summaryrefslogtreecommitdiff
path: root/lib/compiler/src/beam_type.erl
blob: 3b51216a6c0d58038269d68ad0588e738a3277de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose : Type-based optimisations.

-module(beam_type).

-export([module/2]).

-import(lists, [foldl/3,reverse/1,filter/2]).

module({Mod,Exp,Attr,Fs0,Lc}, _Opts) ->
    Fs = [function(F) || F <- Fs0],
    {ok,{Mod,Exp,Attr,Fs,Lc}}.

function({function,Name,Arity,CLabel,Asm0}) ->
    try
	Asm1 = beam_utils:live_opt(Asm0),
	Asm2 = opt(Asm1, [], tdb_new()),
	Asm = beam_utils:delete_live_annos(Asm2),
	{function,Name,Arity,CLabel,Asm}
    catch
	Class:Error ->
	    Stack = erlang:get_stacktrace(),
	    io:fwrite("Function: ~w/~w\n", [Name,Arity]),
	    erlang:raise(Class, Error, Stack)
    end.

%% opt([Instruction], Accumulator, TypeDb) -> {[Instruction'],TypeDb'}
%%  Keep track of type information; try to simplify.

opt([{block,Body1}|Is], [{block,Body0}|Acc], Ts0) ->
    {Body2,Ts} = simplify(Body1, Ts0),
    Body = merge_blocks(Body0, Body2),
    opt(Is, [{block,Body}|Acc], Ts);
opt([{block,Body0}|Is], Acc, Ts0) ->
    {Body,Ts} = simplify(Body0, Ts0),
    opt(Is, [{block,Body}|Acc], Ts);
opt([I0|Is], Acc, Ts0) ->
    case simplify_basic([I0], Ts0) of
	{[],Ts} -> opt(Is, Acc, Ts);
	{[I],Ts} -> opt(Is, [I|Acc], Ts)
    end;
opt([], Acc, _) -> reverse(Acc).

%% simplify(Instruction, TypeDb) -> NewInstruction
%%  Simplify an instruction using type information (this is
%%  technically a "strength reduction").

simplify(Is0, TypeDb0) ->
    {Is,_} = BasicRes = simplify_basic(Is0, TypeDb0),
    case simplify_float(Is, TypeDb0) of
	not_possible -> BasicRes;
	{_,_}=Res -> Res
    end.

%% simplify_basic([Instruction], TypeDatabase) -> {[Instruction],TypeDatabase'}
%%  Basic simplification, mostly tuples, no floating point optimizations.

simplify_basic(Is, Ts) ->
    simplify_basic_1(Is, Ts, []).
    
simplify_basic_1([{set,[D],[{integer,Index},Reg],{bif,element,_}}=I0|Is], Ts0, Acc) ->
    I = case max_tuple_size(Reg, Ts0) of
	    Sz when 0 < Index, Index =< Sz ->
		{set,[D],[Reg],{get_tuple_element,Index-1}};
	    _Other -> I0
    end,
    Ts = update(I, Ts0),
    simplify_basic_1(Is, Ts, [I|Acc]);
simplify_basic_1([{set,[D],[TupleReg],{get_tuple_element,0}}=I|Is0], Ts0, Acc) ->
    case tdb_find(TupleReg, Ts0) of
	{tuple,_,[Contents]} ->
	    simplify_basic_1([{set,[D],[Contents],move}|Is0], Ts0, Acc);
	_ ->
	    Ts = update(I, Ts0),
	    simplify_basic_1(Is0, Ts, [I|Acc])
    end;
simplify_basic_1([{set,_,_,{'catch',_}}=I|Is], _Ts, Acc) ->
    simplify_basic_1(Is, tdb_new(), [I|Acc]);
simplify_basic_1([{test,is_tuple,_,[R]}=I|Is], Ts, Acc) ->
    case tdb_find(R, Ts) of
	{tuple,_,_} -> simplify_basic_1(Is, Ts, Acc);
	_ -> simplify_basic_1(Is, Ts, [I|Acc])
    end;
simplify_basic_1([{test,test_arity,_,[R,Arity]}=I|Is], Ts0, Acc) ->
    case tdb_find(R, Ts0) of
	{tuple,Arity,_} ->
	    simplify_basic_1(Is, Ts0, Acc);
	_Other ->
	    Ts = update(I, Ts0),
	    simplify_basic_1(Is, Ts, [I|Acc])
    end;
simplify_basic_1([{test,is_eq_exact,Fail,[R,{atom,_}=Atom]}=I|Is0], Ts0, Acc0) ->
    Acc = case tdb_find(R, Ts0) of
	      {atom,_}=Atom -> Acc0;
	      {atom,_} -> [{jump,Fail}|Acc0];
	      _ -> [I|Acc0]
	  end,
    Ts = update(I, Ts0),
    simplify_basic_1(Is0, Ts, Acc);
simplify_basic_1([{test,is_record,_,[R,{atom,_}=Tag,{integer,Arity}]}=I|Is], Ts0, Acc) ->
    case tdb_find(R, Ts0) of
	{tuple,Arity,[Tag]} ->
	    simplify_basic_1(Is, Ts0, Acc);
	_Other ->
	    Ts = update(I, Ts0),
	    simplify_basic_1(Is, Ts, [I|Acc])
    end;
simplify_basic_1([I|Is], Ts0, Acc) ->
    Ts = update(I, Ts0),
    simplify_basic_1(Is, Ts, [I|Acc]);
simplify_basic_1([], Ts, Acc) ->
    Is = reverse(Acc),
    {Is,Ts}.

%% simplify_float([Instruction], TypeDatabase) ->
%%                 {[Instruction],TypeDatabase'} | not_possible
%%  Simplify floating point operations in blocks.
%%
simplify_float(Is0, Ts0) ->
    {Is1,Ts} = simplify_float_1(Is0, Ts0, [], []),
    Is2 = flt_need_heap(Is1),
    try
	{flt_liveness(Is2),Ts}
    catch
	throw:not_possible -> not_possible
    end.

simplify_float_1([{set,[D0],[A0],{alloc,_,{gc_bif,'-',{f,0}}}}=I|Is]=Is0,
		 Ts0, Rs0, Acc0) ->
    case tdb_find(A0, Ts0) of
	float ->
	    A = coerce_to_float(A0),
	    {Rs1,Acc1} = load_reg(A, Ts0, Rs0, Acc0),
	    {D,Rs} = find_dest(D0, Rs1),
	    Areg = fetch_reg(A, Rs),
	    Acc = [{set,[D],[Areg],{bif,fnegate,{f,0}}}|clearerror(Acc1)],
	    Ts = tdb_update([{D0,float}], Ts0),
	    simplify_float_1(Is, Ts, Rs, Acc);
	_Other ->
	    Ts = update(I, Ts0),
	    {Rs,Acc} = flush(Rs0, Is0, Acc0),
	    simplify_float_1(Is, Ts, Rs, [I|checkerror(Acc)])
    end;
simplify_float_1([{set,[D0],[A0,B0],{alloc,_,{gc_bif,Op0,{f,0}}}}=I|Is]=Is0,
		 Ts0, Rs0, Acc0) ->
    case float_op(Op0, A0, B0, Ts0) of
	no ->
	    Ts = update(I, Ts0),
	    {Rs,Acc} = flush(Rs0, Is0, Acc0),
	    simplify_float_1(Is, Ts, Rs, [I|checkerror(Acc)]);
	{yes,Op} ->
	    A = coerce_to_float(A0),
	    B = coerce_to_float(B0),
	    {Rs1,Acc1} = load_reg(A, Ts0, Rs0, Acc0),
	    {Rs2,Acc2} = load_reg(B, Ts0, Rs1, Acc1),
	    {D,Rs} = find_dest(D0, Rs2),
	    Areg = fetch_reg(A, Rs),
	    Breg = fetch_reg(B, Rs),
	    Acc = [{set,[D],[Areg,Breg],{bif,Op,{f,0}}}|clearerror(Acc2)],
	    Ts = tdb_update([{D0,float}], Ts0),
	    simplify_float_1(Is, Ts, Rs, Acc)
    end;
simplify_float_1([{set,_,_,{'catch',_}}=I|Is]=Is0, _Ts, Rs0, Acc0) ->
    Acc = flush_all(Rs0, Is0, Acc0),
    simplify_float_1(Is, tdb_new(), Rs0, [I|Acc]);
simplify_float_1([{set,_,_,{line,_}}=I|Is], Ts, Rs, Acc) ->
    simplify_float_1(Is, Ts, Rs, [I|Acc]);
simplify_float_1([I|Is]=Is0, Ts0, Rs0, Acc0) ->
    Ts = update(I, Ts0),
    {Rs,Acc} = flush(Rs0, Is0, Acc0),
    simplify_float_1(Is, Ts, Rs, [I|checkerror(Acc)]);
simplify_float_1([], Ts, Rs, Acc0) ->
    Acc = checkerror(Acc0),
    Is0 = reverse(flush_all(Rs, [], Acc)),
    Is = opt_fmoves(Is0, []),
    {Is,Ts}.

coerce_to_float({integer,I}=Int) ->
    try float(I) of
	F ->
	    {float,F}
    catch _:_ ->
	    %% Let the overflow happen at run-time.
	    Int
    end;
coerce_to_float(Other) -> Other.

opt_fmoves([{set,[{x,_}=R],[{fr,_}]=Src,fmove}=I1,
	    {set,[_]=Dst,[{x,_}=R],move}=I2|Is], Acc) ->
    case beam_utils:is_killed_block(R, Is) of
	false -> opt_fmoves(Is, [I2,I1|Acc]);
	true -> opt_fmoves(Is, [{set,Dst,Src,fmove}|Acc])
    end;
opt_fmoves([I|Is], Acc) ->
    opt_fmoves(Is, [I|Acc]);
opt_fmoves([], Acc) -> reverse(Acc).

clearerror(Is) ->
    clearerror(Is, Is).

clearerror([{set,[],[],fclearerror}|_], OrigIs) -> OrigIs;
clearerror([{set,[],[],fcheckerror}|_], OrigIs) -> [{set,[],[],fclearerror}|OrigIs];
clearerror([_|Is], OrigIs) -> clearerror(Is, OrigIs);
clearerror([], OrigIs) -> [{set,[],[],fclearerror}|OrigIs].

%% merge_blocks(Block1, Block2) -> Block.
%%  Combine two blocks and eliminate any move instructions that assign
%%  to registers that are killed later in the block.
%%
merge_blocks(B1, [{'%live',_}|B2]) ->
    merge_blocks_1(B1++[{set,[],[],stop_here}|B2]).

merge_blocks_1([{set,[],_,stop_here}|Is]) -> Is;
merge_blocks_1([{set,[D],_,move}=I|Is]) ->
    case beam_utils:is_killed_block(D, Is) of
	true -> merge_blocks_1(Is);
	false -> [I|merge_blocks_1(Is)]
    end;
merge_blocks_1([I|Is]) -> [I|merge_blocks_1(Is)].

%% flt_need_heap([Instruction]) -> [Instruction]
%%  Insert need heap allocation instructions in the instruction stream
%%  to properly account for both inserted floating point operations and
%%  normal term build operations (such as put_list/3).
%%
%%  Ignore old heap allocation instructions (except if they allocate a stack
%%  frame too), as they may be in the wrong place (because gc_bif instructions
%%  could have been converted to floating point operations).

flt_need_heap(Is) ->
    flt_need_heap_1(reverse(Is), 0, 0, []).

flt_need_heap_1([{set,[],[],{alloc,_,Alloc}}|Is], H, Fl, Acc) ->
    case Alloc of
	{_,nostack,_,_} ->
	    %% Remove any existing test_heap/2 instruction.
	    flt_need_heap_1(Is, H, Fl, Acc);
	{Z,Stk,_,Inits} when is_integer(Stk) ->
	    %% Keep any allocate*/2 instruction and recalculate heap need.
	    I = {set,[],[],{alloc,regs,{Z,Stk,build_alloc(H, Fl),Inits}}},
	    flt_need_heap_1(Is, 0, 0, [I|Acc])
    end;
flt_need_heap_1([I|Is], H0, Fl0, Acc) ->
    {Ns,H1,Fl1} = flt_need_heap_2(I, H0, Fl0),
    flt_need_heap_1(Is, H1, Fl1, [I|Ns]++Acc);
flt_need_heap_1([], H, Fl, Acc) ->
    flt_alloc(H, Fl) ++ Acc.

%% First come all instructions that build. We pass through, while we
%% add to the need for heap words and floats on the heap.
flt_need_heap_2({set,[_],[{fr,_}],fmove}, H, Fl) ->
    {[],H,Fl+1};
flt_need_heap_2({set,_,_,put_list}, H, Fl) ->
    {[],H+2,Fl};
flt_need_heap_2({set,_,_,{put_tuple,_}}, H, Fl) ->
    {[],H+1,Fl};
flt_need_heap_2({set,_,_,put}, H, Fl) ->
    {[],H+1,Fl};
%% Then the "neutral" instructions. We just pass them.
flt_need_heap_2({set,[{fr,_}],_,_}, H, Fl) ->
    {[],H,Fl};
flt_need_heap_2({set,[],[],fclearerror}, H, Fl) ->
    {[],H,Fl};
flt_need_heap_2({set,[],[],fcheckerror}, H, Fl) ->
    {[],H,Fl};
flt_need_heap_2({set,_,_,{bif,_,_}}, H, Fl) ->
    {[],H,Fl};
flt_need_heap_2({set,_,_,move}, H, Fl) ->
    {[],H,Fl};
flt_need_heap_2({set,_,_,{get_tuple_element,_}}, H, Fl) ->
    {[],H,Fl};
flt_need_heap_2({set,_,_,get_list}, H, Fl) ->
    {[],H,Fl};
flt_need_heap_2({set,_,_,{'catch',_}}, H, Fl) ->
    {[],H,Fl};
%% All other instructions should cause the insertion of an allocation
%% instruction if needed.
flt_need_heap_2(_, H, Fl) ->
    {flt_alloc(H, Fl),0,0}.

flt_alloc(0, 0) ->
    [];
flt_alloc(H, 0) ->
    [{set,[],[],{alloc,regs,{nozero,nostack,H,[]}}}];
flt_alloc(H, F) ->
    [{set,[],[],{alloc,regs,{nozero,nostack,
			     build_alloc(H, F),[]}}}].

build_alloc(Words, 0) -> Words;
build_alloc(Words, Floats) -> {alloc,[{words,Words},{floats,Floats}]}.


%% flt_liveness([Instruction]) -> [Instruction]
%%  (Re)calculate the number of live registers for each heap allocation
%%  function. We base liveness of the number of live registers at
%%  entry to the instruction sequence.
%%
%%  A 'not_possible' term will be thrown if the set of live registers
%%  is not continous at an allocation function (e.g. if {x,0} and {x,2}
%%  are live, but not {x,1}).

flt_liveness([{'%live',Live}=LiveInstr|Is]) ->
    flt_liveness_1(Is, init_regs(Live), [LiveInstr]).

flt_liveness_1([{set,Ds,Ss,{alloc,_,Alloc}}|Is], Regs0, Acc) ->
    Live = live_regs(Regs0),
    I = {set,Ds,Ss,{alloc,Live,Alloc}},
    Regs = foldl(fun(R, A) -> set_live(R, A) end, Regs0, Ds),
    flt_liveness_1(Is, Regs, [I|Acc]);
flt_liveness_1([{set,Ds,_,_}=I|Is], Regs0, Acc) ->
    Regs = foldl(fun(R, A) -> set_live(R, A) end, Regs0, Ds),
    flt_liveness_1(Is, Regs, [I|Acc]);
flt_liveness_1([{'%live',_}=I|Is], Regs, Acc) ->
    flt_liveness_1(Is, Regs, [I|Acc]);
flt_liveness_1([], _Regs, Acc) -> reverse(Acc).

init_regs(Live) ->
    (1 bsl Live) - 1.

live_regs(Regs) ->
    live_regs_1(Regs, 0).

live_regs_1(0, N) -> N;
live_regs_1(R, N) ->
    case R band 1 of
	0 -> throw(not_possible);
	1 -> live_regs_1(R bsr 1, N+1)
    end.

set_live({x,X}, Regs) -> Regs bor (1 bsl X);
set_live(_, Regs) -> Regs.

%% update(Instruction, TypeDb) -> NewTypeDb
%%  Update the type database to account for executing an instruction.
%%
%%  First the cases for instructions inside basic blocks.
update({'%live',_}, Ts) -> Ts;
update({set,[D],[S],move}, Ts) ->
    tdb_copy(S, D, Ts);
update({set,[D],[{integer,I},Reg],{bif,element,_}}, Ts0) ->
    tdb_update([{Reg,{tuple,I,[]}},{D,kill}], Ts0);
update({set,[D],[_Index,Reg],{bif,element,_}}, Ts0) ->
    tdb_update([{Reg,{tuple,0,[]}},{D,kill}], Ts0);
update({set,[D],[S],{get_tuple_element,0}}, Ts) ->
    tdb_update([{D,{tuple_element,S,0}}], Ts);
update({set,[D],[S],{alloc,_,{gc_bif,float,{f,0}}}}, Ts0) ->
    %% Make sure we reject non-numeric literal argument.
    case possibly_numeric(S) of
	true ->  tdb_update([{D,float}], Ts0);
	false -> Ts0
    end;
update({set,[D],[S1,S2],{alloc,_,{gc_bif,'/',{f,0}}}}, Ts0) ->
    %% Make sure we reject non-numeric literals.
    case possibly_numeric(S1) andalso possibly_numeric(S2) of
	true ->  tdb_update([{D,float}], Ts0);
	false -> Ts0
    end;
update({set,[D],[S1,S2],{alloc,_,{gc_bif,Op,{f,0}}}}, Ts0) ->
    case arith_op(Op) of
	no ->
	    tdb_update([{D,kill}], Ts0);
	{yes,_} ->
	    case {tdb_find(S1, Ts0),tdb_find(S2, Ts0)} of
		{float,_} -> tdb_update([{D,float}], Ts0);
		{_,float} -> tdb_update([{D,float}], Ts0);
		{_,_} -> tdb_update([{D,kill}], Ts0)
	    end
    end;
update({set,[],_Src,_Op}, Ts0) -> Ts0;
update({set,[D],_Src,_Op}, Ts0) ->
    tdb_update([{D,kill}], Ts0);
update({set,[D1,D2],_Src,_Op}, Ts0) ->
    tdb_update([{D1,kill},{D2,kill}], Ts0);
update({kill,D}, Ts) ->
    tdb_update([{D,kill}], Ts);

%% Instructions outside of blocks.
update({test,is_float,_Fail,[Src]}, Ts0) ->
    tdb_update([{Src,float}], Ts0);
update({test,test_arity,_Fail,[Src,Arity]}, Ts0) ->
    tdb_update([{Src,{tuple,Arity,[]}}], Ts0);
update({test,is_eq_exact,_,[Reg,{atom,_}=Atom]}, Ts) ->
    case tdb_find(Reg, Ts) of
	error ->
	    Ts;
	{tuple_element,TupleReg,0} ->
	    tdb_update([{TupleReg,{tuple,1,[Atom]}}], Ts);
	_ ->
	    Ts
    end;
update({test,is_record,_Fail,[Src,Tag,{integer,Arity}]}, Ts) ->
    tdb_update([{Src,{tuple,Arity,[Tag]}}], Ts);
update({test,_Test,_Fail,_Other}, Ts) ->
    Ts;
update({call_ext,Ar,{extfunc,math,Math,Ar}}, Ts) ->
    case is_math_bif(Math, Ar) of
	true -> tdb_update([{{x,0},float}], Ts);
	false -> tdb_kill_xregs(Ts)
    end;
update({call_ext,3,{extfunc,erlang,setelement,3}}, Ts0) ->
    Op = case tdb_find({x,1}, Ts0) of
	     error -> kill;
	     Info -> Info
	 end,
    Ts1 = tdb_kill_xregs(Ts0),
    tdb_update([{{x,0},Op}], Ts1);
update({call,_Arity,_Func}, Ts) -> tdb_kill_xregs(Ts);
update({call_ext,_Arity,_Func}, Ts) -> tdb_kill_xregs(Ts);
update({make_fun2,_,_,_,_}, Ts) -> tdb_kill_xregs(Ts);
update({line,_}, Ts) -> Ts;

%% The instruction is unknown.  Kill all information.
update(_I, _Ts) -> tdb_new().

is_math_bif(cos, 1) -> true;
is_math_bif(cosh, 1) -> true;
is_math_bif(sin, 1) -> true;
is_math_bif(sinh, 1) -> true;
is_math_bif(tan, 1) -> true;
is_math_bif(tanh, 1) -> true;
is_math_bif(acos, 1) -> true;
is_math_bif(acosh, 1) -> true;
is_math_bif(asin, 1) -> true;
is_math_bif(asinh, 1) -> true;
is_math_bif(atan, 1) -> true;
is_math_bif(atanh, 1) -> true;
is_math_bif(erf, 1) -> true;
is_math_bif(erfc, 1) -> true;
is_math_bif(exp, 1) -> true;
is_math_bif(log, 1) -> true;
is_math_bif(log10, 1) -> true;
is_math_bif(sqrt, 1) -> true;
is_math_bif(atan2, 2) -> true;
is_math_bif(pow, 2) -> true;
is_math_bif(pi, 0) -> true;
is_math_bif(_, _) -> false.

%% Reject non-numeric literals.
possibly_numeric({x,_}) -> true;
possibly_numeric({y,_}) -> true;
possibly_numeric({integer,_}) -> true;
possibly_numeric({float,_}) -> true;
possibly_numeric(_) -> false.

max_tuple_size(Reg, Ts) ->
    case tdb_find(Reg, Ts) of
	{tuple,Sz,_} -> Sz;
	_Other -> 0
    end.

float_op('/', A, B, _) ->
    case possibly_numeric(A) andalso possibly_numeric(B) of
	true -> {yes,fdiv};
	false -> no
    end;
float_op(Op, {float,_}, B, _) ->
    case possibly_numeric(B) of
	true -> arith_op(Op);
	false -> no
    end;
float_op(Op, A, {float,_}, _) ->
    case possibly_numeric(A) of
	true -> arith_op(Op);
	false -> no
    end;
float_op(Op, A, B, Ts) ->
    case {tdb_find(A, Ts),tdb_find(B, Ts)} of
	{float,_} -> arith_op(Op);
	{_,float} -> arith_op(Op);
	{_,_} -> no
    end.

find_dest(V, Rs0) ->
    case find_reg(V, Rs0) of
	{ok,FR} ->
	    {FR,mark(V, Rs0, dirty)};
	error ->
	    Rs = put_reg(V, Rs0, dirty),
	    {ok,FR} = find_reg(V, Rs),
	    {FR,Rs}
    end.

load_reg({float,_}=F, _, Rs0, Is0) ->
    Rs = put_reg(F, Rs0, clean),
    {ok,FR} = find_reg(F, Rs),
    Is = [{set,[FR],[F],fmove}|Is0],
    {Rs,Is};
load_reg(V, Ts, Rs0, Is0) ->
    case find_reg(V, Rs0) of
	{ok,_FR} -> {Rs0,Is0};
	error ->
	    Rs = put_reg(V, Rs0, clean),
	    {ok,FR} = find_reg(V, Rs),
	    Op = case tdb_find(V, Ts) of
		     float -> fmove;
		     _ -> fconv
		 end,
	    Is = [{set,[FR],[V],Op}|Is0],
	    {Rs,Is}
    end.

arith_op('+') -> {yes,fadd};
arith_op('-') -> {yes,fsub};
arith_op('*') -> {yes,fmul};
arith_op('/') -> {yes,fdiv};
arith_op(_) -> no.

flush(Rs, [{set,[_],[],{put_tuple,_}}|_]=Is0, Acc0) ->
    Acc = flush_all(Rs, Is0, Acc0),
    {[],Acc};
flush(Rs0, [{set,Ds,Ss,_Op}|_], Acc0) ->
    Save = gb_sets:from_list(Ss),
    Acc = save_regs(Rs0, Save, Acc0),
    Rs1 = foldl(fun(S, A) -> mark(S, A, clean) end, Rs0, Ss),
    Kill = gb_sets:from_list(Ds),
    Rs = kill_regs(Rs1, Kill),
    {Rs,Acc};
flush(Rs0, Is, Acc0) ->
    Acc = flush_all(Rs0, Is, Acc0),
    {[],Acc}.

flush_all([{_,{float,_},_}|Rs], Is, Acc) ->
    flush_all(Rs, Is, Acc);
flush_all([{I,V,dirty}|Rs], Is, Acc0) ->
    Acc = checkerror(Acc0),
    case beam_utils:is_killed_block(V, Is) of
	true  -> flush_all(Rs, Is, Acc);
	false -> flush_all(Rs, Is, [{set,[V],[{fr,I}],fmove}|Acc])
    end;
flush_all([{_,_,clean}|Rs], Is, Acc) -> flush_all(Rs, Is, Acc);
flush_all([free|Rs], Is, Acc) -> flush_all(Rs, Is, Acc);
flush_all([], _, Acc) -> Acc.

save_regs(Rs, Save, Acc) ->
    foldl(fun(R, A) -> save_reg(R, Save, A) end, Acc, Rs).

save_reg({I,V,dirty}, Save, Acc) ->
    case gb_sets:is_member(V, Save) of
	true -> [{set,[V],[{fr,I}],fmove}|checkerror(Acc)];
	false -> Acc
    end;
save_reg(_, _, Acc) -> Acc.

kill_regs(Rs, Kill) ->
    [kill_reg(R, Kill) || R <- Rs].

kill_reg({_,V,_}=R, Kill) ->
    case gb_sets:is_member(V, Kill) of
	true -> free;
	false -> R
    end;
kill_reg(R, _) -> R.

mark(V, [{I,V,_}|Rs], Mark) -> [{I,V,Mark}|Rs];
mark(V, [R|Rs], Mark) -> [R|mark(V, Rs, Mark)];
mark(_, [], _) -> [].

fetch_reg(V, [{I,V,_}|_]) -> {fr,I};
fetch_reg(V, [_|SRs]) -> fetch_reg(V, SRs).

find_reg(V, [{I,V,_}|_]) -> {ok,{fr,I}};
find_reg(V, [_|SRs]) -> find_reg(V, SRs);
find_reg(_, []) -> error.

put_reg(V, Rs, Dirty) -> put_reg_1(V, Rs, Dirty, 0).

put_reg_1(V, [free|Rs], Dirty, I) -> [{I,V,Dirty}|Rs];
put_reg_1(V, [R|Rs], Dirty, I) -> [R|put_reg_1(V, Rs, Dirty, I+1)];
put_reg_1(V, [], Dirty, I) -> [{I,V,Dirty}].

checkerror(Is) ->
    checkerror_1(Is, Is).

checkerror_1([{set,[],[],fcheckerror}|_], OrigIs) -> OrigIs;
checkerror_1([{set,[],[],fclearerror}|_], OrigIs) -> OrigIs;
checkerror_1([{set,_,_,{bif,fadd,_}}|_], OrigIs) -> checkerror_2(OrigIs);
checkerror_1([{set,_,_,{bif,fsub,_}}|_], OrigIs) -> checkerror_2(OrigIs);
checkerror_1([{set,_,_,{bif,fmul,_}}|_], OrigIs) -> checkerror_2(OrigIs);
checkerror_1([{set,_,_,{bif,fdiv,_}}|_], OrigIs) -> checkerror_2(OrigIs);
checkerror_1([{set,_,_,{bif,fnegate,_}}|_], OrigIs) -> checkerror_2(OrigIs);
checkerror_1([_|Is], OrigIs) -> checkerror_1(Is, OrigIs);
checkerror_1([], OrigIs) -> OrigIs.

checkerror_2(OrigIs) -> [{set,[],[],fcheckerror}|OrigIs].


%%% Routines for maintaining a type database.  The type database 
%%% associates type information with registers.
%%%
%%% {tuple,Size,First} means that the corresponding register contains a
%%% tuple with *at least* Size elements.  An tuple with unknown
%%% size is represented as {tuple,0}. First is either [] (meaning that
%%% the tuple's first element is unknown) or [FirstElement] (the contents
%%% of the first element).
%%%
%%% 'float' means that the register contains a float.

%% tdb_new() -> EmptyDataBase
%%  Creates a new, empty type database.

tdb_new() -> [].

%% tdb_find(Register, Db) -> Information|error
%%  Returns type information or the atom error if there is no type
%%  information available for Register.

tdb_find({x,_}=K, Ts) -> tdb_find_1(K, Ts);
tdb_find({y,_}=K, Ts) -> tdb_find_1(K, Ts);
tdb_find(_, _) -> error.

tdb_find_1(K, Ts) ->
    case orddict:find(K, Ts) of
	{ok,Val} -> Val;
	error -> error
    end.

%% tdb_copy(Source, Dest, Db) -> Db'
%%  Update the type information for Dest to have the same type
%%  as the Source.

tdb_copy({Tag,_}=S, D, Ts) when Tag =:= x; Tag =:= y ->
    case tdb_find(S, Ts) of
	error -> orddict:erase(D, Ts);
	Type -> orddict:store(D, Type, Ts)
    end;
tdb_copy(Literal, D, Ts) -> orddict:store(D, Literal, Ts).

%% tdb_update([UpdateOp], Db) -> NewDb
%%        UpdateOp = {Register,kill}|{Register,NewInfo}
%%  Updates a type database.  If a 'kill' operation is given, the type
%%  information for that register will be removed from the database.
%%  A kill operation takes precedence over other operations for the same
%%  register (i.e. [{{x,0},kill},{{x,0},{tuple,5}}] means that the
%%  the existing type information, if any, will be discarded, and the
%%  the '{tuple,5}' information ignored.
%%
%%  If NewInfo information is given and there exists information about
%%  the register, the old and new type information will be merged.
%%  For instance, {tuple,5} and {tuple,10} will be merged to produce
%%  {tuple,10}.

tdb_update(Uis0, Ts0) ->
    Uis1 = filter(fun ({{x,_},_Op}) -> true;
		      ({{y,_},_Op}) -> true;
		      (_) -> false
		  end, Uis0),
    tdb_update1(lists:sort(Uis1), Ts0).

tdb_update1([{Key,kill}|Ops], [{K,_Old}|_]=Db) when Key < K ->
    tdb_update1(remove_key(Key, Ops), Db);
tdb_update1([{Key,_New}=New|Ops], [{K,_Old}|_]=Db) when Key < K ->
    [New|tdb_update1(Ops, Db)];
tdb_update1([{Key,kill}|Ops], [{Key,_}|Db]) ->
    tdb_update1(remove_key(Key, Ops), Db);
tdb_update1([{Key,NewInfo}|Ops], [{Key,OldInfo}|Db]) ->
    [{Key,merge_type_info(NewInfo, OldInfo)}|tdb_update1(Ops, Db)];
tdb_update1([{_,_}|_]=Ops, [Old|Db]) ->
    [Old|tdb_update1(Ops, Db)];
tdb_update1([{Key,kill}|Ops], []) ->
    tdb_update1(remove_key(Key, Ops), []);
tdb_update1([{_,_}=New|Ops], []) ->
    [New|tdb_update1(Ops, [])];
tdb_update1([], Db) -> Db.

%% tdb_kill_xregs(Db) -> NewDb
%%  Kill all information about x registers. Also kill all tuple_element
%%  dependencies from y registers to x registers.

tdb_kill_xregs([{{x,_},_Type}|Db]) -> tdb_kill_xregs(Db);
tdb_kill_xregs([{{y,_},{tuple_element,{x,_},_}}|Db]) -> tdb_kill_xregs(Db);
tdb_kill_xregs([Any|Db]) -> [Any|tdb_kill_xregs(Db)];
tdb_kill_xregs([]) -> [].
    
remove_key(Key, [{Key,_Op}|Ops]) -> remove_key(Key, Ops);
remove_key(_, Ops) -> Ops.
    
merge_type_info(I, I) -> I;
merge_type_info({tuple,Sz1,Same}, {tuple,Sz2,Same}=Max) when Sz1 < Sz2 ->
    Max;
merge_type_info({tuple,Sz1,Same}=Max, {tuple,Sz2,Same}) when Sz1 > Sz2 ->
    Max;
merge_type_info({tuple,Sz1,[]}, {tuple,_Sz2,First}=Tuple2) ->
    merge_type_info({tuple,Sz1,First}, Tuple2);
merge_type_info({tuple,_Sz1,First}=Tuple1, {tuple,Sz2,_}) ->
    merge_type_info(Tuple1, {tuple,Sz2,First});
merge_type_info(NewType, _) ->
    verify_type(NewType),
    NewType.

verify_type({tuple,Sz,[]}) when is_integer(Sz) -> ok;
verify_type({tuple,Sz,[_]}) when is_integer(Sz) -> ok;
verify_type({tuple_element,_,_}) -> ok;
verify_type(float) -> ok.