summaryrefslogtreecommitdiff
path: root/FreeRTOS/Demo/Safe_Interrupts_M33F_NXP_LPC55S69_MCUXpresso/NXP_Code/component/serial_manager/fsl_component_serial_port_uart.c
blob: f791e0385f3238122c5754e51416673071293b91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*
 * Copyright 2018 NXP
 * All rights reserved.
 *
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include "fsl_component_serial_manager.h"
#include "fsl_component_serial_port_internal.h"

#if (defined(SERIAL_PORT_TYPE_UART) && (SERIAL_PORT_TYPE_UART > 0U))
#include "fsl_adapter_uart.h"

#include "fsl_component_serial_port_uart.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/
#ifndef NDEBUG
#if (defined(DEBUG_CONSOLE_ASSERT_DISABLE) && (DEBUG_CONSOLE_ASSERT_DISABLE > 0U))
#undef assert
#define assert(n)
#else
/* MISRA C-2012 Rule 17.2 */
#undef assert
#define assert(n) \
    while (!(n))  \
    {             \
        ;         \
    }
#endif
#endif

#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
#define SERIAL_PORT_UART_RECEIVE_DATA_LENGTH 1U
#define SERIAL_MANAGER_BLOCK_OFFSET          (12U)
typedef struct _serial_uart_send_state
{
    uint8_t *buffer;
    uint32_t length;
    serial_manager_callback_t callback;
    void *callbackParam;
    volatile uint8_t busy;
} serial_uart_send_state_t;

typedef struct _serial_uart_recv_state
{
    serial_manager_callback_t callback;
    void *callbackParam;
    volatile uint8_t busy;
    volatile uint8_t rxEnable;
    uint8_t readBuffer[SERIAL_PORT_UART_RECEIVE_DATA_LENGTH];
} serial_uart_recv_state_t;
typedef struct _serial_uart_block_state
{
    UART_HANDLE_DEFINE(usartHandleBuffer);
} serial_uart_block_state_t;
#endif

typedef struct _serial_uart_state
{
    UART_HANDLE_DEFINE(usartHandleBuffer);
#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
    serial_uart_send_state_t tx;
    serial_uart_recv_state_t rx;
#endif
} serial_uart_state_t;

/*******************************************************************************
 * Prototypes
 ******************************************************************************/

/*******************************************************************************
 * Code
 ******************************************************************************/

#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
static serial_manager_status_t Serial_UartEnableReceiving(serial_uart_state_t *serialUartHandle)
{
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
    hal_uart_transfer_t transfer;
#endif
    if (1U == serialUartHandle->rx.rxEnable)
    {
        serialUartHandle->rx.busy = 1U;
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
        transfer.data     = &serialUartHandle->rx.readBuffer[0];
        transfer.dataSize = sizeof(serialUartHandle->rx.readBuffer);
        if (kStatus_HAL_UartSuccess !=
            HAL_UartTransferReceiveNonBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), &transfer))
#else
        if (kStatus_HAL_UartSuccess !=
            HAL_UartReceiveNonBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]),
                                       &serialUartHandle->rx.readBuffer[0], sizeof(serialUartHandle->rx.readBuffer)))
#endif
        {
            serialUartHandle->rx.busy = 0U;
            return kStatus_SerialManager_Error;
        }
    }
    return kStatus_SerialManager_Success;
}

/* UART user callback */
static void Serial_UartCallback(hal_uart_handle_t handle, hal_uart_status_t status, void *userData)
{
    serial_uart_state_t *serialUartHandle;
    serial_manager_callback_message_t msg;
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
    hal_uart_transfer_t transfer;
#endif

    assert(userData);
    serialUartHandle = (serial_uart_state_t *)userData;

    if ((hal_uart_status_t)kStatus_HAL_UartRxIdle == status)
    {
        if ((NULL != serialUartHandle->rx.callback))
        {
            msg.buffer = &serialUartHandle->rx.readBuffer[0];
            msg.length = sizeof(serialUartHandle->rx.readBuffer);
            serialUartHandle->rx.callback(serialUartHandle->rx.callbackParam, &msg, kStatus_SerialManager_Success);
        }
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
        transfer.data             = &serialUartHandle->rx.readBuffer[0];
        transfer.dataSize         = sizeof(serialUartHandle->rx.readBuffer);
        serialUartHandle->rx.busy = 0U;
        if (kStatus_HAL_UartSuccess ==
            HAL_UartTransferReceiveNonBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), &transfer))
#else
        if ((hal_uart_status_t)kStatus_HAL_UartSuccess ==
            HAL_UartReceiveNonBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]),
                                       &serialUartHandle->rx.readBuffer[0], sizeof(serialUartHandle->rx.readBuffer)))
#endif
        {
            serialUartHandle->rx.busy = 1U;
        }
    }
    else if ((hal_uart_status_t)kStatus_HAL_UartTxIdle == status)
    {
        if (0U != serialUartHandle->tx.busy)
        {
            serialUartHandle->tx.busy = 0U;
            if ((NULL != serialUartHandle->tx.callback))
            {
                msg.buffer = serialUartHandle->tx.buffer;
                msg.length = serialUartHandle->tx.length;
                serialUartHandle->tx.callback(serialUartHandle->tx.callbackParam, &msg, kStatus_SerialManager_Success);
            }
        }
    }
    else
    {
    }
}
#endif

serial_manager_status_t Serial_UartInit(serial_handle_t serialHandle, void *serialConfig)
{
    serial_uart_state_t *serialUartHandle;
#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
    serial_port_uart_config_t *uartConfig = (serial_port_uart_config_t *)serialConfig;
#endif
    serial_manager_status_t serialManagerStatus = kStatus_SerialManager_Success;
#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
#if 0 /* Not used below! */
    hal_uart_transfer_t transfer;
#endif
#endif
#endif

    assert(serialConfig);
    assert(serialHandle);
    assert(SERIAL_PORT_UART_HANDLE_SIZE >= sizeof(serial_uart_state_t));

    serialUartHandle    = (serial_uart_state_t *)serialHandle;
    serialManagerStatus = (serial_manager_status_t)HAL_UartInit(
        ((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), (const hal_uart_config_t *)serialConfig);
    assert(kStatus_SerialManager_Success == serialManagerStatus);
    (void)serialManagerStatus;

#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
#if (defined(SERIAL_MANAGER_NON_BLOCKING_DUAL_MODE) && (SERIAL_MANAGER_NON_BLOCKING_DUAL_MODE > 0U))
    serial_manager_type_t type = *(serial_manager_type_t *)((uint32_t)serialHandle - SERIAL_MANAGER_BLOCK_OFFSET);
    if (type == kSerialManager_Blocking)
    {
        return serialManagerStatus;
    }
#endif /* SERIAL_MANAGER_NON_BLOCKING_DUAL_MODE */
    serialUartHandle->rx.rxEnable = uartConfig->enableRx;
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))

    (void)HAL_UartTransferInstallCallback(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]),
                                          Serial_UartCallback, serialUartHandle);
#else
    (void)HAL_UartInstallCallback(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), Serial_UartCallback,
                                  serialUartHandle);
#endif
#endif
#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
    serialManagerStatus = Serial_UartEnableReceiving(serialUartHandle);
#endif

    return serialManagerStatus;
}

serial_manager_status_t Serial_UartDeinit(serial_handle_t serialHandle)
{
    serial_uart_state_t *serialUartHandle;

    assert(serialHandle);

    serialUartHandle = (serial_uart_state_t *)serialHandle;

#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
    (void)HAL_UartTransferAbortReceive(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));
#else
    (void)HAL_UartAbortReceive(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));
#endif
#endif
    (void)HAL_UartDeinit(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));

#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
    serialUartHandle->tx.busy = 0U;
    serialUartHandle->rx.busy = 0U;
#endif

    return kStatus_SerialManager_Success;
}

#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))

serial_manager_status_t Serial_UartWrite(serial_handle_t serialHandle, uint8_t *buffer, uint32_t length)
{
    serial_uart_state_t *serialUartHandle;
    hal_uart_status_t uartstatus;
#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
    hal_uart_transfer_t transfer;
#endif

    assert(serialHandle);
    assert(buffer);
    assert(length);

    serialUartHandle = (serial_uart_state_t *)serialHandle;
#if (defined(SERIAL_MANAGER_NON_BLOCKING_DUAL_MODE) && (SERIAL_MANAGER_NON_BLOCKING_DUAL_MODE > 0U))
    serial_manager_type_t type = *(serial_manager_type_t *)((uint32_t)serialHandle - SERIAL_MANAGER_BLOCK_OFFSET);
    if (type == kSerialManager_Blocking)
    {
        return (serial_manager_status_t)HAL_UartSendBlocking(
            ((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), buffer, length);
    }
#endif /* SERIAL_MANAGER_NON_BLOCKING_DUAL_MODE */
    if (0U != serialUartHandle->tx.busy)
    {
        return kStatus_SerialManager_Busy;
    }
    serialUartHandle->tx.busy = 1U;

    serialUartHandle->tx.buffer = buffer;
    serialUartHandle->tx.length = length;

#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
    transfer.data     = buffer;
    transfer.dataSize = length;
    uartstatus =
        HAL_UartTransferSendNonBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), &transfer);
#else

    uartstatus = HAL_UartSendNonBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), buffer, length);
#endif
    assert(kStatus_HAL_UartSuccess == uartstatus);
    (void)uartstatus;

    return kStatus_SerialManager_Success;
}
serial_manager_status_t Serial_UartWriteBlocking(serial_handle_t serialHandle, uint8_t *buffer, uint32_t length)
{
    serial_uart_state_t *serialUartHandle;

    assert(serialHandle);
    assert(buffer);
    assert(length);

    serialUartHandle = (serial_uart_state_t *)serialHandle;

    return (serial_manager_status_t)HAL_UartSendBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]),
                                                         buffer, length);
}
#if (defined(SERIAL_MANAGER_NON_BLOCKING_DUAL_MODE) && (SERIAL_MANAGER_NON_BLOCKING_DUAL_MODE > 0U))
serial_manager_status_t Serial_UartRead(serial_handle_t serialHandle, uint8_t *buffer, uint32_t length)
{
    serial_uart_state_t *serialUartHandle;

    assert(serialHandle);
    assert(buffer);
    assert(length);

    serialUartHandle = (serial_uart_state_t *)serialHandle;

    return (serial_manager_status_t)HAL_UartReceiveBlocking(
        ((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), buffer, length);
}
#endif /* SERIAL_MANAGER_NON_BLOCKING_DUAL_MODE */
#else

serial_manager_status_t Serial_UartWrite(serial_handle_t serialHandle, uint8_t *buffer, uint32_t length)
{
    serial_uart_state_t *serialUartHandle;

    assert(serialHandle);
    assert(buffer);
    assert(length);

    serialUartHandle = (serial_uart_state_t *)serialHandle;

    return (serial_manager_status_t)HAL_UartSendBlocking(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]),
                                                         buffer, length);
}

serial_manager_status_t Serial_UartRead(serial_handle_t serialHandle, uint8_t *buffer, uint32_t length)
{
    serial_uart_state_t *serialUartHandle;

    assert(serialHandle);
    assert(buffer);
    assert(length);

    serialUartHandle = (serial_uart_state_t *)serialHandle;

    return (serial_manager_status_t)HAL_UartReceiveBlocking(
        ((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]), buffer, length);
}

#endif

#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
serial_manager_status_t Serial_UartCancelWrite(serial_handle_t serialHandle)
{
    serial_uart_state_t *serialUartHandle;
    serial_manager_callback_message_t msg;
    uint32_t primask;
    uint8_t isBusy = 0U;

    assert(serialHandle);

    serialUartHandle = (serial_uart_state_t *)serialHandle;

    primask                   = DisableGlobalIRQ();
    isBusy                    = serialUartHandle->tx.busy;
    serialUartHandle->tx.busy = 0U;
    EnableGlobalIRQ(primask);

#if (defined(HAL_UART_TRANSFER_MODE) && (HAL_UART_TRANSFER_MODE > 0U))
    (void)HAL_UartTransferAbortSend(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));
#else
    (void)HAL_UartAbortSend(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));
#endif
    if (0U != isBusy)
    {
        if ((NULL != serialUartHandle->tx.callback))
        {
            msg.buffer = serialUartHandle->tx.buffer;
            msg.length = serialUartHandle->tx.length;
            serialUartHandle->tx.callback(serialUartHandle->tx.callbackParam, &msg, kStatus_SerialManager_Canceled);
        }
    }
    return kStatus_SerialManager_Success;
}

serial_manager_status_t Serial_UartInstallTxCallback(serial_handle_t serialHandle,
                                                     serial_manager_callback_t callback,
                                                     void *callbackParam)
{
    serial_uart_state_t *serialUartHandle;

    assert(serialHandle);

    serialUartHandle = (serial_uart_state_t *)serialHandle;

    serialUartHandle->tx.callback      = callback;
    serialUartHandle->tx.callbackParam = callbackParam;

    return kStatus_SerialManager_Success;
}

serial_manager_status_t Serial_UartInstallRxCallback(serial_handle_t serialHandle,
                                                     serial_manager_callback_t callback,
                                                     void *callbackParam)
{
    serial_uart_state_t *serialUartHandle;

    assert(serialHandle);

    serialUartHandle = (serial_uart_state_t *)serialHandle;

    serialUartHandle->rx.callback      = callback;
    serialUartHandle->rx.callbackParam = callbackParam;

    return kStatus_SerialManager_Success;
}

void Serial_UartIsrFunction(serial_handle_t serialHandle)
{
    serial_uart_state_t *serialUartHandle;

    assert(serialHandle);

    serialUartHandle = (serial_uart_state_t *)serialHandle;

    HAL_UartIsrFunction(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));
}
#endif

serial_manager_status_t Serial_UartEnterLowpower(serial_handle_t serialHandle)
{
    serial_uart_state_t *serialUartHandle;
    hal_uart_status_t uartstatus;

    assert(serialHandle);

    serialUartHandle = (serial_uart_state_t *)serialHandle;

    uartstatus = HAL_UartEnterLowpower(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));
    assert(kStatus_HAL_UartSuccess == uartstatus);
    (void)uartstatus;

    return kStatus_SerialManager_Success;
}

serial_manager_status_t Serial_UartExitLowpower(serial_handle_t serialHandle)
{
    serial_uart_state_t *serialUartHandle;
    serial_manager_status_t status = kStatus_SerialManager_Success;
    hal_uart_status_t uartstatus;

    assert(serialHandle);

    serialUartHandle = (serial_uart_state_t *)serialHandle;

    uartstatus = HAL_UartExitLowpower(((hal_uart_handle_t)&serialUartHandle->usartHandleBuffer[0]));
    assert(kStatus_HAL_UartSuccess == uartstatus);
    (void)uartstatus;

#if (defined(SERIAL_MANAGER_NON_BLOCKING_MODE) && (SERIAL_MANAGER_NON_BLOCKING_MODE > 0U))
    serial_manager_type_t type =
        *(serial_manager_type_t *)(void *)((uint8_t *)serialHandle - SERIAL_MANAGER_BLOCK_OFFSET);
    if (type != kSerialManager_Blocking)
    {
        status = Serial_UartEnableReceiving(serialUartHandle);
    }
#endif

    return status;
}

#endif