summaryrefslogtreecommitdiff
path: root/mpc/src/pow_ui.c
diff options
context:
space:
mode:
Diffstat (limited to 'mpc/src/pow_ui.c')
-rw-r--r--mpc/src/pow_ui.c169
1 files changed, 169 insertions, 0 deletions
diff --git a/mpc/src/pow_ui.c b/mpc/src/pow_ui.c
new file mode 100644
index 0000000000..da82a9471f
--- /dev/null
+++ b/mpc/src/pow_ui.c
@@ -0,0 +1,169 @@
+/* mpc_pow_ui -- Raise a complex number to an integer power.
+
+Copyright (C) 2009, 2010, 2011, 2012 INRIA
+
+This file is part of GNU MPC.
+
+GNU MPC is free software; you can redistribute it and/or modify it under
+the terms of the GNU Lesser General Public License as published by the
+Free Software Foundation; either version 3 of the License, or (at your
+option) any later version.
+
+GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
+more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with this program. If not, see http://www.gnu.org/licenses/ .
+*/
+
+#include <limits.h> /* for CHAR_BIT */
+#include "mpc-impl.h"
+
+static int
+mpc_pow_usi_naive (mpc_ptr z, mpc_srcptr x, unsigned long y, int sign,
+ mpc_rnd_t rnd)
+{
+ int inex;
+ mpc_t t;
+
+ mpc_init3 (t, sizeof (unsigned long) * CHAR_BIT, MPFR_PREC_MIN);
+ if (sign > 0)
+ mpc_set_ui (t, y, MPC_RNDNN); /* exact */
+ else
+ mpc_set_si (t, - (signed long) y, MPC_RNDNN);
+ inex = mpc_pow (z, x, t, rnd);
+ mpc_clear (t);
+
+ return inex;
+}
+
+
+int
+mpc_pow_usi (mpc_ptr z, mpc_srcptr x, unsigned long y, int sign,
+ mpc_rnd_t rnd)
+ /* computes z = x^(sign*y) */
+{
+ int inex;
+ mpc_t t, x3;
+ mpfr_prec_t p, l, l0;
+ long unsigned int u;
+ int has3; /* non-zero if y has '11' in its binary representation */
+ int loop, done;
+
+ /* let mpc_pow deal with special values */
+ if (!mpc_fin_p (x) || mpfr_zero_p (mpc_realref (x)) || mpfr_zero_p (mpc_imagref(x))
+ || y == 0)
+ return mpc_pow_usi_naive (z, x, y, sign, rnd);
+ /* easy special cases */
+ else if (y == 1) {
+ if (sign > 0)
+ return mpc_set (z, x, rnd);
+ else
+ return mpc_ui_div (z, 1ul, x, rnd);
+ }
+ else if (y == 2 && sign > 0)
+ return mpc_sqr (z, x, rnd);
+ /* let mpc_pow treat potential over- and underflows */
+ else {
+ mpfr_exp_t exp_r = mpfr_get_exp (mpc_realref (x)),
+ exp_i = mpfr_get_exp (mpc_imagref (x));
+ if ( MPC_MAX (exp_r, exp_i) > mpfr_get_emax () / (mpfr_exp_t) y
+ /* heuristic for overflow */
+ || MPC_MAX (-exp_r, -exp_i) > (-mpfr_get_emin ()) / (mpfr_exp_t) y
+ /* heuristic for underflow */
+ )
+ return mpc_pow_usi_naive (z, x, y, sign, rnd);
+ }
+
+ has3 = (y & (y >> 1)) != 0;
+ for (l = 0, u = y; u > 3; l ++, u >>= 1);
+ /* l>0 is the number of bits of y, minus 2, thus y has bits:
+ y_{l+1} y_l y_{l-1} ... y_1 y_0 */
+ l0 = l + 2;
+ p = MPC_MAX_PREC(z) + l0 + 32; /* l0 ensures that y*2^{-p} <= 1 below */
+ mpc_init2 (t, p);
+ if (has3)
+ mpc_init2 (x3, p);
+
+ loop = 0;
+ done = 0;
+ while (!done) {
+ loop++;
+
+ mpc_sqr (t, x, MPC_RNDNN);
+ if (has3) {
+ mpc_mul (x3, t, x, MPC_RNDNN);
+ if ((y >> l) & 1) /* y starts with 11... */
+ mpc_set (t, x3, MPC_RNDNN);
+ }
+ while (l-- > 0) {
+ mpc_sqr (t, t, MPC_RNDNN);
+ if ((y >> l) & 1) {
+ if ((l > 0) && ((y >> (l-1)) & 1)) /* implies has3 <> 0 */ {
+ l--;
+ mpc_sqr (t, t, MPC_RNDNN);
+ mpc_mul (t, t, x3, MPC_RNDNN);
+ }
+ else
+ mpc_mul (t, t, x, MPC_RNDNN);
+ }
+ }
+ if (sign < 0)
+ mpc_ui_div (t, 1ul, t, MPC_RNDNN);
+
+ if (mpfr_zero_p (mpc_realref(t)) || mpfr_zero_p (mpc_imagref(t))) {
+ inex = mpc_pow_usi_naive (z, x, y, sign, rnd);
+ /* since mpfr_get_exp() is not defined for zero */
+ done = 1;
+ }
+ else {
+ /* see error bound in algorithms.tex; we use y<2^l0 instead of y-1
+ also when sign>0 */
+ mpfr_exp_t diff;
+ mpfr_prec_t er, ei;
+
+ diff = mpfr_get_exp (mpc_realref(t)) - mpfr_get_exp (mpc_imagref(t));
+ /* the factor on the real part is 2+2^(-diff+2) <= 4 for diff >= 1
+ and < 2^(-diff+3) for diff <= 0 */
+ er = (diff >= 1) ? l0 + 3 : l0 + (-diff) + 3;
+ /* the factor on the imaginary part is 2+2^(diff+2) <= 4 for diff <= -1
+ and < 2^(diff+3) for diff >= 0 */
+ ei = (diff <= -1) ? l0 + 3 : l0 + diff + 3;
+ if (mpfr_can_round (mpc_realref(t), p - er, GMP_RNDN, GMP_RNDZ,
+ MPC_PREC_RE(z) + (MPC_RND_RE(rnd) == GMP_RNDN))
+ && mpfr_can_round (mpc_imagref(t), p - ei, GMP_RNDN, GMP_RNDZ,
+ MPC_PREC_IM(z) + (MPC_RND_IM(rnd) == GMP_RNDN))) {
+ inex = mpc_set (z, t, rnd);
+ done = 1;
+ }
+ else if (loop == 1 && SAFE_ABS(mpfr_prec_t, diff) < MPC_MAX_PREC(z)) {
+ /* common case, make a second trial at higher precision */
+ p += MPC_MAX_PREC(x);
+ mpc_set_prec (t, p);
+ if (has3)
+ mpc_set_prec (x3, p);
+ l = l0 - 2;
+ }
+ else {
+ /* stop the loop and use mpc_pow */
+ inex = mpc_pow_usi_naive (z, x, y, sign, rnd);
+ done = 1;
+ }
+ }
+ }
+
+ mpc_clear (t);
+ if (has3)
+ mpc_clear (x3);
+
+ return inex;
+}
+
+
+int
+mpc_pow_ui (mpc_ptr z, mpc_srcptr x, unsigned long y, mpc_rnd_t rnd)
+{
+ return mpc_pow_usi (z, x, y, 1, rnd);
+}