rewrite as independent if statements. For example:
+
+ -- if x then xs
+ -- elsif y then ys
+ -- ...
+ -- end if;
+
+ -- becomes
+ --
+ -- if x then xs
+ -- else
+ -- <<condition actions of y>>
+ -- if y then ys
+ -- ...
+ -- end if;
+ -- end if;
+
+ -- This rewriting is needed if at least one elsif part has a non-empty
+ -- Condition_Actions list. We also do the same processing if there is
+ -- a constant condition in an elsif part (in conjunction with the first
+ -- processing step mentioned above, for the recursive call made to deal
+ -- with the created inner if, this deals with properly optimizing the
+ -- cases of constant elsif conditions).
+
+ procedure Expand_N_If_Statement (N : Node_Id) is
+ Hed : Node_Id;
+ E : Node_Id;
+ New_If : Node_Id;
+
+ begin
+ Adjust_Condition (Condition (N));
+
+ -- The following loop deals with constant conditions for the IF. We
+ -- need a loop because as we eliminate False conditions, we grab the
+ -- first elsif condition and use it as the primary condition.
+
+ while Compile_Time_Known_Value (Condition (N)) loop
+
+ -- If condition is True, we can simply rewrite the if statement
+ -- now by replacing it by the series of then statements.
+
+ if Is_True (Expr_Value (Condition (N))) then
+
+ -- All the else parts can be killed
+
+ Kill_Dead_Code (Elsif_Parts (N));
+ Kill_Dead_Code (Else_Statements (N));
+
+ Hed := Remove_Head (Then_Statements (N));
+ Insert_List_After (N, Then_Statements (N));
+ Rewrite (N, Hed);
+ return;
+
+ -- If condition is False, then we can delete the condition and
+ -- the Then statements
+
+ else
+ Kill_Dead_Code (Condition (N));
+ Kill_Dead_Code (Then_Statements (N));
+
+ -- If there are no elsif statements, then we simply replace
+ -- the entire if statement by the sequence of else statements.
+
+ if No (Elsif_Parts (N)) then
+
+ if No (Else_Statements (N))
+ or else Is_Empty_List (Else_Statements (N))
+ then
+ Rewrite (N,
+ Make_Null_Statement (Sloc (N)));
+
+ else
+ Hed := Remove_Head (Else_Statements (N));
+ Insert_List_After (N, Else_Statements (N));
+ Rewrite (N, Hed);
+ end if;
+
+ return;
+
+ -- If there are elsif statements, the first of them becomes
+ -- the if/then section of the rebuilt if statement This is
+ -- the case where we loop to reprocess this copied condition.
+
+ else
+ Hed := Remove_Head (Elsif_Parts (N));
+ Insert_Actions (N, Condition_Actions (Hed));
+ Set_Condition (N, Condition (Hed));
+ Set_Then_Statements (N, Then_Statements (Hed));
+
+ if Is_Empty_List (Elsif_Parts (N)) then
+ Set_Elsif_Parts (N, No_List);
+ end if;
+ end if;
+ end if;
+ end loop;
+
+ -- Loop through elsif parts, dealing with constant conditions and
+ -- possible expression actions that are present.
+
+ if Present (Elsif_Parts (N)) then
+ E := First (Elsif_Parts (N));
+ while Present (E) loop
+ Adjust_Condition (Condition (E));
+
+ -- If there are condition actions, then we rewrite the if
+ -- statement as indicated above. We also do the same rewrite
+ -- if the condition is True or False. The further processing
+ -- of this constant condition is then done by the recursive
+ -- call to expand the newly created if statement
+
+ if Present (Condition_Actions (E))
+ or else Compile_Time_Known_Value (Condition (E))
+ then
+ -- Note this is not an implicit if statement, since it is
+ -- part of an explicit if statement in the source (or of an
+ -- implicit if statement that has already been tested).
+
+ New_If :=
+ Make_If_Statement (Sloc (E),
+ Condition => Condition (E),
+ Then_Statements => Then_Statements (E),
+ Elsif_Parts => No_List,
+ Else_Statements => Else_Statements (N));
+
+ -- Elsif parts for new if come from remaining elsif's of parent
+
+ while Present (Next (E)) loop
+ if No (Elsif_Parts (New_If)) then
+ Set_Elsif_Parts (New_If, New_List);
+ end if;
+
+ Append (Remove_Next (E), Elsif_Parts (New_If));
+ end loop;
+
+ Set_Else_Statements (N, New_List (New_If));
+
+ if Present (Condition_Actions (E)) then
+ Insert_List_Before (New_If, Condition_Actions (E));
+ end if;
+
+ Remove (E);
+
+ if Is_Empty_List (Elsif_Parts (N)) then
+ Set_Elsif_Parts (N, No_List);
+ end if;
+
+ Analyze (New_If);
+ return;
+
+ -- No special processing for that elsif part, move to next
+
+ else
+ Next (E);
+ end if;
+ end loop;
+ end if;
+ end Expand_N_If_Statement;
+
+ -----------------------------
+ -- Expand_N_Loop_Statement --
+ -----------------------------
+
+ -- 1. Deal with while condition for C/Fortran boolean
+ -- 2. Deal with loops with a non-standard enumeration type range
+ -- 3. Deal with while loops where Condition_Actions is set
+ -- 4. Insert polling call if required
+
+ procedure Expand_N_Loop_Statement (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Isc : constant Node_Id := Iteration_Scheme (N);
+
+ begin
+ if Present (Isc) then
+ Adjust_Condition (Condition (Isc));
+ end if;
+
+ if Is_Non_Empty_List (Statements (N)) then
+ Generate_Poll_Call (First (Statements (N)));
+ end if;
+
+ if No (Isc) then
+ return;
+ end if;
+
+ -- Handle the case where we have a for loop with the range type being
+ -- an enumeration type with non-standard representation. In this case
+ -- we expand:
+
+ -- for x in [reverse] a .. b loop
+ -- ...
+ -- end loop;
+
+ -- to
+
+ -- for xP in [reverse] integer
+ -- range etype'Pos (a) .. etype'Pos (b) loop
+ -- declare
+ -- x : constant etype := Pos_To_Rep (xP);
+ -- begin
+ -- ...
+ -- end;
+ -- end loop;
+
+ if Present (Loop_Parameter_Specification (Isc)) then
+ declare
+ LPS : constant Node_Id := Loop_Parameter_Specification (Isc);
+ Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
+ Ltype : constant Entity_Id := Etype (Loop_Id);
+ Btype : constant Entity_Id := Base_Type (Ltype);
+ New_Id : Entity_Id;
+ Lo, Hi : Node_Id;
+
+ begin
+ if not Is_Enumeration_Type (Btype)
+ or else No (Enum_Pos_To_Rep (Btype))
+ then
+ return;
+ end if;
+
+ New_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_External_Name (Chars (Loop_Id), 'P'));
+
+ Lo := Type_Low_Bound (Ltype);
+ Hi := Type_High_Bound (Ltype);
+
+ Rewrite (N,
+ Make_Loop_Statement (Loc,
+ Identifier => Identifier (N),
+
+ Iteration_Scheme =>
+ Make_Iteration_Scheme (Loc,
+ Loop_Parameter_Specification =>
+ Make_Loop_Parameter_Specification (Loc,
+ Defining_Identifier => New_Id,
+ Reverse_Present => Reverse_Present (LPS),
+
+ Discrete_Subtype_Definition =>
+ Make_Subtype_Indication (Loc,
+
+ Subtype_Mark =>
+ New_Reference_To (Standard_Natural, Loc),
+
+ Constraint =>
+ Make_Range_Constraint (Loc,
+ Range_Expression =>
+ Make_Range (Loc,
+
+ Low_Bound =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Reference_To (Btype, Loc),
+
+ Attribute_Name => Name_Pos,
+
+ Expressions => New_List (
+ Relocate_Node
+ (Type_Low_Bound (Ltype)))),
+
+ High_Bound =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Reference_To (Btype, Loc),
+
+ Attribute_Name => Name_Pos,
+
+ Expressions => New_List (
+ Relocate_Node
+ (Type_High_Bound (Ltype))))))))),
+
+ Statements => New_List (
+ Make_Block_Statement (Loc,
+ Declarations => New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Loop_Id,
+ Constant_Present => True,
+ Object_Definition => New_Reference_To (Ltype, Loc),
+ Expression =>
+ Make_Indexed_Component (Loc,
+ Prefix =>
+ New_Reference_To (Enum_Pos_To_Rep (Btype), Loc),
+ Expressions => New_List (
+ New_Reference_To (New_Id, Loc))))),
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => Statements (N)))),
+
+ End_Label => End_Label (N)));
+
+ Analyze (N);
+ end;
+
+ -- Second case, if we have a while loop with Condition_Actions set,
+ -- then we change it into a plain loop:
+
+ -- while C loop
+ -- ...
+ -- end loop;
+
+ -- changed to:
+
+ -- loop
+ -- <<condition actions>>
+ -- exit when not C;
+ -- ...
+ -- end loop
+
+ elsif Present (Isc)
+ and then Present (Condition_Actions (Isc))
+ then
+ declare
+ ES : Node_Id;
+
+ begin
+ ES :=
+ Make_Exit_Statement (Sloc (Condition (Isc)),
+ Condition =>
+ Make_Op_Not (Sloc (Condition (Isc)),
+ Right_Opnd => Condition (Isc)));
+
+ Prepend (ES, Statements (N));
+ Insert_List_Before (ES, Condition_Actions (Isc));
+
+ -- This is not an implicit loop, since it is generated in
+ -- response to the loop statement being processed. If this
+ -- is itself implicit, the restriction has already been
+ -- checked. If not, it is an explicit loop.
+
+ Rewrite (N,
+ Make_Loop_Statement (Sloc (N),
+ Identifier => Identifier (N),
+ Statements => Statements (N),
+ End_Label => End_Label (N)));
+
+ Analyze (N);
+ end;
+ end if;
+ end Expand_N_Loop_Statement;
+
+ -------------------------------
+ -- Expand_N_Return_Statement --
+ -------------------------------
+
+ procedure Expand_N_Return_Statement (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Exp : constant Node_Id := Expression (N);
+ Exptyp : Entity_Id;
+ T : Entity_Id;
+ Utyp : Entity_Id;
+ Scope_Id : Entity_Id;
+ Kind : Entity_Kind;
+ Call : Node_Id;
+ Acc_Stat : Node_Id;
+ Goto_Stat : Node_Id;
+ Lab_Node : Node_Id;
+ Cur_Idx : Nat;
+ Return_Type : Entity_Id;
+ Result_Exp : Node_Id;
+ Result_Id : Entity_Id;
+ Result_Obj : Node_Id;
+
+ begin
+ -- Case where returned expression is present
+
+ if Present (Exp) then
+
+ -- Always normalize C/Fortran boolean result. This is not always
+ -- necessary, but it seems a good idea to minimize the passing
+ -- around of non-normalized values, and in any case this handles
+ -- the processing of barrier functions for protected types, which
+ -- turn the condition into a return statement.
+
+ Exptyp := Etype (Exp);
+
+ if Is_Boolean_Type (Exptyp)
+ and then Nonzero_Is_True (Exptyp)
+ then
+ Adjust_Condition (Exp);
+ Adjust_Result_Type (Exp, Exptyp);
+ end if;
+
+ -- Do validity check if enabled for returns
+
+ if Validity_Checks_On
+ and then Validity_Check_Returns
+ then
+ Ensure_Valid (Exp);
+ end if;
+ end if;
+
+ -- Find relevant enclosing scope from which return is returning
+
+ Cur_Idx := Scope_Stack.Last;
+ loop
+ Scope_Id := Scope_Stack.Table (Cur_Idx).Entity;
+
+ if Ekind (Scope_Id) /= E_Block
+ and then Ekind (Scope_Id) /= E_Loop
+ then
+ exit;
+
+ else
+ Cur_Idx := Cur_Idx - 1;
+ pragma Assert (Cur_Idx >= 0);
+ end if;
+ end loop;
+
+ if No (Exp) then
+ Kind := Ekind (Scope_Id);
+
+ -- If it is a return from procedures do no extra steps.
+
+ if Kind = E_Procedure or else Kind = E_Generic_Procedure then
+ return;
+ end if;
+
+ pragma Assert (Is_Entry (Scope_Id));
+
+ -- Look at the enclosing block to see whether the return is from
+ -- an accept statement or an entry body.
+
+ for J in reverse 0 .. Cur_Idx loop
+ Scope_Id := Scope_Stack.Table (J).Entity;
+ exit when Is_Concurrent_Type (Scope_Id);
+ end loop;
+
+ -- If it is a return from accept statement it should be expanded
+ -- as a call to RTS Complete_Rendezvous and a goto to the end of
+ -- the accept body.
+
+ -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
+ -- Expand_N_Accept_Alternative in exp_ch9.adb)
+
+ if Is_Task_Type (Scope_Id) then
+
+ Call := (Make_Procedure_Call_Statement (Loc,
+ Name => New_Reference_To
+ (RTE (RE_Complete_Rendezvous), Loc)));
+ Insert_Before (N, Call);
+ -- why not insert actions here???
+ Analyze (Call);
+
+ Acc_Stat := Parent (N);
+ while Nkind (Acc_Stat) /= N_Accept_Statement loop
+ Acc_Stat := Parent (Acc_Stat);
+ end loop;
+
+ Lab_Node := Last (Statements
+ (Handled_Statement_Sequence (Acc_Stat)));
+
+ Goto_Stat := Make_Goto_Statement (Loc,
+ Name => New_Occurrence_Of
+ (Entity (Identifier (Lab_Node)), Loc));
+
+ Set_Analyzed (Goto_Stat);
+
+ Rewrite (N, Goto_Stat);
+ Analyze (N);
+
+ -- If it is a return from an entry body, put a Complete_Entry_Body
+ -- call in front of the return.
+
+ elsif Is_Protected_Type (Scope_Id) then
+
+ Call :=
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Reference_To
+ (RTE (RE_Complete_Entry_Body), Loc),
+ Parameter_Associations => New_List
+ (Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Reference_To
+ (Object_Ref
+ (Corresponding_Body (Parent (Scope_Id))),
+ Loc),
+ Attribute_Name => Name_Unchecked_Access)));
+
+ Insert_Before (N, Call);
+ Analyze (Call);
+
+ end if;
+
+ return;
+ end if;
+
+ T := Etype (Exp);
+ Return_Type := Etype (Scope_Id);
+ Utyp := Underlying_Type (Return_Type);
+
+ -- Check the result expression of a scalar function against
+ -- the subtype of the function by inserting a conversion.
+ -- This conversion must eventually be performed for other
+ -- classes of types, but for now it's only done for scalars.
+ -- ???
+
+ if Is_Scalar_Type (T) then
+ Rewrite (Exp, Convert_To (Return_Type, Exp));
+ Analyze (Exp);
+ end if;
+
+ -- Implement the rules of 6.5(8-10), which require a tag check in
+ -- the case of a limited tagged return type, and tag reassignment
+ -- for nonlimited tagged results. These actions are needed when
+ -- the return type is a specific tagged type and the result
+ -- expression is a conversion or a formal parameter, because in
+ -- that case the tag of the expression might differ from the tag
+ -- of the specific result type.
+
+ if Is_Tagged_Type (Utyp)
+ and then not Is_Class_Wide_Type (Utyp)
+ and then (Nkind (Exp) = N_Type_Conversion
+ or else Nkind (Exp) = N_Unchecked_Type_Conversion
+ or else (Is_Entity_Name (Exp)
+ and then Ekind (Entity (Exp)) in Formal_Kind))
+ then
+ -- When the return type is limited, perform a check that the
+ -- tag of the result is the same as the tag of the return type.
+
+ if Is_Limited_Type (Return_Type) then
+ Insert_Action (Exp,
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_Op_Ne (Loc,
+ Left_Opnd =>
+ Make_Selected_Component (Loc,
+ Prefix => Duplicate_Subexpr (Exp),
+ Selector_Name =>
+ New_Reference_To (Tag_Component (Utyp), Loc)),
+ Right_Opnd =>
+ Unchecked_Convert_To (RTE (RE_Tag),
+ New_Reference_To
+ (Access_Disp_Table (Base_Type (Utyp)), Loc)))));
+
+ -- If the result type is a specific nonlimited tagged type,
+ -- then we have to ensure that the tag of the result is that
+ -- of the result type. This is handled by making a copy of the
+ -- expression in the case where it might have a different tag,
+ -- namely when the expression is a conversion or a formal
+ -- parameter. We create a new object of the result type and
+ -- initialize it from the expression, which will implicitly
+ -- force the tag to be set appropriately.
+
+ else
+ Result_Id :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+ Result_Exp := New_Reference_To (Result_Id, Loc);
+
+ Result_Obj :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Result_Id,
+ Object_Definition => New_Reference_To (Return_Type, Loc),
+ Constant_Present => True,
+ Expression => Relocate_Node (Exp));
+
+ Set_Assignment_OK (Result_Obj);
+ Insert_Action (Exp, Result_Obj);
+
+ Rewrite (Exp, Result_Exp);
+ Analyze_And_Resolve (Exp, Return_Type);
+ end if;
+ end if;
+
+ -- Deal with returning variable length objects and controlled types
+
+ -- Nothing to do if we are returning by reference, or this is not
+ -- a type that requires special processing (indicated by the fact
+ -- that it requires a cleanup scope for the secondary stack case)
+
+ if Is_Return_By_Reference_Type (T)
+ or else not Requires_Transient_Scope (Return_Type)
+ then
+ null;
+
+ -- Case of secondary stack not used
+
+ elsif Function_Returns_With_DSP (Scope_Id) then
+
+ -- Here what we need to do is to always return by reference, since
+ -- we will return with the stack pointer depressed. We may need to
+ -- do a copy to a local temporary before doing this return.
+
+ No_Secondary_Stack_Case : declare
+ Local_Copy_Required : Boolean := False;
+ -- Set to True if a local copy is required
+
+ Copy_Ent : Entity_Id;
+ -- Used for the target entity if a copy is required
+
+ Decl : Node_Id;
+ -- Declaration used to create copy if needed
+
+ procedure Test_Copy_Required (Expr : Node_Id);
+ -- Determines if Expr represents a return value for which a
+ -- copy is required. More specifically, a copy is not required
+ -- if Expr represents an object or component of an object that
+ -- is either in the local subprogram frame, or is constant.
+ -- If a copy is required, then Local_Copy_Required is set True.
+
+ ------------------------
+ -- Test_Copy_Required --
+ ------------------------
+
+ procedure Test_Copy_Required (Expr : Node_Id) is
+ Ent : Entity_Id;
+
+ begin
+ -- If component, test prefix (object containing component)
+
+ if Nkind (Expr) = N_Indexed_Component
+ or else
+ Nkind (Expr) = N_Selected_Component
+ then
+ Test_Copy_Required (Prefix (Expr));
+ return;
+
+ -- See if we have an entity name
+
+ elsif Is_Entity_Name (Expr) then
+ Ent := Entity (Expr);
+
+ -- Constant entity is always OK, no copy required
+
+ if Ekind (Ent) = E_Constant then
+ return;
+
+ -- No copy required for local variable
+
+ elsif Ekind (Ent) = E_Variable
+ and then Scope (Ent) = Current_Subprogram
+ then
+ return;
+ end if;
+ end if;
+
+ -- All other cases require a copy
+
+ Local_Copy_Required := True;
+ end Test_Copy_Required;
+
+ -- Start of processing for No_Secondary_Stack_Case
+
+ begin
+ -- No copy needed if result is from a function call for the
+ -- same type with the same constrainedness (is the latter a
+ -- necessary check, or could gigi produce the bounds ???).
+ -- In this case the result is already being returned by
+ -- reference with the stack pointer depressed.
+
+ if Requires_Transient_Scope (T)
+ and then Is_Constrained (T) = Is_Constrained (Return_Type)
+ and then (Nkind (Exp) = N_Function_Call
+ or else
+ Nkind (Original_Node (Exp)) = N_Function_Call)
+ then
+ Set_By_Ref (N);
+
+ -- We always need a local copy for a controlled type, since
+ -- we are required to finalize the local value before return.
+ -- The copy will automatically include the required finalize.
+ -- Moreover, gigi cannot make this copy, since we need special
+ -- processing to ensure proper behavior for finalization.
+
+ -- Note: the reason we are returning with a depressed stack
+ -- pointer in the controlled case (even if the type involved
+ -- is constrained) is that we must make a local copy to deal
+ -- properly with the requirement that the local result be
+ -- finalized.
+
+ elsif Controlled_Type (Utyp) then
+ Copy_Ent :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('R'));
+
+ -- Build declaration to do the copy, and insert it, setting
+ -- Assignment_OK, because we may be copying a limited type.
+ -- In addition we set the special flag to inhibit finalize
+ -- attachment if this is a controlled type (since this attach
+ -- must be done by the caller, otherwise if we attach it here
+ -- we will finalize the returned result prematurely).
+
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Copy_Ent,
+ Object_Definition => New_Occurrence_Of (Return_Type, Loc),
+ Expression => Relocate_Node (Exp));
+
+ Set_Assignment_OK (Decl);
+ Set_Delay_Finalize_Attach (Decl);
+ Insert_Action (N, Decl);
+
+ -- Now the actual return uses the copied value
+
+ Rewrite (Exp, New_Occurrence_Of (Copy_Ent, Loc));
+ Analyze_And_Resolve (Exp, Return_Type);
+
+ -- Since we have made the copy, gigi does not have to, so
+ -- we set the By_Ref flag to prevent another copy being made.
+
+ Set_By_Ref (N);
+
+ -- Non-controlled cases
+
+ else
+ Test_Copy_Required (Exp);
+
+ -- If a local copy is required, then gigi will make the
+ -- copy, otherwise, we can return the result directly,
+ -- so set By_Ref to suppress the gigi copy.
+
+ if not Local_Copy_Required then
+ Set_By_Ref (N);
+ end if;
+ end if;
+ end No_Secondary_Stack_Case;
+
+ -- Here if secondary stack is used
+
+ else
+ -- Make sure that no surrounding block will reclaim the
+ -- secondary-stack on which we are going to put the result.
+ -- Not only may this introduce secondary stack leaks but worse,
+ -- if the reclamation is done too early, then the result we are
+ -- returning may get clobbered. See example in 7417-003.
+
+ declare
+ S : Entity_Id := Current_Scope;
+
+ begin
+ while Ekind (S) = E_Block or else Ekind (S) = E_Loop loop
+ Set_Sec_Stack_Needed_For_Return (S, True);
+ S := Enclosing_Dynamic_Scope (S);
+ end loop;
+ end;
+
+ -- Optimize the case where the result is from a function call for
+ -- the same type with the same constrainedness (is the latter a
+ -- necessary check, or could gigi produce the bounds ???). In this
+ -- case either the result is already on the secondary stack, or is
+ -- already being returned with the stack pointer depressed and no
+ -- further processing is required except to set the By_Ref flag to
+ -- ensure that gigi does not attempt an extra unnecessary copy.
+ -- (actually not just unncessary but harmfully wrong in the case
+ -- of a controlled type, where gigi does not know how to do a copy).
+
+ if Requires_Transient_Scope (T)
+ and then Is_Constrained (T) = Is_Constrained (Return_Type)
+ and then (Nkind (Exp) = N_Function_Call
+ or else Nkind (Original_Node (Exp)) = N_Function_Call)
+ then
+ Set_By_Ref (N);
+
+ -- For controlled types, do the allocation on the sec-stack
+ -- manually in order to call adjust at the right time
+ -- type Anon1 is access Return_Type;
+ -- for Anon1'Storage_pool use ss_pool;
+ -- Anon2 : anon1 := new Return_Type'(expr);
+ -- return Anon2.all;
+
+ elsif Controlled_Type (Utyp) then
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ Temp : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('R'));
+ Acc_Typ : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('A'));
+ Alloc_Node : Node_Id;
+
+ begin
+ Set_Ekind (Acc_Typ, E_Access_Type);
+
+ Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
+
+ Alloc_Node :=
+ Make_Allocator (Loc,
+ Expression =>
+ Make_Qualified_Expression (Loc,
+ Subtype_Mark => New_Reference_To (Etype (Exp), Loc),
+ Expression => Relocate_Node (Exp)));
+
+ Insert_List_Before_And_Analyze (N, New_List (
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Acc_Typ,
+ Type_Definition =>
+ Make_Access_To_Object_Definition (Loc,
+ Subtype_Indication =>
+ New_Reference_To (Return_Type, Loc))),
+
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition => New_Reference_To (Acc_Typ, Loc),
+ Expression => Alloc_Node)));
+
+ Rewrite (Exp,
+ Make_Explicit_Dereference (Loc,
+ Prefix => New_Reference_To (Temp, Loc)));
+
+ Analyze_And_Resolve (Exp, Return_Type);
+ end;
+
+ -- Otherwise use the gigi mechanism to allocate result on the
+ -- secondary stack.
+
+ else
+ Set_Storage_Pool (N, RTE (RE_SS_Pool));
+
+ -- If we are generating code for the Java VM do not use
+ -- SS_Allocate since everything is heap-allocated anyway.
+
+ if not Java_VM then
+ Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
+ end if;
+ end if;
+ end if;
+ end Expand_N_Return_Statement;
+
+ ------------------------------
+ -- Make_Tag_Ctrl_Assignment --
+ ------------------------------
+
+ function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
+ Loc : constant Source_Ptr := Sloc (N);
+ L : constant Node_Id := Name (N);
+ T : constant Entity_Id := Underlying_Type (Etype (L));
+
+ Ctrl_Act : constant Boolean := Controlled_Type (T)
+ and then not No_Ctrl_Actions (N);
+
+ Save_Tag : constant Boolean := Is_Tagged_Type (T)
+ and then not No_Ctrl_Actions (N)
+ and then not Java_VM;
+ -- Tags are not saved and restored when Java_VM because JVM tags
+ -- are represented implicitly in objects.
+
+ Res : List_Id;
+ Tag_Tmp : Entity_Id;
+ Prev_Tmp : Entity_Id;
+ Next_Tmp : Entity_Id;
+ Ctrl_Ref : Node_Id;
+
+ begin
+ Res := New_List;
+
+ -- Finalize the target of the assignment when controlled.
+ -- We have two exceptions here:
+
+ -- 1. If we are in an init_proc since it is an initialization
+ -- more than an assignment
+
+ -- 2. If the left-hand side is a temporary that was not initialized
+ -- (or the parent part of a temporary since it is the case in
+ -- extension aggregates). Such a temporary does not come from
+ -- source. We must examine the original node for the prefix, because
+ -- it may be a component of an entry formal, in which case it has
+ -- been rewritten and does not appear to come from source either.
+
+ -- Init_Proc case
+
+ if not Ctrl_Act then
+ null;
+
+ -- The left hand side is an uninitialized temporary
+
+ elsif Nkind (L) = N_Type_Conversion
+ and then Is_Entity_Name (Expression (L))
+ and then No_Initialization (Parent (Entity (Expression (L))))
+ then
+ null;
+
+ elsif Nkind (L) = N_Indexed_Component
+ and then Is_Entity_Name (Original_Node (Prefix (L)))
+ and then Is_Entry_Formal (Entity (Original_Node (Prefix (L))))
+ then
+ null;
+
+ else
+ Append_List_To (Res,
+ Make_Final_Call (
+ Ref => Duplicate_Subexpr (L),
+ Typ => Etype (L),
+ With_Detach => New_Reference_To (Standard_False, Loc)));
+ end if;
+
+ Next_Tmp := Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
+
+ -- Save the Tag in a local variable Tag_Tmp
+
+ if Save_Tag then
+ Tag_Tmp :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
+
+ Append_To (Res,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Tag_Tmp,
+ Object_Definition => New_Reference_To (RTE (RE_Tag), Loc),
+ Expression =>
+ Make_Selected_Component (Loc,
+ Prefix => Duplicate_Subexpr (L),
+ Selector_Name => New_Reference_To (Tag_Component (T), Loc))));
+
+ -- Otherwise Tag_Tmp not used
+
+ else
+ Tag_Tmp := Empty;
+ end if;
+
+ -- Save the Finalization Pointers in local variables Prev_Tmp and
+ -- Next_Tmp. For objects with Has_Controlled_Component set, these
+ -- pointers are in the Record_Controller
+
+ if Ctrl_Act then
+ Ctrl_Ref := Duplicate_Subexpr (L);
+
+ if Has_Controlled_Component (T) then
+ Ctrl_Ref :=
+ Make_Selected_Component (Loc,
+ Prefix => Ctrl_Ref,
+ Selector_Name =>
+ New_Reference_To (Controller_Component (T), Loc));
+ end if;
+
+ Prev_Tmp := Make_Defining_Identifier (Loc, New_Internal_Name ('B'));
+
+ Append_To (Res,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Prev_Tmp,
+
+ Object_Definition =>
+ New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
+
+ Expression =>
+ Make_Selected_Component (Loc,
+ Prefix =>
+ Unchecked_Convert_To (RTE (RE_Finalizable), Ctrl_Ref),
+ Selector_Name => Make_Identifier (Loc, Name_Prev))));
+
+ Next_Tmp := Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
+
+ Append_To (Res,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Next_Tmp,
+
+ Object_Definition =>
+ New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
+
+ Expression =>
+ Make_Selected_Component (Loc,
+ Prefix =>
+ Unchecked_Convert_To (RTE (RE_Finalizable),
+ New_Copy_Tree (Ctrl_Ref)),
+ Selector_Name => Make_Identifier (Loc, Name_Next))));
+
+ -- If not controlled type, then Prev_Tmp and Ctrl_Ref unused
+
+ else
+ Prev_Tmp := Empty;
+ Ctrl_Ref := Empty;
+ end if;
+
+ -- Do the Assignment
+
+ Append_To (Res, Relocate_Node (N));
+
+ -- Restore the Tag
+
+ if Save_Tag then
+ Append_To (Res,
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix => Duplicate_Subexpr (L),
+ Selector_Name => New_Reference_To (Tag_Component (T), Loc)),
+ Expression => New_Reference_To (Tag_Tmp, Loc)));
+ end if;
+
+ -- Restore the finalization pointers
+
+ if Ctrl_Act then
+ Append_To (Res,
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix =>
+ Unchecked_Convert_To (RTE (RE_Finalizable),
+ New_Copy_Tree (Ctrl_Ref)),
+ Selector_Name => Make_Identifier (Loc, Name_Prev)),
+ Expression => New_Reference_To (Prev_Tmp, Loc)));
+
+ Append_To (Res,
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix =>
+ Unchecked_Convert_To (RTE (RE_Finalizable),
+ New_Copy_Tree (Ctrl_Ref)),
+ Selector_Name => Make_Identifier (Loc, Name_Next)),
+ Expression => New_Reference_To (Next_Tmp, Loc)));
+ end if;
+
+ -- Adjust the target after the assignment when controlled. (not in
+ -- the init_proc since it is an initialization more than an
+ -- assignment)
+
+ if Ctrl_Act then
+ Append_List_To (Res,
+ Make_Adjust_Call (
+ Ref => Duplicate_Subexpr (L),
+ Typ => Etype (L),
+ Flist_Ref => New_Reference_To (RTE (RE_Global_Final_List), Loc),
+ With_Attach => Make_Integer_Literal (Loc, 0)));
+ end if;
+
+ return Res;
+ end Make_Tag_Ctrl_Assignment;
+
+end Exp_Ch5;