summaryrefslogtreecommitdiff
path: root/lib/compiler/src/beam_ssa_opt.erl
blob: 72e320749e7d5ea5ce23839a9df3241b91709c37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2018-2020. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%

%%%
%%% This is a collection of various optimizations that don't need a separate
%%% pass by themselves and/or are mutually beneficial to other passes.
%%%
%%% The optimizations are applied in "phases," each with a list of sub-passes
%%% to run. These sub-passes are applied on all functions in a module before
%%% moving on to the next phase, which lets us gather module-level information
%%% in one phase and then apply it in the next without having to risk working
%%% with incomplete information.
%%%
%%% Each sub-pass operates on a #opt_st{} record and a func_info_db(), where
%%% the former is just a #b_function{} whose blocks can be represented either
%%% in linear or map form, and the latter is a map with information about all
%%% functions in the module (see beam_ssa_opt.hrl for more details).
%%%

-module(beam_ssa_opt).
-export([module/2]).

-include("beam_ssa_opt.hrl").

-import(lists, [all/2,append/1,droplast/1,duplicate/2,flatten/1,foldl/3,
                keyfind/3,last/1,mapfoldl/3,member/2,
                partition/2,reverse/1,reverse/2,
                splitwith/2,sort/1,takewhile/2,unzip/1]).

-define(MAX_REPETITIONS, 16).

-spec module(beam_ssa:b_module(), [compile:option()]) ->
                    {'ok',beam_ssa:b_module()}.

module(Module, Opts) ->
    FuncDb = case proplists:get_value(no_module_opt, Opts, false) of
                 false -> build_func_db(Module);
                 true -> #{}
             end,

    %% Passes that perform module-level optimizations are often aided by
    %% optimizing callers before callees and vice versa, so we optimize all
    %% functions in call order, alternating the order every time.
    StMap0 = build_st_map(Module),
    Order = get_call_order_po(StMap0, FuncDb),

    Phases = [{once, Order, prologue_passes(Opts)},
              {module, module_passes(Opts)},
              {fixpoint, Order, repeated_passes(Opts)},
              {once, Order, epilogue_passes(Opts)}],

    StMap = run_phases(Phases, StMap0, FuncDb),
    {ok, finish(Module, StMap)}.

run_phases([{module, Passes} | Phases], StMap0, FuncDb0) ->
    {StMap, FuncDb} = compile:run_sub_passes(Passes, {StMap0, FuncDb0}),
    run_phases(Phases, StMap, FuncDb);
run_phases([{once, FuncIds0, Passes} | Phases], StMap0, FuncDb0) ->
    FuncIds = skip_removed(FuncIds0, StMap0),
    {StMap, FuncDb} = phase(FuncIds, Passes, StMap0, FuncDb0),
    run_phases(Phases, StMap, FuncDb);
run_phases([{fixpoint, FuncIds0, Passes} | Phases], StMap0, FuncDb0) ->
    FuncIds = skip_removed(FuncIds0, StMap0),
    RevFuncIds = reverse(FuncIds),
    Order = {FuncIds, RevFuncIds},
    {StMap, FuncDb} = fixpoint(RevFuncIds, Order, Passes,
                               StMap0, FuncDb0, ?MAX_REPETITIONS),
    run_phases(Phases, StMap, FuncDb);
run_phases([], StMap, _FuncDb) ->
    StMap.

skip_removed(FuncIds, StMap) ->
    [F || F <- FuncIds, is_map_key(F, StMap)].

%% Run the given passes until a fixpoint is reached.
fixpoint(_FuncIds, _Order, _Passes, StMap, FuncDb, 0) ->
    %% Too many repetitions. Give up and return what we have.
    {StMap, FuncDb};
fixpoint(FuncIds0, Order0, Passes, StMap0, FuncDb0, N) ->
    {StMap, FuncDb} = phase(FuncIds0, Passes, StMap0, FuncDb0),
    Repeat = changed(FuncIds0, FuncDb0, FuncDb, StMap0, StMap),
    case sets:is_empty(Repeat) of
        true ->
            %% No change. Fixpoint reached.
            {StMap, FuncDb};
        false ->
            %% Repeat the optimizations for functions whose code has
            %% changed or for which there is potentially updated type
            %% information.
            {OrderA, OrderB} = Order0,
            Order = {OrderB, OrderA},
            FuncIds = [Id || Id <- OrderA, sets:is_element(Id, Repeat)],
            fixpoint(FuncIds, Order, Passes, StMap, FuncDb, N - 1)
    end.

phase([FuncId | Ids], Ps, StMap, FuncDb0) ->
    try compile:run_sub_passes(Ps, {map_get(FuncId, StMap), FuncDb0}) of
        {St, FuncDb} ->
            phase(Ids, Ps, StMap#{ FuncId => St }, FuncDb)
    catch
        Class:Error:Stack ->
            #b_local{name=#b_literal{val=Name},arity=Arity} = FuncId,
            io:fwrite("Function: ~w/~w\n", [Name,Arity]),
            erlang:raise(Class, Error, Stack)
    end;
phase([], _Ps, StMap, FuncDb) ->
    {StMap, FuncDb}.

changed(PrevIds, FuncDb0, FuncDb, StMap0, StMap) ->
    %% Find all functions in FuncDb that can be reached by changes
    %% of argument and/or return types. Those are the functions that
    %% may gain from running the optimization passes again.
    %%
    %% Note that we examine all functions in FuncDb, not only functions
    %% optimized in the previous run, because the argument types can
    %% have been updated for functions not included in the previous run.

    F = fun(Id, A) ->
                case sets:is_element(Id, A) of
                    true ->
                        A;
                    false ->
                        {#func_info{arg_types=ATs0,succ_types=ST0},
                         #func_info{arg_types=ATs1,succ_types=ST1}} =
                            {map_get(Id, FuncDb0),map_get(Id, FuncDb)},

                        %% If the argument types have changed for this
                        %% function, re-optimize this function and all
                        %% functions it calls directly or indirectly.
                        %%
                        %% If the return type has changed, re-optimize
                        %% this function and all functions that call
                        %% this function directly or indirectly.
                        Opts = case ATs0 =:= ATs1 of
                                    true -> [];
                                    false -> [called]
                                end ++
                            case ST0 =:= ST1 of
                                true -> [];
                                false -> [callers]
                            end,
                        case Opts of
                            [] -> A;
                            [_|_] -> add_changed([Id], Opts, FuncDb, A)
                        end
                end
        end,
    Ids = foldl(F, sets:new([{version, 2}]), maps:keys(FuncDb)),

    %% From all functions that were optimized in the previous run,
    %% find the functions that had any change in the SSA code. Those
    %% functions might gain from being optimized again. (For example,
    %% when beam_ssa_dead has shortcut branches, the types for some
    %% variables could become narrower, giving beam_ssa_type new
    %% opportunities for optimization.)
    %%
    %% Note that the functions examined could be functions with module-level
    %% optimization turned off (and thus not included in FuncDb).

    foldl(fun(Id, A) ->
                  case sets:is_element(Id, A) of
                      true ->
                          %% Already scheduled for another optimization.
                          %% No need to compare the SSA code.
                          A;
                      false ->
                          %% Compare the SSA code before and after optimization.
                          case {map_get(Id, StMap0),map_get(Id, StMap)} of
                              {Same,Same} -> A;
                              {_,_} -> sets:add_element(Id, A)
                          end
                  end
          end, Ids, PrevIds).

add_changed([Id|Ids], Opts, FuncDb, S0) when is_map_key(Id, FuncDb) ->
    case sets:is_element(Id, S0) of
        true ->
            add_changed(Ids, Opts, FuncDb, S0);
        false ->
            S1 = sets:add_element(Id, S0),
            #func_info{in=In,out=Out} = map_get(Id, FuncDb),
            S2 = case member(callers, Opts) of
                     true -> add_changed(In, Opts, FuncDb, S1);
                     false -> S1
                 end,
            S = case member(called, Opts) of
                    true -> add_changed(Out, Opts, FuncDb, S2);
                    false -> S2
                end,
            add_changed(Ids, Opts, FuncDb, S)
    end;
add_changed([_|Ids], Opts, FuncDb, S) ->
    %% This function is exempt from module-level optimization and will not
    %% provide any more information.
    add_changed(Ids, Opts, FuncDb, S);
add_changed([], _, _, S) -> S.

%%

get_func_id(F) ->
    {_Mod, Name, Arity} = beam_ssa:get_anno(func_info, F),
    #b_local{name=#b_literal{val=Name}, arity=Arity}.

-spec build_st_map(#b_module{}) -> st_map().
build_st_map(#b_module{body=Fs}) ->
    build_st_map_1(Fs, #{}).

build_st_map_1([F | Fs], Map) ->
    #b_function{anno=Anno,args=Args,cnt=Counter,bs=Bs} = F,
    St = #opt_st{anno=Anno,args=Args,cnt=Counter,ssa=Bs},
    build_st_map_1(Fs, Map#{ get_func_id(F) => St });
build_st_map_1([], Map) ->
    Map.

-spec finish(#b_module{}, st_map()) -> #b_module{}.
finish(#b_module{body=Fs0}=Module, StMap) ->
    Module#b_module{body=finish_1(Fs0, StMap)}.

finish_1([F0 | Fs], StMap) ->
    FuncId = get_func_id(F0),
    case StMap of
        #{ FuncId := #opt_st{anno=Anno,cnt=Counter,ssa=Blocks} } ->
            F = F0#b_function{anno=Anno,bs=Blocks,cnt=Counter},
            [F | finish_1(Fs, StMap)];
        #{} ->
            finish_1(Fs, StMap)
    end;
finish_1([], _StMap) ->
    [].

%%

-define(PASS(N), {N,fun N/1}).

prologue_passes(Opts) ->
    Ps = [?PASS(ssa_opt_split_blocks),
          ?PASS(ssa_opt_coalesce_phis),
          ?PASS(ssa_opt_tail_phis),
          ?PASS(ssa_opt_element),
          ?PASS(ssa_opt_linearize),
          ?PASS(ssa_opt_tuple_size),
          ?PASS(ssa_opt_record),
          ?PASS(ssa_opt_cse),                   % Helps the first type pass.
          ?PASS(ssa_opt_live)],                 % ...
    passes_1(Ps, Opts).

module_passes(Opts) ->
    Ps0 = [{ssa_opt_bc_size,
            fun({StMap, FuncDb}) ->
                    {beam_ssa_bc_size:opt(StMap), FuncDb}
            end},
           {ssa_opt_type_start,
            fun({StMap, FuncDb}) ->
                    beam_ssa_type:opt_start(StMap, FuncDb)
            end}],
    passes_1(Ps0, Opts).

%% These passes all benefit from each other (in roughly this order), so they
%% are repeated as required.
repeated_passes(Opts) ->
    Ps = [?PASS(ssa_opt_live),
          ?PASS(ssa_opt_ne),
          ?PASS(ssa_opt_bs_puts),
          ?PASS(ssa_opt_dead),
          ?PASS(ssa_opt_cse),
          ?PASS(ssa_opt_tail_phis),
          ?PASS(ssa_opt_sink),
          ?PASS(ssa_opt_tuple_size),
          ?PASS(ssa_opt_record),
          ?PASS(ssa_opt_try),
          ?PASS(ssa_opt_type_continue)],        %Must run after ssa_opt_dead to
                                                %clean up phi nodes.
    passes_1(Ps, Opts).

epilogue_passes(Opts) ->
    Ps = [?PASS(ssa_opt_type_finish),
          ?PASS(ssa_opt_float),
          ?PASS(ssa_opt_sw),

          %% Run live one more time to clean up after the previous
          %% epilogue passes.
          ?PASS(ssa_opt_live),
          ?PASS(ssa_opt_bsm),
          ?PASS(ssa_opt_bsm_shortcut),
          ?PASS(ssa_opt_sink),
          ?PASS(ssa_opt_blockify),
          ?PASS(ssa_opt_redundant_br),
          ?PASS(ssa_opt_merge_blocks),
          ?PASS(ssa_opt_get_tuple_element),
          ?PASS(ssa_opt_tail_calls),
          ?PASS(ssa_opt_trim_unreachable),
          ?PASS(ssa_opt_unfold_literals)],
    passes_1(Ps, Opts).

passes_1(Ps, Opts0) ->
    Negations = [{list_to_atom("no_"++atom_to_list(N)),N} ||
                    {N,_} <- Ps],
    Opts = proplists:substitute_negations(Negations, Opts0),
    [case proplists:get_value(Name, Opts, true) of
         true ->
             P;
         false ->
             {NoName,Name} = keyfind(Name, 2, Negations),
             {NoName,fun(S) -> S end}
     end || {Name,_}=P <- Ps].

%% Builds a function information map with basic information about incoming and
%% outgoing local calls, as well as whether the function is exported.
-spec build_func_db(#b_module{}) -> func_info_db().
build_func_db(#b_module{body=Fs,attributes=Attr,exports=Exports0}) ->
    Exports = fdb_exports(Attr, Exports0),
    try
        fdb_fs(Fs, Exports, #{})
    catch
        %% All module-level optimizations are invalid when a NIF can override a
        %% function, so we have to bail out.
        throw:load_nif -> #{}
    end.

fdb_exports([{on_load, L} | Attrs], Exports) ->
    %% Functions marked with on_load must be treated as exported to prevent
    %% them from being optimized away when unused.
    fdb_exports(Attrs, flatten(L) ++ Exports);
fdb_exports([_Attr | Attrs], Exports) ->
    fdb_exports(Attrs, Exports);
fdb_exports([], Exports) ->
    gb_sets:from_list(Exports).

fdb_fs([#b_function{ args=Args,bs=Bs }=F | Fs], Exports, FuncDb0) ->
    Id = get_func_id(F),

    #b_local{name=#b_literal{val=Name}, arity=Arity} = Id,
    Exported = gb_sets:is_element({Name, Arity}, Exports),
    ArgTypes = duplicate(length(Args), #{}),

    FuncDb1 = case FuncDb0 of
                  %% We may have an entry already if someone's called us.
                  #{ Id := Info } ->
                      FuncDb0#{ Id := Info#func_info{ exported=Exported,
                                                      arg_types=ArgTypes }};
                  #{} ->
                      FuncDb0#{ Id => #func_info{ exported=Exported,
                                                  arg_types=ArgTypes }}
              end,

    RPO = beam_ssa:rpo(Bs),
    FuncDb = beam_ssa:fold_blocks(fun(_L, #b_blk{is=Is}, FuncDb) ->
                                       fdb_is(Is, Id, FuncDb)
                               end, RPO, FuncDb1, Bs),

    fdb_fs(Fs, Exports, FuncDb);
fdb_fs([], _Exports, FuncDb) ->
    FuncDb.

fdb_is([#b_set{op=call,
               args=[#b_local{}=Callee | _]} | Is],
       Caller, FuncDb) ->
    fdb_is(Is, Caller, fdb_update(Caller, Callee, FuncDb));
fdb_is([#b_set{op=call,
               args=[#b_remote{mod=#b_literal{val=erlang},
                               name=#b_literal{val=load_nif}},
                     _Path, _LoadInfo]} | _Is], _Caller, _FuncDb) ->
    throw(load_nif);
fdb_is([#b_set{op=MakeFun,
               args=[#b_local{}=Callee | _]} | Is],
       Caller, FuncDb) when MakeFun =:= make_fun;
                            MakeFun =:= old_make_fun ->
    %% The make_fun instruction's type depends on the return type of the
    %% function in question, so we treat this as a function call.
    fdb_is(Is, Caller, fdb_update(Caller, Callee, FuncDb));
fdb_is([_ | Is], Caller, FuncDb) ->
    fdb_is(Is, Caller, FuncDb);
fdb_is([], _Caller, FuncDb) ->
    FuncDb.

fdb_update(Caller, Callee, FuncDb) ->
    CallerVertex = maps:get(Caller, FuncDb, #func_info{}),
    CalleeVertex = maps:get(Callee, FuncDb, #func_info{}),

    Calls = ordsets:add_element(Callee, CallerVertex#func_info.out),
    CalledBy = ordsets:add_element(Caller, CalleeVertex#func_info.in),

    FuncDb#{ Caller => CallerVertex#func_info{out=Calls},
             Callee => CalleeVertex#func_info{in=CalledBy} }.

%% Returns the post-order of all local calls in this module. That is,
%% called functions will be ordered before the functions calling them.
%%
%% Functions where module-level optimization is disabled are added last in
%% arbitrary order.

get_call_order_po(StMap, FuncDb) ->
    Order = gco_po(FuncDb),
    Order ++ maps:fold(fun(K, _V, Acc) ->
                               case is_map_key(K, FuncDb) of
                                   false -> [K | Acc];
                                   true -> Acc
                               end
                       end, [], StMap).

gco_po(FuncDb) ->
    All = sort(maps:keys(FuncDb)),
    {RPO,_} = gco_rpo(All, FuncDb, sets:new([{version, 2}]), []),
    reverse(RPO).

gco_rpo([Id|Ids], FuncDb, Seen0, Acc0) ->
    case sets:is_element(Id, Seen0) of
        true ->
            gco_rpo(Ids, FuncDb, Seen0, Acc0);
        false ->
            #func_info{out=Successors} = map_get(Id, FuncDb),
            Seen1 = sets:add_element(Id, Seen0),
            {Acc,Seen} = gco_rpo(Successors, FuncDb, Seen1, Acc0),
            gco_rpo(Ids, FuncDb, Seen, [Id|Acc])
    end;
gco_rpo([], _, Seen, Acc) ->
    {Acc,Seen}.

%%%
%%% Trivial sub passes.
%%%

ssa_opt_dead({#opt_st{ssa=Linear}=St, FuncDb}) ->
    {St#opt_st{ssa=beam_ssa_dead:opt(Linear)}, FuncDb}.

ssa_opt_linearize({#opt_st{ssa=Blocks}=St, FuncDb}) ->
    {St#opt_st{ssa=beam_ssa:linearize(Blocks)}, FuncDb}.

ssa_opt_type_continue({#opt_st{ssa=Linear0,args=Args,anno=Anno}=St0, FuncDb0}) ->
    {Linear, FuncDb} = beam_ssa_type:opt_continue(Linear0, Args, Anno, FuncDb0),
    {St0#opt_st{ssa=Linear}, FuncDb}.

ssa_opt_type_finish({#opt_st{args=Args,anno=Anno0}=St0, FuncDb0}) ->
    {Anno, FuncDb} = beam_ssa_type:opt_finish(Args, Anno0, FuncDb0),
    {St0#opt_st{anno=Anno}, FuncDb}.

ssa_opt_blockify({#opt_st{ssa=Linear}=St, FuncDb}) ->
    {St#opt_st{ssa=maps:from_list(Linear)}, FuncDb}.

ssa_opt_trim_unreachable({#opt_st{ssa=Blocks}=St, FuncDb}) ->
    {St#opt_st{ssa=beam_ssa:trim_unreachable(Blocks)}, FuncDb}.

ssa_opt_merge_blocks({#opt_st{ssa=Blocks0}=St, FuncDb}) ->
    RPO = beam_ssa:rpo(Blocks0),
    Blocks = beam_ssa:merge_blocks(RPO, Blocks0),
    {St#opt_st{ssa=Blocks}, FuncDb}.

%%%
%%% Split blocks before certain instructions to enable more optimizations.
%%%
%%% Splitting before element/2 enables the optimization that swaps
%%% element/2 instructions.
%%%
%%% Splitting before call and make_fun instructions gives more opportunities
%%% for sinking get_tuple_element instructions.
%%%

ssa_opt_split_blocks({#opt_st{ssa=Blocks0,cnt=Count0}=St, FuncDb}) ->
    P = fun(#b_set{op={bif,element}}) -> true;
           (#b_set{op=call}) -> true;
           (#b_set{op=bs_init_writable}) -> true;
           (#b_set{op=make_fun}) -> true;
           (#b_set{op=old_make_fun}) -> true;
           (_) -> false
        end,
    RPO = beam_ssa:rpo(Blocks0),
    {Blocks,Count} = beam_ssa:split_blocks(RPO, P, Blocks0, Count0),
    {St#opt_st{ssa=Blocks,cnt=Count}, FuncDb}.

%%%
%%% Coalesce phi nodes.
%%%
%%% Nested cases can led to code such as this:
%%%
%%%     10:
%%%       _1 = phi {literal value1, label 8}, {Var, label 9}
%%%       br 11
%%%
%%%     11:
%%%       _2 = phi {_1, label 10}, {literal false, label 3}
%%%
%%% The phi nodes can be coalesced like this:
%%%
%%%     11:
%%%       _2 = phi {literal value1, label 8}, {Var, label 9}, {literal false, label 3}
%%%
%%% Coalescing can help other optimizations, and can in some cases reduce register
%%% shuffling (if the phi variables for two phi nodes happens to be allocated to
%%% different registers).
%%%

ssa_opt_coalesce_phis({#opt_st{ssa=Blocks0}=St, FuncDb}) ->
    Ls = beam_ssa:rpo(Blocks0),
    Blocks = c_phis_1(Ls, Blocks0),
    {St#opt_st{ssa=Blocks}, FuncDb}.

c_phis_1([L|Ls], Blocks0) ->
    case map_get(L, Blocks0) of
        #b_blk{is=[#b_set{op=phi}|_]}=Blk ->
            Blocks = c_phis_2(L, Blk, Blocks0),
            c_phis_1(Ls, Blocks);
        #b_blk{} ->
            c_phis_1(Ls, Blocks0)
    end;
c_phis_1([], Blocks) -> Blocks.

c_phis_2(L, #b_blk{is=Is0}=Blk0, Blocks0) ->
    case c_phis_args(Is0, Blocks0) of
        none ->
            Blocks0;
        {_,_,Preds}=Info ->
            Is = c_rewrite_phis(Is0, Info),
            Blk = Blk0#b_blk{is=Is},
            Blocks = Blocks0#{L:=Blk},
            c_fix_branches(Preds, L, Blocks)
    end.

c_phis_args([#b_set{op=phi,args=Args0}|Is], Blocks) ->
    case c_phis_args_1(Args0, Blocks) of
        none ->
            c_phis_args(Is, Blocks);
        Res ->
            Res
    end;
c_phis_args(_, _Blocks) -> none.

c_phis_args_1([{Var,Pred}|As], Blocks) ->
    case c_get_pred_vars(Var, Pred, Blocks) of
        none ->
            c_phis_args_1(As, Blocks);
        Result ->
            Result
    end;
c_phis_args_1([], _Blocks) -> none.

c_get_pred_vars(Var, Pred, Blocks) ->
    case map_get(Pred, Blocks) of
        #b_blk{is=[#b_set{op=phi,dst=Var,args=Args}]} ->
            {Var,Pred,Args};
        #b_blk{} ->
            none
    end.

c_rewrite_phis([#b_set{op=phi,args=Args0}=I|Is], Info) ->
    Args = c_rewrite_phi(Args0, Info),
    [I#b_set{args=Args}|c_rewrite_phis(Is, Info)];
c_rewrite_phis(Is, _Info) -> Is.

c_rewrite_phi([{Var,Pred}|As], {Var,Pred,Values}) ->
    Values ++ As;
c_rewrite_phi([{Value,Pred}|As], {_,Pred,Values}) ->
    [{Value,P} || {_,P} <- Values] ++ As;
c_rewrite_phi([A|As], Info) ->
    [A|c_rewrite_phi(As, Info)];
c_rewrite_phi([], _Info) -> [].

c_fix_branches([{_,Pred}|As], L, Blocks0) ->
    #b_blk{last=Last0} = Blk0 = map_get(Pred, Blocks0),
    #b_br{bool=#b_literal{val=true}} = Last0,   %Assertion.
    Last = Last0#b_br{bool=#b_literal{val=true},succ=L,fail=L},
    Blk = Blk0#b_blk{last=Last},
    Blocks = Blocks0#{Pred:=Blk},
    c_fix_branches(As, L, Blocks);
c_fix_branches([], _, Blocks) -> Blocks.

%%%
%%% Eliminate phi nodes in the tail of a function.
%%%
%%% Try to eliminate short blocks that starts with a phi node
%%% and end in a return. For example:
%%%
%%%    Result = phi { Res1, 4 }, { literal true, 5 }
%%%    Ret = put_tuple literal ok, Result
%%%    ret Ret
%%%
%%% The code in this block can be inserted at the end blocks 4 and
%%% 5. Thus, the following code can be inserted into block 4:
%%%
%%%    Ret:1 = put_tuple literal ok, Res1
%%%    ret Ret:1
%%%
%%% And the following code into block 5:
%%%
%%%    Ret:2 = put_tuple literal ok, literal true
%%%    ret Ret:2
%%%
%%% Which can be further simplified to:
%%%
%%%    ret literal {ok, true}
%%%
%%% This transformation may lead to more code improvements:
%%%
%%%   - Stack trimming
%%%   - Fewer test_heap instructions
%%%   - Smaller stack frames
%%%

ssa_opt_tail_phis({#opt_st{ssa=SSA0,cnt=Count0}=St, FuncDb}) ->
    {SSA,Count} = opt_tail_phis(SSA0, Count0),
    {St#opt_st{ssa=SSA,cnt=Count}, FuncDb}.

opt_tail_phis(Blocks, Count) when is_map(Blocks) ->
    opt_tail_phis(maps:values(Blocks), Blocks, Count);
opt_tail_phis(Linear0, Count0) when is_list(Linear0) ->
    Blocks0 = maps:from_list(Linear0),
    {Blocks,Count} = opt_tail_phis(Blocks0, Count0),
    {beam_ssa:linearize(Blocks),Count}.

opt_tail_phis([#b_blk{is=Is0,last=Last}|Bs], Blocks0, Count0) ->
    case {Is0,Last} of
        {[#b_set{op=phi,args=[_,_|_]}|_],#b_ret{arg=#b_var{}}=Ret} ->
            {Phis,Is} = splitwith(fun(#b_set{op=Op}) -> Op =:= phi end, Is0),
            case suitable_tail_ops(Is) of
                true ->
                    {Blocks,Count} = opt_tail_phi(Phis, Is, Ret,
                                                  Blocks0, Count0),
                    opt_tail_phis(Bs, Blocks, Count);
                false ->
                    opt_tail_phis(Bs, Blocks0, Count0)
            end;
        {_,_} ->
            opt_tail_phis(Bs, Blocks0, Count0)
    end;
opt_tail_phis([], Blocks, Count) ->
    {Blocks,Count}.

opt_tail_phi(Phis0, Is, Ret, Blocks0, Count0) ->
    Phis = rel2fam(reduce_phis(Phis0)),
    {Blocks,Count,Cost} =
        foldl(fun(PhiArg, Acc) ->
                      opt_tail_phi_arg(PhiArg, Is, Ret, Acc)
              end, {Blocks0,Count0,0}, Phis),
    MaxCost = length(Phis) * 3 + 2,
    if
        Cost =< MaxCost ->
            %% The transformation would cause at most a slight
            %% increase in code size if no more optimizations
            %% can be applied.
            {Blocks,Count};
        true ->
            %% The code size would be increased too much.
            {Blocks0,Count0}
    end.

reduce_phis([#b_set{dst=PhiDst,args=PhiArgs}|Is]) ->
    [{L,{PhiDst,Val}} || {Val,L} <- PhiArgs] ++ reduce_phis(Is);
reduce_phis([]) -> [].

opt_tail_phi_arg({PredL,Sub0}, Is0, Ret0, {Blocks0,Count0,Cost0}) ->
    Blk0 = map_get(PredL, Blocks0),
    #b_blk{is=IsPrefix,last=#b_br{succ=Next,fail=Next}} = Blk0,
    Sub1 = maps:from_list(Sub0),
    {Is1,Count,Sub} = new_names(Is0, Sub1, Count0, []),
    Is2 = [sub(I, Sub) || I <- Is1],
    Cost = build_cost(Is2, Cost0),
    Is = IsPrefix ++ Is2,
    Ret = sub(Ret0, Sub),
    Blk = Blk0#b_blk{is=Is,last=Ret},
    Blocks = Blocks0#{PredL:=Blk},
    {Blocks,Count,Cost}.

new_names([#b_set{dst=Dst}=I|Is], Sub0, Count0, Acc) ->
    {NewDst,Count} = new_var(Dst, Count0),
    Sub = Sub0#{Dst=>NewDst},
    new_names(Is, Sub, Count, [I#b_set{dst=NewDst}|Acc]);
new_names([], Sub, Count, Acc) ->
    {reverse(Acc),Count,Sub}.

suitable_tail_ops(Is) ->
    all(fun(#b_set{op=Op}) ->
                is_suitable_tail_op(Op)
        end, Is).

is_suitable_tail_op({bif,_}) -> true;
is_suitable_tail_op(put_list) -> true;
is_suitable_tail_op(put_tuple) -> true;
is_suitable_tail_op(_) -> false.

build_cost([#b_set{op=put_list,args=Args}|Is], Cost) ->
    case are_all_literals(Args) of
        true ->
            build_cost(Is, Cost);
        false ->
            build_cost(Is, Cost + 1)
    end;
build_cost([#b_set{op=put_tuple,args=Args}|Is], Cost) ->
    case are_all_literals(Args) of
        true ->
            build_cost(Is, Cost);
        false ->
            build_cost(Is, Cost + length(Args) + 1)
    end;
build_cost([#b_set{op={bif,_},args=Args}|Is], Cost) ->
    case are_all_literals(Args) of
        true ->
            build_cost(Is, Cost);
        false ->
            build_cost(Is, Cost + 1)
    end;
build_cost([], Cost) -> Cost.

are_all_literals(Args) ->
    all(fun(#b_literal{}) -> true;
                (_) -> false
             end, Args).

%%%
%%% Order element/2 calls.
%%%
%%% Order an unbroken chain of element/2 calls for the same tuple
%%% with the same failure label so that the highest element is
%%% retrieved first. That will allow the other element/2 calls to
%%% be replaced with get_tuple_element/3 instructions.
%%%

ssa_opt_element({#opt_st{ssa=Blocks}=St, FuncDb}) ->
    %% Collect the information about element instructions in this
    %% function.
    GetEls = collect_element_calls(beam_ssa:linearize(Blocks)),

    %% Collect the element instructions into chains. The
    %% element calls in each chain are ordered in reverse
    %% execution order.
    Chains = collect_chains(GetEls, []),

    %% For each chain, swap the first element call with the
    %% element call with the highest index.
    {St#opt_st{ssa=swap_element_calls(Chains, Blocks)}, FuncDb}.

collect_element_calls([{L,#b_blk{is=Is0,last=Last}}|Bs]) ->
    case {Is0,Last} of
        {[#b_set{op={bif,element},dst=Element,
                 args=[#b_literal{val=N},#b_var{}=Tuple]},
          #b_set{op={succeeded,guard},dst=Bool,args=[Element]}],
         #b_br{bool=Bool,succ=Succ,fail=Fail}} ->
            Info = {L,Succ,{Tuple,Fail},N},
            [Info|collect_element_calls(Bs)];
        {_,_} ->
            collect_element_calls(Bs)
    end;
collect_element_calls([]) -> [].

collect_chains([{This,_,V,_}=El|Els], [{_,This,V,_}|_]=Chain) ->
    %% Add to the previous chain.
    collect_chains(Els, [El|Chain]);
collect_chains([El|Els], [_,_|_]=Chain) ->
    %% Save the previous chain and start a new chain.
    [Chain|collect_chains(Els, [El])];
collect_chains([El|Els], _Chain) ->
    %% The previous chain is too short; discard it and start a new.
    collect_chains(Els, [El]);
collect_chains([], [_,_|_]=Chain) ->
    %% Save the last chain.
    [Chain];
collect_chains([], _) ->  [].

swap_element_calls([[{L,_,_,N}|_]=Chain|Chains], Blocks0) ->
    Blocks = swap_element_calls_1(Chain, {N,L}, Blocks0),
    swap_element_calls(Chains, Blocks);
swap_element_calls([], Blocks) -> Blocks.

swap_element_calls_1([{L1,_,_,N1}], {N2,L2}, Blocks) when N2 > N1 ->
    %% We have reached the end of the chain, and the first
    %% element instrution to be executed. Its index is lower
    %% than the maximum index found while traversing the chain,
    %% so we will need to swap the instructions.
    #{L1:=Blk1,L2:=Blk2} = Blocks,
    [#b_set{dst=Dst1}=GetEl1,Succ1] = Blk1#b_blk.is,
    [#b_set{dst=Dst2}=GetEl2,Succ2] = Blk2#b_blk.is,
    Is1 = [GetEl2,Succ1#b_set{args=[Dst2]}],
    Is2 = [GetEl1,Succ2#b_set{args=[Dst1]}],
    Blocks#{L1:=Blk1#b_blk{is=Is1},L2:=Blk2#b_blk{is=Is2}};
swap_element_calls_1([{L,_,_,N1}|Els], {N2,_}, Blocks) when N1 > N2 ->
    swap_element_calls_1(Els, {N2,L}, Blocks);
swap_element_calls_1([_|Els], Highest, Blocks) ->
    swap_element_calls_1(Els, Highest, Blocks);
swap_element_calls_1([], _, Blocks) ->
    %% Nothing to do. The element call with highest index
    %% is already the first one to be executed.
    Blocks.

%%%
%%% Record optimization.
%%%
%%% Replace tuple matching with an is_tagged_tuple instruction
%%% when applicable.
%%%

ssa_opt_record({#opt_st{ssa=Linear}=St, FuncDb}) ->
    Blocks = maps:from_list(Linear),
    {St#opt_st{ssa=record_opt(Linear, Blocks)}, FuncDb}.

record_opt([{L,#b_blk{is=Is0,last=Last}=Blk0}|Bs], Blocks) ->
    Is = record_opt_is(Is0, Last, Blocks),
    Blk = Blk0#b_blk{is=Is},
    [{L,Blk}|record_opt(Bs, Blocks)];
record_opt([], _Blocks) -> [].

record_opt_is([#b_set{op={bif,is_tuple},dst=Bool,args=[Tuple]}=Set],
              Last, Blocks) ->
    case is_tagged_tuple(Tuple, Bool, Last, Blocks) of
        {yes,Size,Tag} ->
            Args = [Tuple,Size,Tag],
            [Set#b_set{op=is_tagged_tuple,args=Args}];
        no ->
            [Set]
    end;
record_opt_is([I|Is]=Is0, #b_br{bool=Bool}=Last, Blocks) ->
    case is_tagged_tuple_1(Is0, Last, Blocks) of
        {yes,_Fail,Tuple,Arity,Tag} ->
            Args = [Tuple,Arity,Tag],
            [I#b_set{op=is_tagged_tuple,dst=Bool,args=Args}];
        no ->
            [I|record_opt_is(Is, Last, Blocks)]
    end;
record_opt_is([I|Is], Last, Blocks) ->
    [I|record_opt_is(Is, Last, Blocks)];
record_opt_is([], _Last, _Blocks) -> [].

is_tagged_tuple(#b_var{}=Tuple, Bool,
                #b_br{bool=Bool,succ=Succ,fail=Fail},
                Blocks) ->
    #b_blk{is=Is,last=Last} = map_get(Succ, Blocks),
    case is_tagged_tuple_1(Is, Last, Blocks) of
        {yes,Fail,Tuple,Arity,Tag} ->
            {yes,Arity,Tag};
        _ ->
            no
    end;
is_tagged_tuple(_, _, _, _) -> no.

is_tagged_tuple_1(Is, Last, Blocks) ->
    case {Is,Last} of
        {[#b_set{op={bif,tuple_size},dst=ArityVar,
                 args=[#b_var{}=Tuple]},
          #b_set{op={bif,'=:='},
                 dst=Bool,
                 args=[ArityVar, #b_literal{val=ArityVal}=Arity]}],
         #b_br{bool=Bool,succ=Succ,fail=Fail}}
          when is_integer(ArityVal) ->
            SuccBlk = map_get(Succ, Blocks),
            case is_tagged_tuple_2(SuccBlk, Tuple, Fail) of
                no ->
                    no;
                {yes,Tag} ->
                    {yes,Fail,Tuple,Arity,Tag}
            end;
        _ ->
            no
    end.

is_tagged_tuple_2(#b_blk{is=Is,
                         last=#b_br{bool=#b_var{}=Bool,fail=Fail}},
                  Tuple, Fail) ->
    is_tagged_tuple_3(Is, Bool, Tuple);
is_tagged_tuple_2(#b_blk{}, _, _) -> no.

is_tagged_tuple_3([#b_set{op=get_tuple_element,
                          dst=TagVar,
                          args=[#b_var{}=Tuple,#b_literal{val=0}]}|Is],
                  Bool, Tuple) ->
    is_tagged_tuple_4(Is, Bool, TagVar);
is_tagged_tuple_3([_|Is], Bool, Tuple) ->
    is_tagged_tuple_3(Is, Bool, Tuple);
is_tagged_tuple_3([], _, _) -> no.

is_tagged_tuple_4([#b_set{op={bif,'=:='},dst=Bool,
                          args=[#b_var{}=TagVar,
                                #b_literal{val=TagVal}=Tag]}],
                 Bool, TagVar) when is_atom(TagVal) ->
    {yes,Tag};
is_tagged_tuple_4([_|Is], Bool, TagVar) ->
    is_tagged_tuple_4(Is, Bool, TagVar);
is_tagged_tuple_4([], _, _) -> no.

%%%
%%% Common subexpression elimination (CSE).
%%%
%%% Eliminate repeated evaluation of identical expressions. To avoid
%%% increasing the size of the stack frame, we don't eliminate
%%% subexpressions across instructions that clobber the X registers.
%%%

ssa_opt_cse({#opt_st{ssa=Linear}=St, FuncDb}) ->
    M = #{0 => #{}, ?EXCEPTION_BLOCK => #{}},
    {St#opt_st{ssa=cse(Linear, #{}, M)}, FuncDb}.

cse([{L,#b_blk{is=Is0,last=Last0}=Blk}|Bs], Sub0, M0) ->
    Es0 = map_get(L, M0),
    {Is1,Es,Sub} = cse_is(Is0, Es0, Sub0, []),
    Last = sub(Last0, Sub),
    M = cse_successors(Is1, Blk, Es, M0),
    Is = reverse(Is1),
    [{L,Blk#b_blk{is=Is,last=Last}}|cse(Bs, Sub, M)];
cse([], _, _) -> [].

cse_successors([#b_set{op={succeeded,_},args=[Src]},Bif|_], Blk, EsSucc, M0) ->
    case cse_suitable(Bif) of
        true ->
            %% The previous instruction only has a valid value at the success branch.
            %% We must remove the substitution for Src from the failure branch.
            #b_blk{last=#b_br{succ=Succ,fail=Fail}} = Blk,
            M = cse_successors_1([Succ], EsSucc, M0),
            EsFail = maps:filter(fun(_, Val) -> Val =/= Src end, EsSucc),
            cse_successors_1([Fail], EsFail, M);
        false ->
            %% There can't be any replacement for Src in EsSucc. No need for
            %% any special handling.
            cse_successors_1(beam_ssa:successors(Blk), EsSucc, M0)
    end;
cse_successors(_Is, Blk, Es, M) ->
    cse_successors_1(beam_ssa:successors(Blk), Es, M).

cse_successors_1([L|Ls], Es0, M) ->
    case M of
        #{L:=Es1} when map_size(Es1) =:= 0 ->
            %% The map is already empty. No need to do anything
            %% since the intersection will be empty.
            cse_successors_1(Ls, Es0, M);
        #{L:=Es1} ->
            Es = cse_intersection(Es0, Es1),
            cse_successors_1(Ls, Es0, M#{L:=Es});
        #{} ->
            cse_successors_1(Ls, Es0, M#{L=>Es0})
    end;
cse_successors_1([], _, M) -> M.

%% Calculate the intersection of the two maps. Both keys and values
%% must match.
cse_intersection(M1, M2) ->
    if
        map_size(M1) < map_size(M2) ->
            cse_intersection_1(maps:to_list(M1), M2, M1);
        true ->
            cse_intersection_1(maps:to_list(M2), M1, M2)
    end.

cse_intersection_1([{Key,Value}|KVs], M, Result) ->
    case M of
        #{Key := Value} ->
            cse_intersection_1(KVs, M, Result);
        #{} ->
            cse_intersection_1(KVs, M, maps:remove(Key, Result))
    end;
cse_intersection_1([], _, Result) -> Result.

cse_is([#b_set{op={succeeded,_},dst=Bool,args=[Src]}=I0|Is], Es, Sub0, Acc) ->
    I = sub(I0, Sub0),
    case I of
        #b_set{args=[Src]} ->
            cse_is(Is, Es, Sub0, [I|Acc]);
        #b_set{} ->
            %% The previous instruction has been eliminated. Eliminate the
            %% 'succeeded' instruction too.
            Sub = Sub0#{Bool=>#b_literal{val=true}},
            cse_is(Is, Es, Sub, Acc)
    end;
cse_is([#b_set{dst=Dst}=I0|Is], Es0, Sub0, Acc) ->
    I = sub(I0, Sub0),
    case beam_ssa:clobbers_xregs(I) of
        true ->
            %% Retaining the expressions map across calls and other
            %% clobbering instructions would work, but it would cause
            %% the common subexpressions to be saved to Y registers,
            %% which would probably increase the size of the stack
            %% frame.
            cse_is(Is, #{}, Sub0, [I|Acc]);
        false ->
            case cse_expr(I) of
                none ->
                    %% Not suitable for CSE.
                    cse_is(Is, Es0, Sub0, [I|Acc]);
                {ok,ExprKey} ->
                    case Es0 of
                        #{ExprKey:=Src} ->
                            Sub = Sub0#{Dst=>Src},
                            cse_is(Is, Es0, Sub, Acc);
                        #{} ->
                            Es1 = Es0#{ExprKey=>Dst},
                            Es = cse_add_inferred_exprs(I, Es1),
                            cse_is(Is, Es, Sub0, [I|Acc])
                    end
            end
    end;
cse_is([], Es, Sub, Acc) ->
    {Acc,Es,Sub}.

cse_add_inferred_exprs(#b_set{op=put_list,dst=List,args=[Hd,Tl]}, Es) ->
    Es#{{get_hd,[List]} => Hd,
        {get_tl,[List]} => Tl};
cse_add_inferred_exprs(#b_set{op=put_tuple,dst=Tuple,args=[E1,E2|_]}, Es) ->
    %% Adding tuple elements beyond the first two does not seem to be
    %% worthwhile (at least not in the sample used by scripts/diffable).
    Es#{{get_tuple_element,[Tuple,#b_literal{val=0}]} => E1,
        {get_tuple_element,[Tuple,#b_literal{val=1}]} => E2};
cse_add_inferred_exprs(#b_set{op={bif,element},dst=E,
                              args=[#b_literal{val=N},Tuple]}, Es)
  when is_integer(N) ->
    Es#{{get_tuple_element,[Tuple,#b_literal{val=N-1}]} => E};
cse_add_inferred_exprs(#b_set{op={bif,hd},dst=Hd,args=[List]}, Es) ->
    Es#{{get_hd,[List]} => Hd};
cse_add_inferred_exprs(#b_set{op={bif,tl},dst=Tl,args=[List]}, Es) ->
    Es#{{get_tl,[List]} => Tl};
cse_add_inferred_exprs(#b_set{op={bif,map_get},dst=Value,args=[Key,Map]}, Es) ->
    Es#{{get_map_element,[Map,Key]} => Value};
cse_add_inferred_exprs(#b_set{op=put_map,dst=Map,args=Args}, Es) ->
    cse_add_map_get(Args, Map, Es);
cse_add_inferred_exprs(_, Es) -> Es.

cse_add_map_get([Key,Value|T], Map, Es0) ->
    Es = Es0#{{get_map_element,[Map,Key]} => Value},
    cse_add_map_get(T, Map, Es);
cse_add_map_get([], _, Es) -> Es.

cse_expr(#b_set{op=Op,args=Args}=I) ->
    case cse_suitable(I) of
        true -> {ok,{Op,Args}};
        false -> none
    end.

cse_suitable(#b_set{op=get_hd}) -> true;
cse_suitable(#b_set{op=get_tl}) -> true;
cse_suitable(#b_set{op=put_list}) -> true;
cse_suitable(#b_set{op=get_tuple_element}) -> true;
cse_suitable(#b_set{op=put_tuple}) -> true;
cse_suitable(#b_set{op=get_map_element}) -> true;
cse_suitable(#b_set{op=put_map}) -> true;
cse_suitable(#b_set{op={bif,tuple_size}}) ->
    %% Doing CSE for tuple_size/1 can prevent the
    %% creation of test_arity and select_tuple_arity
    %% instructions. That could decrease performance
    %% and beam_validator could fail to understand
    %% that tuple operations that follow are safe.
    false;
cse_suitable(#b_set{anno=Anno,op={bif,Name},args=Args}) ->
    %% Doing CSE for floating point operators is unsafe.
    %% Doing CSE for comparison operators would prevent
    %% creation of 'test' instructions.
    Arity = length(Args),
    not (is_map_key(float_op, Anno) orelse
         erl_internal:new_type_test(Name, Arity) orelse
         erl_internal:comp_op(Name, Arity) orelse
         erl_internal:bool_op(Name, Arity));
cse_suitable(#b_set{}) -> false.

%%%
%%% Using floating point instructions.
%%%
%%% Use the special floating points version of arithmetic
%%% instructions, if the operands are known to be floats or the result
%%% of the operation will be a float.
%%%
%%% The float instructions were never used in guards before, so we
%%% will take special care to keep not using them in guards.  Using
%%% them in guards would require a new version of the 'fconv'
%%% instruction that would take a failure label.  Since it is unlikely
%%% that using float instructions in guards would be benefical, why
%%% bother implementing a new instruction?
%%%

-record(fs,
        {regs=#{} :: #{beam_ssa:b_var():=beam_ssa:b_var()},
         non_guards :: gb_sets:set(beam_ssa:label()),
         bs :: beam_ssa:block_map()
        }).

ssa_opt_float({#opt_st{ssa=Linear0,cnt=Count0}=St, FuncDb}) ->
    NonGuards = non_guards(Linear0),
    Blocks = maps:from_list(Linear0),
    Fs = #fs{non_guards=NonGuards,bs=Blocks},
    {Linear,Count} = float_opt(Linear0, Count0, Fs),
    {St#opt_st{ssa=Linear,cnt=Count}, FuncDb}.

%% The fconv instruction doesn't support jumping to a fail label, so we have to
%% skip this optimization if the fail block is a guard.
%%
%% We also skip the optimization in blocks that always fail, as it's both
%% difficult and pointless to rewrite them to use float ops.
float_can_optimize_blk(#b_blk{last=#b_br{bool=#b_var{},fail=F}},
                       #fs{non_guards=NonGuards}) ->
    gb_sets:is_member(F, NonGuards);
float_can_optimize_blk(#b_blk{}, #fs{}) ->
    false.

float_opt([{L,Blk}|Bs0], Count0, Fs) ->
    case float_can_optimize_blk(Blk, Fs) of
        true ->
            float_opt_1(L, Blk, Bs0, Count0, Fs);
        false ->
            {Bs,Count} = float_opt(Bs0, Count0, Fs),
            {[{L,Blk}|Bs],Count}
    end;
float_opt([], Count, _Fs) ->
    {[],Count}.

float_opt_1(L, #b_blk{is=Is0}=Blk0, Bs0, Count0, Fs0) ->
    case float_opt_is(Is0, Fs0, Count0, []) of
        {Is1,Fs1,Count1} ->
            {Flush,Blk,Fs,Count2} = float_maybe_flush(Blk0, Fs1, Count1),
            {Blks,Count3} = float_fixup_conv(L, Is1, Blk, Count2),
            {Bs,Count} = float_opt(Bs0, Count3, Fs),
            {Blks++Flush++Bs,Count};
        none ->
            {Bs,Count} = float_opt(Bs0, Count0, Fs0),
            {[{L,Blk0}|Bs],Count}
    end.

%% Split out {float,convert} instructions into separate blocks, number
%% the blocks, and add {succeded,body} in each {float,convert} block.
float_fixup_conv(L, Is, Blk, Count0) ->
    Split = float_split_conv(Is, Blk),
    {Blks,Count} = float_number(Split, L, Count0),
    #b_blk{last=#b_br{bool=#b_var{},fail=Fail}} = Blk,
    float_conv(Blks, Fail, Count).

%% Split {float,convert} instructions into individual blocks.
float_split_conv(Is0, Blk) ->
    Br = #b_br{bool=#b_literal{val=true},succ=0,fail=0},

    %% Note that there may be other instructions such as
    %% remove_message before the floating point instructions;
    %% therefore, it is essential that we don't reorder instructions.
    case splitwith(fun(#b_set{op=Op}) ->
                           Op =/= {float,convert}
                   end, Is0) of
        {Is,[]} ->
            [Blk#b_blk{is=Is}];
        {[_|_]=Is1,[#b_set{op={float,convert}}=Conv|Is2]} ->
            [#b_blk{is=Is1,last=Br},
             #b_blk{is=[Conv],last=Br}|float_split_conv(Is2, Blk)];
        {[],[#b_set{op={float,convert}}=Conv|Is1]} ->
            [#b_blk{is=[Conv],last=Br}|float_split_conv(Is1, Blk)]
    end.

%% Number and chain the blocks that were split.
float_number(Bs0, FirstL, Count0) ->
    {[{_,FirstBlk}|Bs],Count} = float_number(Bs0, Count0),
    {[{FirstL,FirstBlk}|Bs],Count}.

float_number([B], Count) ->
    {[{Count,B}],Count};
float_number([B|Bs0], Count0) ->
    Next = Count0 + 1,
    {Bs,Count} = float_number(Bs0, Next),
    Br = #b_br{bool=#b_literal{val=true},succ=Next,fail=Next},
    {[{Count0,B#b_blk{last=Br}}|Bs],Count}.

%% Insert 'succeeded' instructions after each {float,convert}
%% instruction.
float_conv([{L,#b_blk{is=Is0,last=Last}=Blk0}|Bs0], Fail, Count0) ->
    case Is0 of
        [#b_set{op={float,convert}}=Conv] ->
            {Bool,Count1} = new_var('@ssa_bool', Count0),
            Succeeded = #b_set{op={succeeded,body},dst=Bool,
                               args=[Conv#b_set.dst]},
            Is = [Conv,Succeeded],
            Br = Last#b_br{bool=Bool,fail=Fail},
            Blk = Blk0#b_blk{is=Is,last=Br},
            {Bs,Count} = float_conv(Bs0, Fail, Count1),
            {[{L,Blk}|Bs],Count};
        [_|_] ->
            {Bs,Count} = float_conv(Bs0, Fail, Count0),
            {[{L,Blk0}|Bs],Count}
    end;
float_conv([], _, Count) ->
    {[],Count}.

float_maybe_flush(Blk0, Fs0, Count0) ->
    #b_blk{last=#b_br{bool=#b_var{},succ=Succ}=Br} = Blk0,

    %% If the success block has an optimizable floating point instruction,
    %% it is safe to defer flushing.
    case float_safe_to_skip_flush(Succ, Fs0) of
        true ->
            %% No flush needed.
            {[],Blk0,Fs0,Count0};
        false ->
            %% Flush needed. Allocate block numbers.
            FlushL = Count0,              %For flushing of float regs.
            Count = Count0 + 1,
            Blk = Blk0#b_blk{last=Br#b_br{succ=FlushL}},

            %% Build the block that flushes all registers.
            FlushIs = float_flush_regs(Fs0),
            FlushBr = #b_br{bool=#b_literal{val=true},succ=Succ,fail=Succ},
            FlushBlk = #b_blk{is=FlushIs,last=FlushBr},

            %% Update state record and blocks.
            Fs = Fs0#fs{regs=#{}},
            FlushBs = [{FlushL,FlushBlk}],
            {FlushBs,Blk,Fs,Count}
    end.

float_safe_to_skip_flush(L, #fs{bs=Blocks}=Fs) ->
    #b_blk{is=Is} = Blk = map_get(L, Blocks),
    float_can_optimize_blk(Blk, Fs) andalso float_optimizable_is(Is).

float_optimizable_is([#b_set{anno=#{float_op:=_}}|_]) ->
    true;
float_optimizable_is([#b_set{op=get_tuple_element}|Is]) ->
    %% The tuple sinking optimization can sink get_tuple_element instruction
    %% into a sequence of floating point operations.
    float_optimizable_is(Is);
float_optimizable_is(_) ->
    false.

float_opt_is([#b_set{op={succeeded,_},args=[Src]}=I0],
             #fs{regs=Rs}=Fs, Count, Acc) ->
    case Rs of
        #{Src:=Fr} ->
            I = I0#b_set{args=[Fr]},
            {reverse(Acc, [I]),Fs,Count};
        #{} ->
            none
    end;
float_opt_is([#b_set{anno=Anno0}=I0|Is0], Fs0, Count0, Acc) ->
    case Anno0 of
        #{float_op:=FTypes} ->
            Anno = maps:remove(float_op, Anno0),
            I1 = I0#b_set{anno=Anno},
            {Is,Fs,Count} = float_make_op(I1, FTypes, Fs0, Count0),
            float_opt_is(Is0, Fs, Count, reverse(Is, Acc));
        #{} ->
            float_opt_is(Is0, Fs0, Count0, [I0|Acc])
    end;
float_opt_is([], _Fs, _Count, _Acc) ->
    none.

float_make_op(#b_set{op={bif,Op},dst=Dst,args=As0,anno=Anno}=I0,
              Ts, #fs{regs=Rs0}=Fs, Count0) ->
    {As1,Rs1,Count1} = float_load(As0, Ts, Anno, Rs0, Count0, []),
    {As,Is0} = unzip(As1),
    {FrDst,Count2} = new_var('@fr', Count1),
    I = I0#b_set{op={float,Op},dst=FrDst,args=As},
    Rs = Rs1#{Dst=>FrDst},
    Is = append(Is0) ++ [I],
    {Is,Fs#fs{regs=Rs},Count2}.

float_load([A|As], [T|Ts], Anno, Rs0, Count0, Acc) ->
    {Load,Rs,Count} = float_reg_arg(A, T, Anno, Rs0, Count0),
    float_load(As, Ts, Anno, Rs, Count, [Load|Acc]);
float_load([], [], _Anno, Rs, Count, Acc) ->
    {reverse(Acc),Rs,Count}.

float_reg_arg(A, T, Anno, Rs, Count0) ->
    case Rs of
        #{A:=Fr} ->
            {{Fr,[]},Rs,Count0};
        #{} ->
            {Dst,Count} = new_var('@fr_copy', Count0),
            I0 = float_load_reg(T, A, Dst),
            I = I0#b_set{anno=Anno},
            {{Dst,[I]},Rs#{A=>Dst},Count}
    end.

float_load_reg(convert, #b_var{}=Src, Dst) ->
    #b_set{op={float,convert},dst=Dst,args=[Src]};
float_load_reg(convert, #b_literal{val=Val}=Src, Dst) ->
    try float(Val) of
        F ->
            #b_set{op={float,put},dst=Dst,args=[#b_literal{val=F}]}
    catch
        error:_ ->
            %% Let the exception happen at runtime.
            #b_set{op={float,convert},dst=Dst,args=[Src]}
    end;
float_load_reg(float, Src, Dst) ->
    #b_set{op={float,put},dst=Dst,args=[Src]}.

float_flush_regs(#fs{regs=Rs}) ->
    maps:fold(fun(_, #b_var{name={'@fr_copy',_}}, Acc) ->
                      Acc;
                 (Dst, Fr, Acc) ->
                      [#b_set{op={float,get},dst=Dst,args=[Fr]}|Acc]
              end, [], Rs).

%%%
%%% Live optimization.
%%%
%%% Optimize instructions whose values are not used. They could be
%%% removed if they have no side effects, or in a few cases replaced
%%% with a cheaper instructions
%%%

ssa_opt_live({#opt_st{ssa=Linear0}=St, FuncDb}) ->
    RevLinear = reverse(Linear0),
    Blocks0 = maps:from_list(RevLinear),
    Blocks = live_opt(RevLinear, #{}, Blocks0),
    Linear = beam_ssa:linearize(Blocks),
    {St#opt_st{ssa=Linear}, FuncDb}.

live_opt([{L,Blk0}|Bs], LiveMap0, Blocks) ->
    Blk1 = beam_ssa_share:block(Blk0, Blocks),
    Successors = beam_ssa:successors(Blk1),
    Live0 = live_opt_succ(Successors, L, LiveMap0, sets:new([{version, 2}])),
    {Blk,Live} = live_opt_blk(Blk1, Live0),
    LiveMap = live_opt_phis(Blk#b_blk.is, L, Live, LiveMap0),
    live_opt(Bs, LiveMap, Blocks#{L:=Blk});
live_opt([], _, Acc) -> Acc.

live_opt_succ([S|Ss], L, LiveMap, Live0) ->
    case LiveMap of
        #{{S,L}:=Live} ->
            %% The successor has a phi node, and the value for
            %% this block in the phi node is a variable.
            live_opt_succ(Ss, L, LiveMap, sets:union(Live0, Live));
        #{S:=Live} ->
            %% No phi node in the successor, or the value for
            %% this block in the phi node is a literal.
            live_opt_succ(Ss, L, LiveMap, sets:union(Live0, Live));
        #{} ->
            %% A peek_message block which has not been processed yet.
            live_opt_succ(Ss, L, LiveMap, Live0)
    end;
live_opt_succ([], _, _, Acc) -> Acc.

live_opt_phis(Is, L, Live0, LiveMap0) ->
    LiveMap = LiveMap0#{L=>Live0},
    Phis = takewhile(fun(#b_set{op=Op}) -> Op =:= phi end, Is),
    case Phis of
        [] ->
            LiveMap;
        [_|_] ->
            PhiArgs = append([Args || #b_set{args=Args} <- Phis]),
            case [{P,V} || {#b_var{}=V,P} <- PhiArgs] of
                [_|_]=PhiVars ->
                    PhiLive0 = rel2fam(PhiVars),
                    PhiLive = [{{L,P},list_set_union(Vs, Live0)} ||
                                  {P,Vs} <- PhiLive0],
                    maps:merge(LiveMap, maps:from_list(PhiLive));
                [] ->
                    %% There were only literals in the phi node(s).
                    LiveMap
            end
    end.

live_opt_blk(#b_blk{is=Is0,last=Last}=Blk, Live0) ->
    Live1 = list_set_union(beam_ssa:used(Last), Live0),
    {Is,Live} = live_opt_is(reverse(Is0), Live1, []),
    {Blk#b_blk{is=Is},Live}.

live_opt_is([#b_set{op=phi,dst=Dst}=I|Is], Live0, Acc) ->
    Live = sets:del_element(Dst, Live0),
    case sets:is_element(Dst, Live0) of
        true ->
            live_opt_is(Is, Live, [I|Acc]);
        false ->
            live_opt_is(Is, Live, Acc)
    end;
live_opt_is([#b_set{op={succeeded,guard},dst=SuccDst,args=[Dst]}=SuccI,
             #b_set{op=Op,dst=Dst}=I0|Is],
            Live0, Acc) ->
    case {sets:is_element(SuccDst, Live0),
          sets:is_element(Dst, Live0)} of
        {true, true} ->
            Live = sets:del_element(SuccDst, Live0),
            live_opt_is([I0|Is], Live, [SuccI|Acc]);
        {true, false} ->
            %% The result of the instruction before {succeeded,guard} is
            %% unused. Attempt to perform a strength reduction.
            case Op of
                {bif,'not'} ->
                    I = I0#b_set{op={bif,is_boolean},dst=SuccDst},
                    live_opt_is([I|Is], Live0, Acc);
                {bif,tuple_size} ->
                    I = I0#b_set{op={bif,is_tuple},dst=SuccDst},
                    live_opt_is([I|Is], Live0, Acc);
                bs_start_match ->
                    [#b_literal{val=new},Bin] = I0#b_set.args,
                    I = I0#b_set{op={bif,is_bitstring},args=[Bin],dst=SuccDst},
                    live_opt_is([I|Is], Live0, Acc);
                get_map_element ->
                    I = I0#b_set{op=has_map_field,dst=SuccDst},
                    live_opt_is([I|Is], Live0, Acc);
                _ ->
                    Live1 = sets:del_element(SuccDst, Live0),
                    Live = sets:add_element(Dst, Live1),
                    live_opt_is([I0|Is], Live, [SuccI|Acc])
            end;
        {false, true} ->
            live_opt_is([I0|Is], Live0, Acc);
        {false, false} ->
            live_opt_is(Is, Live0, Acc)
    end;
live_opt_is([#b_set{dst=Dst}=I|Is], Live0, Acc) ->
    case sets:is_element(Dst, Live0) of
        true ->
            Live1 = list_set_union(beam_ssa:used(I), Live0),
            Live = sets:del_element(Dst, Live1),
            live_opt_is(Is, Live, [I|Acc]);
        false ->
            case beam_ssa:no_side_effect(I) of
                true ->
                    live_opt_is(Is, Live0, Acc);
                false ->
                    Live = list_set_union(beam_ssa:used(I), Live0),
                    live_opt_is(Is, Live, [I|Acc])
            end
    end;
live_opt_is([], Live, Acc) ->
    {Acc,Live}.

%%%
%%% try/catch optimization.
%%%
%%% Attemps to rewrite try/catches as guards when we know the exception won't
%%% be inspected in any way, and removes try/catches whose expressions will
%%% never throw.
%%%

ssa_opt_try({#opt_st{ssa=Linear0}=St, FuncDb}) ->
    RevLinear = reduce_try(Linear0, []),

    EmptySet = sets:new([{version, 2}]),
    Linear = trim_try(RevLinear, EmptySet, EmptySet, []),

    {St#opt_st{ssa=Linear}, FuncDb}.

%% Does a strength reduction of try/catch and catch.
%%
%% In try/catch constructs where the expression is restricted
%% (essentially a guard expression) and the error reason is ignored
%% in the catch part, such as:
%%
%%   try
%%      <RestrictedExpression>
%%   catch
%%      _:_ ->
%%        ...
%%   end
%%
%% the try/catch can be eliminated by simply removing the `new_try_tag`,
%% `landingpad`, and `kill_try_tag` instructions.
reduce_try([{L,#b_blk{is=[#b_set{op=new_try_tag}],
                      last=Last}=Blk0} | Bs0], Acc) ->
    #b_br{succ=Succ,fail=Fail} = Last,
    Ws = sets:from_list([Succ,Fail], [{version, 2}]),
    try do_reduce_try(Bs0, Ws) of
        Bs ->
            Blk = Blk0#b_blk{is=[],
                             last=#b_br{bool=#b_literal{val=true},
                                        succ=Succ,fail=Succ}},
            reduce_try(Bs, [{L, Blk} | Acc])
    catch
        throw:not_possible ->
            reduce_try(Bs0, [{L, Blk0} | Acc])
    end;
reduce_try([{L, Blk} | Bs], Acc) ->
    reduce_try(Bs, [{L, Blk} | Acc]);
reduce_try([], Acc) ->
    Acc.

do_reduce_try([{L, Blk} | Bs]=Bs0, Ws0) ->
    case sets:is_element(L, Ws0) of
        false ->
            %% This block is not reachable from the block with the
            %% `new_try_tag` instruction. Retain it. There is no
            %% need to check it for safety.
            case sets:is_empty(Ws0) of
                true -> Bs0;
                false -> [{L, Blk} | do_reduce_try(Bs, Ws0)]
            end;
        true ->
            Ws1 = sets:del_element(L, Ws0),
            #b_blk{is=Is0} = Blk,
            case reduce_try_is(Is0, []) of
                {safe,Is} ->
                    %% This block does not execute any instructions
                    %% that would require a try. Analyze successors.
                    Successors = beam_ssa:successors(Blk),
                    Ws = list_set_union(Successors, Ws1),
                    [{L, Blk#b_blk{is=Is}} | do_reduce_try(Bs, Ws)];
                unsafe ->
                    %% There is something unsafe in the block, for
                    %% example a `call` instruction or an `extract`
                    %% instruction.
                    throw(not_possible);
                {done,Is} ->
                    %% This block kills the try tag (either after successful
                    %% execution or at the landing pad). Don't analyze
                    %% successors.
                    [{L, Blk#b_blk{is=Is}} | do_reduce_try(Bs, Ws1)]
            end
    end;
do_reduce_try([], Ws) ->
    true = sets:is_empty(Ws),                   %Assertion.
    [].

reduce_try_is([#b_set{op=kill_try_tag}|Is], Acc) ->
    %% Remove this kill_try_tag instruction. If there was a landingpad
    %% instruction in this block, it has already been removed. Preserve
    %% all other instructions in the block.
    {done,reverse(Acc, Is)};
reduce_try_is([#b_set{op=extract}|_], _Acc) ->
    %% The error reason is accessed.
    unsafe;
reduce_try_is([#b_set{op=landingpad}|Is], Acc) ->
    reduce_try_is(Is, Acc);
reduce_try_is([#b_set{op={succeeded,body}}=I0|Is], Acc) ->
    %% If we reached this point, it means that the previous instruction
    %% has no side effects. We must now convert the flavor of the
    %% succeeded to the `guard`, since the try/catch will be removed.
    I = I0#b_set{op={succeeded,guard}},
    reduce_try_is(Is, [I|Acc]);
reduce_try_is([#b_set{op=Op}=I|Is], Acc) ->
    IsSafe = case Op of
                 phi -> true;
                 _ -> beam_ssa:no_side_effect(I)
             end,
    case IsSafe of
        true -> reduce_try_is(Is, [I|Acc]);
        false -> unsafe
    end;
reduce_try_is([], Acc) ->
    {safe,reverse(Acc)}.

%% Removes try/catch expressions whose expressions will never throw.
%%
%% We walk backwards through all blocks, maintaining a set of potentially
%% unreachable landing pads, removing them from the set whenever we see a
%% branch to that block. When we encounter a `new_try_tag` instruction that
%% references a block in the unreachable set, we'll remove the try/catch.
trim_try([{L, #b_blk{is=[#b_set{op=landingpad} | _]}=Blk}| Bs],
         Unreachable0, Killed, Acc) ->
    Unreachable1 = sets:add_element(L, Unreachable0),
    Successors = sets:from_list(beam_ssa:successors(Blk)),
    Unreachable = sets:subtract(Unreachable1, Successors),
    trim_try(Bs, Unreachable, Killed, [{L, Blk} | Acc]);
trim_try([{L, #b_blk{last=#b_ret{}}=Blk} | Bs], Unreachable, Killed, Acc) ->
    %% Nothing to update and nothing to optimize.
    trim_try(Bs, Unreachable, Killed, [{L,Blk}|Acc]);
trim_try([{L, Blk0} | Bs], Unreachable0, Killed0, Acc) ->
    case sets:is_empty(Unreachable0) of
        true ->
            %% Nothing to update and nothing to optimize.
            trim_try(Bs, Unreachable0, Killed0, [{L,Blk0}|Acc]);
        false ->
            #b_blk{is=Is0,last=Last0} = Blk0,
            case reverse(Is0) of
                [#b_set{op=new_try_tag,dst=Tag}|Is] ->
                    #b_br{succ=SuccLbl,fail=PadLbl} = Last0,
                    Unreachable = sets:del_element(PadLbl, Unreachable0),
                    case sets:is_element(PadLbl, Unreachable0) of
                        true ->
                            %% The landing pad can't be reached in any way,
                            %% remove the entire try/catch.
                            Blk = Blk0#b_blk{is=reverse(Is),
                                             last=#b_br{bool=#b_literal{val=true},
                                                        succ=SuccLbl,fail=SuccLbl}},
                            Killed = sets:add_element(Tag, Killed0),
                            trim_try(Bs, Unreachable, Killed, [{L,Blk}|Acc]);
                        false ->
                            trim_try(Bs, Unreachable, Killed0, [{L,Blk0}|Acc])
                    end;
                _ ->
                    %% Update the set of unreachable landing_pad blocks.
                    Successors = sets:from_list(beam_ssa:successors(Blk0)),
                    Unreachable = sets:subtract(Unreachable0, Successors),
                    trim_try(Bs, Unreachable, Killed0, [{L,Blk0}|Acc])
            end
    end;
trim_try([], _Unreachable, Killed, Acc0) ->
    case sets:is_empty(Killed) of
        true ->
            Acc0;
        false ->
            %% Remove all `kill_try_tag` instructions referencing removed
            %% try/catches.
            [{L, Blk#b_blk{is=trim_try_is(Is0, Killed)}} ||
                {L, #b_blk{is=Is0}=Blk} <- Acc0]
    end.

trim_try_is([#b_set{op=phi,dst=CatchEndVal}=Phi,
             #b_set{op=catch_end,dst=Dst,args=[Tag,CatchEndVal]}=Catch | Is],
            Killed) ->
    case sets:is_element(Tag, Killed) of
        true -> [Phi#b_set{dst=Dst} | trim_try_is(Is, Killed)];
        false -> [Phi, Catch | trim_try_is(Is, Killed)]
    end;
trim_try_is([#b_set{op=kill_try_tag,args=[Tag]}=I | Is], Killed) ->
    case sets:is_element(Tag, Killed) of
        true -> trim_try_is(Is, Killed);
        false -> [I | trim_try_is(Is, Killed)]
    end;
trim_try_is([I | Is], Killed) ->
    [I | trim_try_is(Is, Killed)];
trim_try_is([], _Killed) ->
    [].

%%%
%%% Optimize binary matching.
%%%
%%% * If the value of segment is never extracted, rewrite
%%%   to a bs_skip instruction.
%%%
%%% * Coalesce adjacent bs_skip instructions and skip instructions
%%%   with bs_test_tail.
%%%

ssa_opt_bsm({#opt_st{ssa=Linear}=St, FuncDb}) ->
    Extracted0 = bsm_extracted(Linear),
    Extracted = sets:from_list(Extracted0, [{version, 2}]),
    {St#opt_st{ssa=bsm_skip(Linear, Extracted)}, FuncDb}.

bsm_skip([{L,#b_blk{is=Is0}=Blk}|Bs0], Extracted) ->
    Bs = bsm_skip(Bs0, Extracted),
    Is = bsm_skip_is(Is0, Extracted),
    coalesce_skips({L,Blk#b_blk{is=Is}}, Bs);
bsm_skip([], _) -> [].

bsm_skip_is([I0|Is], Extracted) ->
    case I0 of
        #b_set{op=bs_match,
               dst=Ctx,
               args=[#b_literal{val=T}=Type,PrevCtx|Args0]}
          when T =/= float, T =/= string, T =/= skip ->
            %% Note that it is never safe to skip matching
            %% of floats, even if the size is known to be correct.
            I = case sets:is_element(Ctx, Extracted) of
                    true ->
                        I0;
                    false ->
                        %% The value is never extracted.
                        Args = [#b_literal{val=skip},PrevCtx,Type|Args0],
                        I0#b_set{args=Args}
                end,
            [I|Is];
        #b_set{} ->
            [I0|bsm_skip_is(Is, Extracted)]
    end;
bsm_skip_is([], _) -> [].

bsm_extracted([{_,#b_blk{is=Is}}|Bs]) ->
    case Is of
        [#b_set{op=bs_extract,args=[Ctx]}|_] ->
            [Ctx|bsm_extracted(Bs)];
        _ ->
            bsm_extracted(Bs)
    end;
bsm_extracted([]) -> [].

coalesce_skips({L,#b_blk{is=[#b_set{op=bs_extract}=Extract|Is0],
                         last=Last0}=Blk0}, Bs0) ->
    case coalesce_skips_is(Is0, Last0, Bs0) of
        not_possible ->
            [{L,Blk0}|Bs0];
        {Is,Last,Bs} ->
            Blk = Blk0#b_blk{is=[Extract|Is],last=Last},
            [{L,Blk}|Bs]
    end;
coalesce_skips({L,#b_blk{is=Is0,last=Last0}=Blk0}, Bs0) ->
    case coalesce_skips_is(Is0, Last0, Bs0) of
        not_possible ->
            [{L,Blk0}|Bs0];
        {Is,Last,Bs} ->
            Blk = Blk0#b_blk{is=Is,last=Last},
            [{L,Blk}|Bs]
    end.

coalesce_skips_is([#b_set{op=bs_match,
                          args=[#b_literal{val=skip},
                                Ctx0,Type,Flags,
                                #b_literal{val=Size0},
                                #b_literal{val=Unit0}]}=Skip0,
                   #b_set{op={succeeded,guard}}],
                  #b_br{succ=L2,fail=Fail}=Br0,
                  Bs0) when is_integer(Size0) ->
    case Bs0 of
        [{L2,#b_blk{is=[#b_set{op=bs_match,
                               dst=SkipDst,
                               args=[#b_literal{val=skip},_,_,_,
                                     #b_literal{val=Size1},
                                     #b_literal{val=Unit1}]},
                        #b_set{op={succeeded,guard}}=Succeeded],
                    last=#b_br{fail=Fail}=Br}}|Bs] when is_integer(Size1) ->
            SkipBits = Size0 * Unit0 + Size1 * Unit1,
            Skip = Skip0#b_set{dst=SkipDst,
                               args=[#b_literal{val=skip},Ctx0,
                                     Type,Flags,
                                     #b_literal{val=SkipBits},
                                     #b_literal{val=1}]},
            Is = [Skip,Succeeded],
            {Is,Br,Bs};
        [{L2,#b_blk{is=[#b_set{op=bs_test_tail,
                               args=[_Ctx,#b_literal{val=TailSkip}]}],
                    last=#b_br{succ=NextSucc,fail=Fail}}}|Bs] ->
            SkipBits = Size0 * Unit0,
            TestTail = Skip0#b_set{op=bs_test_tail,
                                   args=[Ctx0,#b_literal{val=SkipBits+TailSkip}]},
            Br = Br0#b_br{bool=TestTail#b_set.dst,succ=NextSucc},
            Is = [TestTail],
            {Is,Br,Bs};
        _ ->
            not_possible
    end;
coalesce_skips_is(_, _, _) ->
    not_possible.

%%%
%%% Short-cutting binary matching instructions.
%%%

ssa_opt_bsm_shortcut({#opt_st{ssa=Linear}=St, FuncDb}) ->
    Positions = bsm_positions(Linear, #{}),
    case map_size(Positions) of
        0 ->
            %% No binary matching instructions.
            {St, FuncDb};
        _ ->
            {St#opt_st{ssa=bsm_shortcut(Linear, Positions)}, FuncDb}
    end.

bsm_positions([{L,#b_blk{is=Is,last=Last}}|Bs], PosMap0) ->
    PosMap = bsm_positions_is(Is, PosMap0),
    case {Is,Last} of
        {[#b_set{op=bs_test_tail,dst=Bool,args=[Ctx,#b_literal{val=Bits0}]}],
         #b_br{bool=Bool,fail=Fail}} ->
            Bits = Bits0 + map_get(Ctx, PosMap0),
            bsm_positions(Bs, PosMap#{L=>{Bits,Fail}});
        {_,_} ->
            bsm_positions(Bs, PosMap)
    end;
bsm_positions([], PosMap) -> PosMap.

bsm_positions_is([#b_set{op=bs_start_match,dst=New}|Is], PosMap0) ->
    PosMap = PosMap0#{New=>0},
    bsm_positions_is(Is, PosMap);
bsm_positions_is([#b_set{op=bs_match,dst=New,args=Args}|Is], PosMap0) ->
    [_,Old|_] = Args,
    #{Old:=Bits0} = PosMap0,
    Bits = bsm_update_bits(Args, Bits0),
    PosMap = PosMap0#{New=>Bits},
    bsm_positions_is(Is, PosMap);
bsm_positions_is([_|Is], PosMap) ->
    bsm_positions_is(Is, PosMap);
bsm_positions_is([], PosMap) -> PosMap.

bsm_update_bits([#b_literal{val=string},_,#b_literal{val=String}], Bits) ->
    Bits + bit_size(String);
bsm_update_bits([#b_literal{val=utf8}|_], Bits) ->
    Bits + 8;
bsm_update_bits([#b_literal{val=utf16}|_], Bits) ->
    Bits + 16;
bsm_update_bits([#b_literal{val=utf32}|_], Bits) ->
    Bits + 32;
bsm_update_bits([_,_,_,#b_literal{val=Sz},#b_literal{val=U}], Bits)
  when is_integer(Sz) ->
    Bits + Sz*U;
bsm_update_bits(_, Bits) -> Bits.

bsm_shortcut([{L,#b_blk{is=Is,last=Last0}=Blk}|Bs], PosMap) ->
    case {Is,Last0} of
        {[#b_set{op=bs_match,dst=New,args=[_,Old|_]},
          #b_set{op={succeeded,guard},dst=Bool,args=[New]}],
         #b_br{bool=Bool,fail=Fail}} ->
            case PosMap of
                #{Old:=Bits,Fail:={TailBits,NextFail}} when Bits > TailBits ->
                    Last = Last0#b_br{fail=NextFail},
                    [{L,Blk#b_blk{last=Last}}|bsm_shortcut(Bs, PosMap)];
                #{} ->
                    [{L,Blk}|bsm_shortcut(Bs, PosMap)]
            end;
        {_,_} ->
            [{L,Blk}|bsm_shortcut(Bs, PosMap)]
    end;
bsm_shortcut([], _PosMap) -> [].

%%%
%%% Optimize binary construction.
%%%
%%% If an integer segment or a float segment has a literal size and
%%% a literal value, convert to a binary segment. Coalesce adjacent
%%% literal binary segments. Literal binary segments will be converted
%%% to bs_put_string instructions in later pass.
%%%

ssa_opt_bs_puts({#opt_st{ssa=Linear0,cnt=Count0}=St, FuncDb}) ->
    {Linear,Count} = opt_bs_puts(Linear0, Count0, []),
    {St#opt_st{ssa=Linear,cnt=Count}, FuncDb}.

opt_bs_puts([{L,#b_blk{is=Is}=Blk0}|Bs], Count0, Acc0) ->
    case Is of
        [#b_set{op=bs_put},#b_set{op={succeeded,_}}]=Is ->
            case opt_bs_put(L, Is, Blk0, Count0, Acc0) of
                not_possible ->
                    opt_bs_puts(Bs, Count0, [{L,Blk0}|Acc0]);
                {Count,Acc1} ->
                    Acc = opt_bs_puts_merge(Acc1),
                    opt_bs_puts(Bs, Count, Acc)
            end;
        _ ->
            opt_bs_puts(Bs, Count0, [{L,Blk0}|Acc0])
    end;
opt_bs_puts([], Count, Acc) ->
    {reverse(Acc),Count}.

opt_bs_puts_merge([{L1,#b_blk{is=Is}=Blk0},{L2,#b_blk{is=AccIs}}=BAcc|Acc]) ->
    case {AccIs,Is} of
        {[#b_set{op=bs_put,
                 args=[#b_literal{val=binary},
                       #b_literal{},
                       #b_literal{val=Bin0},
                       #b_literal{val=all},
                       #b_literal{val=1}]},
          #b_set{op={succeeded,_}}],
         [#b_set{op=bs_put,
                 args=[#b_literal{val=binary},
                       #b_literal{},
                       #b_literal{val=Bin1},
                       #b_literal{val=all},
                       #b_literal{val=1}]}=I0,
          #b_set{op={succeeded,_}}=Succeeded]} ->
            %% Coalesce the two segments to one.
            Bin = <<Bin0/bitstring,Bin1/bitstring>>,
            I = I0#b_set{args=bs_put_args(binary, Bin, all)},
            Blk = Blk0#b_blk{is=[I,Succeeded]},
            [{L2,Blk}|Acc];
        {_,_} ->
            [{L1,Blk0},BAcc|Acc]
    end.

opt_bs_put(L, [I0,Succeeded], #b_blk{last=Br0}=Blk0, Count0, Acc) ->
    case opt_bs_put(I0) of
        [Bin] when is_bitstring(Bin) ->
            Args = bs_put_args(binary, Bin, all),
            I = I0#b_set{args=Args},
            Blk = Blk0#b_blk{is=[I,Succeeded]},
            {Count0,[{L,Blk}|Acc]};
        [{int,Int,Size},Bin] when is_bitstring(Bin) ->
            %% Construct a bs_put_integer instruction following
            %% by a bs_put_binary instruction.
            IntArgs = bs_put_args(integer, Int, Size),
            BinArgs = bs_put_args(binary, Bin, all),

            {BinL,BinVarNum,BinBoolNum} = {Count0,Count0+1,Count0+2},
            Count = Count0 + 3,
            BinVar = #b_var{name={'@ssa_bs_put',BinVarNum}},
            BinBool = #b_var{name={'@ssa_bool',BinBoolNum}},

            BinI = I0#b_set{dst=BinVar,args=BinArgs},
            BinSucceeded = Succeeded#b_set{dst=BinBool,args=[BinVar]},
            BinBlk = Blk0#b_blk{is=[BinI,BinSucceeded],
                                last=Br0#b_br{bool=BinBool}},

            IntI = I0#b_set{args=IntArgs},
            IntBlk = Blk0#b_blk{is=[IntI,Succeeded],last=Br0#b_br{succ=BinL}},

            {Count,[{BinL,BinBlk},{L,IntBlk}|Acc]};
        not_possible ->
            not_possible
    end.

opt_bs_put(#b_set{args=[#b_literal{val=binary},_,#b_literal{val=Val},
                        #b_literal{val=all},#b_literal{val=Unit}]})
  when is_bitstring(Val) ->
    if
        bit_size(Val) rem Unit =:= 0 ->
            [Val];
        true ->
            not_possible
    end;
opt_bs_put(#b_set{args=[#b_literal{val=Type},#b_literal{val=Flags},
                        #b_literal{val=Val},#b_literal{val=Size},
                        #b_literal{val=Unit}]}=I0) when is_integer(Size) ->
    EffectiveSize = Size * Unit,
    if
        EffectiveSize > 0 ->
            case {Type,opt_bs_put_endian(Flags)} of
                {integer,big} when is_integer(Val) ->
                    if
                        EffectiveSize < 64 ->
                            [<<Val:EffectiveSize>>];
                        true ->
                            opt_bs_put_split_int(Val, EffectiveSize)
                    end;
                {integer,little} when is_integer(Val), EffectiveSize < 128 ->
                    %% To avoid an explosion in code size, we only try
                    %% to optimize relatively small fields.
                    <<Int:EffectiveSize>> = <<Val:EffectiveSize/little>>,
                    Args = bs_put_args(Type, Int, EffectiveSize),
                    I = I0#b_set{args=Args},
                    opt_bs_put(I);
                {binary,_} when is_bitstring(Val) ->
                    case Val of
                        <<Bitstring:EffectiveSize/bits,_/bits>> ->
                            [Bitstring];
                        _ ->
                            %% Specified size exceeds size of bitstring.
                            not_possible
                    end;
                {float,Endian} ->
                    try
                        [opt_bs_put_float(Val, EffectiveSize, Endian)]
                    catch error:_ ->
                            not_possible
                    end;
                {_,_} ->
                    not_possible
            end;
        true ->
            not_possible
    end;
opt_bs_put(#b_set{}) -> not_possible.

opt_bs_put_float(N, Sz, Endian) ->
    case Endian of
        big -> <<N:Sz/big-float-unit:1>>;
        little -> <<N:Sz/little-float-unit:1>>
    end.

bs_put_args(Type, Val, Size) ->
    [#b_literal{val=Type},
     #b_literal{val=[unsigned,big]},
     #b_literal{val=Val},
     #b_literal{val=Size},
     #b_literal{val=1}].

opt_bs_put_endian([big=E|_]) -> E;
opt_bs_put_endian([little=E|_]) -> E;
opt_bs_put_endian([native=E|_]) -> E;
opt_bs_put_endian([_|Fs]) -> opt_bs_put_endian(Fs).

opt_bs_put_split_int(Int, Size) ->
    Pos = opt_bs_put_split_int_1(Int, 0, Size - 1),
    UpperSize = Size - Pos,
    if
        Pos =:= 0 ->
            %% Value is 0 or -1 -- keep the original instruction.
            not_possible;
        UpperSize < 64 ->
            %% No or few leading zeroes or ones.
            [<<Int:Size>>];
        true ->
            %% There are 64 or more leading ones or zeroes in
            %% the resulting binary. Split into two separate
            %% segments to avoid an explosion in code size.
            [{int,Int bsr Pos,UpperSize},<<Int:Pos>>]
    end.

opt_bs_put_split_int_1(_Int, L, R) when L > R ->
    8 * ((L + 7) div 8);
opt_bs_put_split_int_1(Int, L, R) ->
    Mid = (L + R) div 2,
    case Int bsr Mid of
        Upper when Upper =:= 0; Upper =:= -1 ->
            opt_bs_put_split_int_1(Int, L, Mid - 1);
        _ ->
            opt_bs_put_split_int_1(Int, Mid + 1, R)
    end.

%%%
%%% Optimize expressions such as "tuple_size(Var) =:= 2".
%%%
%%% Consider this code:
%%%
%%% 0:
%%%   .
%%%   .
%%%   .
%%%   Size = bif:tuple_size Var
%%%   BoolVar1 = succeeded:guard Size
%%%   br BoolVar1, label 4, label 3
%%%
%%% 4:
%%%   BoolVar2 = bif:'=:=' Size, literal 2
%%%   br BoolVar2, label 6, label 3
%%%
%%% 6: ...   %% OK
%%%
%%% 3: ...   %% Not a tuple of size 2
%%%
%%% The BEAM code will look this:
%%%
%%%   {bif,tuple_size,{f,3},[{x,0}],{x,0}}.
%%%   {test,is_eq_exact,{f,3},[{x,0},{integer,2}]}.
%%%
%%% Better BEAM code will be produced if we transform the
%%% code like this:
%%%
%%% 0:
%%%   .
%%%   .
%%%   .
%%%   br label 10
%%%
%%% 10:
%%%   NewBoolVar = bif:is_tuple Var
%%%   br NewBoolVar, label 11, label 3
%%%
%%% 11:
%%%   Size = bif:tuple_size Var
%%%   br label 4
%%%
%%% 4:
%%%   BoolVar2 = bif:'=:=' Size, literal 2
%%%   br BoolVar2, label 6, label 3
%%%
%%% (The key part of the transformation is the removal of
%%% the 'succeeded' instruction to signal to the code generator
%%% that the call to tuple_size/1 can't fail.)
%%%
%%% The BEAM code will look like:
%%%
%%%   {test,is_tuple,{f,3},[{x,0}]}.
%%%   {test_arity,{f,3},[{x,0},2]}.
%%%
%%% Those two instructions will be combined into a single
%%% is_tuple_of_arity instruction by the loader.
%%%

ssa_opt_tuple_size({#opt_st{ssa=Linear0,cnt=Count0}=St, FuncDb}) ->
    %% This optimization is only safe in guards, as prefixing tuple_size with
    %% an is_tuple check prevents it from throwing an exception.
    NonGuards = non_guards(Linear0),
    {Linear,Count} = opt_tup_size(Linear0, NonGuards, Count0, []),
    {St#opt_st{ssa=Linear,cnt=Count}, FuncDb}.

opt_tup_size([{L,#b_blk{is=Is,last=Last}=Blk}|Bs], NonGuards, Count0, Acc0) ->
    case {Is,Last} of
        {[#b_set{op={bif,'=:='},dst=Bool,args=[#b_var{}=Tup,#b_literal{val=Arity}]}],
         #b_br{bool=Bool}} when is_integer(Arity), Arity >= 0 ->
            {Acc,Count} = opt_tup_size_1(Tup, L, NonGuards, Count0, Acc0),
            opt_tup_size(Bs, NonGuards, Count, [{L,Blk}|Acc]);
        {_,_} ->
            opt_tup_size(Bs, NonGuards, Count0, [{L,Blk}|Acc0])
    end;
opt_tup_size([], _NonGuards, Count, Acc) ->
    {reverse(Acc),Count}.

opt_tup_size_1(Size, EqL, NonGuards, Count0, [{L,Blk0}|Acc]) ->
    #b_blk{is=Is0,last=Last} = Blk0,
    case Last of
        #b_br{bool=Bool,succ=EqL,fail=Fail} ->
            case gb_sets:is_member(Fail, NonGuards) of
                true ->
                    {[{L,Blk0}|Acc],Count0};
                false ->
                    case opt_tup_size_is(Is0, Bool, Size, []) of
                        none ->
                            {[{L,Blk0}|Acc],Count0};
                        {PreIs,TupleSizeIs,Tuple} ->
                            opt_tup_size_2(PreIs, TupleSizeIs, L, EqL,
                                           Tuple, Fail, Count0, Acc)
                    end
            end;
        _ ->
            {[{L,Blk0}|Acc],Count0}
    end;
opt_tup_size_1(_, _, _, Count, Acc) ->
    {Acc,Count}.

opt_tup_size_2(PreIs, TupleSizeIs, PreL, EqL, Tuple, Fail, Count0, Acc) ->
    IsTupleL = Count0,
    TupleSizeL = Count0 + 1,
    Bool = #b_var{name={'@ssa_bool',Count0+2}},
    Count = Count0 + 3,

    True = #b_literal{val=true},
    PreBr = #b_br{bool=True,succ=IsTupleL,fail=IsTupleL},
    PreBlk = #b_blk{is=PreIs,last=PreBr},

    IsTupleIs = [#b_set{op={bif,is_tuple},dst=Bool,args=[Tuple]}],
    IsTupleBr = #b_br{bool=Bool,succ=TupleSizeL,fail=Fail},
    IsTupleBlk = #b_blk{is=IsTupleIs,last=IsTupleBr},

    TupleSizeBr = #b_br{bool=True,succ=EqL,fail=EqL},
    TupleSizeBlk = #b_blk{is=TupleSizeIs,last=TupleSizeBr},
    {[{TupleSizeL,TupleSizeBlk},
      {IsTupleL,IsTupleBlk},
      {PreL,PreBlk}|Acc],Count}.

opt_tup_size_is([#b_set{op={bif,tuple_size},dst=Size,args=[Tuple]}=I,
                 #b_set{op={succeeded,_},dst=Bool,args=[Size]}],
                Bool, Size, Acc) ->
    {reverse(Acc),[I],Tuple};
opt_tup_size_is([I|Is], Bool, Size, Acc) ->
    opt_tup_size_is(Is, Bool, Size, [I|Acc]);
opt_tup_size_is([], _, _, _Acc) -> none.

%%%
%%% Optimize #b_switch{} instructions.
%%%
%%% A #b_switch{} with only one value can be rewritten to
%%% a #b_br{}. A switch that only verifies that the argument
%%% is 'true' or 'false' can be rewritten to an is_boolean test.
%%%b

ssa_opt_sw({#opt_st{ssa=Linear0,cnt=Count0}=St, FuncDb}) ->
    {Linear,Count} = opt_sw(Linear0, Count0, []),
    {St#opt_st{ssa=Linear,cnt=Count}, FuncDb}.

opt_sw([{L,#b_blk{is=Is,last=#b_switch{}=Sw0}=Blk0}|Bs], Count0, Acc) ->
    case Sw0 of
        #b_switch{arg=Arg,fail=Fail,list=[{Lit,Lbl}]} ->
            %% Rewrite a single value switch to a br.
            {Bool,Count} = new_var('@ssa_bool', Count0),
            IsEq = #b_set{op={bif,'=:='},dst=Bool,args=[Arg,Lit]},
            Br = #b_br{bool=Bool,succ=Lbl,fail=Fail},
            Blk = Blk0#b_blk{is=Is++[IsEq],last=Br},
            opt_sw(Bs, Count, [{L,Blk}|Acc]);
        #b_switch{arg=Arg,fail=Fail,
                  list=[{#b_literal{val=B1},Lbl},{#b_literal{val=B2},Lbl}]}
          when B1 =:= not B2 ->
            %% Replace with is_boolean test.
            {Bool,Count} = new_var('@ssa_bool', Count0),
            IsBool = #b_set{op={bif,is_boolean},dst=Bool,args=[Arg]},
            Br = #b_br{bool=Bool,succ=Lbl,fail=Fail},
            Blk = Blk0#b_blk{is=Is++[IsBool],last=Br},
            opt_sw(Bs, Count, [{L,Blk}|Acc]);
        _ ->
            opt_sw(Bs, Count0, [{L,Blk0}|Acc])
    end;
opt_sw([{L,#b_blk{}=Blk}|Bs], Count, Acc) ->
    opt_sw(Bs, Count, [{L,Blk}|Acc]);
opt_sw([], Count, Acc) ->
    {reverse(Acc),Count}.

%%% Try to replace `=/=` with `=:=` and `/=` with `==`. For example,
%%% this code:
%%%
%%%    Bool = bif:'=/=' Anything, AnyValue
%%%    br Bool, ^Succ, ^Fail
%%%
%%% can be rewritten like this:
%%%
%%%    Bool = bif:'=:=' Anything, AnyValue
%%%    br Bool, ^Fail, ^Succ
%%%
%%% The transformation is only safe if the only used of Bool is in the
%%% terminator. We therefore need to verify that there is only one
%%% use.
%%%
%%% This transformation is not an optimization in itself, but it opens
%%% up for other optimizations in beam_ssa_type and beam_ssa_dead.
%%%

ssa_opt_ne({#opt_st{ssa=Linear0}=St, FuncDb}) ->
    Linear = opt_ne(Linear0, {uses,Linear0}),
    {St#opt_st{ssa=Linear}, FuncDb}.

opt_ne([{L,#b_blk{is=[_|_]=Is0,last=#b_br{bool=#b_var{}=Bool}}=Blk0}|Bs], Uses0) ->
    case last(Is0) of
        #b_set{op={bif,'=/='},dst=Bool}=I0 ->
            I = I0#b_set{op={bif,'=:='}},
            {Blk,Uses} = opt_ne_replace(I, Blk0, Uses0),
            [{L,Blk}|opt_ne(Bs, Uses)];
        #b_set{op={bif,'/='},dst=Bool}=I0 ->
            I = I0#b_set{op={bif,'=='}},
            {Blk,Uses} = opt_ne_replace(I, Blk0, Uses0),
            [{L,Blk}|opt_ne(Bs, Uses)];
        _ ->
            [{L,Blk0}|opt_ne(Bs, Uses0)]
    end;
opt_ne([{L,Blk}|Bs], Uses) ->
    [{L,Blk}|opt_ne(Bs, Uses)];
opt_ne([], _Uses) -> [].

opt_ne_replace(#b_set{dst=Bool}=I,
               #b_blk{is=Is0,last=#b_br{succ=Succ,fail=Fail}=Br0}=Blk,
               Uses0) ->
    case opt_ne_single_use(Bool, Uses0) of
        {true,Uses} ->
            Is = replace_last(Is0, I),
            Br = Br0#b_br{succ=Fail,fail=Succ},
            {Blk#b_blk{is=Is,last=Br},Uses};
        {false,Uses} ->
            %% The variable is used more than once. Not safe.
            {Blk,Uses}
    end.

replace_last([_], Repl) -> [Repl];
replace_last([I|Is], Repl) -> [I|replace_last(Is, Repl)].

opt_ne_single_use(Var, {uses,Linear}) ->
    Blocks = maps:from_list(Linear),
    RPO = beam_ssa:rpo(Blocks),
    Uses = beam_ssa:uses(RPO, Blocks),
    opt_ne_single_use(Var, Uses);
opt_ne_single_use(Var, Uses) when is_map(Uses) ->
    {case Uses of
         #{Var:=[_]} -> true;
         #{Var:=[_|_]} -> false
     end,Uses}.

%%%
%%% When a tuple is matched, the pattern matching compiler generates a
%%% get_tuple_element instruction for every tuple element that will
%%% ever be used in the rest of the function. That often forces the
%%% extracted tuple elements to be stored in Y registers until it's
%%% time to use them. It could also mean that there could be execution
%%% paths that will never use the extracted elements.
%%%
%%% This optimization will sink get_tuple_element instructions, that
%%% is, move them forward in the execution stream to the last possible
%%% block there they will still dominate all uses. That may reduce the
%%% size of stack frames, reduce register shuffling, and avoid
%%% extracting tuple elements on execution paths that never use the
%%% extracted values.
%%%
%%% However, there is one caveat to be aware of. Sinking tuple elements
%%% will keep the entire tuple alive longer. In rare circumstance, that
%%% can be a problem. Here is an example:
%%%
%%%    mapfoldl(F, Acc0, [Hd|Tail]) ->
%%%        {R,Acc1} = F(Hd, Acc0),
%%%        {Rs,Acc2} = mapfoldl(F, Acc1, Tail),
%%%        {[R|Rs],Acc2};
%%%    mapfoldl(F, Acc, []) ->
%%%        {[],Acc}.
%%%
%%% Sinking get_tuple_element instructions will generate code similar
%%% to this example:
%%%
%%%    slow_mapfoldl(F, Acc0, [Hd|Tail]) ->
%%%        Res1 = F(Hd, Acc0),
%%%        Res2 = slow_mapfoldl(F, element(2, Res1), Tail),
%%%        {[element(1, Res1)|element(1, Res2)],element(2, Res2)};
%%%    slow_mapfoldl(F, Acc, []) ->
%%%        {[],Acc}.
%%%
%%% Here the entire tuple bound to `Res1` will be kept alive until
%%% `slow_mapfoldl/3` returns. That is, every intermediate accumulator
%%% will be kept alive.
%%%
%%% In this case, not sinking is clearly superior:
%%%
%%%    fast_mapfoldl(F, Acc0, [Hd|Tail]) ->
%%%        Res1 = F(Hd, Acc0),
%%%        R = element(1, Res1),
%%%        Res2 = fast_mapfoldl(F, element(2, Res1), Tail),
%%%        {[R|element(1, Res2)],element(2, Res2)};
%%%    fast_mapfoldl(F, Acc, []) ->
%%%        {[],Acc}.
%%%
%%% The `slow_mapfoldl/3` and `fast_mapfoldl/3` use the same number of
%%% stack slots.
%%%
%%% To avoid producing code similar to `slow_mapfoldl/3`, use an
%%% heuristic to only sink when sinking would reduce the number of
%%% stack slots, or if there can't possibly be a recursive call
%%% involved. This is a heuristic because it is difficult to exactly
%%% predict the number of stack slots that will be needed for a given
%%% piece of code.

ssa_opt_sink({#opt_st{ssa=Linear}=St, FuncDb}) ->
    %% Create a map with all variables that define get_tuple_element
    %% instructions. The variable name maps to the block it is defined
    %% in and the source tuple.
    case def_blocks(Linear) of
        [] ->
            %% No get_tuple_element instructions, so there is nothing to do.
            {St, FuncDb};
        [_|_]=Defs0 ->
            Defs = maps:from_list(Defs0),
            {do_ssa_opt_sink(Defs, St), FuncDb}
    end.

do_ssa_opt_sink(Defs, #opt_st{ssa=Linear}=St) ->
    %% Find all the blocks that use variables defined by
    %% get_tuple_element instructions.
    Used = used_blocks(Linear, Defs, []),

    %% Calculate dominators.
    Blocks0 = maps:from_list(Linear),
    RPO = beam_ssa:rpo(Blocks0),
    Preds = beam_ssa:predecessors(Blocks0),
    {Dom, Numbering} = beam_ssa:dominators_from_predecessors(RPO, Preds),

    %% It is not safe to move get_tuple_element instructions to blocks
    %% that begin with certain instructions. It is also unsafe to move
    %% the instructions into any part of a receive.
    Unsuitable = unsuitable(Linear, Blocks0),

    %% Calculate new positions for get_tuple_element instructions. The new
    %% position is a block that dominates all uses of the variable.
    DefLocs0 = new_def_locations(Used, Defs, Dom, Numbering, Unsuitable),

    %% Avoid keeping tuples alive if only one element is accessed later and
    %% if there is the chance of a recursive call being made. This is an
    %% important precaution to avoid that lists:mapfoldl/3 keeps all previous
    %% versions of the accumulator alive until the end of the input list.
    Ps = partition_deflocs(DefLocs0, Defs, Blocks0),
    DefLocs1 = filter_deflocs(Ps, Preds, Blocks0),
    DefLocs = sort(DefLocs1),

    %% Now move all suitable get_tuple_element instructions to their
    %% new blocks.
    Blocks = foldl(fun({V,{From,To}}, A) ->
                           move_defs(V, From, To, A)
                   end, Blocks0, DefLocs),

    St#opt_st{ssa=beam_ssa:linearize(Blocks)}.

def_blocks([{L,#b_blk{is=Is}}|Bs]) ->
    def_blocks_is(Is, L, def_blocks(Bs));
def_blocks([]) -> [].

def_blocks_is([#b_set{op=get_tuple_element,args=[Tuple,_],dst=Dst}|Is], L, Acc) ->
    def_blocks_is(Is, L, [{Dst,{L,Tuple}}|Acc]);
def_blocks_is([_|Is], L, Acc) ->
    def_blocks_is(Is, L, Acc);
def_blocks_is([], _, Acc) -> Acc.

used_blocks([{L,Blk}|Bs], Def, Acc0) ->
    Used = beam_ssa:used(Blk),
    Acc = [{V,L} || V <- Used, maps:is_key(V, Def)] ++ Acc0,
    used_blocks(Bs, Def, Acc);
used_blocks([], _Def, Acc) ->
    rel2fam(Acc).

%% Partition sinks for get_tuple_element instructions in the same
%% clause extracting from the same tuple. Sort each partition in
%% execution order.
partition_deflocs(DefLoc, _Defs, Blocks) ->
    {BlkNums0,_} = mapfoldl(fun(L, N) -> {{L,N},N+1} end, 0, beam_ssa:rpo(Blocks)),
    BlkNums = maps:from_list(BlkNums0),
    S = [{Tuple,{map_get(To, BlkNums),{V,{From,To}}}} ||
            {V,Tuple,{From,To}} <- DefLoc],
    F = rel2fam(S),
    partition_deflocs_1(F, Blocks).

partition_deflocs_1([{Tuple,DefLocs0}|T], Blocks) ->
    DefLocs1 = [DL || {_,DL} <- DefLocs0],
    DefLocs = partition_dl(DefLocs1, Blocks),
    [{Tuple,DL} || DL <- DefLocs] ++ partition_deflocs_1(T, Blocks);
partition_deflocs_1([], _) -> [].

partition_dl([_]=DefLoc, _Blocks) ->
    [DefLoc];
partition_dl([{_,{_,First}}|_]=DefLoc0, Blocks) ->
    RPO = beam_ssa:rpo([First], Blocks),
    {P,DefLoc} = partition_dl_1(DefLoc0, RPO, []),
    [P|partition_dl(DefLoc, Blocks)];
partition_dl([], _Blocks) -> [].

partition_dl_1([{_,{_,L}}=DL|DLs], [L|_]=Ls, Acc) ->
    partition_dl_1(DLs, Ls, [DL|Acc]);
partition_dl_1([_|_]=DLs, [_|Ls], Acc) ->
    partition_dl_1(DLs, Ls, Acc);
partition_dl_1([], _, Acc) ->
    {reverse(Acc),[]};
partition_dl_1([_|_]=DLs, [], Acc) ->
    {reverse(Acc),DLs}.

filter_deflocs([{Tuple,DefLoc0}|DLs], Preds, Blocks) ->
    %% Input is a list of sinks of get_tuple_element instructions in
    %% execution order from the same tuple in the same clause.
    [{_,{_,First}}|_] = DefLoc0,
    Paths = find_paths_to_check(DefLoc0, First),
    WillGC0 = ordsets:from_list([FromTo || {{_,_}=FromTo,_} <- Paths]),
    WillGC1 = [{{From,To},will_gc(From, To, Preds, Blocks, true)} ||
                  {From,To} <- WillGC0],
    WillGC = maps:from_list(WillGC1),

    %% Separate sinks that will force the reference to the tuple to be
    %% saved on the stack from sinks that don't force.
    {DefLocGC0,DefLocNoGC} =
        partition(fun({{_,_}=FromTo,_}) ->
                          map_get(FromTo, WillGC)
                  end, Paths),

    %% Avoid potentially harmful sinks.
    DefLocGC = filter_gc_deflocs(DefLocGC0, Tuple, First, Preds, Blocks),

    %% Construct the complete list of sink operations.
    DefLoc1 = DefLocGC ++ DefLocNoGC,
    [DL || {_,{_,{From,To}}=DL} <- DefLoc1, From =/= To] ++
        filter_deflocs(DLs, Preds, Blocks);
filter_deflocs([], _, _) -> [].

%% Use an heuristic to avoid harmful sinking in lists:mapfold/3 and
%% similar functions.
filter_gc_deflocs(DefLocGC, Tuple, First, Preds, Blocks) ->
    case DefLocGC of
        [] ->
            [];
        [{_,{_,{From,To}}}] ->
            %% There is only one get_tuple_element instruction that
            %% can be sunk. That means that we may not gain any slots
            %% by sinking it.
            case is_on_stack(First, Tuple, Blocks) of
                true ->
                    %% The tuple itself must be stored in a stack slot
                    %% (because it will be used later) in addition to
                    %% the tuple element being extracted. It is
                    %% probably a win to sink this instruction.
                    DefLocGC;
                false ->
                    case will_gc(From, To, Preds, Blocks, false) of
                        false ->
                            %% There is no risk for recursive calls,
                            %% so it should be safe to
                            %% sink. Theoretically, we shouldn't win
                            %% any stack slots, but in practice it
                            %% seems that sinking makes it more likely
                            %% that the stack slot for a dying value
                            %% can be immediately reused for another
                            %% value.
                            DefLocGC;
                        true ->
                            %% This function could be involved in a
                            %% recursive call. Since there is no
                            %% obvious reduction in the number of
                            %% stack slots, we will not sink.
                            []
                    end
            end;
        [_,_|_] ->
            %% More than one get_tuple_element instruction can be
            %% sunk. Sinking will almost certainly reduce the number
            %% of stack slots.
            DefLocGC
    end.

find_paths_to_check([{_,{_,To}}=Move|T], First) ->
    [{{First,To},Move}|find_paths_to_check(T, First)];
find_paths_to_check([], _First) -> [].

will_gc(From, To, Preds, Blocks, All) ->
    Between = beam_ssa:between(From, To, Preds, Blocks),
    will_gc_1(Between, To, Blocks, All, #{From => false}).

will_gc_1([To|_], To, _Blocks, _All, WillGC) ->
    map_get(To, WillGC);
will_gc_1([L|Ls], To, Blocks, All, WillGC0) ->
    #b_blk{is=Is} = Blk = map_get(L, Blocks),
    GC = map_get(L, WillGC0) orelse will_gc_is(Is, All),
    WillGC = gc_update_successors(Blk, GC, WillGC0),
    will_gc_1(Ls, To, Blocks, All, WillGC).

will_gc_is([#b_set{op=call,args=Args}|Is], false) ->
    case Args of
        [#b_remote{mod=#b_literal{val=erlang}}|_] ->
            %% Assume that remote calls to the erlang module can't cause a recursive
            %% call.
            will_gc_is(Is, false);
        [_|_] ->
            true
    end;
will_gc_is([_|Is], false) ->
    %% Instructions that clobber X registers may cause a GC, but will not cause
    %% a recursive call.
    will_gc_is(Is, false);
will_gc_is([I|Is], All) ->
    beam_ssa:clobbers_xregs(I) orelse will_gc_is(Is, All);
will_gc_is([], _All) -> false.

is_on_stack(From, Var, Blocks) ->
    is_on_stack(beam_ssa:rpo([From], Blocks), Var, Blocks, #{From => false}).

is_on_stack([L|Ls], Var, Blocks, WillGC0) ->
    #b_blk{is=Is} = Blk = map_get(L, Blocks),
    GC0 = map_get(L, WillGC0),
    try is_on_stack_is(Is, Var, GC0) of
        GC ->
            WillGC = gc_update_successors(Blk, GC, WillGC0),
            is_on_stack(Ls, Var, Blocks, WillGC)
    catch
        throw:{done,GC} ->
            GC
    end;
is_on_stack([], _Var, _, _) -> false.

is_on_stack_is([#b_set{op=get_tuple_element}|Is], Var, GC) ->
    is_on_stack_is(Is, Var, GC);
is_on_stack_is([I|Is], Var, GC0) ->
    case GC0 andalso member(Var, beam_ssa:used(I)) of
        true ->
            throw({done,GC0});
        false ->
            GC = GC0 orelse beam_ssa:clobbers_xregs(I),
            is_on_stack_is(Is, Var, GC)
    end;
is_on_stack_is([], _, GC) -> GC.

gc_update_successors(Blk, GC, WillGC) ->
    foldl(fun(L, Acc) ->
                  case Acc of
                      #{L := true} -> Acc;
                      #{L := false} when GC =:= false -> Acc;
                      #{} -> Acc#{L => GC}
                  end
          end, WillGC, beam_ssa:successors(Blk)).

%% unsuitable(Linear, Blocks) -> Unsuitable.
%%  Return an ordset of block labels for the blocks that are not
%%  suitable for sinking of get_tuple_element instructions.

unsuitable(Linear, Blocks) ->
    Predecessors = beam_ssa:predecessors(Blocks),
    Unsuitable0 = unsuitable_1(Linear),
    Unsuitable1 = unsuitable_recv(Linear, Blocks, Predecessors),
    gb_sets:from_list(Unsuitable0 ++ Unsuitable1).

unsuitable_1([{L,#b_blk{is=[#b_set{op=Op}=I|_]}}|Bs]) ->
    Unsuitable = case Op of
                     bs_extract -> true;
                     bs_put -> true;
                     {float,_} -> true;
                     landingpad -> true;
                     _ -> beam_ssa:is_loop_header(I)
                 end,
    case Unsuitable of
        true ->
            [L|unsuitable_1(Bs)];
        false ->
            unsuitable_1(Bs)
    end;
unsuitable_1([{_,#b_blk{}}|Bs]) ->
    unsuitable_1(Bs);
unsuitable_1([]) -> [].

unsuitable_recv([{L,#b_blk{is=[#b_set{op=Op}|_]}}|Bs], Blocks, Predecessors) ->
    Ls = case Op of
             remove_message ->
                 unsuitable_loop(L, Blocks, Predecessors);
             recv_next ->
                 unsuitable_loop(L, Blocks, Predecessors);
             _ ->
                 []
         end,
    Ls ++ unsuitable_recv(Bs, Blocks, Predecessors);
unsuitable_recv([_|Bs], Blocks, Predecessors) ->
    unsuitable_recv(Bs, Blocks, Predecessors);
unsuitable_recv([], _, _) -> [].

unsuitable_loop(L, Blocks, Predecessors) ->
    unsuitable_loop(L, Blocks, Predecessors, []).

unsuitable_loop(L, Blocks, Predecessors, Acc) ->
    Ps = map_get(L, Predecessors),
    unsuitable_loop_1(Ps, Blocks, Predecessors, Acc).

unsuitable_loop_1([P|Ps], Blocks, Predecessors, Acc0) ->
    case is_loop_header(P, Blocks) of
        true ->
            unsuitable_loop_1(Ps, Blocks, Predecessors, Acc0);
        false ->
            case ordsets:is_element(P, Acc0) of
                false ->
                    Acc1 = ordsets:add_element(P, Acc0),
                    Acc = unsuitable_loop(P, Blocks, Predecessors, Acc1),
                    unsuitable_loop_1(Ps, Blocks, Predecessors, Acc);
                true ->
                    unsuitable_loop_1(Ps, Blocks, Predecessors, Acc0)
            end
    end;
unsuitable_loop_1([], _, _, Acc) -> Acc.

is_loop_header(L, Blocks) ->
    case map_get(L, Blocks) of
        #b_blk{is=[I|_]} ->
            beam_ssa:is_loop_header(I);
        #b_blk{} ->
            false
    end.

%% new_def_locations([{Variable,[UsedInBlock]}|Vs], Defs,
%%                   Dominators, Numbering, Unsuitable) ->
%%  [{Variable,NewDefinitionBlock}]
%%
%%  Calculate new locations for get_tuple_element instructions. For
%%  each variable, the new location is a block that dominates all uses
%%  of the variable and as near to the uses of as possible.

new_def_locations([{V,UsedIn}|Vs], Defs, Dom, Numbering, Unsuitable) ->
    {DefIn,Tuple} = map_get(V, Defs),
    Common = common_dominator(UsedIn, Dom, Numbering, Unsuitable),
    Sink = case member(Common, map_get(DefIn, Dom)) of
               true ->
                   %% The common dominator is either DefIn or an
                   %% ancestor of DefIn. We'll need to consider all
                   %% get_tuple_element instructions so we will add
                   %% a dummy sink.
                   {V,Tuple,{DefIn,DefIn}};
               false ->
                   %% We have found a suitable descendant of DefIn,
                   %% to which the get_tuple_element instruction can
                   %% be sunk.
                   {V,Tuple,{DefIn,Common}}
           end,
    [Sink|new_def_locations(Vs, Defs, Dom, Numbering, Unsuitable)];
new_def_locations([], _, _, _, _) -> [].

common_dominator(Ls0, Dom, Numbering, Unsuitable) ->
    [Common|_] = beam_ssa:common_dominators(Ls0, Dom, Numbering),
    case gb_sets:is_member(Common, Unsuitable) of
        true ->
            %% It is not allowed to place the instruction here. Try
            %% to find another suitable dominating block by going up
            %% one step in the dominator tree.
            [Common,OneUp|_] = map_get(Common, Dom),
            common_dominator([OneUp], Dom, Numbering, Unsuitable);
        false ->
            Common
    end.

%% Move get_tuple_element instructions to their new locations.

move_defs(V, From, To, Blocks) ->
    #{From:=FromBlk0,To:=ToBlk0} = Blocks,
    {Def,FromBlk} = remove_def(V, FromBlk0),
    try insert_def(V, Def, ToBlk0) of
        ToBlk ->
            Blocks#{From:=FromBlk,To:=ToBlk}
    catch
        throw:not_possible ->
            Blocks
    end.

remove_def(V, #b_blk{is=Is0}=Blk) ->
    {Def,Is} = remove_def_is(Is0, V, []),
    {Def,Blk#b_blk{is=Is}}.

remove_def_is([#b_set{dst=Dst}=Def|Is], Dst, Acc) ->
    {Def,reverse(Acc, Is)};
remove_def_is([I|Is], Dst, Acc) ->
    remove_def_is(Is, Dst, [I|Acc]).

insert_def(V, Def, #b_blk{is=Is0}=Blk) ->
    Is = insert_def_is(Is0, V, Def),
    Blk#b_blk{is=Is}.

insert_def_is([#b_set{op=phi}=I|Is], V, Def) ->
    case member(V, beam_ssa:used(I)) of
        true ->
            throw(not_possible);
        false ->
            [I|insert_def_is(Is, V, Def)]
    end;
insert_def_is([#b_set{op=Op}=I|Is]=Is0, V, Def) ->
    Action0 = case Op of
                  call -> beyond;
                  'catch_end' -> beyond;
                  wait_timeout -> beyond;
                  _ -> here
              end,
    Action = case Is of
                 [#b_set{op={succeeded,_}}|_] -> here;
                 _ -> Action0
             end,
    case Action of
        beyond ->
            case member(V, beam_ssa:used(I)) of
                true ->
                    %% The variable is used by this instruction. We must
                    %% place the definition before this instruction.
                    [Def|Is0];
                false ->
                    %% Place it beyond the current instruction.
                    [I|insert_def_is(Is, V, Def)]
            end;
        here ->
            [Def|Is0]
    end;
insert_def_is([], _V, Def) ->
    [Def].

%%%
%%% Order consecutive get_tuple_element instructions in ascending
%%% position order. This will give the loader more opportunities
%%% for combining get_tuple_element instructions.
%%%

ssa_opt_get_tuple_element({#opt_st{ssa=Blocks0}=St, FuncDb}) ->
    Blocks = opt_get_tuple_element(maps:to_list(Blocks0), Blocks0),
    {St#opt_st{ssa=Blocks}, FuncDb}.

opt_get_tuple_element([{L,#b_blk{is=Is0}=Blk0}|Bs], Blocks) ->
    case opt_get_tuple_element_is(Is0, false, []) of
        {yes,Is} ->
            Blk = Blk0#b_blk{is=Is},
            opt_get_tuple_element(Bs, Blocks#{L:=Blk});
        no ->
            opt_get_tuple_element(Bs, Blocks)
    end;
opt_get_tuple_element([], Blocks) -> Blocks.

opt_get_tuple_element_is([#b_set{op=get_tuple_element,
                                 args=[#b_var{}=Src,_]}=I0|Is0],
                         _AnyChange, Acc) ->
    {GetIs0,Is} = collect_get_tuple_element(Is0, Src, [I0]),
    GetIs1 = sort([{Pos,I} || #b_set{args=[_,Pos]}=I <- GetIs0]),
    GetIs = [I || {_,I} <- GetIs1],
    opt_get_tuple_element_is(Is, true, reverse(GetIs, Acc));
opt_get_tuple_element_is([I|Is], AnyChange, Acc) ->
    opt_get_tuple_element_is(Is, AnyChange, [I|Acc]);
opt_get_tuple_element_is([], AnyChange, Acc) ->
    case AnyChange of
        true -> {yes,reverse(Acc)};
        false -> no
    end.

collect_get_tuple_element([#b_set{op=get_tuple_element,
                                  args=[Src,_]}=I|Is], Src, Acc) ->
    collect_get_tuple_element(Is, Src, [I|Acc]);
collect_get_tuple_element(Is, _Src, Acc) ->
    {Acc,Is}.

%%%
%%% Unfold literals to avoid unnecessary move instructions in call
%%% instructions.
%%%
%%% Consider the following example:
%%%
%%%     -module(whatever).
%%%     -export([foo/0]).
%%%     foo() ->
%%%         foobar(1, 2, 3).
%%%     foobar(A, B, C) ->
%%%         foobar(A, B, C, []).
%%%     foobar(A, B, C, D) -> ...
%%%
%%% The type optimization pass will find out that A, B, and C have constant
%%% values and do constant folding, rewriting foobar/3 to:
%%%
%%%     foobar(A, B, C) ->
%%%         foobar(1, 2, 3, []).
%%%
%%% That will result in three extra `move` instructions.
%%%
%%% This optimization sub pass will undo the constant folding
%%% optimization, rewriting code to use the original variable instead
%%% of the constant if the original variable is known to be in an x
%%% register.
%%%
%%% This optimization sub pass will also undo constant folding of the
%%% list of arguments in the call to error/2 in the last clause of a
%%% function. For example:
%%%
%%%     bar(X, Y) ->
%%%         error(function_clause, [X,42]).
%%%
%%% will be rewritten to:
%%%
%%%     bar(X, Y) ->
%%%         error(function_clause, [X,Y]).
%%%

ssa_opt_unfold_literals({St,FuncDb}) ->
    #opt_st{ssa=Blocks0,args=Args,anno=Anno,cnt=Count0} = St,
    ParamInfo = maps:get(parameter_info, Anno, #{}),
    LitMap = collect_arg_literals(Args, ParamInfo, 0, #{}),
    case map_size(LitMap) of
        0 ->
            %% None of the arguments for this function are known
            %% literals. Nothing to do.
            {St,FuncDb};
        _ ->
            SafeMap = #{0 => true},
            {Blocks,Count} = unfold_literals(beam_ssa:rpo(Blocks0),
                                             LitMap, SafeMap, Count0, Blocks0),
            {St#opt_st{ssa=Blocks,cnt=Count},FuncDb}
    end.

collect_arg_literals([V|Vs], Info, X, Acc0) ->
    case Info of
        #{V:=VarInfo} ->
            Type = proplists:get_value(type, VarInfo, any),
            case beam_types:get_singleton_value(Type) of
                {ok,Val} ->
                    F = fun(Vars) -> [{X,V}|Vars] end,
                    Acc = maps:update_with(Val, F, [{X,V}], Acc0),
                    collect_arg_literals(Vs, Info, X + 1, Acc);
                error ->
                    collect_arg_literals(Vs, Info, X + 1, Acc0)
            end;
        #{} ->
            collect_arg_literals(Vs, Info, X + 1, Acc0)
    end;
collect_arg_literals([], _Info, _X, Acc) -> Acc.

unfold_literals([L|Ls], LitMap, SafeMap0, Count0, Blocks0) ->
    {Blocks,Safe,Count} =
        case map_get(L, SafeMap0) of
            false ->
                %% Before reaching this block, an instruction that
                %% clobbers x registers has been executed.  *If* we
                %% would use an argument variable instead of literal,
                %% it would force the value to be saved to a y
                %% register. This is not what we want.
                {Blocks0,false,Count0};
            true ->
                %% All x registers live when entering the function
                %% are still live. Using the variable instead of
                %% the substituted value will eliminate a `move`
                %% instruction.
                #b_blk{is=Is0} = Blk = map_get(L, Blocks0),
                {Is,Safe0,Count1} = unfold_lit_is(Is0, LitMap, Count0, []),
                {Blocks0#{L:=Blk#b_blk{is=Is}},Safe0,Count1}
        end,
    %% Propagate safeness to successors.
    Successors = beam_ssa:successors(L, Blocks),
    SafeMap = unfold_update_succ(Successors, Safe, SafeMap0),
    unfold_literals(Ls, LitMap, SafeMap, Count,Blocks);
unfold_literals([], _, _, Count, Blocks) ->
    {Blocks,Count}.

unfold_update_succ([S|Ss], Safe, SafeMap0) ->
    F = fun(Prev) -> Prev and Safe end,
    SafeMap = maps:update_with(S, F, Safe, SafeMap0),
    unfold_update_succ(Ss, Safe, SafeMap);
unfold_update_succ([], _, SafeMap) -> SafeMap.

unfold_lit_is([#b_set{op=call,
                      args=[#b_remote{mod=#b_literal{val=erlang},
                                      name=#b_literal{val=error},
                                      arity=2},
                            #b_literal{val=function_clause},
                            ArgumentList]}=I0|Is], LitMap, Count0, Acc0) ->
    %% This is a call to error/2 that raises a function_clause
    %% exception in the final clause of a function. Try to undo
    %% constant folding in the list of arguments (the second argument
    %% for error/2).
    case unfold_arg_list(Acc0, ArgumentList, LitMap, Count0, 0, []) of
        {[FinalPutList|_]=Acc,Count} ->
            %% Acc now contains the possibly rewritten code that
            %% creates the argument list. All that remains is to
            %% rewrite the call to error/2 itself so that is will
            %% refer to rewritten argument list. This is essential
            %% when all arguments have known literal values as in this
            %% example:
            %%
            %%     foo(X, Y) -> error(function_clause, [0,1]).
            %%
            #b_set{op=put_list,dst=ListVar} = FinalPutList,
            #b_set{args=[ErlangError,Fc,_]} = I0,
            I = I0#b_set{args=[ErlangError,Fc,ListVar]},
            {reverse(Acc, [I|Is]),false,Count};
        {[],_} ->
            %% Handle code such as:
            %%
            %% bar(KnownValue, Stk) -> error(function_clause, Stk).
            {reverse(Acc0, [I0|Is]),false,Count0}
    end;
unfold_lit_is([#b_set{op=Op,args=Args0}=I0|Is], LitMap, Count, Acc) ->
    %% Using a register instead of a literal is a clear win only for
    %% `call` and `old_make_fun` instructions. Substituting into other
    %% instructions is unlikely to be an improvement.
    Unfold = case Op of
                 call -> true;
                 old_make_fun -> true;
                 _ -> false
             end,
    I = case Unfold of
            true ->
                Args = unfold_call_args(Args0, LitMap, -1),
                I0#b_set{args=Args};
            false ->
                I0
        end,
    case beam_ssa:clobbers_xregs(I) of
        true ->
            %% This instruction clobbers x register. Don't do
            %% any substitutions in rest of this block or in any
            %% of its successors.
            {reverse(Acc, [I|Is]),false,Count};
        false ->
            unfold_lit_is(Is, LitMap, Count, [I|Acc])
    end;
unfold_lit_is([], _LitMap, Count, Acc) ->
    {reverse(Acc),true,Count}.

%% unfold_arg_list(Is, ArgumentList, LitMap, Count0, X, Acc) ->
%%     {UpdatedAcc, Count}.
%%
%%  Unfold the arguments in the argument list (second argument for error/2).
%%
%%  Note that Is is the reversed list of instructions before the
%%  call to error/2. Because of the way the list is built in reverse,
%%  it means that the first put_list instruction found will add the first
%%  argument (x0) to the list, the second the second argument (x1), and
%%  so on.

unfold_arg_list(Is, #b_literal{val=[Hd|Tl]}, LitMap, Count0, X, Acc) ->
    %% Handle the case that the entire argument list (the second argument
    %% for error/2) is a literal.
    {PutListDst,Count} = new_var('@put_list', Count0),
    PutList = #b_set{op=put_list,dst=PutListDst,
                     args=[#b_literal{val=Hd},#b_literal{val=Tl}]},
    unfold_arg_list([PutList|Is], PutListDst, LitMap, Count, X, Acc);
unfold_arg_list([#b_set{op=put_list,dst=List,
                         args=[Hd0,#b_literal{val=[Hd|Tl]}]}=I0|Is0],
                 List, LitMap, Count0, X, Acc) ->
    %% The rest of the argument list is a literal list.
    {PutListDst,Count} = new_var('@put_list', Count0),
    PutList = #b_set{op=put_list,dst=PutListDst,
                     args=[#b_literal{val=Hd},#b_literal{val=Tl}]},
    I = I0#b_set{args=[Hd0,PutListDst]},
    unfold_arg_list([I,PutList|Is0], List, LitMap, Count, X, Acc);
unfold_arg_list([#b_set{op=put_list,dst=List,args=[Hd0,Tl]}=I0|Is],
                 List, LitMap, Count, X, Acc) ->
    %% Unfold the head of the list.
    Hd = unfold_arg(Hd0, LitMap, X),
    I = I0#b_set{args=[Hd,Tl]},
    unfold_arg_list(Is, Tl, LitMap, Count, X + 1, [I|Acc]);
unfold_arg_list([I|Is], List, LitMap, Count, X, Acc) ->
    %% Some other instruction, such as bs_get_tail.
    unfold_arg_list(Is, List, LitMap, Count, X, [I|Acc]);
unfold_arg_list([], _, _, Count, _, Acc) ->
    {reverse(Acc),Count}.

unfold_call_args([A0|As], LitMap, X) ->
    A = unfold_arg(A0, LitMap, X),
    [A|unfold_call_args(As, LitMap, X + 1)];
unfold_call_args([], _, _) -> [].

unfold_arg(#b_literal{val=Val}=Lit, LitMap, X) ->
    case LitMap of
        #{Val:=Vars} ->
            %% This literal is available in an x register.
            %% If it is in the correct x register, use
            %% the register. Don't bother if it is in the
            %% wrong register, because that would still result
            %% in a `move` instruction.
            case keyfind(X, 1, Vars) of
                false -> Lit;
                {X,Var} -> Var
            end;
        #{} -> Lit
    end;
unfold_arg(Expr, _LitMap, _X) -> Expr.

%%%
%%% Optimize tail calls created as the result of optimizations.
%%%
%%% Consider the following example of a tail call in Erlang code:
%%%
%%%    bar() ->
%%%        foo().
%%%
%%% The SSA code for the call will look like this:
%%%
%%%      @ssa_ret = call (`foo`/0)
%%%      ret @ssa_ret
%%%
%%% Sometimes optimizations create new tail calls. Consider this
%%% slight variation of the example:
%%%
%%%    bar() ->
%%%        {_,_} = foo().
%%%
%%%    foo() -> {a,b}.
%%%
%%% If beam_ssa_type can figure out that `foo/0` always returns a tuple
%%% of size two, the test for a tuple is no longer needed and the call
%%% to `foo/0` will become a tail call. However, the resulting SSA
%%% code will look like this:
%%%
%%%      @ssa_ret = call (`foo`/0)
%%%      @ssa_bool = succeeded:body @ssa_ret
%%%      br @ssa_bool, ^999, ^1
%%%
%%%    999:
%%%      ret @ssa_ret
%%%
%%% The beam_ssa_codegen pass will not recognize this code as a tail
%%% call and will generate an unncessary stack frame. It may also
%%% generate unecessary `kill` instructions.
%%%
%%% To avoid those extra instructions, this optimization will
%%% eliminate the `succeeded:body` and `br` instructions and insert
%%% the `ret` in the same block as the call:
%%%
%%%      @ssa_ret = call (`foo`/0)
%%%      ret @ssa_ret
%%%
%%% Finally, consider this example:
%%%
%%%    bar() ->
%%%        foo_ok(),
%%%        ok.
%%%
%%%    foo_ok() -> ok.
%%%
%%% The SSA code for the call to `foo_ok/0` will look like:
%%%
%%%      %% Result type: `ok`
%%%      @ssa_ignored = call (`foo_ok`/0)
%%%      @ssa_bool = succeeded:body @ssa_ignored
%%%      br @ssa_bool, ^999, ^1
%%%
%%%    999:
%%%      ret `ok`
%%%
%%% Since the call to `foo_ok/0` has an annotation indicating that the
%%% call will always return the atom `ok`, the code can be simplified
%%% like this:
%%%
%%%      @ssa_ignored = call (`foo_ok`/0)
%%%      ret @ssa_ignored
%%%
%%% The beam_jump pass does the same optimization, but it does it too
%%% late to avoid creating an uncessary stack frame or unnecessary
%%% `kill` instructions.
%%%

ssa_opt_tail_calls({St,FuncDb}) ->
    #opt_st{ssa=Blocks0} = St,
    Blocks = opt_tail_calls(beam_ssa:rpo(Blocks0), Blocks0),
    {St#opt_st{ssa=Blocks},FuncDb}.

opt_tail_calls([L|Ls], Blocks0) ->
    #b_blk{is=Is0,last=Last} = Blk0 = map_get(L, Blocks0),

    %% Does this block end with a two-way branch whose success
    %% label targets an empty block with a `ret` terminator?
    case is_potential_tail_call(Last, Blocks0) of
        {yes,Bool,Ret} ->
            %% Yes, `Ret` is the value returned from that block
            %% (either a variable or literal). Do the instructions
            %% in this block end with a `call` instruction that
            %% returns the same value as `Ret`, followed by a
            %% `succeeded:body` instruction?
            case is_tail_call_is(Is0, Bool, Ret, []) of
                {yes,Is,Var} ->
                    %% Yes, this is a tail call. `Is` is the instructions
                    %% in the block with `succeeded:body` removed, and
                    %% `Var` is the destination variable for the return
                    %% value of the call. Rewrite this block to directly
                    %% return `Var`.
                    Blk = Blk0#b_blk{is=Is,last=#b_ret{arg=Var}},
                    Blocks = Blocks0#{L:=Blk},
                    opt_tail_calls(Ls, Blocks);
                no ->
                    %% No, the block does not end with a call, or the
                    %% the call instruction has not the same value
                    %% as `Ret`.
                    opt_tail_calls(Ls, Blocks0)
            end;
        no ->
            opt_tail_calls(Ls, Blocks0)
    end;
opt_tail_calls([], Blocks) -> Blocks.

is_potential_tail_call(#b_br{bool=#b_var{}=Bool,succ=Succ}, Blocks) ->
    case Blocks of
        #{Succ := #b_blk{is=[],last=#b_ret{arg=Arg}}} ->
            %% This could be a tail call.
            {yes,Bool,Arg};
        #{} ->
            %% The block is not empty or does not have a `ret` terminator.
            no
    end;
is_potential_tail_call(_, _) ->
    %% Not a two-way branch (a `succeeded:body` instruction must be
    %% followed by a two-way branch).
    no.

is_tail_call_is([#b_set{op=call,dst=Dst}=Call,
                 #b_set{op={succeeded,body},dst=Bool}],
                Bool, Ret, Acc) ->
    IsTailCall =
        case Ret of
            #b_literal{val=Val} ->
                %% The return value for this function is a literal.
                %% Now test whether it is the same literal that the
                %% `call` instruction returns.
                Type = beam_ssa:get_anno(result_type, Call, any),
                case beam_types:get_singleton_value(Type) of
                    {ok,Val} ->
                        %% Same value.
                        true;
                    {ok,_} ->
                        %% Wrong value.
                        false;
                    error ->
                        %% The type for the return value is not a singleton value.
                        false
                end;
            #b_var{} ->
                %% It is a tail call if the variable set by the `call` instruction
                %% is the same variable as the argument for the `ret` terminator.
                Ret =:= Dst
        end,
    case IsTailCall of
        true ->
            %% Return the instructions in the block with `succeeded:body` removed.
            Is = reverse(Acc, [Call]),
            {yes,Is,Dst};
        false ->
            no
    end;
is_tail_call_is([I|Is], Bool, Ret, Acc) ->
    is_tail_call_is(Is, Bool, Ret, [I|Acc]);
is_tail_call_is([], _Bool, _Ret, _Acc) -> no.

%%%
%%% Eliminate redundant branches.
%%%
%%% Redundant `br` instructions following calls to guard BIFs such as:
%%%
%%%     @bif_result = bif:Bif ...
%%%     br @bif_result, ^100, ^200
%%%
%%%   100:
%%%      ret `true`
%%%
%%%   200:
%%%      ret `false`
%%%
%%% can can be rewritten to:
%%%
%%%     @bif_result = bif:Bif ...
%%%     ret @bif_result
%%%
%%% A similar rewriting is possible if the true and false branches end
%%% up at a phi node.
%%%
%%% A code sequence such as:
%%%
%%%   @ssa_bool = bif:'=:=' Var, Other
%%%   br @ssa_bool, ^100, ^200
%%%
%%% 100:
%%%   ret Other
%%%
%%% 200:
%%%   ret Var
%%%
%%% can be rewritten to:
%%%
%%%   ret Var
%%%

ssa_opt_redundant_br({#opt_st{ssa=Blocks0}=St, FuncDb}) ->
    Blocks = redundant_br(beam_ssa:rpo(Blocks0), Blocks0),
    {St#opt_st{ssa=Blocks}, FuncDb}.

redundant_br([L|Ls], Blocks0) ->
    Blk0 = map_get(L, Blocks0),
    case Blk0 of
        #b_blk{is=Is,
               last=#b_br{bool=#b_var{}=Bool,
                          succ=Succ,
                          fail=Fail}} ->
            case Blocks0 of
                #{Succ := #b_blk{is=[],last=#b_ret{arg=#b_literal{val=true}}},
                  Fail := #b_blk{is=[],last=#b_ret{arg=#b_literal{val=false}}}} ->
                    case redundant_br_safe_bool(Is, Bool) of
                        true ->
                            Blk = Blk0#b_blk{last=#b_ret{arg=Bool}},
                            Blocks = Blocks0#{L => Blk},
                            redundant_br(Ls, Blocks);
                        false ->
                            redundant_br(Ls, Blocks0)
                    end;
                #{Succ := #b_blk{is=[],last=#b_br{succ=PhiL,fail=PhiL}},
                  Fail := #b_blk{is=[],last=#b_br{succ=PhiL,fail=PhiL}}} ->
                    case redundant_br_safe_bool(Is, Bool) of
                        true ->
                            Blocks = redundant_br_phi(L, Blk0, PhiL, Blocks0),
                            redundant_br(Ls, Blocks);
                        false ->
                            redundant_br(Ls, Blocks0)
                    end;
                #{Succ := #b_blk{is=[],last=#b_ret{arg=Other}},
                  Fail := #b_blk{is=[],last=#b_ret{arg=Var}}} when Is =/= [] ->
                    case last(Is) of
                        #b_set{op={bif,'=:='},args=[Var,Other]} ->
                            Blk = Blk0#b_blk{is=droplast(Is),
                                             last=#b_ret{arg=Var}},
                            Blocks = Blocks0#{L => Blk},
                            redundant_br(Ls, Blocks);
                        #b_set{} ->
                            redundant_br(Ls, Blocks0)
                    end;
                #{} ->
                    redundant_br(Ls, Blocks0)
            end;
        _ ->
            redundant_br(Ls, Blocks0)
    end;
redundant_br([], Blocks) -> Blocks.

redundant_br_phi(L, Blk0, PhiL, Blocks) ->
    #b_blk{is=Is0} = PhiBlk0 = map_get(PhiL, Blocks),
    case Is0 of
        [#b_set{op=phi},#b_set{op=phi}|_] ->
            Blocks;
        [#b_set{op=phi,args=PhiArgs0}=I0|Is] ->
            #b_blk{last=#b_br{succ=Succ,fail=Fail}} = Blk0,
            BoolPhiArgs = [{#b_literal{val=false},Fail},
                           {#b_literal{val=true},Succ}],
            PhiArgs1 = ordsets:from_list(PhiArgs0),
            case ordsets:is_subset(BoolPhiArgs, PhiArgs1) of
                true ->
                    #b_blk{last=#b_br{bool=Bool}} = Blk0,
                    PhiArgs = ordsets:add_element({Bool,L}, PhiArgs1),
                    I = I0#b_set{args=PhiArgs},
                    PhiBlk = PhiBlk0#b_blk{is=[I|Is]},
                    Br = #b_br{bool=#b_literal{val=true},succ=PhiL,fail=PhiL},
                    Blk = Blk0#b_blk{last=Br},
                    Blocks#{L := Blk, PhiL := PhiBlk};
                false ->
                    Blocks
            end
    end.

redundant_br_safe_bool([], _Bool) ->
    true;
redundant_br_safe_bool(Is, Bool) ->
    case last(Is) of
        #b_set{op={bif,_}} -> true;
        #b_set{op=has_map_field} -> true;
        #b_set{dst=Dst} -> Dst =/= Bool
    end.

%%%
%%% Common utilities.
%%%

list_set_union([], Set) ->
    Set;
list_set_union([E], Set) ->
    sets:add_element(E, Set);
list_set_union(List, Set) ->
    sets:union(sets:from_list(List, [{version, 2}]), Set).

non_guards(Linear) ->
    gb_sets:from_list(non_guards_1(Linear)).

non_guards_1([{L,#b_blk{is=Is}}|Bs]) ->
    case Is of
        [#b_set{op=landingpad}|_] ->
            [L | non_guards_1(Bs)];
        _ ->
            non_guards_1(Bs)
    end;
non_guards_1([]) ->
    [?EXCEPTION_BLOCK].

rel2fam(S0) ->
    S1 = sofs:relation(S0),
    S = sofs:rel2fam(S1),
    sofs:to_external(S).

sub(I, Sub) ->
    beam_ssa:normalize(sub_1(I, Sub)).

sub_1(#b_set{op=phi,args=Args}=I, Sub) ->
    I#b_set{args=[{sub_arg(A, Sub),P} || {A,P} <- Args]};
sub_1(#b_set{args=Args}=I, Sub) ->
    I#b_set{args=[sub_arg(A, Sub) || A <- Args]};
sub_1(#b_br{bool=#b_var{}=Old}=Br, Sub) ->
    New = sub_arg(Old, Sub),
    Br#b_br{bool=New};
sub_1(#b_switch{arg=#b_var{}=Old}=Sw, Sub) ->
    New = sub_arg(Old, Sub),
    Sw#b_switch{arg=New};
sub_1(#b_ret{arg=#b_var{}=Old}=Ret, Sub) ->
    New = sub_arg(Old, Sub),
    Ret#b_ret{arg=New};
sub_1(Last, _) -> Last.

sub_arg(#b_remote{mod=Mod,name=Name}=Rem, Sub) ->
    Rem#b_remote{mod=sub_arg(Mod, Sub),name=sub_arg(Name, Sub)};
sub_arg(Old, Sub) ->
    case Sub of
        #{Old:=New} -> New;
        #{} -> Old
    end.

new_var(#b_var{name={Base,N}}, Count) ->
    true = is_integer(N),                       %Assertion.
    {#b_var{name={Base,Count}},Count+1};
new_var(#b_var{name=Base}, Count) ->
    {#b_var{name={Base,Count}},Count+1};
new_var(Base, Count) when is_atom(Base) ->
    {#b_var{name={Base,Count}},Count+1}.