summaryrefslogtreecommitdiff
path: root/src/sdf/ftbsdf.c
blob: e8f39fb19780f80b6ae5e3818bef5aabb2e05526 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198

#include <freetype/internal/ftobjs.h>
#include <freetype/internal/ftdebug.h>
#include <freetype/internal/ftmemory.h>
#include <freetype/fttrigon.h>

#include "ftsdf.h"
#include "ftsdferrs.h"
#include "ftsdfcommon.h"

  /**************************************************************************
   *
   * useful macros
   *
   */

  #define ONE 65536 /* 1 in 16.16 */

  /**************************************************************************
   *
   * structs
   *
   */

  /**************************************************************************
   *
   * @Struct:
   *   BSDF_TRaster
   *
   * @Description:
   *   This struct is used in place of `FT_Raster' and is stored within
   *   the internal freetype renderer struct. While rasterizing this is
   *   passed to the `FT_Raster_Render_Func' function, which then can be
   *   used however we want.
   *
   * @Fields:
   *   memory ::
   *     Used internally to allocate intermediate memory while raterizing.
   *
   */
  typedef struct  BSDF_TRaster_
  {
    FT_Memory  memory;

  } BSDF_TRaster;

  /**************************************************************************
   *
   * @Struct:
   *   ED
   *
   * @Description:
   *   Euclidean distance used for euclidean distance transform can also be
   *   interpreted as edge distance.
   *
   * @Fields:
   *   dist ::
   *     Vector length of the `near' parameter. Can be squared or absolute
   *     depending on the `USE_SQUARED_DISTANCES' parameter defined in
   *     `ftsdfcommon.h'.
   *
   *   near ::
   *     Vector to the nearest edge. Can also be interpreted as shortest
   *     distance of a point.
   *
   *   alpha ::
   *     Alpha value of the original bitmap from which we generate SDF.
   *     While computing the gradient and determining the proper sign
   *     of a pixel this field is used.
   *
   */
  typedef struct  ED_
  {
    FT_16D16      dist;
    FT_16D16_Vec  near;
    FT_Byte       alpha;

  } ED;

  /**************************************************************************
   *
   * @Struct:
   *   BSDF_Worker
   *
   * @Description:
   *   Just a convenient struct which is passed to most of the functions
   *   while generating SDF. This makes it easier to pass parameters because
   *   most functions require the same parameters.
   *
   * @Fields:
   *   distance_map ::
   *     A 1D array which is interpreted as 2D array. This array contains
   *     the Euclidean distance of all the points of the bitmap.
   *
   *   width ::
   *     Width of the above `distance_map'.
   *     
   *   rows ::
   *     Number of rows in the above `distance_map'.
   *
   *   params ::
   *     Internal params and properties required by the rasterizer. See
   *     `ftsdf.h' for the fields of this struct.
   *
   */
  typedef struct  BSDF_Worker_
  {
    ED*                distance_map;

    FT_Int             width;
    FT_Int             rows;

    SDF_Raster_Params  params;

  } BSDF_Worker;

  /**************************************************************************
   *
   * initializer
   *
   */

  static
  const ED  zero_ed = { 0, { 0, 0 }, 0 };

  /**************************************************************************
   *
   * rasterizer functions
   *
   */

  #ifdef CHECK_NEIGHBOR
  #undef CHECK_NEIGHBOR
  #endif

  /* Use the macro only in `bsdf_is_edge' function. */
  #define CHECK_NEIGHBOR( x_offset, y_offset )     \
    if ( x + x_offset >= 0 && x + x_offset < w &&  \
         y + y_offset >= 0 && y + y_offset < r )   \
    {                                              \
      num_neighbour++;                             \
      to_check = dm + y_offset * w + x_offset;     \
      if ( to_check->alpha == 0 )                  \
      {                                            \
        is_edge = 1;                               \
        goto Done;                                 \
      }                                            \
    }

  /**************************************************************************
   *
   * @Function:
   *   bsdf_is_edge
   *
   * @Description:
   *   This function checks weather a pixel is an edge pixel. A pixel
   *   is edge bixel if it surrounded by a completely black pixel ( 0
   *   alpha ) and the current pixel is not a completely black pixel.
   *
   * @Input:
   *   dm ::
   *     Array of distances. The parameter must point to the current
   *     pixel i.e. the pixel that is to be checked for edge.
   *
   *   x ::
   *     The x position of the current pixel.
   *
   *   y ::
   *     The y position of the current pixel.
   *
   *   w ::
   *     Width of the bitmap.
   *
   *   r ::
   *     Number of rows in the bitmap.
   *
   * @Return:
   *   FT_Bool ::
   *     1 if the current pixel is an edge pixel, 0 otherwise.
   *
   */
  static FT_Bool
  bsdf_is_edge( ED*       dm,   /* distance map              */
                FT_Int    x,    /* x index of point to check */
                FT_Int    y,    /* y index of point to check */
                FT_Int    w,    /* width                     */
                FT_Int    r )   /* rows                      */
  {
    FT_Bool   is_edge       = 0; 
    ED*       to_check      = NULL;
    FT_Int    num_neighbour = 0;


    if ( dm->alpha == 0 )
      goto Done;

    if ( dm->alpha > 0 && dm->alpha < 255 )
    {
      is_edge = 1;
      goto Done;
    }

    /* up */
    CHECK_NEIGHBOR(  0, -1 );

    /* down */
    CHECK_NEIGHBOR(  0,  1 );

    /* left */
    CHECK_NEIGHBOR( -1,  0 );

    /* right */
    CHECK_NEIGHBOR(  1,  0 );

    /* up left */
    CHECK_NEIGHBOR( -1, -1 );

    /* up right */
    CHECK_NEIGHBOR(  1, -1 );

    /* down left */
    CHECK_NEIGHBOR( -1,  1 );

    /* down right */
    CHECK_NEIGHBOR(  1,  1 );

    if ( num_neighbour != 8 )
      is_edge = 1;

  Done:
    return is_edge;

  }

  #undef CHECK_NEIGHBOR

  /**************************************************************************
   *
   * @Function:
   *   compute_edge_distance
   *
   * @Description:
   *   Approximate the outline and compute the distance from `current'
   *   to the approximated outline.
   *
   * @Input:
   *   current ::
   *     Array of distances. This parameter is an array of Euclidean
   *     distances. The `current' must point to the position for which
   *     the distance is to be caculated. We treat this array as a 2D
   *     array mapped to a 1D array.
   *
   *   x ::
   *     The x coordinate of the `current' parameter in the array.
   *
   *   y ::
   *     The y coordinate of the `current' parameter in the array.
   *
   *   w ::
   *     The width of the distances array.
   *
   *   r ::
   *     Number of rows in the distances array.
   *
   * @Return:
   *   FT_16D16_Vec ::
   *     A vector pointing to the approximate edge distance.
   *
   * @Note:
   *   This is a computationally expensive function. Try to reduce the
   *   number of calls to this function. Moreover this must only be used
   *   for edge pixel positions.
   *
   */
  static FT_16D16_Vec
  compute_edge_distance( ED*     current,
                         FT_Int  x,
                         FT_Int  y,
                         FT_Int  w,
                         FT_Int  r )
  {
    /* This is the function which is based on the paper presented */
    /* by Stefan Gustavson and Robin Strand which is used to app- */
    /* roximate edge distance from anti-aliased bitmaps.          */
    /*                                                            */
    /* The algorithm is as follows:                               */
    /*                                                            */
    /* * In anti-aliased images, the pixel's alpha value is the   */
    /*   coverage of the pixel by the outline. For example if the */
    /*   alpha value is 0.5f then we can assume the the outline   */
    /*   passes through the center of the pixel.                  */
    /*                                                            */
    /* * So, we can use that alpha value to approximate the real  */
    /*   distance of the pixel to edge pretty accurately. A real  */
    /*   simple approximation is ( 0.5f - alpha ), assuming that  */
    /*   the outline is parallel to the x or y axis. But in this  */
    /*   algorithm we use a different approximation which is qui- */
    /*   te accurate even for non axis aligned edges.             */
    /*                                                            */
    /* * The only remaining piece of information that we cannot   */
    /*   approximate directly from the alpha is the direction of  */
    /*   the edge. This is where we use the Sobel's operator to   */
    /*   compute the gradient of the pixel. The gradient give us  */
    /*   a pretty good approximation of the edge direction.       */
    /*   We use a 3x3 kernel filter to compute the gradient.      */
    /*                                                            */
    /* * After the above two steps we have both the direction and */
    /*   the distance to the edge which is used to generate the   */
    /*   Signed Distance Field.                                   */
    /*                                                            */
    /* References:                                                */
    /* * Anti-Aliased Euclidean Distance Transform:               */
    /*   http://weber.itn.liu.se/~stegu/aadist/edtaa_preprint.pdf */
    /* * Sobel Operator:                                          */
    /*   https://en.wikipedia.org/wiki/Sobel_operator             */
    /*                                                            */
    FT_16D16_Vec  g = { 0, 0 };
    FT_16D16      dist, current_alpha;
    FT_16D16      a1, temp;
    FT_16D16      gx, gy;
    FT_16D16      alphas[9];


    /* Since our spread cannot be 0, this condition */
    /* can never be true.                           */
    if ( x <= 0 || x >= w - 1 ||
         y <= 0 || y >= r - 1 )
      return g;

    /* initialize the alphas */
    alphas[0] = 256 * (FT_16D16)current[-w - 1].alpha;
    alphas[1] = 256 * (FT_16D16)current[  -w  ].alpha;
    alphas[2] = 256 * (FT_16D16)current[-w + 1].alpha;
    alphas[3] = 256 * (FT_16D16)current[  -1  ].alpha;
    alphas[4] = 256 * (FT_16D16)current[   0  ].alpha;
    alphas[5] = 256 * (FT_16D16)current[   1  ].alpha;
    alphas[6] = 256 * (FT_16D16)current[ w - 1].alpha;
    alphas[7] = 256 * (FT_16D16)current[   w  ].alpha;
    alphas[8] = 256 * (FT_16D16)current[ w + 1].alpha;

    current_alpha = alphas[4];

    /* Compute the gradient using the Sobel operator. */
    /* In this case we use the following 3x3 filters: */
    /*                                                */
    /* For x: |   -1     0   -1    |                  */
    /*        | -root(2) 0 root(2) |                  */
    /*        |    -1    0    1    |                  */
    /*                                                */
    /* For y: |   -1 -root(2) -1   |                  */
    /*        |    0    0      0   |                  */
    /*        |    1  root(2)  1   |                  */
    /*                                                */
    /* [Note]: 92681 is nothing but root(2) in 16.16  */
    g.x = -alphas[0] -
           FT_MulFix( alphas[3], 92681 ) -
           alphas[6] +
           alphas[2] +
           FT_MulFix( alphas[5], 92681 ) +
           alphas[8];
            
    g.y = -alphas[0] -
           FT_MulFix( alphas[1], 92681 ) -
           alphas[2] +
           alphas[6] +
           FT_MulFix( alphas[7], 92681 ) +
           alphas[8];

    FT_Vector_NormLen( &g );

    /* The gradient gives us the direction of the   */
    /* edge for the current pixel. Once we have the */
    /* approximate direction of the edge, we can    */
    /* approximate the edge distance much better.   */

    if ( g.x == 0 || g.y == 0 )
      dist = ONE / 2 - alphas[4];
    else
    {
      gx = g.x;
      gy = g.y;

      gx = FT_ABS( gx );
      gy = FT_ABS( gy );

      if ( gx < gy )
      {
        temp = gx;
        gx = gy;
        gy = temp;
      }

      a1 = FT_DivFix( gy, gx ) / 2;
      if ( current_alpha < a1 )
        dist = (( gx + gy ) / 2) -
               square_root( 2 * FT_MulFix( gx, 
               FT_MulFix( gy, current_alpha ) ) );
      else if ( current_alpha < ( ONE - a1 ) )
        dist = FT_MulFix( ONE / 2 - current_alpha, gx );
      else
        dist = -(( gx + gy ) / 2) +
               square_root( 2 * FT_MulFix( gx,
               FT_MulFix( gy, ONE - current_alpha ) ) );
    }

    g.x = FT_MulFix( g.x, dist );
    g.y = FT_MulFix( g.y, dist );

    return g;
  }
  
  /**************************************************************************
   *
   * @Function:
   *   bsdf_approximate_edge
   *
   * @Description:
   *   This is a handy function which loops through all the pixels, and
   *   calls `compute_edge_distance' function only for edge pixels. This
   *   maked the process a lot faster since `compute_edge_distance' uses
   *   some functions such as `FT_Vector_NormLen' which are quite slow.
   *
   * @Input:
   *   worker ::
   *     Contains the distance map as well as all the relevant parameters
   *     required by the function.
   *
   * @Return:
   *   FT_Error ::
   *     FreeType error, 0 means success.
   *
   * @Note:
   *   The function dosen't have any actual output, it do computation on
   *   the `distance_map' parameter of the `worker' and put the data in
   *   that distance map itself.
   *   
   */
  static FT_Error
  bsdf_approximate_edge( BSDF_Worker*  worker )
  {
    FT_Error  error = FT_Err_Ok;
    FT_Int    i, j;
    FT_Int    index;
    ED*       ed;


    if ( !worker || !worker->distance_map )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    ed = worker->distance_map;

    for ( j = 0; j < worker->rows; j++ )
    {
      for ( i = 0; i < worker->width; i++ )
      {
        index = j * worker->width + i;

        if ( bsdf_is_edge( worker->distance_map + index,
             i, j, worker->width, worker->rows  ) )
        {
          /* for edge pixels approximate the edge distance */
          ed[index].near = compute_edge_distance( ed + index, i, j,
                             worker->width, worker->rows );
          ed[index].dist = VECTOR_LENGTH_16D16( ed[index].near );
        }
        else
        {
          /* for non edge pixels assign far away distances */
          ed[index].dist   = 400 * ONE;
          ed[index].near.x = 200 * ONE;
          ed[index].near.y = 200 * ONE;
        }
      }
    }

  Exit:
    return error;
  }

  /**************************************************************************
   *
   * @Function:
   *   bsdf_init_distance_map
   *
   * @Description:
   *   This function initialize the distance map according to
   *   algorithm `8-point sequential Euclidean distance mapping' (8SED).
   *   Basically it copy the `source' bitmap alpha values to the
   *   `distance_map->alpha' parameter of the `worker'.
   *
   * @Input:
   *   source ::
   *     Source bitmap to copy the data from.
   *
   * @Return:
   *   worker ::
   *     Target distance map to copy the data to.
   *
   *   FT_Error ::
   *     FreeType error, 0 means success.
   *
   */
  static FT_Error
  bsdf_init_distance_map( const FT_Bitmap*  source,
                          BSDF_Worker*      worker )
  {
    FT_Error  error         = FT_Err_Ok;

    FT_Int    x_diff, y_diff;
    FT_Int    t_i, t_j, s_i, s_j;
    FT_Byte*  s;
    ED*       t;

    /* again check the parameters (probably unnecessary) */
    if ( !source || !worker )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    /* Because of the way we convert bitmap to SDF     */
    /* i.e. aligning the source to the center of the   */
    /* target, the target's width/rows must be checked */
    /* before copying.                                 */
    if ( worker->width < source->width ||
         worker->rows  < source->rows )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    /* check pixel mode */
    if ( source->pixel_mode == FT_PIXEL_MODE_NONE )
    {
      FT_ERROR(( "[bsdf] bsdf_copy_source_to_target: "
                 "Invalid pixel mode of source bitmap" ));
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

  #ifdef FT_DEBUG_LEVEL_TRACE
    if ( source->pixel_mode == FT_PIXEL_MODE_MONO )
    {
      FT_TRACE0(( "[bsdf] bsdf_copy_source_to_target:\n"
                  "The `bsdf' renderer can convert monochrome bitmap\n"
                  "to SDF, but the results are not perfect because there\n"
                  "is no way to approximate actual outline from monochrome\n"
                  "bitmap. Consider using anti-aliased bitmap instead.\n" ));
    }
  #endif

    /* Calculate the difference in width and rows */
    /* of the target and source.                  */
    x_diff = worker->width - source->width;
    y_diff = worker->rows - source->rows;

    x_diff /= 2;
    y_diff /= 2;

    t = (ED*)worker->distance_map;
    s = source->buffer;

    /* For now we only support pixel mode `FT_PIXEL_MODE_MONO'  */
    /* and `FT_PIXEL_MODE_GRAY'. More will be added later.      */
    /* [NOTE]: We can also use `FT_Bitmap_Convert' to convert   */
    /*         bitmap to 8bpp. To avoid extra allocation and    */
    /*         since the target bitmap can be 16bpp we manually */
    /*         convert the source bitmap to desired bpp.        */
    switch ( source->pixel_mode ) {
    case FT_PIXEL_MODE_MONO:
    {
      FT_Int  t_width = worker->width;
      FT_Int  t_rows  = worker->rows;
      FT_Int  s_width = source->width;
      FT_Int  s_rows  = source->rows;


      for ( t_j = 0; t_j < t_rows; t_j++ )
      {
        for ( t_i = 0; t_i < t_width; t_i++ )
        {
          FT_Int   t_index = t_j * t_width + t_i;
          FT_Int   s_index;
          FT_Int   div, mod;
          FT_Byte  pixel, byte;


          t[t_index] = zero_ed;

          s_i = t_i - x_diff;
          s_j = t_j - y_diff;

          /* Assign 0 to padding similar to */
          /* the source bitmap.             */
          if ( s_i < 0 || s_i >= s_width ||
               s_j < 0 || s_j >= s_rows )
            continue;

          if ( worker->params.flip_y )
            s_index = ( s_rows - s_j - 1 ) * source->pitch;
          else
            s_index = s_j * source->pitch;

          div = s_index + s_i / 8;
          mod = 7 - s_i % 8;

          pixel = s[div];
          byte = 1 << mod;

          t[t_index].alpha = pixel & byte ? 255 : 0;

          pixel = 0;
        }
      }
      break;
    }
    case FT_PIXEL_MODE_GRAY:
    {
      FT_Int  t_width = worker->width;
      FT_Int  t_rows  = worker->rows;
      FT_Int  s_width = source->width;
      FT_Int  s_rows  = source->rows;


      /* loop through all the pixels and */
      /* assign pixel values from source */
      for ( t_j = 0; t_j < t_rows; t_j++ )
      {
        for ( t_i = 0; t_i < t_width; t_i++ )
        {
          FT_Int    t_index = t_j * t_width + t_i;
          FT_Int    s_index;


          t[t_index] = zero_ed;

          s_i = t_i - x_diff;
          s_j = t_j - y_diff;

          /* Assign 0 to padding similar to */
          /* the source bitmap.             */
          if ( s_i < 0 || s_i >= s_width ||
               s_j < 0 || s_j >= s_rows )
            continue;

          if ( worker->params.flip_y )
            s_index = ( s_rows - s_j - 1 ) * s_width + s_i;
          else
            s_index = s_j * s_width + s_i;

          /* simply copy the alpha values */
          t[t_index].alpha = s[s_index];
        }
      }

      break;
    }
    default:
      FT_ERROR(( "[bsdf] bsdf_copy_source_to_target: "
                 "unsopported pixel mode of source bitmap\n" ));
      error = FT_THROW( Unimplemented_Feature );
      break;
    }

  Exit:
    return error;
  }

  /**************************************************************************
   *
   * @Function:
   *   compare_neighbor
   *
   * @Description:
   *   Handy function which compare the neighbor ( which is defined
   *   by the offset ) and updae the `current' distance if the new
   *   distance is shorter than the original.
   *
   * @Input:
   *   current ::
   *     Array of distances. This parameter must point to the position
   *     whose neighbor is to be checked. Also the array is treated as
   *     a 2D array.
   *
   *   x_offset ::
   *     X offset of the neighbor to be checked. The offset is releative
   *     to the `current' point.
   *
   *   y_offset ::
   *     Y offset of the neighbor to be checked. The offset is releative
   *     to the `current' point.
   *
   *   width ::
   *     Width of the `current' array, we need this since we treat the
   *     distance array as a 2D array.
   *
   * @Return:
   *   None. It just update the current distance.
   *
   */
  static void
  compare_neighbor( ED*     current,
                    FT_Int  x_offset,
                    FT_Int  y_offset,
                    FT_Int  width )
  {
    ED*           to_check;
    FT_16D16      dist;
    FT_16D16_Vec  dist_vec;


    to_check = current + ( y_offset * width ) + x_offset;

    /* While checking for nearest point we first     */
    /* approximate the dist of the `current' point   */
    /* by adding the deviation ( which will be root  */
    /* 2 max ). And if the new value is lesser than  */
    /* the current value then only we calculate the  */
    /* actual distances using `FT_Vector_Length'.    */
    /* Of course this will be eliminated while using */
    /* squared distances.                            */

    /* Approximate the distance, use 1 to avoid  */
    /* precision errors. We subtract because the */
    /* two directions can be opposite.           */
    dist = to_check->dist - ONE;

    if ( dist < current->dist )
    {
      dist_vec = to_check->near;
      dist_vec.x += x_offset * ONE;
      dist_vec.y += y_offset * ONE;
      dist = VECTOR_LENGTH_16D16( dist_vec );
      if ( dist < current->dist )
      {
        current->dist = dist;
        current->near = dist_vec;
      }
    }
  }

  /**************************************************************************
   *
   * @Function:
   *   first_pass
   *
   * @Description:
   *   First pass the 8SED algorithm. It loop the bitmap from top
   *   to bottom and scan each row left to right updating the distances
   *   in the distance map ( in the `worker' parameter ).
   *
   * @Input:
   *   worker::
   *     Contains all the relevant parameters.
   *
   * @Return:
   *   None. It update the distance map.
   *
   */
  static void
  first_pass( BSDF_Worker*  worker )
  {
    FT_Int    i, j; /* iterators    */
    FT_Int    w, r; /* width, rows  */
    ED*       dm;   /* distance map */


    dm = worker->distance_map;
    w  = worker->width;
    r  = worker->rows;

    /* Start scanning from top to bottom and sweep each   */
    /* row back and forth comparing the distances of the  */
    /* neighborhood. Leave the first row as it has no top */
    /* neighbor, it will be covered in the 2nd scan of    */
    /* the image, that is from bottom to top.             */
    for ( j = 1; j < r; j++ )
    {
      FT_Int        index;
      ED*           current;


      /* Forward pass of rows (left -> right), leave, the */
      /* first column, will be covered in backward pass.  */
      for ( i = 1; i < w; i++ )
      {
        index = j * w + i;
        current = dm + index;

        /* left-up */
        compare_neighbor( current, -1, -1, w );

        /* up */
        compare_neighbor( current,  0, -1, w );

        /* up-right */
        compare_neighbor( current,  1, -1, w );

        /* left */
        compare_neighbor( current, -1,  0, w );
      }

      /* Backward pass of rows (right -> left), leave, the */
      /* last column, already covered in the forward pass. */
      for ( i = w - 2; i >= 0; i-- )
      {
        index = j * w + i;
        current = dm + index;

        /* right */
        compare_neighbor( current,  1,  0, w );
      }
    }
  }

  /**************************************************************************
   *
   * @Function:
   *   second_pass
   *
   * @Description:
   *   Second pass the 8SED algorithm. It loop the bitmap from bottom
   *   to top and scan each row left to right updating the distances
   *   in the distance map ( in the `worker' parameter ).
   *
   * @Input:
   *   worker::
   *     Contains all the relevant parameters.
   *
   * @Return:
   *   None. It update the distance map.
   *
   */
  static void
  second_pass( BSDF_Worker*  worker )
  {
    FT_Int    i, j; /* iterators    */
    FT_Int    w, r; /* width, rows  */ 
    ED*       dm;   /* distance map */


    dm = worker->distance_map;
    w  = worker->width;
    r  = worker->rows;

    /* Start scanning from bottom to top and sweep each   */
    /* row back and forth comparing the distances of the  */
    /* neighborhood. Leave the last row as it has no down */
    /* neighbor, it is already covered in the 1stscan of  */
    /* the image, that is from top to bottom.             */
    for ( j = r - 2; j >= 0; j-- )
    {
      FT_Int        index;
      ED*           current;


      /* Forward pass of rows (left -> right), leave, the */
      /* first column, will be covered in backward pass.  */
      for ( i = 1; i < w; i++ )
      {
        index = j * w + i;
        current = dm + index;

        /* left-up */
        compare_neighbor( current, -1,  1, w );

        /* up */
        compare_neighbor( current,  0,  1, w );

        /* up-right */
        compare_neighbor( current,  1,  1, w );

        /* left */
        compare_neighbor( current, -1,  0, w );
      }

      /* Backward pass of rows (right -> left), leave, the */
      /* last column, already covered in the forward pass. */
      for ( i = w - 2; i >= 0; i-- )
      {
        index = j * w + i;
        current = dm + index;

        /* right */
        compare_neighbor( current,  1,  0, w );
      }
    }
  }


  /**************************************************************************
   *
   * @Function:
   *   edt8
   *
   * @Description:
   *   Function which compute the distance map of the a bitmap. It does
   *   both first and second pass of the 8SED algorithm.
   *
   * @Input:
   *   worker::
   *     Contains all the relevant parameters.
   *
   * @Return:
   *   FT_Error ::
   *     FreeType error, 0 means success.
   *
   */
  static FT_Error
  edt8( BSDF_Worker*  worker )
  {
    FT_Error  error = FT_Err_Ok;


    if ( !worker || !worker->distance_map )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    /* first scan of the image */
    first_pass( worker );

    /* second scan of the image */
    second_pass( worker );

  Exit:
    return error;
  }

  /**************************************************************************
   *
   * @Function:
   *   finalize_sdf
   *
   * @Description:
   *   This function copy the SDF data from `worker->distance_map' to the
   *   `target' bitmap. It aslo transforms the data to our output format,
   *    i.e. 6.10 fixed point format at the moment.
   *
   * @Input:
   *   worker ::
   *     Conaints source distance map and parameters/properties which contains
   *     SDF data.
   *
   * @Return:
   *   target ::
   *     Target bitmap to which the SDF data is copied to.
   *
   *   FT_Error ::
   *     FreeType error, 0 means success.
   *
   */
  static FT_Error
  finalize_sdf( BSDF_Worker*      worker,
                const FT_Bitmap*  target )
  {
    FT_Error   error = FT_Err_Ok;
    FT_Int     w, r;
    FT_Int     i, j;
    FT_6D10*   t_buffer;
    FT_16D16   spread;

    if ( !worker || !target )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    w = target->width;
    r = target->rows;
    t_buffer = (FT_6D10*)target->buffer;

    if ( w != worker->width ||
         r != worker->rows )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;      
    }

  #if USE_SQUARED_DISTANCES
    spread = FT_INT_16D16( worker->params.spread *
                           worker->params.spread );
  #else
    spread = FT_INT_16D16( worker->params.spread );
  #endif

    for ( j = 0; j < r; j++ )
    {
      for ( i = 0; i < w; i++ )
      {
        FT_Int    index;
        FT_16D16  dist;
        FT_6D10   final_dist;
        FT_Char   sign;


        index = j * w + i;
        dist = worker->distance_map[index].dist;

        if ( dist < 0 || dist > spread )
          dist = spread;

  #if USE_SQUARED_DISTANCES
          dist = square_root( dist );
  #endif

        /* convert from 16.16 to 6.10 */
        dist /= 64;
        final_dist = (FT_6D10)(dist & 0x0000FFFF);

        /* We assume that if the pixel is inside a contour */
        /* then it's coverage value must be > 127.         */
        sign = worker->distance_map[index].alpha < 127 ? -1 : 1;

        /* flip the sign according to the property */
        if ( worker->params.flip_sign )
          sign = -sign;

        t_buffer[index] = final_dist * sign;
      }
    }

  Exit:
    return error;
  }

  /**************************************************************************
   *
   * interface functions
   *
   */

  /* called when adding a new module through `FT_Add_Module' */
  static FT_Error
  bsdf_raster_new( FT_Memory   memory,
                   FT_Raster*  araster)
  {
    FT_Error       error  = FT_Err_Ok;
    BSDF_TRaster*  raster = NULL;


    *araster = 0;
    if ( !FT_ALLOC( raster, sizeof( BSDF_TRaster ) ) )
    {
      raster->memory = memory;
      *araster = (FT_Raster)raster;
    }

    return error;
  }

  /* unused */
  static void
  bsdf_raster_reset( FT_Raster       raster,
                     unsigned char*  pool_base,
                     unsigned long   pool_size )
  {
    /* no use of this function */
    FT_UNUSED( raster );
    FT_UNUSED( pool_base );
    FT_UNUSED( pool_size );
  }

  /* unused */
  static FT_Error
  bsdf_raster_set_mode( FT_Raster      raster,
                        unsigned long  mode,
                        void*          args )
  {
    FT_UNUSED( raster );
    FT_UNUSED( mode );
    FT_UNUSED( args );


    return FT_Err_Ok;
  }

  /* called while rendering through `FT_Render_Glyph' */
  static FT_Error
  bsdf_raster_render( FT_Raster                raster,
                      const FT_Raster_Params*  params )
  {
    FT_Error          error       = FT_Err_Ok;
    const FT_Bitmap*  source      = NULL;
    const FT_Bitmap*  target      = NULL;
    FT_Memory         memory      = NULL;
    BSDF_TRaster*     bsdf_raster = (BSDF_TRaster*)raster;
    BSDF_Worker       worker;

    const SDF_Raster_Params*  sdf_params = (const SDF_Raster_Params*)params;


    worker.distance_map = NULL;

    /* check for valid parameters */
    if ( !raster || !params )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    /* check if the flag is set */
    if ( sdf_params->root.flags != FT_RASTER_FLAG_SDF )
    {
      error = FT_THROW( Raster_Corrupted );
      goto Exit;
    }

    source = sdf_params->root.source;
    target = sdf_params->root.target;

    /* check the source and target bitmap */
    if ( !source || !target )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit; 
    }

    memory = bsdf_raster->memory;
    if ( !memory )
    {
      FT_TRACE0(( "[bsdf] bsdf_raster_render:\n"
                  "      Raster not setup properly, "
                  "unable to find memory handle.\n" ));
      error = FT_THROW( Invalid_Handle );
      goto Exit;
    }

    /* check if spread is set properly */
    if ( sdf_params->spread > MAX_SPREAD ||
         sdf_params->spread < MIN_SPREAD )
    {
      FT_TRACE0(( 
        "[bsdf] bsdf_raster_render:\n"
        "       The `spread' field of `SDF_Raster_Params' is invalid,\n"
        "       the value of this field must be within [%d, %d].\n"
        "       Also, you must pass `SDF_Raster_Params' instead of the\n"
        "       default `FT_Raster_Params' while calling this function\n"
        "       and set the fields properly.\n"
        , MIN_SPREAD, MAX_SPREAD ));
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    /* setup the worker */

    /* allocate the distance map */
    if ( FT_QALLOC_MULT( worker.distance_map, target->rows,
                         target->width * sizeof( *worker.distance_map ) ) )
      goto Exit;

    worker.width  = target->width;
    worker.rows   = target->rows;
    worker.params = *sdf_params;

    FT_CALL( bsdf_init_distance_map( source, &worker ) );
    FT_CALL( bsdf_approximate_edge( &worker ) );
    FT_CALL( edt8( &worker ) );
    FT_CALL( finalize_sdf( &worker, target ) );

    FT_TRACE0(( "[bsdf] bsdf_raster_render: "
            "Total memory used = %ld\n",
             worker.width * worker.rows * sizeof( *worker.distance_map ) ));

  Exit:
    if ( worker.distance_map )
      FT_FREE( worker.distance_map );

    return error;
  }

  /* called while deleting a `FT_Library' only if the module is added */
  static void
  bsdf_raster_done( FT_Raster  raster )
  {
    FT_Memory  memory = (FT_Memory)((BSDF_TRaster*)raster)->memory;


    FT_FREE( raster );
  }

  FT_DEFINE_RASTER_FUNCS(
    ft_bitmap_sdf_raster,

    FT_GLYPH_FORMAT_BITMAP,

    (FT_Raster_New_Func)      bsdf_raster_new,       /* raster_new      */
    (FT_Raster_Reset_Func)    bsdf_raster_reset,     /* raster_reset    */
    (FT_Raster_Set_Mode_Func) bsdf_raster_set_mode,  /* raster_set_mode */
    (FT_Raster_Render_Func)   bsdf_raster_render,    /* raster_render   */
    (FT_Raster_Done_Func)     bsdf_raster_done       /* raster_done     */
  )

/* END */