summaryrefslogtreecommitdiff
path: root/lib/compiler/src/beam_trim.erl
blob: a22753ddc4de503cb1a209b065c7d56b2a446960 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
%%
%% %CopyrightBegin%
%% 
%% Copyright Ericsson AB 2007-2020. All Rights Reserved.
%% 
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%% 
%% %CopyrightEnd%
%%

-module(beam_trim).
-export([module/2]).

-import(lists, [any/2,member/2,reverse/1,reverse/2,sort/1]).

-record(st,
	{safe :: sets:set(beam_asm:label()) %Safe labels.
        }).

-spec module(beam_utils:module_code(), [compile:option()]) ->
                    {'ok',beam_utils:module_code()}.

module({Mod,Exp,Attr,Fs0,Lc}, _Opts) ->
    Fs = [function(F) || F <- Fs0],
    {ok,{Mod,Exp,Attr,Fs,Lc}}.

function({function,Name,Arity,CLabel,Is0}) ->
    try
        St = #st{safe=safe_labels(Is0, [])},
        Is = trim(Is0, St, []),
        {function,Name,Arity,CLabel,Is}
    catch
        Class:Error:Stack ->
	    io:fwrite("Function: ~w/~w\n", [Name,Arity]),
	    erlang:raise(Class, Error, Stack)
    end.

trim([{init_yregs,{list,Kills0}}=I|Is0], St, Acc) ->
    Kills = [{kill,Y} || Y <- Kills0],
    try
        %% Find out the size and layout of the stack frame.
        %% Example of a layout:
        %%
        %%    [{kill,{y,0}},{dead,{y,1},{live,{y,2}},{kill,{y,3}}]
        %%
        %% That means that y0 and y3 are to be killed, that y1
        %% has been killed previously, and that y2 is live.
        {FrameSize,Layout} = frame_layout(Is0, Kills, St),

        %% Calculate all recipes that are not worse in terms
        %% of estimated execution time. The recipes are ordered
        %% in descending order from how much they trim.
        IsNotRecursive = is_not_recursive(Is0),
        Recipes = trim_recipes(Layout, IsNotRecursive),

        %% Try the recipes in order. A recipe may not work out because
        %% a register that was previously killed may be
        %% resurrected. If that happens, the next recipe, which trims
        %% less, will be tried.
        try_remap(Recipes, Is0, FrameSize)
    of
	{Is,TrimInstr} ->
            %% One of the recipes was applied.
	    trim(Is, St, reverse(TrimInstr)++Acc)
    catch
	not_possible ->
            %% No recipe worked out. Use the original init_yregs/1
            %% instruction.
	    trim(Is0, St, [I|Acc])
    end;
trim([I|Is], St, Acc) ->
    trim(Is, St, [I|Acc]);
trim([], _, Acc) ->
    reverse(Acc).

%% is_not_recursive([Instruction]) -> true|false.
%%  Test whether the next call or apply instruction may
%%  do a recursive call. Return `true` if the call is
%%  definitely not recursive, and `false` otherwise.
is_not_recursive([{call_ext,_,Ext}|_]) ->
    case Ext of
        {extfunc,M,F,A} ->
            erl_bifs:is_pure(M, F, A);
        _ ->
            false
    end;
is_not_recursive([{block,_}|Is]) -> is_not_recursive(Is);
is_not_recursive([{line,_}|Is]) -> is_not_recursive(Is);
is_not_recursive(_) -> false.

%% trim_recipes([{kill,R}|{live,R}|{dead,R}]) -> [Recipe].
%%      Recipe = {Kills,NumberToTrim,Moves}
%%      Kills = [{kill,Y}]
%%      Moves = [{move,SrcY,DstY}]
%%
%%  Calculate how to best trim the stack and kill the correct
%%  Y registers. Return a list of possible recipes. The best
%%  recipe (the one that trims the most) is first in the list.

trim_recipes(Layout, IsNotRecursive) ->
    Recipes = construct_recipes(Layout, 0, [], []),
    NumOrigKills = length([I || {kill,_}=I <- Layout]),
    IsTooExpensive = is_too_expensive_fun(IsNotRecursive),
    [R || R <- Recipes,
          not is_too_expensive(R, NumOrigKills, IsTooExpensive)].

construct_recipes([{kill,{y,Trim0}}|Ks], Trim0, Moves, Acc) ->
    Trim = Trim0 + 1,
    Recipe = {Ks,Trim,Moves},
    construct_recipes(Ks, Trim, Moves, [Recipe|Acc]);
construct_recipes([{dead,{y,Trim0}}|Ks], Trim0, Moves, Acc) ->
    Trim = Trim0 + 1,
    Recipe = {Ks,Trim,Moves},
    construct_recipes(Ks, Trim, Moves, [Recipe|Acc]);
construct_recipes([{live,{y,Trim0}=Src}|Ks0], Trim0, Moves0, Acc) ->
    case take_last_dead(Ks0) of
	none ->
            %% No more recipes are possible.
            Acc;
	{Dst,Ks} ->
	    Trim = Trim0 + 1,
	    Moves = [{move,Src,Dst}|Moves0],
            Recipe = {Ks,Trim,Moves},
            construct_recipes(Ks, Trim, Moves, [Recipe|Acc])
    end;
construct_recipes([], _, _, Acc) -> Acc.

take_last_dead(L) ->
    take_last_dead_1(reverse(L)).

take_last_dead_1([{kill,Reg}|Is]) ->
    {Reg,reverse(Is)};
take_last_dead_1([{dead,Reg}|Is]) ->
    {Reg,reverse(Is)};
take_last_dead_1(_) -> none.

%% Is trimming too expensive?
is_too_expensive({Ks,_,Moves}, NumOrigKills, IsTooExpensive) ->
    NumKills = num_kills(Ks, 0),
    NumMoves = length(Moves),
    IsTooExpensive(NumKills, NumMoves, NumOrigKills).

num_kills([{kill,_}|T], Acc) ->
    num_kills(T, Acc+1);
num_kills([_|T], Acc) ->
    num_kills(T, Acc);
num_kills([], Acc) -> Acc.

is_too_expensive_fun(true) ->
    %% This call is not recursive (because it is a call to a BIF).
    %% Here we should avoid trimming if the trimming sequence is
    %% likely to be more expensive than the original sequence.
    fun(NumKills, NumMoves, NumOrigKills) ->
            Penalty =
                if
                    %% Slightly penalize the use of any `move`
                    %% instruction to avoid replacing two `kill`
                    %% instructions with a `move` and a `trim`.
                    NumMoves =/= 0 -> 1;
                    true -> 0
                end,
            1 + Penalty + NumKills + NumMoves > NumOrigKills
    end;
is_too_expensive_fun(false) ->
    %% This call **may** be recursive. In a recursive function that
    %% builds up a huge stack, having unused stack slots will be very
    %% expensive. Therefore, we want to be biased towards trimming.
    %% We will do that by not counting the `trim` instruction in
    %% the formula below.
    fun(NumKills, NumMoves, NumOrigKills) ->
            NumKills + NumMoves > NumOrigKills
    end.

%% try_remap([Recipe], [Instruction], FrameSize) ->
%%           {[Instruction],[TrimInstruction]}.
%%  Try to renumber Y registers in the instruction stream. The
%%  first recipe that works will be used.
%%
%%  This function will issue a `not_possible` exception if none
%%  of the recipes were possible to apply.

try_remap([R|Rs], Is, FrameSize) ->
    {TrimInstr,Map} = expand_recipe(R, FrameSize),
    try
	{remap(Is, Map, []),TrimInstr}
    catch
	throw:not_possible ->
	    try_remap(Rs, Is, FrameSize)
    end;
try_remap([], _, _) -> throw(not_possible).

expand_recipe({Layout,Trim,Moves}, FrameSize) ->
    Is = reverse(Moves, [{trim,Trim,FrameSize-Trim}]),
    Map = create_map(Trim, Moves),
    case [Y || {kill,Y} <- Layout] of
        [] ->
            {Is,Map};
        [_|_]=Yregs ->
            {[{init_yregs,{list,Yregs}}|Is],Map}
    end.

create_map(Trim, []) ->
    fun({y,Y}) when Y < Trim -> throw(not_possible);
       ({y,Y}) -> {y,Y-Trim};
       ({frame_size,N}) -> N - Trim;
       (Any) -> Any
    end;
create_map(Trim, Moves) ->
    Map0 = [{Src,Dst-Trim} || {move,{y,Src},{y,Dst}} <- Moves],
    Map = maps:from_list(Map0),
    IllegalTargets = sets:from_list([Dst || {move,_,{y,Dst}} <- Moves], [{version, 2}]),
    fun({y,Y0}) when Y0 < Trim ->
            case Map of
                #{Y0:=Y} -> {y,Y};
                #{} -> throw(not_possible)
            end;
       ({y,Y}) ->
	    case sets:is_element(Y, IllegalTargets) of
		true -> throw(not_possible);
		false -> {y,Y-Trim}
	    end;
       ({frame_size,N}) -> N - Trim;
       (Any) -> Any
    end.

remap([{'%',Comment}=I|Is], Map, Acc) ->
    case Comment of
        {var_info,Var,Type} ->
            remap(Is, Map, [{'%',{var_info,Map(Var),Type}}|Acc]);
        _ ->
            remap(Is, Map, [I|Acc])
    end;
remap([{block,Bl0}|Is], Map, Acc) ->
    Bl = remap_block(Bl0, Map, []),
    remap(Is, Map, [{block,Bl}|Acc]);
remap([{bs_get_tail,Src,Dst,Live}|Is], Map, Acc) ->
    I = {bs_get_tail,Map(Src),Map(Dst),Live},
    remap(Is, Map, [I|Acc]);
remap([{bs_start_match4,Fail,Live,Src,Dst}|Is], Map, Acc) ->
    I = {bs_start_match4,Fail,Live,Map(Src),Map(Dst)},
    remap(Is, Map, [I|Acc]);
remap([{bs_set_position,Src1,Src2}|Is], Map, Acc) ->
    I = {bs_set_position,Map(Src1),Map(Src2)},
    remap(Is, Map, [I|Acc]);
remap([{call_fun,_}=I|Is], Map, Acc) ->
    remap(Is, Map, [I|Acc]);
remap([{call,_,_}=I|Is], Map, Acc) ->
    remap(Is, Map, [I|Acc]);
remap([{call_ext,_,_}=I|Is], Map, Acc) ->
    remap(Is, Map, [I|Acc]);
remap([{apply,_}=I|Is], Map, Acc) ->
    remap(Is, Map, [I|Acc]);
remap([{bif,Name,Fail,Ss,D}|Is], Map, Acc) ->
    I = {bif,Name,Fail,[Map(S) || S <- Ss],Map(D)},
    remap(Is, Map, [I|Acc]);
remap([{gc_bif,Name,Fail,Live,Ss,D}|Is], Map, Acc) ->
    I = {gc_bif,Name,Fail,Live,[Map(S) || S <- Ss],Map(D)},
    remap(Is, Map, [I|Acc]);
remap([{get_map_elements,Fail,M,{list,L0}}|Is], Map, Acc) ->
    L = [Map(E) || E <- L0],
    I = {get_map_elements,Fail,Map(M),{list,L}},
    remap(Is, Map, [I|Acc]);
remap([{init_yregs,{list,Yregs0}}|Is], Map, Acc) ->
    Yregs = sort([Map(Y) || Y <- Yregs0]),
    I = {init_yregs,{list,Yregs}},
    remap(Is, Map, [I|Acc]);
remap([{make_fun2,_,_,_,_}=I|T], Map, Acc) ->
    remap(T, Map, [I|Acc]);
remap([{make_fun3,F,Index,OldUniq,Dst0,{list,Env0}}|T], Map, Acc) ->
    Env = [Map(E) || E <- Env0],
    Dst = Map(Dst0),
    I = {make_fun3,F,Index,OldUniq,Dst,{list,Env}},
    remap(T, Map, [I|Acc]);
remap([{deallocate,N}|Is], Map, Acc) ->
    I = {deallocate,Map({frame_size,N})},
    remap(Is, Map, [I|Acc]);
remap([{recv_marker_clear,Ref}|Is], Map, Acc) ->
    I = {recv_marker_clear,Map(Ref)},
    remap(Is, Map, [I|Acc]);
remap([{recv_marker_reserve,Mark}|Is], Map, Acc) ->
    I = {recv_marker_reserve,Map(Mark)},
    remap(Is, Map, [I|Acc]);
remap([{swap,Reg1,Reg2}|Is], Map, Acc) ->
    I = {swap,Map(Reg1),Map(Reg2)},
    remap(Is, Map, [I|Acc]);
remap([{test,Name,Fail,Ss}|Is], Map, Acc) ->
    I = {test,Name,Fail,[Map(S) || S <- Ss]},
    remap(Is, Map, [I|Acc]);
remap([{test,Name,Fail,Live,Ss,Dst}|Is], Map, Acc) ->
    I = {test,Name,Fail,Live,[Map(S) || S <- Ss],Map(Dst)},
    remap(Is, Map, [I|Acc]);
remap([return|_]=Is, _, Acc) ->
    reverse(Acc, Is);
remap([{line,_}=I|Is], Map, Acc) ->
    remap(Is, Map, [I|Acc]).

remap_block([{set,Ds0,Ss0,Info}|Is], Map, Acc) ->
    Ds = [Map(D) || D <- Ds0],
    Ss = [Map(S) || S <- Ss0],
    remap_block(Is, Map, [{set,Ds,Ss,Info}|Acc]);
remap_block([], _, Acc) -> reverse(Acc).

%% safe_labels([Instruction], Accumulator) -> gb_set()
%%  Build a gb_set of safe labels. The code at a safe
%%  label does not depend on the values in a specific
%%  Y register, only that all Y registers are initialized
%%  so that it safe to scan the stack when an exception
%%  is generated.
%%
%%  In other words, code at a safe label will continue
%%  to work if Y registers have been renumbered and
%%  the size of the stack frame has changed.

safe_labels([{label,L}|Is], Acc) ->
    case is_safe_label(Is) of
        true -> safe_labels(Is, [L|Acc]);
        false -> safe_labels(Is, Acc)
    end;
safe_labels([_|Is], Acc) ->
    safe_labels(Is, Acc);
safe_labels([], Acc) -> sets:from_list(Acc, [{version, 2}]).

is_safe_label([{'%',_}|Is]) ->
    is_safe_label(Is);
is_safe_label([{line,_}|Is]) ->
    is_safe_label(Is);
is_safe_label([{badmatch,{Tag,_}}|_]) ->
    Tag =/= y;
is_safe_label([{case_end,{Tag,_}}|_]) ->
    Tag =/= y;
is_safe_label([{try_case_end,{Tag,_}}|_]) ->
    Tag =/= y;
is_safe_label([if_end|_]) ->
    true;
is_safe_label([{block,Bl}|Is]) ->
    is_safe_label_block(Bl) andalso is_safe_label(Is);
is_safe_label([{call_ext,_,{extfunc,M,F,A}}|_]) ->
    erl_bifs:is_exit_bif(M, F, A);
is_safe_label(_) -> false.

is_safe_label_block([{set,Ds,Ss,_}|Is]) ->
    IsYreg = fun({y,_}) -> true;
                (_) -> false
             end,
    %% This instruction is safe if the instruction
    %% neither reads or writes Y registers.
    not (any(IsYreg, Ss) orelse any(IsYreg, Ds)) andalso
        is_safe_label_block(Is);
is_safe_label_block([]) -> true.

%% frame_layout([Instruction], [{kill,_}], St) ->
%%      [{kill,Reg} | {live,Reg} | {dead,Reg}]
%%  Figure out the layout of the stack frame.

frame_layout(Is, Kills, #st{safe=Safe}) ->
    N = frame_size(Is, Safe),
    IsKilled = fun(R) -> is_not_used(R, Is) end,
    {N,frame_layout_1(Kills, 0, N, IsKilled, [])}.

frame_layout_1([{kill,{y,Y}}=I|Ks], Y, N, IsKilled, Acc) ->
    frame_layout_1(Ks, Y+1, N, IsKilled, [I|Acc]);
frame_layout_1(Ks, Y, N, IsKilled, Acc) when Y < N ->
    R = {y,Y},
    I = case IsKilled(R) of
	    false -> {live,R};
	    true -> {dead,R}
	end,
    frame_layout_1(Ks, Y+1, N, IsKilled, [I|Acc]);
frame_layout_1([], Y, Y, _, Acc) ->
    frame_layout_2(Acc).

frame_layout_2([{live,_}|Is]) -> frame_layout_2(Is);
frame_layout_2(Is) -> reverse(Is).

%% frame_size([Instruction], SafeLabels) -> FrameSize
%%  Find out the frame size by looking at the code that follows.
%%
%%  Implicitly, also check that the instructions are a straight
%%  sequence of code that ends in a return. Any branches are
%%  to safe labels (i.e., the code at those labels don't depend
%%  on the contents of any Y register).

frame_size([{'%',_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{block,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{call_fun,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{call,_,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{call_ext,_,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{apply,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{bif,_,{f,L},_,_}|Is], Safe) ->
    frame_size_branch(L, Is, Safe);
frame_size([{gc_bif,_,{f,L},_,_,_}|Is], Safe) ->
    frame_size_branch(L, Is, Safe);
frame_size([{test,_,{f,L},_}|Is], Safe) ->
    frame_size_branch(L, Is, Safe);
frame_size([{test,_,{f,L},_,_,_}|Is], Safe) ->
    frame_size_branch(L, Is, Safe);
frame_size([{init_yregs,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{make_fun2,_,_,_,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{make_fun3,_,_,_,_,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{recv_marker_clear,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{recv_marker_reserve,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{get_map_elements,{f,L},_,_}|Is], Safe) ->
    frame_size_branch(L, Is, Safe);
frame_size([{deallocate,N}|_], _) ->
    N;
frame_size([{line,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{bs_start_match4,Fail,_,_,_}|Is], Safe) ->
    case Fail of
        {f,L} -> frame_size_branch(L, Is, Safe);
        _ -> frame_size(Is, Safe)
    end;
frame_size([{bs_set_position,_,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{bs_get_tail,_,_,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size([{swap,_,_}|Is], Safe) ->
    frame_size(Is, Safe);
frame_size(_, _) -> throw(not_possible).

frame_size_branch(0, Is, Safe) ->
    frame_size(Is, Safe);
frame_size_branch(L, Is, Safe) ->
    case sets:is_element(L, Safe) of
	false -> throw(not_possible);
	true -> frame_size(Is, Safe)
    end.

%% is_not_used(Y, [Instruction]) -> true|false.
%%  Test whether the value of Y is unused in the instruction sequence.
%%  Return true if the value of Y is not used, and false if it is used.
%%
%%  This function handles the same instructions as frame_size/2. It
%%  assumes that any labels in the instructions are safe labels.

is_not_used(Y, [{'%',_}|Is]) ->
    is_not_used(Y, Is);
is_not_used(Y, [{apply,_}|Is]) ->
    is_not_used(Y, Is);
is_not_used(Y, [{bif,_,{f,_},Ss,Dst}|Is]) ->
    is_not_used_ss_dst(Y, Ss, Dst, Is);
is_not_used(Y, [{block,Bl}|Is]) ->
    case is_not_used_block(Y, Bl) of
        used -> false;
        killed -> true;
        transparent -> is_not_used(Y, Is)
    end;
is_not_used(Y, [{bs_get_tail,Src,Dst,_}|Is]) ->
    is_not_used_ss_dst(Y, [Src], Dst, Is);
is_not_used(Y, [{bs_start_match4,_Fail,_Live,Src,Dst}|Is]) ->
    Y =/= Src andalso Y =/= Dst andalso
        is_not_used(Y, Is);
is_not_used(Y, [{bs_set_position,Src1,Src2}|Is]) ->
    Y =/= Src1 andalso Y =/= Src2 andalso
        is_not_used(Y, Is);
is_not_used(Y, [{call,_,_}|Is]) ->
    is_not_used(Y, Is);
is_not_used(Y, [{call_ext,_,_}|Is]) ->
    is_not_used(Y, Is);
is_not_used(Y, [{call_fun,_}|Is]) ->
    is_not_used(Y, Is);
is_not_used(_Y, [{deallocate,_}|_]) ->
    true;
is_not_used(Y, [{gc_bif,_,{f,_},_Live,Ss,Dst}|Is]) ->
    is_not_used_ss_dst(Y, Ss, Dst, Is);
is_not_used(Y, [{get_map_elements,{f,_},S,{list,List}}|Is]) ->
    {Ss,Ds} = beam_utils:split_even(List),
    case member(Y, [S|Ss]) of
	true ->
	    false;
	false ->
            member(Y, Ds) orelse is_not_used(Y, Is)
    end;
is_not_used(Y, [{init_yregs,{list,Yregs}}|Is]) ->
    member(Y, Yregs) orelse is_not_used(Y, Is);
is_not_used(Y, [{line,_}|Is]) ->
    is_not_used(Y, Is);
is_not_used(Y, [{make_fun2,_,_,_,_}|Is]) ->
    is_not_used(Y, Is);
is_not_used(Y, [{make_fun3,_,_,_,Dst,{list,Env}}|Is]) ->
    is_not_used_ss_dst(Y, Env, Dst, Is);
is_not_used(Y, [{recv_marker_clear,Ref}|Is]) ->
    Y =/= Ref andalso is_not_used(Y, Is);
is_not_used(Y, [{recv_marker_reserve,Dst}|Is]) ->
    Y =/= Dst andalso is_not_used(Y, Is);
is_not_used(Y, [{swap,Reg1,Reg2}|Is]) ->
    Y =/= Reg1 andalso Y =/= Reg2 andalso is_not_used(Y, Is);
is_not_used(Y, [{test,_,_,Ss}|Is]) ->
    not member(Y, Ss) andalso is_not_used(Y, Is);
is_not_used(Y, [{test,_Op,{f,_},_Live,Ss,Dst}|Is]) ->
    is_not_used_ss_dst(Y, Ss, Dst, Is).

is_not_used_block(Y, [{set,Ds,Ss,_}|Is]) ->
    case member(Y, Ss) of
        true ->
            used;
        false ->
            case member(Y, Ds) of
                true ->
                    killed;
                false ->
                    is_not_used_block(Y, Is)
            end
    end;
is_not_used_block(_Y, []) -> transparent.

is_not_used_ss_dst(Y, Ss, Dst, Is) ->
    not member(Y, Ss) andalso (Y =:= Dst orelse is_not_used(Y, Is)).