diff options
author | foo86 <foobaz86@gmail.com> | 2016-05-01 18:43:00 +0300 |
---|---|---|
committer | James Almer <jamrial@gmail.com> | 2016-05-10 20:33:28 -0300 |
commit | 6c44696b3d504eb87d60915919074da530cd379f (patch) | |
tree | 1ba0c685e5b0ba24327234ae0acaa6e1b5fdb083 /libavcodec/dca_lbr.c | |
parent | fce75131229b63d4fbc784a3227be0843f867d55 (diff) | |
download | ffmpeg-6c44696b3d504eb87d60915919074da530cd379f.tar.gz |
avcodec/dca: add DTS Express (LBR) decoder
Signed-off-by: James Almer <jamrial@gmail.com>
Diffstat (limited to 'libavcodec/dca_lbr.c')
-rw-r--r-- | libavcodec/dca_lbr.c | 1825 |
1 files changed, 1825 insertions, 0 deletions
diff --git a/libavcodec/dca_lbr.c b/libavcodec/dca_lbr.c new file mode 100644 index 0000000000..595187c258 --- /dev/null +++ b/libavcodec/dca_lbr.c @@ -0,0 +1,1825 @@ +/* + * Copyright (C) 2016 foo86 + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#define UNCHECKED_BITSTREAM_READER 1 +#define BITSTREAM_READER_LE + +#include "libavutil/channel_layout.h" + +#include "dcadec.h" +#include "dcadata.h" +#include "dcahuff.h" +#include "dca_syncwords.h" +#include "bytestream.h" + +#define AMP_MAX 56 + +enum LBRHeader { + LBR_HEADER_SYNC_ONLY = 1, + LBR_HEADER_DECODER_INIT = 2 +}; + +enum LBRFlags { + LBR_FLAG_24_BIT = 0x01, + LBR_FLAG_LFE_PRESENT = 0x02, + LBR_FLAG_BAND_LIMIT_2_3 = 0x04, + LBR_FLAG_BAND_LIMIT_1_2 = 0x08, + LBR_FLAG_BAND_LIMIT_1_3 = 0x0c, + LBR_FLAG_BAND_LIMIT_1_4 = 0x10, + LBR_FLAG_BAND_LIMIT_1_8 = 0x18, + LBR_FLAG_BAND_LIMIT_NONE = 0x14, + LBR_FLAG_BAND_LIMIT_MASK = 0x1c, + LBR_FLAG_DMIX_STEREO = 0x20, + LBR_FLAG_DMIX_MULTI_CH = 0x40 +}; + +enum LBRChunkTypes { + LBR_CHUNK_NULL = 0x00, + LBR_CHUNK_PAD = 0x01, + LBR_CHUNK_FRAME = 0x04, + LBR_CHUNK_FRAME_NO_CSUM = 0x06, + LBR_CHUNK_LFE = 0x0a, + LBR_CHUNK_ECS = 0x0b, + LBR_CHUNK_RESERVED_1 = 0x0c, + LBR_CHUNK_RESERVED_2 = 0x0d, + LBR_CHUNK_SCF = 0x0e, + LBR_CHUNK_TONAL = 0x10, + LBR_CHUNK_TONAL_GRP_1 = 0x11, + LBR_CHUNK_TONAL_GRP_2 = 0x12, + LBR_CHUNK_TONAL_GRP_3 = 0x13, + LBR_CHUNK_TONAL_GRP_4 = 0x14, + LBR_CHUNK_TONAL_GRP_5 = 0x15, + LBR_CHUNK_TONAL_SCF = 0x16, + LBR_CHUNK_TONAL_SCF_GRP_1 = 0x17, + LBR_CHUNK_TONAL_SCF_GRP_2 = 0x18, + LBR_CHUNK_TONAL_SCF_GRP_3 = 0x19, + LBR_CHUNK_TONAL_SCF_GRP_4 = 0x1a, + LBR_CHUNK_TONAL_SCF_GRP_5 = 0x1b, + LBR_CHUNK_RES_GRID_LR = 0x30, + LBR_CHUNK_RES_GRID_LR_LAST = 0x3f, + LBR_CHUNK_RES_GRID_HR = 0x40, + LBR_CHUNK_RES_GRID_HR_LAST = 0x4f, + LBR_CHUNK_RES_TS_1 = 0x50, + LBR_CHUNK_RES_TS_1_LAST = 0x5f, + LBR_CHUNK_RES_TS_2 = 0x60, + LBR_CHUNK_RES_TS_2_LAST = 0x6f, + LBR_CHUNK_EXTENSION = 0x7f +}; + +typedef struct LBRChunk { + int id, len; + const uint8_t *data; +} LBRChunk; + +static const int8_t channel_reorder_nolfe[7][5] = { + { 0, -1, -1, -1, -1 }, // C + { 0, 1, -1, -1, -1 }, // LR + { 0, 1, 2, -1, -1 }, // LR C + { 0, 1, -1, -1, -1 }, // LsRs + { 1, 2, 0, -1, -1 }, // LsRs C + { 0, 1, 2, 3, -1 }, // LR LsRs + { 0, 1, 3, 4, 2 }, // LR LsRs C +}; + +static const int8_t channel_reorder_lfe[7][5] = { + { 0, -1, -1, -1, -1 }, // C + { 0, 1, -1, -1, -1 }, // LR + { 0, 1, 2, -1, -1 }, // LR C + { 1, 2, -1, -1, -1 }, // LsRs + { 2, 3, 0, -1, -1 }, // LsRs C + { 0, 1, 3, 4, -1 }, // LR LsRs + { 0, 1, 4, 5, 2 }, // LR LsRs C +}; + +static const uint8_t lfe_index[7] = { + 1, 2, 3, 0, 1, 2, 3 +}; + +static const uint8_t channel_counts[7] = { + 1, 2, 3, 2, 3, 4, 5 +}; + +static const uint16_t channel_layouts[7] = { + AV_CH_LAYOUT_MONO, + AV_CH_LAYOUT_STEREO, + AV_CH_LAYOUT_SURROUND, + AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, + AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, + AV_CH_LAYOUT_2_2, + AV_CH_LAYOUT_5POINT0 +}; + +static float cos_tab[256]; +static float lpc_tab[16]; + +static av_cold void init_tables(void) +{ + static int initialized; + int i; + + if (initialized) + return; + + for (i = 0; i < 256; i++) + cos_tab[i] = cos(M_PI * i / 128); + + for (i = 0; i < 16; i++) + lpc_tab[i] = sin((i - 8) * (M_PI / ((i < 8) ? 17 : 15))); + + initialized = 1; +} + +static int parse_lfe_24(DCALbrDecoder *s) +{ + int step_max = FF_ARRAY_ELEMS(ff_dca_lfe_step_size_24) - 1; + int i, ps, si, code, step_i; + float step, value, delta; + + ps = get_bits(&s->gb, 24); + si = ps >> 23; + + value = (((ps & 0x7fffff) ^ -si) + si) * (1.0f / 0x7fffff); + + step_i = get_bits(&s->gb, 8); + if (step_i > step_max) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE step size index\n"); + return -1; + } + + step = ff_dca_lfe_step_size_24[step_i]; + + for (i = 0; i < 64; i++) { + code = get_bits(&s->gb, 6); + + delta = step * 0.03125f; + if (code & 16) + delta += step; + if (code & 8) + delta += step * 0.5f; + if (code & 4) + delta += step * 0.25f; + if (code & 2) + delta += step * 0.125f; + if (code & 1) + delta += step * 0.0625f; + + if (code & 32) { + value -= delta; + if (value < -3.0f) + value = -3.0f; + } else { + value += delta; + if (value > 3.0f) + value = 3.0f; + } + + step_i += ff_dca_lfe_delta_index_24[code & 31]; + step_i = av_clip(step_i, 0, step_max); + + step = ff_dca_lfe_step_size_24[step_i]; + s->lfe_data[i] = value * s->lfe_scale; + } + + return 0; +} + +static int parse_lfe_16(DCALbrDecoder *s) +{ + int step_max = FF_ARRAY_ELEMS(ff_dca_lfe_step_size_16) - 1; + int i, ps, si, code, step_i; + float step, value, delta; + + ps = get_bits(&s->gb, 16); + si = ps >> 15; + + value = (((ps & 0x7fff) ^ -si) + si) * (1.0f / 0x7fff); + + step_i = get_bits(&s->gb, 8); + if (step_i > step_max) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE step size index\n"); + return -1; + } + + step = ff_dca_lfe_step_size_16[step_i]; + + for (i = 0; i < 64; i++) { + code = get_bits(&s->gb, 4); + + delta = step * 0.125f; + if (code & 4) + delta += step; + if (code & 2) + delta += step * 0.5f; + if (code & 1) + delta += step * 0.25f; + + if (code & 8) { + value -= delta; + if (value < -3.0f) + value = -3.0f; + } else { + value += delta; + if (value > 3.0f) + value = 3.0f; + } + + step_i += ff_dca_lfe_delta_index_16[code & 7]; + step_i = av_clip(step_i, 0, step_max); + + step = ff_dca_lfe_step_size_16[step_i]; + s->lfe_data[i] = value * s->lfe_scale; + } + + return 0; +} + +static int parse_lfe_chunk(DCALbrDecoder *s, LBRChunk *chunk) +{ + if (!(s->flags & LBR_FLAG_LFE_PRESENT)) + return 0; + + if (!chunk->len) + return 0; + + if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0) + return -1; + + // Determine bit depth from chunk size + if (chunk->len >= 52) + return parse_lfe_24(s); + if (chunk->len >= 35) + return parse_lfe_16(s); + + av_log(s->avctx, AV_LOG_ERROR, "LFE chunk too short\n"); + return -1; +} + +static inline int parse_vlc(GetBitContext *s, VLC *vlc, int max_depth) +{ + int v = get_vlc2(s, vlc->table, vlc->bits, max_depth); + if (v > 0) + return v - 1; + // Rare value + return get_bits(s, get_bits(s, 3) + 1); +} + +static int parse_tonal(DCALbrDecoder *s, int group) +{ + unsigned int amp[DCA_LBR_CHANNELS_TOTAL]; + unsigned int phs[DCA_LBR_CHANNELS_TOTAL]; + unsigned int diff, main_amp, shift; + int sf, sf_idx, ch, main_ch, freq; + int ch_nbits = av_ceil_log2(s->nchannels_total); + + // Parse subframes for this group + for (sf = 0; sf < 1 << group; sf += diff ? 8 : 1) { + sf_idx = ((s->framenum << group) + sf) & 31; + s->tonal_bounds[group][sf_idx][0] = s->ntones; + + // Parse tones for this subframe + for (freq = 1;; freq++) { + if (get_bits_left(&s->gb) < 1) { + av_log(s->avctx, AV_LOG_ERROR, "Tonal group chunk too short\n"); + return -1; + } + + diff = parse_vlc(&s->gb, &ff_dca_vlc_tnl_grp[group], 2); + if (diff >= FF_ARRAY_ELEMS(ff_dca_fst_amp)) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid tonal frequency diff\n"); + return -1; + } + + diff = get_bitsz(&s->gb, diff >> 2) + ff_dca_fst_amp[diff]; + if (diff <= 1) + break; // End of subframe + + freq += diff - 2; + if (freq >> (5 - group) > s->nsubbands * 4 - 5) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid spectral line offset\n"); + return -1; + } + + // Main channel + main_ch = get_bitsz(&s->gb, ch_nbits); + main_amp = parse_vlc(&s->gb, &ff_dca_vlc_tnl_scf, 2) + + s->tonal_scf[ff_dca_freq_to_sb[freq >> (7 - group)]] + + s->limited_range - 2; + amp[main_ch] = main_amp < AMP_MAX ? main_amp : 0; + phs[main_ch] = get_bits(&s->gb, 3); + + // Secondary channels + for (ch = 0; ch < s->nchannels_total; ch++) { + if (ch == main_ch) + continue; + if (get_bits1(&s->gb)) { + amp[ch] = amp[main_ch] - parse_vlc(&s->gb, &ff_dca_vlc_damp, 1); + phs[ch] = phs[main_ch] - parse_vlc(&s->gb, &ff_dca_vlc_dph, 1); + } else { + amp[ch] = 0; + phs[ch] = 0; + } + } + + if (amp[main_ch]) { + // Allocate new tone + DCALbrTone *t = &s->tones[s->ntones]; + s->ntones = (s->ntones + 1) & (DCA_LBR_TONES - 1); + + t->x_freq = freq >> (5 - group); + t->f_delt = (freq & ((1 << (5 - group)) - 1)) << group; + t->ph_rot = 256 - (t->x_freq & 1) * 128 - t->f_delt * 4; + + shift = ff_dca_ph0_shift[(t->x_freq & 3) * 2 + (freq & 1)] + - ((t->ph_rot << (5 - group)) - t->ph_rot); + + for (ch = 0; ch < s->nchannels; ch++) { + t->amp[ch] = amp[ch] < AMP_MAX ? amp[ch] : 0; + t->phs[ch] = 128 - phs[ch] * 32 + shift; + } + } + } + + s->tonal_bounds[group][sf_idx][1] = s->ntones; + } + + return 0; +} + +static int parse_tonal_chunk(DCALbrDecoder *s, LBRChunk *chunk) +{ + int sb, group; + + if (!chunk->len) + return 0; + + if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0) + return -1; + + // Scale factors + if (chunk->id == LBR_CHUNK_SCF || chunk->id == LBR_CHUNK_TONAL_SCF) { + if (get_bits_left(&s->gb) < 36) { + av_log(s->avctx, AV_LOG_ERROR, "Tonal scale factor chunk too short\n"); + return -1; + } + for (sb = 0; sb < 6; sb++) + s->tonal_scf[sb] = get_bits(&s->gb, 6); + } + + // Tonal groups + if (chunk->id == LBR_CHUNK_TONAL || chunk->id == LBR_CHUNK_TONAL_SCF) + for (group = 0; group < 5; group++) + if (parse_tonal(s, group) < 0) + return -1; + + return 0; +} + +static int parse_tonal_group(DCALbrDecoder *s, LBRChunk *chunk) +{ + if (!chunk->len) + return 0; + + if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0) + return -1; + + return parse_tonal(s, chunk->id); +} + +/** + * Check point to ensure that enough bits are left. Aborts decoding + * by skipping to the end of chunk otherwise. + */ +static int ensure_bits(GetBitContext *s, int n) +{ + int left = get_bits_left(s); + if (left < 0) + return -1; + if (left < n) { + skip_bits_long(s, left); + return 1; + } + return 0; +} + +static int parse_scale_factors(DCALbrDecoder *s, uint8_t *scf) +{ + int i, sf, prev, next, dist; + + // Truncated scale factors remain zero + if (ensure_bits(&s->gb, 20)) + return 0; + + // Initial scale factor + prev = parse_vlc(&s->gb, &ff_dca_vlc_fst_rsd_amp, 2); + + for (sf = 0; sf < 7; sf += dist) { + scf[sf] = prev; // Store previous value + + if (ensure_bits(&s->gb, 20)) + return 0; + + // Interpolation distance + dist = parse_vlc(&s->gb, &ff_dca_vlc_rsd_apprx, 1) + 1; + if (dist > 7 - sf) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor distance\n"); + return -1; + } + + if (ensure_bits(&s->gb, 20)) + return 0; + + // Final interpolation point + next = parse_vlc(&s->gb, &ff_dca_vlc_rsd_amp, 2); + + if (next & 1) + next = prev + ((next + 1) >> 1); + else + next = prev - ( next >> 1); + + // Interpolate + switch (dist) { + case 2: + if (next > prev) + scf[sf + 1] = prev + ((next - prev) >> 1); + else + scf[sf + 1] = prev - ((prev - next) >> 1); + break; + + case 4: + if (next > prev) { + scf[sf + 1] = prev + ( (next - prev) >> 2); + scf[sf + 2] = prev + ( (next - prev) >> 1); + scf[sf + 3] = prev + (((next - prev) * 3) >> 2); + } else { + scf[sf + 1] = prev - ( (prev - next) >> 2); + scf[sf + 2] = prev - ( (prev - next) >> 1); + scf[sf + 3] = prev - (((prev - next) * 3) >> 2); + } + break; + + default: + for (i = 1; i < dist; i++) + scf[sf + i] = prev + (next - prev) * i / dist; + break; + } + + prev = next; + } + + scf[sf] = next; // Store final value + + return 0; +} + +static int parse_st_code(GetBitContext *s, int min_v) +{ + unsigned int v = parse_vlc(s, &ff_dca_vlc_st_grid, 2) + min_v; + + if (v & 1) + v = 16 + (v >> 1); + else + v = 16 - (v >> 1); + + if (v >= FF_ARRAY_ELEMS(ff_dca_st_coeff)) + v = 16; + return v; +} + +static int parse_grid_1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2) +{ + int ch, sb, sf, nsubbands; + + if (!chunk->len) + return 0; + + if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0) + return -1; + + // Scale factors + nsubbands = ff_dca_scf_to_grid_1[s->nsubbands - 1] + 1; + for (sb = 2; sb < nsubbands; sb++) { + if (parse_scale_factors(s, s->grid_1_scf[ch1][sb]) < 0) + return -1; + if (ch1 != ch2 && ff_dca_grid_1_to_scf[sb] < s->min_mono_subband + && parse_scale_factors(s, s->grid_1_scf[ch2][sb]) < 0) + return -1; + } + + if (get_bits_left(&s->gb) < 1) + return 0; // Should not happen, but a sample exists that proves otherwise + + // Average values for third grid + for (sb = 0; sb < s->nsubbands - 4; sb++) { + s->grid_3_avg[ch1][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16; + if (ch1 != ch2) { + if (sb + 4 < s->min_mono_subband) + s->grid_3_avg[ch2][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16; + else + s->grid_3_avg[ch2][sb] = s->grid_3_avg[ch1][sb]; + } + } + + if (get_bits_left(&s->gb) < 0) { + av_log(s->avctx, AV_LOG_ERROR, "First grid chunk too short\n"); + return -1; + } + + // Stereo image for partial mono mode + if (ch1 != ch2) { + int min_v[2]; + + if (ensure_bits(&s->gb, 8)) + return 0; + + min_v[0] = get_bits(&s->gb, 4); + min_v[1] = get_bits(&s->gb, 4); + + nsubbands = (s->nsubbands - s->min_mono_subband + 3) / 4; + for (sb = 0; sb < nsubbands; sb++) + for (ch = ch1; ch <= ch2; ch++) + for (sf = 1; sf <= 4; sf++) + s->part_stereo[ch][sb][sf] = parse_st_code(&s->gb, min_v[ch - ch1]); + + if (get_bits_left(&s->gb) >= 0) + s->part_stereo_pres |= 1 << ch1; + } + + // Low resolution spatial information is not decoded + + return 0; +} + +static int parse_grid_1_sec_ch(DCALbrDecoder *s, int ch2) +{ + int sb, nsubbands; + + // Scale factors + nsubbands = ff_dca_scf_to_grid_1[s->nsubbands - 1] + 1; + for (sb = 2; sb < nsubbands; sb++) { + if (ff_dca_grid_1_to_scf[sb] >= s->min_mono_subband + && parse_scale_factors(s, s->grid_1_scf[ch2][sb]) < 0) + return -1; + } + + // Average values for third grid + for (sb = 0; sb < s->nsubbands - 4; sb++) { + if (sb + 4 >= s->min_mono_subband) { + if (ensure_bits(&s->gb, 20)) + return 0; + s->grid_3_avg[ch2][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16; + } + } + + return 0; +} + +static void parse_grid_3(DCALbrDecoder *s, int ch1, int ch2, int sb, int flag) +{ + int i, ch; + + for (ch = ch1; ch <= ch2; ch++) { + if ((ch != ch1 && sb + 4 >= s->min_mono_subband) != flag) + continue; + + if (s->grid_3_pres[ch] & (1U << sb)) + continue; // Already parsed + + for (i = 0; i < 8; i++) { + if (ensure_bits(&s->gb, 20)) + return; + s->grid_3_scf[ch][sb][i] = parse_vlc(&s->gb, &ff_dca_vlc_grid_3, 2) - 16; + } + + // Flag scale factors for this subband parsed + s->grid_3_pres[ch] |= 1U << sb; + } +} + +static float lbr_rand(DCALbrDecoder *s, int sb) +{ + s->lbr_rand = 1103515245U * s->lbr_rand + 12345U; + return s->lbr_rand * s->sb_scf[sb]; +} + +/** + * Parse time samples for one subband, filling truncated samples with randomness + */ +static void parse_ch(DCALbrDecoder *s, int ch, int sb, int quant_level, int flag) +{ + float *samples = s->time_samples[ch][sb]; + int i, j, code, nblocks, coding_method; + + if (ensure_bits(&s->gb, 20)) + return; // Too few bits left + + coding_method = get_bits1(&s->gb); + + switch (quant_level) { + case 1: + nblocks = FFMIN(get_bits_left(&s->gb) / 8, DCA_LBR_TIME_SAMPLES / 8); + for (i = 0; i < nblocks; i++, samples += 8) { + code = get_bits(&s->gb, 8); + for (j = 0; j < 8; j++) + samples[j] = ff_dca_rsd_level_2a[(code >> j) & 1]; + } + i = nblocks * 8; + break; + + case 2: + if (coding_method) { + for (i = 0; i < DCA_LBR_TIME_SAMPLES && get_bits_left(&s->gb) >= 2; i++) { + if (get_bits1(&s->gb)) + samples[i] = ff_dca_rsd_level_2b[get_bits1(&s->gb)]; + else + samples[i] = 0; + } + } else { + nblocks = FFMIN(get_bits_left(&s->gb) / 8, (DCA_LBR_TIME_SAMPLES + 4) / 5); + for (i = 0; i < nblocks; i++, samples += 5) { + code = ff_dca_rsd_pack_5_in_8[get_bits(&s->gb, 8)]; + for (j = 0; j < 5; j++) + samples[j] = ff_dca_rsd_level_3[(code >> j * 2) & 3]; + } + i = nblocks * 5; + } + break; + + case 3: + nblocks = FFMIN(get_bits_left(&s->gb) / 7, (DCA_LBR_TIME_SAMPLES + 2) / 3); + for (i = 0; i < nblocks; i++, samples += 3) { + code = get_bits(&s->gb, 7); + for (j = 0; j < 3; j++) + samples[j] = ff_dca_rsd_level_5[ff_dca_rsd_pack_3_in_7[code][j]]; + } + i = nblocks * 3; + break; + + case 4: + for (i = 0; i < DCA_LBR_TIME_SAMPLES && get_bits_left(&s->gb) >= 6; i++) + samples[i] = ff_dca_rsd_level_8[get_vlc2(&s->gb, ff_dca_vlc_rsd.table, 6, 1)]; + break; + + case 5: + nblocks = FFMIN(get_bits_left(&s->gb) / 4, DCA_LBR_TIME_SAMPLES); + for (i = 0; i < nblocks; i++) + samples[i] = ff_dca_rsd_level_16[get_bits(&s->gb, 4)]; + break; + + default: + av_assert0(0); + } + + if (flag && get_bits_left(&s->gb) < 20) + return; // Skip incomplete mono subband + + for (; i < DCA_LBR_TIME_SAMPLES; i++) + s->time_samples[ch][sb][i] = lbr_rand(s, sb); + + s->ch_pres[ch] |= 1U << sb; +} + +static int parse_ts(DCALbrDecoder *s, int ch1, int ch2, + int start_sb, int end_sb, int flag) +{ + int sb, sb_g3, sb_reorder, quant_level; + + for (sb = start_sb; sb < end_sb; sb++) { + // Subband number before reordering + if (sb < 6) { + sb_reorder = sb; + } else if (flag && sb < s->max_mono_subband) { + sb_reorder = s->sb_indices[sb]; + } else { + if (ensure_bits(&s->gb, 28)) + break; + sb_reorder = get_bits(&s->gb, s->limited_range + 3); + if (sb_reorder < 6) + sb_reorder = 6; + s->sb_indices[sb] = sb_reorder; + } + if (sb_reorder >= s->nsubbands) + return -1; + + // Third grid scale factors + if (sb == 12) { + for (sb_g3 = 0; sb_g3 < s->g3_avg_only_start_sb - 4; sb_g3++) + parse_grid_3(s, ch1, ch2, sb_g3, flag); + } else if (sb < 12 && sb_reorder >= 4) { + parse_grid_3(s, ch1, ch2, sb_reorder - 4, flag); + } + + // Secondary channel flags + if (ch1 != ch2) { + if (ensure_bits(&s->gb, 20)) + break; + if (!flag || sb_reorder >= s->max_mono_subband) + s->sec_ch_sbms[ch1 / 2][sb_reorder] = get_bits(&s->gb, 8); + if (flag && sb_reorder >= s->min_mono_subband) + s->sec_ch_lrms[ch1 / 2][sb_reorder] = get_bits(&s->gb, 8); + } + + quant_level = s->quant_levels[ch1 / 2][sb]; + if (!quant_level) + return -1; + + // Time samples for one or both channels + if (sb < s->max_mono_subband && sb_reorder >= s->min_mono_subband) { + if (!flag) + parse_ch(s, ch1, sb_reorder, quant_level, 0); + else if (ch1 != ch2) + parse_ch(s, ch2, sb_reorder, quant_level, 1); + } else { + parse_ch(s, ch1, sb_reorder, quant_level, 0); + if (ch1 != ch2) + parse_ch(s, ch2, sb_reorder, quant_level, 0); + } + } + + return 0; +} + +/** + * Convert from reflection coefficients to direct form coefficients + */ +static void convert_lpc(float *coeff, const int *codes) +{ + int i, j; + + for (i = 0; i < 8; i++) { + float rc = lpc_tab[codes[i]]; + for (j = 0; j < (i + 1) / 2; j++) { + float tmp1 = coeff[ j ]; + float tmp2 = coeff[i - j - 1]; + coeff[ j ] = tmp1 + rc * tmp2; + coeff[i - j - 1] = tmp2 + rc * tmp1; + } + coeff[i] = rc; + } +} + +static int parse_lpc(DCALbrDecoder *s, int ch1, int ch2, int start_sb, int end_sb) +{ + int f = s->framenum & 1; + int i, sb, ch, codes[16]; + + // First two subbands have two sets of coefficients, third subband has one + for (sb = start_sb; sb < end_sb; sb++) { + int ncodes = 8 * (1 + (sb < 2)); + for (ch = ch1; ch <= ch2; ch++) { + if (ensure_bits(&s->gb, 4 * ncodes)) + return 0; + for (i = 0; i < ncodes; i++) + codes[i] = get_bits(&s->gb, 4); + for (i = 0; i < ncodes / 8; i++) + convert_lpc(s->lpc_coeff[f][ch][sb][i], &codes[i * 8]); + } + } + + return 0; +} + +static int parse_high_res_grid(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2) +{ + int quant_levels[DCA_LBR_SUBBANDS]; + int sb, ch, ol, st, max_sb, profile; + + if (!chunk->len) + return 0; + + if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0) + return -1; + + // Quantizer profile + profile = get_bits(&s->gb, 8); + // Overall level + ol = (profile >> 3) & 7; + // Steepness + st = profile >> 6; + // Max energy subband + max_sb = profile & 7; + + // Calculate quantization levels + for (sb = 0; sb < s->nsubbands; sb++) { + int f = sb * s->limited_rate / s->nsubbands; + int a = 18000 / (12 * f / 1000 + 100 + 40 * st) + 20 * ol; + if (a <= 95) + quant_levels[sb] = 1; + else if (a <= 140) + quant_levels[sb] = 2; + else if (a <= 180) + quant_levels[sb] = 3; + else if (a <= 230) + quant_levels[sb] = 4; + else + quant_levels[sb] = 5; + } + + // Reorder quantization levels for lower subbands + for (sb = 0; sb < 8; sb++) + s->quant_levels[ch1 / 2][sb] = quant_levels[ff_dca_sb_reorder[max_sb][sb]]; + for (; sb < s->nsubbands; sb++) + s->quant_levels[ch1 / 2][sb] = quant_levels[sb]; + + // LPC for the first two subbands + if (parse_lpc(s, ch1, ch2, 0, 2) < 0) + return -1; + + // Time-samples for the first two subbands of main channel + if (parse_ts(s, ch1, ch2, 0, 2, 0) < 0) + return -1; + + // First two bands of the first grid + for (sb = 0; sb < 2; sb++) + for (ch = ch1; ch <= ch2; ch++) + if (parse_scale_factors(s, s->grid_1_scf[ch][sb]) < 0) + return -1; + + return 0; +} + +static int parse_grid_2(DCALbrDecoder *s, int ch1, int ch2, + int start_sb, int end_sb, int flag) +{ + int i, j, sb, ch, nsubbands; + + nsubbands = ff_dca_scf_to_grid_2[s->nsubbands - 1] + 1; + if (end_sb > nsubbands) + end_sb = nsubbands; + + for (sb = start_sb; sb < end_sb; sb++) { + for (ch = ch1; ch <= ch2; ch++) { + uint8_t *g2_scf = s->grid_2_scf[ch][sb]; + + if ((ch != ch1 && ff_dca_grid_2_to_scf[sb] >= s->min_mono_subband) != flag) { + if (!flag) + memcpy(g2_scf, s->grid_2_scf[ch1][sb], 64); + continue; + } + + // Scale factors in groups of 8 + for (i = 0; i < 8; i++, g2_scf += 8) { + if (get_bits_left(&s->gb) < 1) { + memset(g2_scf, 0, 64 - i * 8); + break; + } + // Bit indicating if whole group has zero values + if (get_bits1(&s->gb)) { + for (j = 0; j < 8; j++) { + if (ensure_bits(&s->gb, 20)) + break; + g2_scf[j] = parse_vlc(&s->gb, &ff_dca_vlc_grid_2, 2); + } + } else { + memset(g2_scf, 0, 8); + } + } + } + } + + return 0; +} + +static int parse_ts1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2) +{ + if (!chunk->len) + return 0; + if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0) + return -1; + if (parse_lpc(s, ch1, ch2, 2, 3) < 0) + return -1; + if (parse_ts(s, ch1, ch2, 2, 4, 0) < 0) + return -1; + if (parse_grid_2(s, ch1, ch2, 0, 1, 0) < 0) + return -1; + if (parse_ts(s, ch1, ch2, 4, 6, 0) < 0) + return -1; + return 0; +} + +static int parse_ts2_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2) +{ + if (!chunk->len) + return 0; + if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0) + return -1; + if (parse_grid_2(s, ch1, ch2, 1, 3, 0) < 0) + return -1; + if (parse_ts(s, ch1, ch2, 6, s->max_mono_subband, 0) < 0) + return -1; + if (ch1 != ch2) { + if (parse_grid_1_sec_ch(s, ch2) < 0) + return -1; + if (parse_grid_2(s, ch1, ch2, 0, 3, 1) < 0) + return -1; + } + if (parse_ts(s, ch1, ch2, s->min_mono_subband, s->nsubbands, 1) < 0) + return -1; + return 0; +} + +static int init_sample_rate(DCALbrDecoder *s) +{ + double scale = (-1.0 / (1 << 17)) * sqrt(1 << (2 - s->limited_range)); + int i, br_per_ch = s->bit_rate_scaled / s->nchannels_total; + + ff_mdct_end(&s->imdct); + + if (ff_mdct_init(&s->imdct, s->freq_range + 6, 1, scale) < 0) + return -1; + + for (i = 0; i < 32 << s->freq_range; i++) + s->window[i] = ff_dca_long_window[i << (2 - s->freq_range)]; + + if (br_per_ch < 14000) + scale = 0.85; + else if (br_per_ch < 32000) + scale = (br_per_ch - 14000) * (1.0 / 120000) + 0.85; + else + scale = 1.0; + + scale *= 1.0 / INT_MAX; + + for (i = 0; i < s->nsubbands; i++) { + if (i < 2) + s->sb_scf[i] = 0; // The first two subbands are always zero + else if (i < 5) + s->sb_scf[i] = (i - 1) * 0.25 * 0.785 * scale; + else + s->sb_scf[i] = 0.785 * scale; + } + + s->lfe_scale = (16 << s->freq_range) * 0.0000078265894; + + return 0; +} + +static int alloc_sample_buffer(DCALbrDecoder *s) +{ + // Reserve space for history and padding + int nchsamples = DCA_LBR_TIME_SAMPLES + DCA_LBR_TIME_HISTORY * 2; + int nsamples = nchsamples * s->nchannels * s->nsubbands; + int ch, sb; + float *ptr; + + // Reallocate time sample buffer + av_fast_mallocz(&s->ts_buffer, &s->ts_size, nsamples * sizeof(float)); + if (!s->ts_buffer) + return -1; + + ptr = s->ts_buffer + DCA_LBR_TIME_HISTORY; + for (ch = 0; ch < s->nchannels; ch++) { + for (sb = 0; sb < s->nsubbands; sb++) { + s->time_samples[ch][sb] = ptr; + ptr += nchsamples; + } + } + + return 0; +} + +static int parse_decoder_init(DCALbrDecoder *s, GetByteContext *gb) +{ + int old_rate = s->sample_rate; + int old_band_limit = s->band_limit; + int old_nchannels = s->nchannels; + int version, bit_rate_hi; + unsigned int code; + + // Sample rate of LBR audio + code = bytestream2_get_byte(gb); + if (code >= FF_ARRAY_ELEMS(ff_dca_sampling_freqs)) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR sample rate\n"); + return AVERROR_INVALIDDATA; + } + s->sample_rate = ff_dca_sampling_freqs[code]; + if (s->sample_rate > 48000) { + avpriv_report_missing_feature(s->avctx, "%d Hz LBR sample rate", s->sample_rate); + return AVERROR_PATCHWELCOME; + } + + // LBR speaker mask + s->ch_mask = bytestream2_get_le16(gb); + if (!(s->ch_mask & 0x7)) { + avpriv_report_missing_feature(s->avctx, "LBR channel mask %#x", s->ch_mask); + return AVERROR_PATCHWELCOME; + } + if ((s->ch_mask & 0xfff0) && !(s->warned & 1)) { + avpriv_report_missing_feature(s->avctx, "LBR channel mask %#x", s->ch_mask); + s->warned |= 1; + } + + // LBR bitstream version + version = bytestream2_get_le16(gb); + if ((version & 0xff00) != 0x0800) { + avpriv_report_missing_feature(s->avctx, "LBR stream version %#x", version); + return AVERROR_PATCHWELCOME; + } + + // Flags for LBR decoder initialization + s->flags = bytestream2_get_byte(gb); + if (s->flags & LBR_FLAG_DMIX_MULTI_CH) { + avpriv_report_missing_feature(s->avctx, "LBR multi-channel downmix"); + return AVERROR_PATCHWELCOME; + } + if ((s->flags & LBR_FLAG_LFE_PRESENT) && s->sample_rate != 48000) { + if (!(s->warned & 2)) { + avpriv_report_missing_feature(s->avctx, "%d Hz LFE interpolation", s->sample_rate); + s->warned |= 2; + } + s->flags &= ~LBR_FLAG_LFE_PRESENT; + } + + // Most significant bit rate nibbles + bit_rate_hi = bytestream2_get_byte(gb); + + // Least significant original bit rate word + s->bit_rate_orig = bytestream2_get_le16(gb) | ((bit_rate_hi & 0x0F) << 16); + + // Least significant scaled bit rate word + s->bit_rate_scaled = bytestream2_get_le16(gb) | ((bit_rate_hi & 0xF0) << 12); + + // Setup number of fullband channels + s->nchannels_total = ff_dca_count_chs_for_mask(s->ch_mask & ~DCA_SPEAKER_PAIR_LFE1); + s->nchannels = FFMIN(s->nchannels_total, DCA_LBR_CHANNELS); + + // Setup band limit + switch (s->flags & LBR_FLAG_BAND_LIMIT_MASK) { + case LBR_FLAG_BAND_LIMIT_NONE: + s->band_limit = 0; + break; + case LBR_FLAG_BAND_LIMIT_1_2: + s->band_limit = 1; + break; + case LBR_FLAG_BAND_LIMIT_1_4: + s->band_limit = 2; + break; + default: + avpriv_report_missing_feature(s->avctx, "LBR band limit %#x", s->flags & LBR_FLAG_BAND_LIMIT_MASK); + return AVERROR_PATCHWELCOME; + } + + // Setup frequency range + if (s->sample_rate < 14000) + s->freq_range = 0; + else if (s->sample_rate < 28000) + s->freq_range = 1; + else + s->freq_range = 2; + + // Setup resolution profile + if (s->bit_rate_orig >= 44000 * (s->nchannels_total + 2)) + s->res_profile = 2; + else if (s->bit_rate_orig >= 25000 * (s->nchannels_total + 2)) + s->res_profile = 1; + else + s->res_profile = 0; + + // Setup limited sample rate, number of subbands, etc + s->limited_rate = s->sample_rate >> s->band_limit; + s->limited_range = s->freq_range - s->band_limit; + if (s->limited_range < 0) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR band limit for frequency range\n"); + return AVERROR_INVALIDDATA; + } + + s->nsubbands = 8 << s->limited_range; + + s->g3_avg_only_start_sb = s->nsubbands * ff_dca_avg_g3_freqs[s->res_profile] / (s->limited_rate / 2); + if (s->g3_avg_only_start_sb > s->nsubbands) + s->g3_avg_only_start_sb = s->nsubbands; + + s->min_mono_subband = s->nsubbands * 2000 / (s->limited_rate / 2); + if (s->min_mono_subband > s->nsubbands) + s->min_mono_subband = s->nsubbands; + + s->max_mono_subband = s->nsubbands * 14000 / (s->limited_rate / 2); + if (s->max_mono_subband > s->nsubbands) + s->max_mono_subband = s->nsubbands; + + // Handle change of sample rate + if ((old_rate != s->sample_rate || old_band_limit != s->band_limit) && init_sample_rate(s) < 0) + return AVERROR(ENOMEM); + + // Setup stereo downmix + if (s->flags & LBR_FLAG_DMIX_STEREO) { + DCAContext *dca = s->avctx->priv_data; + + if (s->nchannels_total < 3 || s->nchannels_total > DCA_LBR_CHANNELS_TOTAL - 2) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid number of channels for LBR stereo downmix\n"); + return AVERROR_INVALIDDATA; + } + + // This decoder doesn't support ECS chunk + if (dca->request_channel_layout != DCA_SPEAKER_LAYOUT_STEREO && !(s->warned & 4)) { + avpriv_report_missing_feature(s->avctx, "Embedded LBR stereo downmix"); + s->warned |= 4; + } + + // Account for extra downmixed channel pair + s->nchannels_total += 2; + s->nchannels = 2; + s->ch_mask = DCA_SPEAKER_PAIR_LR; + s->flags &= ~LBR_FLAG_LFE_PRESENT; + } + + // Handle change of sample rate or number of channels + if (old_rate != s->sample_rate + || old_band_limit != s->band_limit + || old_nchannels != s->nchannels) { + if (alloc_sample_buffer(s) < 0) + return AVERROR(ENOMEM); + ff_dca_lbr_flush(s); + } + + return 0; +} + +int ff_dca_lbr_parse(DCALbrDecoder *s, uint8_t *data, DCAExssAsset *asset) +{ + struct { + LBRChunk lfe; + LBRChunk tonal; + LBRChunk tonal_grp[5]; + LBRChunk grid1[DCA_LBR_CHANNELS / 2]; + LBRChunk hr_grid[DCA_LBR_CHANNELS / 2]; + LBRChunk ts1[DCA_LBR_CHANNELS / 2]; + LBRChunk ts2[DCA_LBR_CHANNELS / 2]; + } chunk = { }; + + GetByteContext gb; + + int i, ch, sb, sf, ret, group, chunk_id, chunk_len; + + bytestream2_init(&gb, data + asset->lbr_offset, asset->lbr_size); + + // LBR sync word + if (bytestream2_get_be32(&gb) != DCA_SYNCWORD_LBR) { + av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR sync word\n"); + return AVERROR_INVALIDDATA; + } + + // LBR header type + switch (bytestream2_get_byte(&gb)) { + case LBR_HEADER_SYNC_ONLY: + if (!s->sample_rate) { + av_log(s->avctx, AV_LOG_ERROR, "LBR decoder not initialized\n"); + return AVERROR_INVALIDDATA; + } + break; + case LBR_HEADER_DECODER_INIT: + if ((ret = parse_decoder_init(s, &gb)) < 0) { + s->sample_rate = 0; + return ret; + } + break; + default: + av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR header type\n"); + return AVERROR_INVALIDDATA; + } + + // LBR frame chunk header + chunk_id = bytestream2_get_byte(&gb); + chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb); + + if (chunk_len > bytestream2_get_bytes_left(&gb)) { + chunk_len = bytestream2_get_bytes_left(&gb); + av_log(s->avctx, AV_LOG_WARNING, "LBR frame chunk was truncated\n"); + if (s->avctx->err_recognition & AV_EF_EXPLODE) + return AVERROR_INVALIDDATA; + } + + bytestream2_init(&gb, gb.buffer, chunk_len); + + switch (chunk_id & 0x7f) { + case LBR_CHUNK_FRAME: + if (s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) { + int checksum = bytestream2_get_be16(&gb); + uint16_t res = chunk_id; + res += (chunk_len >> 8) & 0xff; + res += chunk_len & 0xff; + for (i = 0; i < chunk_len - 2; i++) + res += gb.buffer[i]; + if (checksum != res) { + av_log(s->avctx, AV_LOG_WARNING, "Invalid LBR checksum\n"); + if (s->avctx->err_recognition & AV_EF_EXPLODE) + return AVERROR_INVALIDDATA; + } + } else { + bytestream2_skip(&gb, 2); + } + break; + case LBR_CHUNK_FRAME_NO_CSUM: + break; + default: + av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR frame chunk ID\n"); + return AVERROR_INVALIDDATA; + } + + // Clear current frame + memset(s->quant_levels, 0, sizeof(s->quant_levels)); + memset(s->sb_indices, 0xff, sizeof(s->sb_indices)); + memset(s->sec_ch_sbms, 0, sizeof(s->sec_ch_sbms)); + memset(s->sec_ch_lrms, 0, sizeof(s->sec_ch_lrms)); + memset(s->ch_pres, 0, sizeof(s->ch_pres)); + memset(s->grid_1_scf, 0, sizeof(s->grid_1_scf)); + memset(s->grid_2_scf, 0, sizeof(s->grid_2_scf)); + memset(s->grid_3_avg, 0, sizeof(s->grid_3_avg)); + memset(s->grid_3_scf, 0, sizeof(s->grid_3_scf)); + memset(s->grid_3_pres, 0, sizeof(s->grid_3_pres)); + memset(s->tonal_scf, 0, sizeof(s->tonal_scf)); + memset(s->lfe_data, 0, sizeof(s->lfe_data)); + s->part_stereo_pres = 0; + s->framenum = (s->framenum + 1) & 31; + + for (ch = 0; ch < s->nchannels; ch++) { + for (sb = 0; sb < s->nsubbands / 4; sb++) { + s->part_stereo[ch][sb][0] = s->part_stereo[ch][sb][4]; + s->part_stereo[ch][sb][4] = 16; + } + } + + memset(s->lpc_coeff[s->framenum & 1], 0, sizeof(s->lpc_coeff[0])); + + for (group = 0; group < 5; group++) { + for (sf = 0; sf < 1 << group; sf++) { + int sf_idx = ((s->framenum << group) + sf) & 31; + s->tonal_bounds[group][sf_idx][0] = + s->tonal_bounds[group][sf_idx][1] = s->ntones; + } + } + + // Parse chunk headers + while (bytestream2_get_bytes_left(&gb) > 0) { + chunk_id = bytestream2_get_byte(&gb); + chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb); + chunk_id &= 0x7f; + + if (chunk_len > bytestream2_get_bytes_left(&gb)) { + chunk_len = bytestream2_get_bytes_left(&gb); + av_log(s->avctx, AV_LOG_WARNING, "LBR chunk %#x was truncated\n", chunk_id); + if (s->avctx->err_recognition & AV_EF_EXPLODE) + return AVERROR_INVALIDDATA; + } + + switch (chunk_id) { + case LBR_CHUNK_LFE: + chunk.lfe.len = chunk_len; + chunk.lfe.data = gb.buffer; + break; + + case LBR_CHUNK_SCF: + case LBR_CHUNK_TONAL: + case LBR_CHUNK_TONAL_SCF: + chunk.tonal.id = chunk_id; + chunk.tonal.len = chunk_len; + chunk.tonal.data = gb.buffer; + break; + + case LBR_CHUNK_TONAL_GRP_1: + case LBR_CHUNK_TONAL_GRP_2: + case LBR_CHUNK_TONAL_GRP_3: + case LBR_CHUNK_TONAL_GRP_4: + case LBR_CHUNK_TONAL_GRP_5: + i = LBR_CHUNK_TONAL_GRP_5 - chunk_id; + chunk.tonal_grp[i].id = i; + chunk.tonal_grp[i].len = chunk_len; + chunk.tonal_grp[i].data = gb.buffer; + break; + + case LBR_CHUNK_TONAL_SCF_GRP_1: + case LBR_CHUNK_TONAL_SCF_GRP_2: + case LBR_CHUNK_TONAL_SCF_GRP_3: + case LBR_CHUNK_TONAL_SCF_GRP_4: + case LBR_CHUNK_TONAL_SCF_GRP_5: + i = LBR_CHUNK_TONAL_SCF_GRP_5 - chunk_id; + chunk.tonal_grp[i].id = i; + chunk.tonal_grp[i].len = chunk_len; + chunk.tonal_grp[i].data = gb.buffer; + break; + + case LBR_CHUNK_RES_GRID_LR: + case LBR_CHUNK_RES_GRID_LR + 1: + case LBR_CHUNK_RES_GRID_LR + 2: + i = chunk_id - LBR_CHUNK_RES_GRID_LR; + chunk.grid1[i].len = chunk_len; + chunk.grid1[i].data = gb.buffer; + break; + + case LBR_CHUNK_RES_GRID_HR: + case LBR_CHUNK_RES_GRID_HR + 1: + case LBR_CHUNK_RES_GRID_HR + 2: + i = chunk_id - LBR_CHUNK_RES_GRID_HR; + chunk.hr_grid[i].len = chunk_len; + chunk.hr_grid[i].data = gb.buffer; + break; + + case LBR_CHUNK_RES_TS_1: + case LBR_CHUNK_RES_TS_1 + 1: + case LBR_CHUNK_RES_TS_1 + 2: + i = chunk_id - LBR_CHUNK_RES_TS_1; + chunk.ts1[i].len = chunk_len; + chunk.ts1[i].data = gb.buffer; + break; + + case LBR_CHUNK_RES_TS_2: + case LBR_CHUNK_RES_TS_2 + 1: + case LBR_CHUNK_RES_TS_2 + 2: + i = chunk_id - LBR_CHUNK_RES_TS_2; + chunk.ts2[i].len = chunk_len; + chunk.ts2[i].data = gb.buffer; + break; + } + + bytestream2_skip(&gb, chunk_len); + } + + // Parse the chunks + ret = parse_lfe_chunk(s, &chunk.lfe); + + ret |= parse_tonal_chunk(s, &chunk.tonal); + + for (i = 0; i < 5; i++) + ret |= parse_tonal_group(s, &chunk.tonal_grp[i]); + + for (i = 0; i < (s->nchannels + 1) / 2; i++) { + int ch1 = i * 2; + int ch2 = FFMIN(ch1 + 1, s->nchannels - 1); + + if (parse_grid_1_chunk (s, &chunk.grid1 [i], ch1, ch2) < 0 || + parse_high_res_grid(s, &chunk.hr_grid[i], ch1, ch2) < 0) { + ret = -1; + continue; + } + + // TS chunks depend on both grids. TS_2 depends on TS_1. + if (!chunk.grid1[i].len || !chunk.hr_grid[i].len || !chunk.ts1[i].len) + continue; + + if (parse_ts1_chunk(s, &chunk.ts1[i], ch1, ch2) < 0 || + parse_ts2_chunk(s, &chunk.ts2[i], ch1, ch2) < 0) { + ret = -1; + continue; + } + } + + if (ret < 0 && (s->avctx->err_recognition & AV_EF_EXPLODE)) + return AVERROR_INVALIDDATA; + + return 0; +} + +/** + * Reconstruct high-frequency resolution grid from first and third grids + */ +static void decode_grid(DCALbrDecoder *s, int ch1, int ch2) +{ + int i, ch, sb; + + for (ch = ch1; ch <= ch2; ch++) { + for (sb = 0; sb < s->nsubbands; sb++) { + int g1_sb = ff_dca_scf_to_grid_1[sb]; + + uint8_t *g1_scf_a = s->grid_1_scf[ch][g1_sb ]; + uint8_t *g1_scf_b = s->grid_1_scf[ch][g1_sb + 1]; + + int w1 = ff_dca_grid_1_weights[g1_sb ][sb]; + int w2 = ff_dca_grid_1_weights[g1_sb + 1][sb]; + + uint8_t *hr_scf = s->high_res_scf[ch][sb]; + + if (sb < 4) { + for (i = 0; i < 8; i++) { + int scf = w1 * g1_scf_a[i] + w2 * g1_scf_b[i]; + hr_scf[i] = scf >> 7; + } + } else { + int8_t *g3_scf = s->grid_3_scf[ch][sb - 4]; + int g3_avg = s->grid_3_avg[ch][sb - 4]; + + for (i = 0; i < 8; i++) { + int scf = w1 * g1_scf_a[i] + w2 * g1_scf_b[i]; + hr_scf[i] = (scf >> 7) - g3_avg - g3_scf[i]; + } + } + } + } +} + +/** + * Fill unallocated subbands with randomness + */ +static void random_ts(DCALbrDecoder *s, int ch1, int ch2) +{ + int i, j, k, ch, sb; + + for (ch = ch1; ch <= ch2; ch++) { + for (sb = 0; sb < s->nsubbands; sb++) { + float *samples = s->time_samples[ch][sb]; + + if (s->ch_pres[ch] & (1U << sb)) + continue; // Skip allocated subband + + if (sb < 2) { + // The first two subbands are always zero + memset(samples, 0, DCA_LBR_TIME_SAMPLES * sizeof(float)); + } else if (sb < 10) { + for (i = 0; i < DCA_LBR_TIME_SAMPLES; i++) + samples[i] = lbr_rand(s, sb); + } else { + for (i = 0; i < DCA_LBR_TIME_SAMPLES / 8; i++, samples += 8) { + float accum[8] = { 0 }; + + // Modulate by subbands 2-5 in blocks of 8 + for (k = 2; k < 6; k++) { + float *other = &s->time_samples[ch][k][i * 8]; + for (j = 0; j < 8; j++) + accum[j] += fabs(other[j]); + } + + for (j = 0; j < 8; j++) + samples[j] = (accum[j] * 0.25f + 0.5f) * lbr_rand(s, sb); + } + } + } + } +} + +static void predict(float *samples, const float *coeff, int nsamples) +{ + int i, j; + + for (i = 0; i < nsamples; i++) { + float res = 0; + for (j = 0; j < 8; j++) + res += coeff[j] * samples[i - j - 1]; + samples[i] -= res; + } +} + +static void synth_lpc(DCALbrDecoder *s, int ch1, int ch2, int sb) +{ + int f = s->framenum & 1; + int ch; + + for (ch = ch1; ch <= ch2; ch++) { + float *samples = s->time_samples[ch][sb]; + + if (!(s->ch_pres[ch] & (1U << sb))) + continue; + + if (sb < 2) { + predict(samples, s->lpc_coeff[f^1][ch][sb][1], 16); + predict(samples + 16, s->lpc_coeff[f ][ch][sb][0], 64); + predict(samples + 80, s->lpc_coeff[f ][ch][sb][1], 48); + } else { + predict(samples, s->lpc_coeff[f^1][ch][sb][0], 16); + predict(samples + 16, s->lpc_coeff[f ][ch][sb][0], 112); + } + } +} + +static void filter_ts(DCALbrDecoder *s, int ch1, int ch2) +{ + int i, j, sb, ch; + + for (sb = 0; sb < s->nsubbands; sb++) { + // Scale factors + for (ch = ch1; ch <= ch2; ch++) { + float *samples = s->time_samples[ch][sb]; + uint8_t *hr_scf = s->high_res_scf[ch][sb]; + if (sb < 4) { + for (i = 0; i < DCA_LBR_TIME_SAMPLES / 16; i++, samples += 16) { + unsigned int scf = hr_scf[i]; + if (scf > AMP_MAX) + scf = AMP_MAX; + for (j = 0; j < 16; j++) + samples[j] *= ff_dca_quant_amp[scf]; + } + } else { + uint8_t *g2_scf = s->grid_2_scf[ch][ff_dca_scf_to_grid_2[sb]]; + for (i = 0; i < DCA_LBR_TIME_SAMPLES / 2; i++, samples += 2) { + unsigned int scf = hr_scf[i / 8] - g2_scf[i]; + if (scf > AMP_MAX) + scf = AMP_MAX; + samples[0] *= ff_dca_quant_amp[scf]; + samples[1] *= ff_dca_quant_amp[scf]; + } + } + } + + // Mid-side stereo + if (ch1 != ch2) { + float *samples_l = s->time_samples[ch1][sb]; + float *samples_r = s->time_samples[ch2][sb]; + int ch2_pres = s->ch_pres[ch2] & (1U << sb); + + for (i = 0; i < DCA_LBR_TIME_SAMPLES / 16; i++) { + int sbms = (s->sec_ch_sbms[ch1 / 2][sb] >> i) & 1; + int lrms = (s->sec_ch_lrms[ch1 / 2][sb] >> i) & 1; + + if (sb >= s->min_mono_subband) { + if (lrms && ch2_pres) { + if (sbms) { + for (j = 0; j < 16; j++) { + float tmp = samples_l[j]; + samples_l[j] = samples_r[j]; + samples_r[j] = -tmp; + } + } else { + for (j = 0; j < 16; j++) { + float tmp = samples_l[j]; + samples_l[j] = samples_r[j]; + samples_r[j] = tmp; + } + } + } else if (!ch2_pres) { + if (sbms && (s->part_stereo_pres & (1 << ch1))) { + for (j = 0; j < 16; j++) + samples_r[j] = -samples_l[j]; + } else { + for (j = 0; j < 16; j++) + samples_r[j] = samples_l[j]; + } + } + } else if (sbms && ch2_pres) { + for (j = 0; j < 16; j++) { + float tmp = samples_l[j]; + samples_l[j] = (tmp + samples_r[j]) * 0.5f; + samples_r[j] = (tmp - samples_r[j]) * 0.5f; + } + } + + samples_l += 16; + samples_r += 16; + } + } + + // Inverse prediction + if (sb < 3) + synth_lpc(s, ch1, ch2, sb); + } +} + +/** + * Modulate by interpolated partial stereo coefficients + */ +static void decode_part_stereo(DCALbrDecoder *s, int ch1, int ch2) +{ + int i, ch, sb, sf; + + for (ch = ch1; ch <= ch2; ch++) { + for (sb = s->min_mono_subband; sb < s->nsubbands; sb++) { + uint8_t *pt_st = s->part_stereo[ch][(sb - s->min_mono_subband) / 4]; + float *samples = s->time_samples[ch][sb]; + + if (s->ch_pres[ch2] & (1U << sb)) + continue; + + for (sf = 1; sf <= 4; sf++, samples += 32) { + float prev = ff_dca_st_coeff[pt_st[sf - 1]]; + float next = ff_dca_st_coeff[pt_st[sf ]]; + + for (i = 0; i < 32; i++) + samples[i] *= (32 - i) * prev + i * next; + } + } + } +} + +/** + * Synthesise tones in the given group for the given tonal subframe + */ +static void synth_tones(DCALbrDecoder *s, int ch, float *values, + int group, int group_sf, int synth_idx) +{ + int i, start, count; + + if (synth_idx < 0) + return; + + start = s->tonal_bounds[group][group_sf][0]; + count = (s->tonal_bounds[group][group_sf][1] - start) & (DCA_LBR_TONES - 1); + + for (i = 0; i < count; i++) { + DCALbrTone *t = &s->tones[(start + i) & (DCA_LBR_TONES - 1)]; + + if (t->amp[ch]) { + float amp = ff_dca_synth_env[synth_idx] * ff_dca_quant_amp[t->amp[ch]]; + float c = amp * cos_tab[(t->phs[ch] ) & 255]; + float s = amp * cos_tab[(t->phs[ch] + 64) & 255]; + const float *cf = ff_dca_corr_cf[t->f_delt]; + int x_freq = t->x_freq; + + switch (x_freq) { + case 0: + goto p0; + case 1: + values[3] += cf[0] * -s; + values[2] += cf[1] * c; + values[1] += cf[2] * s; + values[0] += cf[3] * -c; + goto p1; + case 2: + values[2] += cf[0] * -s; + values[1] += cf[1] * c; + values[0] += cf[2] * s; + goto p2; + case 3: + values[1] += cf[0] * -s; + values[0] += cf[1] * c; + goto p3; + case 4: + values[0] += cf[0] * -s; + goto p4; + } + + values[x_freq - 5] += cf[ 0] * -s; + p4: values[x_freq - 4] += cf[ 1] * c; + p3: values[x_freq - 3] += cf[ 2] * s; + p2: values[x_freq - 2] += cf[ 3] * -c; + p1: values[x_freq - 1] += cf[ 4] * -s; + p0: values[x_freq ] += cf[ 5] * c; + values[x_freq + 1] += cf[ 6] * s; + values[x_freq + 2] += cf[ 7] * -c; + values[x_freq + 3] += cf[ 8] * -s; + values[x_freq + 4] += cf[ 9] * c; + values[x_freq + 5] += cf[10] * s; + } + + t->phs[ch] += t->ph_rot; + } +} + +/** + * Synthesise all tones in all groups for the given residual subframe + */ +static void base_func_synth(DCALbrDecoder *s, int ch, float *values, int sf) +{ + int group; + + // Tonal vs residual shift is 22 subframes + for (group = 0; group < 5; group++) { + int group_sf = (s->framenum << group) + ((sf - 22) >> (5 - group)); + int synth_idx = ((((sf - 22) & 31) << group) & 31) + (1 << group) - 1; + + synth_tones(s, ch, values, group, (group_sf - 1) & 31, 30 - synth_idx); + synth_tones(s, ch, values, group, (group_sf ) & 31, synth_idx); + } +} + +static void transform_channel(DCALbrDecoder *s, int ch, float *output) +{ + LOCAL_ALIGNED_32(float, values, [DCA_LBR_SUBBANDS ], [4]); + LOCAL_ALIGNED_32(float, result, [DCA_LBR_SUBBANDS * 2], [4]); + int sf, sb, nsubbands = s->nsubbands, noutsubbands = 8 << s->freq_range; + + // Clear inactive subbands + if (nsubbands < noutsubbands) + memset(values[nsubbands], 0, (noutsubbands - nsubbands) * sizeof(values[0])); + + for (sf = 0; sf < DCA_LBR_TIME_SAMPLES / 4; sf++) { + // Hybrid filterbank + s->dcadsp->lbr_bank(values, s->time_samples[ch], + ff_dca_bank_coeff, sf * 4, nsubbands); + + base_func_synth(s, ch, values[0], sf); + + s->imdct.imdct_calc(&s->imdct, result[0], values[0]); + + // Long window and overlap-add + s->fdsp->vector_fmul_add(output, result[0], s->window, + s->history[ch], noutsubbands * 4); + s->fdsp->vector_fmul_reverse(s->history[ch], result[noutsubbands], + s->window, noutsubbands * 4); + output += noutsubbands * 4; + } + + // Update history for LPC and forward MDCT + for (sb = 0; sb < nsubbands; sb++) { + float *samples = s->time_samples[ch][sb] - DCA_LBR_TIME_HISTORY; + memcpy(samples, samples + DCA_LBR_TIME_SAMPLES, DCA_LBR_TIME_HISTORY * sizeof(float)); + } +} + +int ff_dca_lbr_filter_frame(DCALbrDecoder *s, AVFrame *frame) +{ + AVCodecContext *avctx = s->avctx; + int i, ret, nchannels, ch_conf = (s->ch_mask & 0x7) - 1; + const int8_t *reorder; + + avctx->channel_layout = channel_layouts[ch_conf]; + avctx->channels = nchannels = channel_counts[ch_conf]; + avctx->sample_rate = s->sample_rate; + avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; + avctx->bits_per_raw_sample = 0; + avctx->profile = FF_PROFILE_DTS_EXPRESS; + avctx->bit_rate = s->bit_rate_scaled; + + if (s->flags & LBR_FLAG_LFE_PRESENT) { + avctx->channel_layout |= AV_CH_LOW_FREQUENCY; + avctx->channels++; + reorder = channel_reorder_lfe[ch_conf]; + } else { + reorder = channel_reorder_nolfe[ch_conf]; + } + + frame->nb_samples = 1024 << s->freq_range; + if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) + return ret; + + // Filter fullband channels + for (i = 0; i < (s->nchannels + 1) / 2; i++) { + int ch1 = i * 2; + int ch2 = FFMIN(ch1 + 1, s->nchannels - 1); + + decode_grid(s, ch1, ch2); + + random_ts(s, ch1, ch2); + + filter_ts(s, ch1, ch2); + + if (ch1 != ch2 && (s->part_stereo_pres & (1 << ch1))) + decode_part_stereo(s, ch1, ch2); + + if (ch1 < nchannels) + transform_channel(s, ch1, (float *)frame->extended_data[reorder[ch1]]); + + if (ch1 != ch2 && ch2 < nchannels) + transform_channel(s, ch2, (float *)frame->extended_data[reorder[ch2]]); + } + + // Interpolate LFE channel + if (s->flags & LBR_FLAG_LFE_PRESENT) { + s->dcadsp->lfe_iir((float *)frame->extended_data[lfe_index[ch_conf]], + s->lfe_data, ff_dca_lfe_iir, + s->lfe_history, 16 << s->freq_range); + } + + if ((ret = ff_side_data_update_matrix_encoding(frame, AV_MATRIX_ENCODING_NONE)) < 0) + return ret; + + return 0; +} + +av_cold void ff_dca_lbr_flush(DCALbrDecoder *s) +{ + int ch, sb; + + if (!s->sample_rate) + return; + + // Clear history + memset(s->part_stereo, 16, sizeof(s->part_stereo)); + memset(s->lpc_coeff, 0, sizeof(s->lpc_coeff)); + memset(s->history, 0, sizeof(s->history)); + memset(s->tonal_bounds, 0, sizeof(s->tonal_bounds)); + memset(s->lfe_history, 0, sizeof(s->lfe_history)); + s->framenum = 0; + s->ntones = 0; + + for (ch = 0; ch < s->nchannels; ch++) { + for (sb = 0; sb < s->nsubbands; sb++) { + float *samples = s->time_samples[ch][sb] - DCA_LBR_TIME_HISTORY; + memset(samples, 0, DCA_LBR_TIME_HISTORY * sizeof(float)); + } + } +} + +av_cold int ff_dca_lbr_init(DCALbrDecoder *s) +{ + init_tables(); + + if (!(s->fdsp = avpriv_float_dsp_alloc(0))) + return -1; + + s->lbr_rand = 1; + return 0; +} + +av_cold void ff_dca_lbr_close(DCALbrDecoder *s) +{ + s->sample_rate = 0; + + av_freep(&s->ts_buffer); + s->ts_size = 0; + + av_freep(&s->fdsp); + ff_mdct_end(&s->imdct); +} |