summaryrefslogtreecommitdiff
path: root/lib/compiler/src/beam_receive.erl
blob: 3dd5ed182e2620a26d51fd92aa6a8be9bcfe22ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2010-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%

-module(beam_receive).
-export([module/2]).
-import(lists, [foldl/3,reverse/1,reverse/2]).

%%%
%%% In code such as:
%%%
%%%    Ref = make_ref(),        %Or erlang:monitor(process, Pid)
%%%      .
%%%      .
%%%      .
%%%    receive
%%%       {Ref,Reply} -> Reply
%%%    end.
%%%
%%% we know that none of the messages that exist in the message queue
%%% before the call to make_ref/0 can be matched out in the receive
%%% statement. Therefore we can avoid going through the entire message
%%% queue if we introduce two new instructions (here written as
%%% BIFs in pseudo-Erlang):
%%%
%%%    recv_mark(SomeUniqInteger),
%%%    Ref = make_ref(),
%%%      .
%%%      .
%%%      .
%%%    recv_set(SomeUniqInteger),
%%%    receive
%%%       {Ref,Reply} -> Reply
%%%    end.
%%%
%%% The recv_mark/1 instruction will save the current position and
%%% SomeUniqInteger in the process context. The recv_set
%%% instruction will verify that SomeUniqInteger is still stored
%%% in the process context. If it is, it will set the current pointer
%%% for the message queue (the next message to be read out) to the
%%% position that was saved by recv_mark/1.
%%%
%%% The remove_message instruction must be modified to invalidate
%%% the information stored by the previous recv_mark/1, in case there
%%% is another receive executed between the calls to recv_mark/1 and
%%% recv_set/1.
%%%
%%% We use a reference to a label (i.e. a position in the loaded code)
%%% as the SomeUniqInteger.
%%%

module({Mod,Exp,Attr,Fs0,Lc}, _Opts) ->
    Fs = [function(F) || F <- Fs0],
    Code = {Mod,Exp,Attr,Fs,Lc},
    {ok,Code}.

%%%
%%% Local functions.
%%%

function({function,Name,Arity,Entry,Is}) ->
    try
	D = beam_utils:index_labels(Is),
	{function,Name,Arity,Entry,opt(Is, D, [])}
    catch
	Class:Error ->
	    Stack = erlang:get_stacktrace(),
	    io:fwrite("Function: ~w/~w\n", [Name,Arity]),
	    erlang:raise(Class, Error, Stack)
    end.

opt([{call_ext,A,{extfunc,erlang,spawn_monitor,A}}=I0|Is0], D, Acc)
  when A =:= 1; A =:= 3 ->
    case ref_in_tuple(Is0) of
	no ->
	    opt(Is0, D, [I0|Acc]);
	{yes,Regs,Is1,MatchReversed} ->
	    %% The call creates a brand new reference. Now
	    %% search for a receive statement in the same
	    %% function that will match against the reference.
	    case opt_recv(Is1, Regs, D) of
		no ->
		    opt(Is0, D, [I0|Acc]);
		{yes,Is,Lbl} ->
		    opt(Is, D, MatchReversed++[I0,{recv_mark,{f,Lbl}}|Acc])
	    end
    end;
opt([{call_ext,Arity,{extfunc,erlang,Name,Arity}}=I|Is0], D, Acc) ->
    case creates_new_ref(Name, Arity) of
	true ->
	    %% The call creates a brand new reference. Now
	    %% search for a receive statement in the same
	    %% function that will match against the reference.
	    case opt_recv(Is0, regs_init_x0(), D) of
		no ->
		    opt(Is0, D, [I|Acc]);
		{yes,Is,Lbl} ->
		    opt(Is, D, [I,{recv_mark,{f,Lbl}}|Acc])
	    end;
	false ->
	    opt(Is0, D, [I|Acc])
    end;
opt([I|Is], D, Acc) ->
    opt(Is, D, [I|Acc]);
opt([], _, Acc) ->
    reverse(Acc).

ref_in_tuple([{test,is_tuple,_,[{x,0}]}=I1,
	      {test,test_arity,_,[{x,0},2]}=I2,
	      {block,[{set,[_],[{x,0}],{get_tuple_element,0}},
		      {set,[Dst],[{x,0}],{get_tuple_element,1}}|Bl]}=I3|Is]) ->
    ref_in_tuple_1(Bl, Dst, Is, [I3,I2,I1]);
ref_in_tuple([{test,is_tuple,_,[{x,0}]}=I1,
	      {test,test_arity,_,[{x,0},2]}=I2,
	      {block,[{set,[Dst],[{x,0}],{get_tuple_element,1}}|Bl]}=I3|Is]) ->
    ref_in_tuple_1(Bl, Dst, Is, [I3,I2,I1]);
ref_in_tuple(_) -> no.

ref_in_tuple_1(Bl, Dst, Is, MatchReversed) ->
    Regs0 = regs_init_singleton(Dst),
    Regs = opt_update_regs_bl(Bl, Regs0),
    {yes,Regs,Is,MatchReversed}.

%% creates_new_ref(Name, Arity) -> true|false.
%%  Return 'true' if the BIF Name/Arity will create a new reference.
creates_new_ref(monitor, 2) -> true;
creates_new_ref(make_ref, 0) -> true;
creates_new_ref(_, _) -> false.

%% opt_recv([Instruction], Regs, LabelIndex) -> no|{yes,[Instruction]}
%%  Search for a receive statement that will only retrieve messages
%%  that contain the newly created reference (which is currently in {x,0}).
opt_recv(Is, Regs, D) ->
    L = gb_sets:empty(),
    opt_recv(Is, D, Regs, L, []).

opt_recv([{label,L}=Lbl,{loop_rec,{f,Fail},_}=Loop|Is], D, R0, _, Acc) ->
    R = regs_kill_not_live(0, R0),
    case regs_to_list(R) of
	[{y,_}=RefReg] ->
	    %% We now have the new reference in the Y register RefReg
	    %% and the current instruction is the beginning of a
	    %% receive statement. We must now verify that only messages
	    %% that contain the reference will be matched.
	    case opt_ref_used(Is, RefReg, Fail, D) of
		false ->
		    no;
		true ->
		    RecvSet = {recv_set,{f,L}},
		    {yes,reverse(Acc, [RecvSet,Lbl,Loop|Is]),L}
	    end;
	[] ->
	    no
    end;
opt_recv([I|Is], D, R0, L0, Acc) ->
    {R,L} = opt_update_regs(I, R0, L0),
    case regs_empty(R) of
	true ->
	    %% The reference is no longer alive. There is no
	    %% point in continuing the search.
	    no;
	false ->
	    opt_recv(Is, D, R, L, [I|Acc])
    end.

opt_update_regs({block,Bl}, R, L) ->
    {opt_update_regs_bl(Bl, R),L};
opt_update_regs({call,_,_}, R, L) ->
    {regs_kill_not_live(0, R),L};
opt_update_regs({call_ext,_,_}, R, L) ->
    {regs_kill_not_live(0, R),L};
opt_update_regs({call_fun,_}, R, L) ->
    {regs_kill_not_live(0, R),L};
opt_update_regs({kill,Y}, R, L) ->
    {regs_kill([Y], R),L};
opt_update_regs({'catch',_,{f,Lbl}}, R, L) ->
    {R,gb_sets:add(Lbl, L)};
opt_update_regs({catch_end,_}, R, L) ->
    {R,L};
opt_update_regs({label,Lbl}, R, L) ->
    case gb_sets:is_member(Lbl, L) of
	false ->
	    %% We can't allow arbitrary labels (since the receive
	    %% could be entered without first creating the reference).
	    {regs_init(),L};
	true ->
	    %% A catch label for a previously seen catch instruction is OK.
	    {R,L}
    end;
opt_update_regs({try_end,_}, R, L) ->
    {R,L};
opt_update_regs({line,_}, R, L) ->
    {R,L};
opt_update_regs(_I, _R, L) ->
    %% Unrecognized instruction. Abort the search.
    {regs_init(),L}.

opt_update_regs_bl([{set,Ds,_,{alloc,Live,_}}|Is], Regs0) ->
    Regs1 = regs_kill_not_live(Live, Regs0),
    Regs = regs_kill(Ds, Regs1),
    opt_update_regs_bl(Is, Regs);
opt_update_regs_bl([{set,[Dst]=Ds,[Src],move}|Is], Regs0) ->
    Regs1 = regs_kill(Ds, Regs0),
    Regs = case regs_is_member(Src, Regs1) of
	       false -> Regs1;
	       true -> regs_add(Dst, Regs1)
	   end,
    opt_update_regs_bl(Is, Regs);
opt_update_regs_bl([{set,Ds,_,_}|Is], Regs0) ->
    Regs = regs_kill(Ds, Regs0),
    opt_update_regs_bl(Is, Regs);
opt_update_regs_bl([], Regs) -> Regs.

%% opt_ref_used([Instruction], RefRegister, FailLabel, LabelIndex) -> true|false
%%  Return 'true' if it is certain that only messages that contain the same
%%  reference as in RefRegister can be matched out. Otherwise return 'false'.
%%
%%  Basically, we follow all possible paths through the receive statement.
%%  If all paths are safe, we return 'true'.
%%
%%  A branch to FailLabel is safe, because it exits the receive statement
%%  and no further message may be matched out.
%%
%%  If a path hits an comparision between RefRegister and part of the message,
%%  that path is safe (any messages that may be matched further down the
%%  path is guaranteed to contain the reference).
%%
%%  Otherwise, if we hit a 'remove_message' instruction, we give up
%%  and return 'false' (the optimization is definitely unsafe). If
%%  we hit an unrecognized instruction, we also give up and return
%%  'false' (the optimization may be unsafe).

opt_ref_used(Is, RefReg, Fail, D) ->
    Done = gb_sets:singleton(Fail),
    Regs = regs_init_x0(),
    try
	_ = opt_ref_used_1(Is, RefReg, D, Done, Regs),
	true
    catch
	throw:not_used ->
	    false
    end.

%% This functions only returns if all paths through the receive
%% statement are safe, and throws an 'not_used' term otherwise.
opt_ref_used_1([{block,Bl}|Is], RefReg, D, Done, Regs0) ->
    Regs = opt_ref_used_bl(Bl, Regs0),
    opt_ref_used_1(Is, RefReg, D, Done, Regs);
opt_ref_used_1([{test,is_eq_exact,{f,Fail},Args}|Is], RefReg, D, Done0, Regs) ->
    Done = opt_ref_used_at(Fail, RefReg, D, Done0, Regs),
    case is_ref_msg_comparison(Args, RefReg, Regs) of
	false ->
	    opt_ref_used_1(Is, RefReg, D, Done, Regs);
	true ->
	    %% The instructions that follow (Is) can only be executed
	    %% if the message contains the same reference as in RefReg.
	    Done
    end;
opt_ref_used_1([{test,is_ne_exact,{f,Fail},Args}|Is], RefReg, D, Done0, Regs) ->
    Done = opt_ref_used_1(Is, RefReg, D, Done0, Regs),
    case is_ref_msg_comparison(Args, RefReg, Regs) of
	false ->
	    opt_ref_used_at(Fail, RefReg, D, Done, Regs);
	true ->
	    Done
    end;
opt_ref_used_1([{test,_,{f,Fail},_}|Is], RefReg, D, Done0, Regs) ->
    Done = opt_ref_used_at(Fail, RefReg, D, Done0, Regs),
    opt_ref_used_1(Is, RefReg, D, Done, Regs);
opt_ref_used_1([{select,_,_,{f,Fail},List}|_], RefReg, D, Done, Regs) ->
    Lbls = [F || {f,F} <- List] ++ [Fail],
    opt_ref_used_in_all(Lbls, RefReg, D, Done, Regs);
opt_ref_used_1([{label,Lbl}|Is], RefReg, D, Done, Regs) ->
    case gb_sets:is_member(Lbl, Done) of
	true -> Done;
	false -> opt_ref_used_1(Is, RefReg, D, Done, Regs)
    end;
opt_ref_used_1([{loop_rec_end,_}|_], _, _, Done, _) ->
    Done;
opt_ref_used_1([_I|_], _RefReg, _D, _Done, _Regs) ->
    %% The optimization may be unsafe.
    throw(not_used).

%% is_ref_msg_comparison(Args, RefReg, RegisterSet) -> true|false.
%%  Return 'true' if Args denotes a comparison between the
%%  reference and message or part of the message.
is_ref_msg_comparison([R,RefReg], RefReg, Regs) ->
    regs_is_member(R, Regs);
is_ref_msg_comparison([RefReg,R], RefReg, Regs) ->
    regs_is_member(R, Regs);
is_ref_msg_comparison([_,_], _, _) -> false.

opt_ref_used_in_all([L|Ls], RefReg, D, Done0, Regs) ->
    Done = opt_ref_used_at(L, RefReg, D, Done0, Regs),
    opt_ref_used_in_all(Ls, RefReg, D, Done, Regs);
opt_ref_used_in_all([], _, _, Done, _) -> Done.

opt_ref_used_at(Fail, RefReg, D, Done0, Regs) ->
    case gb_sets:is_member(Fail, Done0) of
	true ->
	    Done0;
	false ->
	    Is = beam_utils:code_at(Fail, D),
	    Done = opt_ref_used_1(Is, RefReg, D, Done0, Regs),
	    gb_sets:add(Fail, Done)
    end.

opt_ref_used_bl([{set,[],[],remove_message}|_], _) ->
    %% We have proved that a message that does not depend on the
    %% reference can be matched out.
    throw(not_used);
opt_ref_used_bl([{set,Ds,Ss,_}|Is], Regs0) ->
    case regs_all_members(Ss, Regs0) of
	false ->
	    %% The destination registers may be assigned values that
	    %% are not dependent on the message being matched.
	    Regs = regs_kill(Ds, Regs0),
	    opt_ref_used_bl(Is, Regs);
	true ->
	    %% All the sources depend on the message directly or
	    %% indirectly.
	    Regs = regs_add_list(Ds, Regs0),
	    opt_ref_used_bl(Is, Regs)
    end;
opt_ref_used_bl([], Regs) -> Regs.

%%%
%%% Functions for keeping track of a set of registers.
%%%

%% regs_init() -> RegisterSet
%%  Return an empty set of registers.

regs_init() ->
    {0,0}.

%% regs_init_singleton(Register) -> RegisterSet
%%  Return a set that only contains one register.

regs_init_singleton(Reg) ->
    regs_add(Reg, regs_init()).

%% regs_init_x0() -> RegisterSet
%%  Return a set that only contains the {x,0} register.

regs_init_x0() ->
    {1 bsl 0,0}.

%% regs_empty(Register) -> true|false
%%  Test whether the register set is empty.

regs_empty(R) ->
    R =:= {0,0}.

%% regs_kill_not_live(Live, RegisterSet) -> RegisterSet'
%%  Kill all registers indicated not live by Live.

regs_kill_not_live(Live, {Xregs,Yregs}) ->
    {Xregs band ((1 bsl Live)-1),Yregs}.

%% regs_kill([Register], RegisterSet) -> RegisterSet'
%%  Kill all registers mentioned in the list of registers.

regs_kill([{x,N}|Rs], {Xregs,Yregs}) ->
    regs_kill(Rs, {Xregs band (bnot (1 bsl N)),Yregs});
regs_kill([{y,N}|Rs], {Xregs,Yregs}) ->
    regs_kill(Rs, {Xregs,Yregs band (bnot (1 bsl N))});
regs_kill([{fr,_}|Rs], Regs) ->
    regs_kill(Rs, Regs);
regs_kill([], Regs) -> Regs.

regs_add_list(List, Regs) ->
    foldl(fun(R, A) -> regs_add(R, A) end, Regs, List).

%% regs_add(Register, RegisterSet) -> RegisterSet'
%%  Add a new register to the set of registers.

regs_add({x,N}, {Xregs,Yregs}) ->
    {Xregs bor (1 bsl N),Yregs};
regs_add({y,N}, {Xregs,Yregs}) ->
    {Xregs,Yregs bor (1 bsl N)}.

%% regs_all_members([Register], RegisterSet) -> true|false
%%  Test whether all of the registers are part of the register set.

regs_all_members([R|Rs], Regs) ->
    regs_is_member(R, Regs) andalso regs_all_members(Rs, Regs);
regs_all_members([], _) -> true.

%% regs_is_member(Register, RegisterSet) -> true|false
%%  Test whether Register is part of the register set.

regs_is_member({x,N}, {Regs,_}) -> Regs band (1 bsl N) =/= 0;
regs_is_member({y,N}, {_,Regs}) -> Regs band (1 bsl N) =/= 0;
regs_is_member(_, _) -> false.

%% regs_to_list(RegisterSet) -> [Register]
%%  Convert the register set to an explicit list of registers.
regs_to_list({Xregs,Yregs}) ->
    regs_to_list_1(Xregs, 0, x, regs_to_list_1(Yregs, 0, y, [])).

regs_to_list_1(0, _, _, Acc) ->
    Acc;
regs_to_list_1(Regs, N, Tag, Acc) when (Regs band 1) =:= 1 ->
    regs_to_list_1(Regs bsr 1, N+1, Tag, [{Tag,N}|Acc]);
regs_to_list_1(Regs, N, Tag, Acc) ->
    regs_to_list_1(Regs bsr 1, N+1, Tag, Acc).