summaryrefslogtreecommitdiff
path: root/lib/dialyzer/src/cerl_closurean.erl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/dialyzer/src/cerl_closurean.erl')
-rw-r--r--lib/dialyzer/src/cerl_closurean.erl856
1 files changed, 0 insertions, 856 deletions
diff --git a/lib/dialyzer/src/cerl_closurean.erl b/lib/dialyzer/src/cerl_closurean.erl
deleted file mode 100644
index 55dcfeed1d..0000000000
--- a/lib/dialyzer/src/cerl_closurean.erl
+++ /dev/null
@@ -1,856 +0,0 @@
-%% Licensed under the Apache License, Version 2.0 (the "License");
-%% you may not use this file except in compliance with the License.
-%% You may obtain a copy of the License at
-%%
-%% http://www.apache.org/licenses/LICENSE-2.0
-%%
-%% Unless required by applicable law or agreed to in writing, software
-%% distributed under the License is distributed on an "AS IS" BASIS,
-%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-%% See the License for the specific language governing permissions and
-%% limitations under the License.
-%%
-%% @copyright 2001-2002 Richard Carlsson
-%% @author Richard Carlsson <carlsson.richard@gmail.com>
-%% @doc Closure analysis of Core Erlang programs.
-
-%% TODO: might need a "top" (`any') element for any-length value lists.
-
--module(cerl_closurean).
-
--export([analyze/1, annotate/1]).
-%% The following functions are exported from this module since they
-%% are also used by Dialyzer (file dialyzer/src/dialyzer_dep.erl)
--export([is_escape_op/2, is_escape_op/3, is_literal_op/2, is_literal_op/3]).
-
--import(cerl, [ann_c_apply/3, ann_c_fun/3, ann_c_var/2, apply_args/1,
- apply_op/1, atom_val/1, bitstr_size/1, bitstr_val/1,
- binary_segments/1, c_letrec/2, c_seq/2, c_tuple/1,
- c_nil/0, call_args/1, call_module/1, call_name/1,
- case_arg/1, case_clauses/1, catch_body/1, clause_body/1,
- clause_guard/1, clause_pats/1, cons_hd/1, cons_tl/1,
- fun_body/1, fun_vars/1, get_ann/1, is_c_atom/1,
- let_arg/1, let_body/1, let_vars/1, letrec_body/1,
- letrec_defs/1, module_defs/1, module_defs/1,
- module_exports/1, pat_vars/1, primop_args/1,
- primop_name/1, receive_action/1, receive_clauses/1,
- receive_timeout/1, seq_arg/1, seq_body/1, set_ann/2,
- try_arg/1, try_body/1, try_vars/1, try_evars/1,
- try_handler/1, tuple_es/1, type/1, values_es/1]).
-
--import(cerl_trees, [get_label/1]).
-
-%% ===========================================================================
-
--type label() :: integer() | 'top' | 'external' | 'external_call'.
--type ordset(X) :: [X]. % XXX: TAKE ME OUT
--type labelset() :: ordset(label()).
--type outlist() :: [labelset()] | 'none'.
--type escapes() :: labelset().
-
-%% ===========================================================================
-%% annotate(Tree) -> {Tree1, OutList, Outputs, Escapes, Dependencies, Parents}
-%%
-%% Tree = cerl:cerl()
-%%
-%% Analyzes `Tree' (see `analyze') and appends terms `{callers,
-%% Labels}' and `{calls, Labels}' to the annotation list of each
-%% fun-expression node and apply-expression node of `Tree',
-%% respectively, where `Labels' is an ordered-set list of labels of
-%% fun-expressions in `Tree', possibly also containing the atom
-%% `external', corresponding to the dependency information derived
-%% by the analysis. Any previous such annotations are removed from
-%% `Tree'. `Tree1' is the modified tree; for details on `OutList',
-%% `Outputs' , `Dependencies', `Escapes' and `Parents', see
-%% `analyze'.
-%%
-%% Note: `Tree' must be annotated with labels in order to use this
-%% function; see `analyze' for details.
-
--spec annotate(cerl:cerl()) ->
- {cerl:cerl(), outlist(), dict:dict(),
- escapes(), dict:dict(), dict:dict()}.
-
-annotate(Tree) ->
- {Xs, Out, Esc, Deps, Par} = analyze(Tree),
- F = fun (T) ->
- case type(T) of
- 'fun' ->
- L = get_label(T),
- X = case dict:find(L, Deps) of
- {ok, X1} -> X1;
- error -> set__new()
- end,
- set_ann(T, append_ann(callers,
- set__to_list(X),
- get_ann(T)));
- apply ->
- L = get_label(T),
- X = case dict:find(L, Deps) of
- {ok, X1} -> X1;
- error -> set__new()
- end,
- set_ann(T, append_ann(calls,
- set__to_list(X),
- get_ann(T)));
- _ ->
-%%% set_ann(T, []) % debug
- T
- end
- end,
- {cerl_trees:map(F, Tree), Xs, Out, Esc, Deps, Par}.
-
-append_ann(Tag, Val, [X | Xs]) ->
- if tuple_size(X) >= 1, element(1, X) =:= Tag ->
- append_ann(Tag, Val, Xs);
- true ->
- [X | append_ann(Tag, Val, Xs)]
- end;
-append_ann(Tag, Val, []) ->
- [{Tag, Val}].
-
-%% =====================================================================
-%% analyze(Tree) -> {OutList, Outputs, Escapes, Dependencies, Parents}
-%%
-%% Tree = cerl()
-%% OutList = [LabelSet] | none
-%% Outputs = dict(Label, OutList)
-%% Escapes = LabelSet
-%% Dependencies = dict(Label, LabelSet)
-%% LabelSet = ordset(Label)
-%% Label = integer() | top | external | external_call
-%% Parents = dict(Label, Label)
-%%
-%% Analyzes a module or an expression represented by `Tree'.
-%%
-%% The returned `OutList' is a list of sets of labels of
-%% fun-expressions which correspond to the possible closures in the
-%% value list produced by `Tree' (viewed as an expression; the
-%% "value" of a module contains its exported functions). The atom
-%% `none' denotes missing or conflicting information.
-%%
-%% The atom `external' in any label set denotes any possible
-%% function outside `Tree', including those in `Escapes'. The atom
-%% `top' denotes the top-level expression `Tree'.
-%%
-%% `Outputs' is a mapping from the labels of fun-expressions in
-%% `Tree' to corresponding lists of sets of labels of
-%% fun-expressions (or the atom `none'), representing the possible
-%% closures in the value lists returned by the respective
-%% functions.
-%%
-%% `Dependencies' is a similar mapping from the labels of
-%% fun-expressions and apply-expressions in `Tree' to sets of
-%% labels of corresponding fun-expressions which may contain call
-%% sites of the functions or be called from the call sites,
-%% respectively. Any such label not defined in `Dependencies'
-%% represents an unreachable function or a dead or faulty
-%% application.
-%%
-%% `Escapes' is the set of labels of fun-expressions in `Tree' such
-%% that corresponding closures may be accessed from outside `Tree'.
-%%
-%% `Parents' is a mapping from labels of fun-expressions in `Tree'
-%% to the corresponding label of the nearest containing
-%% fun-expression or top-level expression. This can be used to
-%% extend the dependency graph, for certain analyses.
-%%
-%% Note: `Tree' must be annotated with labels (as done by the
-%% function `cerl_trees:label/1') in order to use this function.
-%% The label annotation `{label, L}' (where L should be an integer)
-%% must be the first element of the annotation list of each node in
-%% the tree. Instances of variables bound in `Tree' which denote
-%% the same variable must have the same label; apart from this,
-%% labels should be unique. Constant literals do not need to be
-%% labeled.
-
--record(state, {vars, out, dep, work, funs, par}).
-
-%% Note: In order to keep our domain simple, we assume that all remote
-%% calls and primops return a single value, if any.
-
-%% We use the terms `closure', `label', `lambda' and `fun-expression'
-%% interchangeably. The exact meaning in each case can be grasped from
-%% the context.
-%%
-%% Rules:
-%% 1) The implicit top level lambda escapes.
-%% 2) A lambda returned by an escaped lambda also escapes.
-%% 3) An escaped lambda can be passed an external lambda as argument.
-%% 4) A lambda passed as argument to an external lambda also escapes.
-%% 5) An argument passed to an unknown operation escapes.
-%% 6) A call to an unknown operation can return an external lambda.
-%%
-%% Escaped lambdas become part of the set of external lambdas, but this
-%% does not need to be represented explicitly.
-
-%% We wrap the given syntax tree T in a fun-expression labeled `top',
-%% which is initially in the set of escaped labels. `top' will be
-%% visited at least once.
-%%
-%% We create a separate function labeled `external', defined as:
-%% "'external'/1 = fun (Escape) -> do apply 'external'/1(apply Escape())
-%% 'external'/1", which will represent any and all functions outside T,
-%% and which returns itself, and contains a recursive call; this models
-%% rules 2 and 4 above. It will be revisited if the set of escaped
-%% labels changes, or at least once. Its parameter `Escape' is a
-%% variable labeled `escape', which will hold the set of escaped labels.
-%% initially it contains `top' and `external'.
-
--spec analyze(cerl:cerl()) ->
- {outlist(), dict:dict(), escapes(), dict:dict(), dict:dict()}.
-
-analyze(Tree) ->
- %% Note that we use different name spaces for variable labels and
- %% function/call site labels, so we can reuse some names here. We
- %% assume that the labeling of Tree only uses integers, not atoms.
- External = ann_c_var([{label, external}], {external, 1}),
- Escape = ann_c_var([{label, escape}], 'Escape'),
- ExtBody = c_seq(ann_c_apply([{label, loop}], External,
- [ann_c_apply([{label, external_call}],
- Escape, [])]),
- External),
- ExtFun = ann_c_fun([{label, external}], [Escape], ExtBody),
-%%% io:fwrite("external fun:\n~s.\n",
-%%% [cerl_prettypr:format(ExtFun, [noann])]),
- Top = ann_c_var([{label, top}], {top, 0}),
- TopFun = ann_c_fun([{label, top}], [], Tree),
-
- %% The "start fun" just makes the initialisation easier. It will not
- %% be marked as escaped, and thus cannot be called.
- StartFun = ann_c_fun([{label, start}], [],
- c_letrec([{External, ExtFun}, {Top, TopFun}],
- c_nil())),
-%%% io:fwrite("start fun:\n~s.\n",
-%%% [cerl_prettypr:format(StartFun, [noann])]),
-
- %% Gather a database of all fun-expressions in Tree and initialise
- %% all their outputs and parameter variables. Bind all module- and
- %% letrec-defined variables to their corresponding labels.
- Funs0 = dict:new(),
- Vars0 = dict:new(),
- Out0 = dict:new(),
- Empty = empty(),
- F = fun (T, S = {Fs, Vs, Os}) ->
- case type(T) of
- 'fun' ->
- L = get_label(T),
- As = fun_vars(T),
- {dict:store(L, T, Fs),
- bind_vars_single(As, Empty, Vs),
- dict:store(L, none, Os)};
- letrec ->
- {Fs, bind_defs(letrec_defs(T), Vs), Os};
- module ->
- {Fs, bind_defs(module_defs(T), Vs), Os};
- _ ->
- S
- end
- end,
- {Funs, Vars, Out} = cerl_trees:fold(F, {Funs0, Vars0, Out0},
- StartFun),
-
- %% Initialise Escape to the minimal set of escaped labels.
- Vars1 = dict:store(escape, from_label_list([top, external]), Vars),
-
- %% Enter the fixpoint iteration at the StartFun.
- St = loop(StartFun, start, #state{vars = Vars1,
- out = Out,
- dep = dict:new(),
- work = init_work(),
- funs = Funs,
- par = dict:new()}),
-%%% io:fwrite("dependencies: ~p.\n",
-%%% [[{X, set__to_list(Y)}
-%%% || {X, Y} <- dict:to_list(St#state.dep)]]),
- {dict:fetch(top, St#state.out),
- tidy_dict([start, top, external], St#state.out),
- dict:fetch(escape, St#state.vars),
- tidy_dict([loop], St#state.dep),
- St#state.par}.
-
-tidy_dict([X | Xs], D) ->
- tidy_dict(Xs, dict:erase(X, D));
-tidy_dict([], D) ->
- D.
-
-loop(T, L, St0) ->
-%%% io:fwrite("analyzing: ~w.\n", [L]),
-%%% io:fwrite("work: ~w.\n", [St0#state.work]),
- Xs0 = dict:fetch(L, St0#state.out),
- {Xs, St1} = visit(fun_body(T), L, St0),
- {W, M} = case equal(Xs0, Xs) of
- true ->
- {St1#state.work, St1#state.out};
- false ->
-%%% io:fwrite("out (~w) changed: ~w <- ~w.\n",
-%%% [L, Xs, Xs0]),
- M1 = dict:store(L, Xs, St1#state.out),
- case dict:find(L, St1#state.dep) of
- {ok, S} ->
- {add_work(set__to_list(S), St1#state.work),
- M1};
- error ->
- {St1#state.work, M1}
- end
- end,
- St2 = St1#state{out = M},
- case take_work(W) of
- {ok, L1, W1} ->
- T1 = dict:fetch(L1, St2#state.funs),
- loop(T1, L1, St2#state{work = W1});
- none ->
- St2
- end.
-
-visit(T, L, St) ->
- case type(T) of
- literal ->
- {[empty()], St};
- var ->
- %% If a variable is not already in the store here, we
- %% initialize it to empty().
- L1 = get_label(T),
- Vars = St#state.vars,
- case dict:find(L1, Vars) of
- {ok, X} ->
- {[X], St};
- error ->
- X = empty(),
- St1 = St#state{vars = dict:store(L1, X, Vars)},
- {[X], St1}
- end;
- 'fun' ->
- %% Must revisit the fun also, because its environment might
- %% have changed. (We don't keep track of such dependencies.)
- L1 = get_label(T),
- St1 = St#state{work = add_work([L1], St#state.work),
- par = set_parent([L1], L, St#state.par)},
- {[singleton(L1)], St1};
- values ->
- visit_list(values_es(T), L, St);
- cons ->
- {Xs, St1} = visit_list([cons_hd(T), cons_tl(T)], L, St),
- {[join_single_list(Xs)], St1};
- tuple ->
- {Xs, St1} = visit_list(tuple_es(T), L, St),
- {[join_single_list(Xs)], St1};
- 'let' ->
- {Xs, St1} = visit(let_arg(T), L, St),
- Vars = bind_vars(let_vars(T), Xs, St1#state.vars),
- visit(let_body(T), L, St1#state{vars = Vars});
- seq ->
- {_, St1} = visit(seq_arg(T), L, St),
- visit(seq_body(T), L, St1);
- apply ->
- {Xs, St1} = visit(apply_op(T), L, St),
- {As, St2} = visit_list(apply_args(T), L, St1),
- case Xs of
- [X] ->
- %% We store the dependency from the call site to the
- %% called functions
- Ls = set__to_list(X),
- Out = St2#state.out,
- Xs1 = join_list([dict:fetch(Lx, Out) || Lx <- Ls]),
- St3 = call_site(Ls, L, As, St2),
- L1 = get_label(T),
- D = dict:store(L1, X, St3#state.dep),
- {Xs1, St3#state{dep = D}};
- none ->
- {none, St2}
- end;
- call ->
- M = call_module(T),
- F = call_name(T),
- {_, St1} = visit(M, L, St),
- {_, St2} = visit(F, L, St1),
- {Xs, St3} = visit_list(call_args(T), L, St2),
- remote_call(M, F, Xs, St3);
- primop ->
- As = primop_args(T),
- {Xs, St1} = visit_list(As, L, St),
- primop_call(atom_val(primop_name(T)), length(Xs), Xs, St1);
- 'case' ->
- {Xs, St1} = visit(case_arg(T), L, St),
- visit_clauses(Xs, case_clauses(T), L, St1);
- 'receive' ->
- X = singleton(external),
- {Xs1, St1} = visit_clauses([X], receive_clauses(T), L, St),
- {_, St2} = visit(receive_timeout(T), L, St1),
- {Xs2, St3} = visit(receive_action(T), L, St2),
- {join(Xs1, Xs2), St3};
- 'try' ->
- {Xs1, St1} = visit(try_arg(T), L, St),
- X = singleton(external),
- Vars = bind_vars(try_vars(T), [X], St1#state.vars),
- {Xs2, St2} = visit(try_body(T), L, St1#state{vars = Vars}),
- Evars = bind_vars(try_evars(T), [X, X, X], St2#state.vars),
- {Xs3, St3} = visit(try_handler(T), L, St2#state{vars = Evars}),
- {join(join(Xs1, Xs2), Xs3), St3};
- 'catch' ->
- {_, St1} = visit(catch_body(T), L, St),
- {[singleton(external)], St1};
- binary ->
- {_, St1} = visit_list(binary_segments(T), L, St),
- {[empty()], St1};
- bitstr ->
- %% The other fields are constant literals.
- {_, St1} = visit(bitstr_val(T), L, St),
- {_, St2} = visit(bitstr_size(T), L, St1),
- {none, St2};
- letrec ->
- %% All the bound funs should be revisited, because the
- %% environment might have changed.
- Ls = [get_label(F) || {_, F} <- letrec_defs(T)],
- St1 = St#state{work = add_work(Ls, St#state.work),
- par = set_parent(Ls, L, St#state.par)},
- visit(letrec_body(T), L, St1);
- module ->
- %% All the exported functions escape, and can thus be passed
- %% any external closures as arguments. We regard a module as
- %% a tuple of function variables in the body of a `letrec'.
- visit(c_letrec(module_defs(T), c_tuple(module_exports(T))),
- L, St)
- end.
-
-visit_clause(T, Xs, L, St) ->
- Vars = bind_pats(clause_pats(T), Xs, St#state.vars),
- {_, St1} = visit(clause_guard(T), L, St#state{vars = Vars}),
- visit(clause_body(T), L, St1).
-
-%% We assume correct value-list typing.
-
-visit_list([T | Ts], L, St) ->
- {Xs, St1} = visit(T, L, St),
- {Xs1, St2} = visit_list(Ts, L, St1),
- X = case Xs of
- [X1] -> X1;
- none -> none
- end,
- {[X | Xs1], St2};
-visit_list([], _L, St) ->
- {[], St}.
-
-visit_clauses(Xs, [T | Ts], L, St) ->
- {Xs1, St1} = visit_clause(T, Xs, L, St),
- {Xs2, St2} = visit_clauses(Xs, Ts, L, St1),
- {join(Xs1, Xs2), St2};
-visit_clauses(_, [], _L, St) ->
- {none, St}.
-
-bind_defs([{V, F} | Ds], Vars) ->
- bind_defs(Ds, dict:store(get_label(V), singleton(get_label(F)),
- Vars));
-bind_defs([], Vars) ->
- Vars.
-
-bind_pats(Ps, none, Vars) ->
- bind_pats_single(Ps, empty(), Vars);
-bind_pats(Ps, Xs, Vars) ->
- if length(Xs) =:= length(Ps) ->
- bind_pats_list(Ps, Xs, Vars);
- true ->
- bind_pats_single(Ps, empty(), Vars)
- end.
-
-bind_pats_list([P | Ps], [X | Xs], Vars) ->
- bind_pats_list(Ps, Xs, bind_vars_single(pat_vars(P), X, Vars));
-bind_pats_list([], [], Vars) ->
- Vars.
-
-bind_pats_single([P | Ps], X, Vars) ->
- bind_pats_single(Ps, X, bind_vars_single(pat_vars(P), X, Vars));
-bind_pats_single([], _X, Vars) ->
- Vars.
-
-bind_vars(Vs, none, Vars) ->
- bind_vars_single(Vs, empty(), Vars);
-bind_vars(Vs, Xs, Vars) ->
- if length(Vs) =:= length(Xs) ->
- bind_vars_list(Vs, Xs, Vars);
- true ->
- bind_vars_single(Vs, empty(), Vars)
- end.
-
-bind_vars_list([V | Vs], [X | Xs], Vars) ->
- bind_vars_list(Vs, Xs, dict:store(get_label(V), X, Vars));
-bind_vars_list([], [], Vars) ->
- Vars.
-
-bind_vars_single([V | Vs], X, Vars) ->
- bind_vars_single(Vs, X, dict:store(get_label(V), X, Vars));
-bind_vars_single([], _X, Vars) ->
- Vars.
-
-%% This handles a call site - adding dependencies and updating parameter
-%% variables with respect to the actual parameters. The 'external'
-%% function is handled specially, since it can get an arbitrary number
-%% of arguments, which must be unified into a single argument.
-
-call_site(Ls, L, Xs, St) ->
-%%% io:fwrite("call site: ~w -> ~w (~w).\n", [L, Ls, Xs]),
- {D, W, V} = call_site(Ls, L, Xs, St#state.dep, St#state.work,
- St#state.vars, St#state.funs),
- St#state{dep = D, work = W, vars = V}.
-
-call_site([external | Ls], T, Xs, D, W, V, Fs) ->
- D1 = add_dep(external, T, D),
- X = join_single_list(Xs),
- case bind_arg(escape, X, V) of
- {V1, true} ->
-%%% io:fwrite("escape changed: ~w <- ~w + ~w.\n",
-%%% [dict:fetch(escape, V1), dict:fetch(escape, V),
-%%% X]),
- {W1, V2} = update_esc(set__to_list(X), W, V1, Fs),
- call_site(Ls, T, Xs, D1, add_work([external], W1), V2, Fs);
- {V1, false} ->
- call_site(Ls, T, Xs, D1, W, V1, Fs)
- end;
-call_site([L | Ls], T, Xs, D, W, V, Fs) ->
- D1 = add_dep(L, T, D),
- Vs = fun_vars(dict:fetch(L, Fs)),
- case bind_args(Vs, Xs, V) of
- {V1, true} ->
- call_site(Ls, T, Xs, D1, add_work([L], W), V1, Fs);
- {V1, false} ->
- call_site(Ls, T, Xs, D1, W, V1, Fs)
- end;
-call_site([], _, _, D, W, V, _) ->
- {D, W, V}.
-
-%% Note that `visit' makes sure all lambdas are visited at least once.
-%% For every called function, we add a dependency from the *called*
-%% function to the function containing the call site.
-
-add_dep(Source, Target, Deps) ->
- case dict:find(Source, Deps) of
- {ok, X} ->
- case set__is_member(Target, X) of
- true ->
- Deps;
- false ->
-%%% io:fwrite("new dep: ~w <- ~w.\n", [Target, Source]),
- dict:store(Source, set__add(Target, X), Deps)
- end;
- error ->
-%%% io:fwrite("new dep: ~w <- ~w.\n", [Target, Source]),
- dict:store(Source, set__singleton(Target), Deps)
- end.
-
-%% If the arity does not match the call, nothing is done here.
-
-bind_args(Vs, Xs, Vars) ->
- if length(Vs) =:= length(Xs) ->
- bind_args(Vs, Xs, Vars, false);
- true ->
- {Vars, false}
- end.
-
-bind_args([V | Vs], [X | Xs], Vars, Ch) ->
- L = get_label(V),
- {Vars1, Ch1} = bind_arg(L, X, Vars, Ch),
- bind_args(Vs, Xs, Vars1, Ch1);
-bind_args([], [], Vars, Ch) ->
- {Vars, Ch}.
-
-bind_args_single(Vs, X, Vars) ->
- bind_args_single(Vs, X, Vars, false).
-
-bind_args_single([V | Vs], X, Vars, Ch) ->
- L = get_label(V),
- {Vars1, Ch1} = bind_arg(L, X, Vars, Ch),
- bind_args_single(Vs, X, Vars1, Ch1);
-bind_args_single([], _, Vars, Ch) ->
- {Vars, Ch}.
-
-bind_arg(L, X, Vars) ->
- bind_arg(L, X, Vars, false).
-
-bind_arg(L, X, Vars, Ch) ->
- X0 = dict:fetch(L, Vars),
- X1 = join_single(X, X0),
- case equal_single(X0, X1) of
- true ->
- {Vars, Ch};
- false ->
-%%% io:fwrite("arg (~w) changed: ~w <- ~w + ~w.\n",
-%%% [L, X1, X0, X]),
- {dict:store(L, X1, Vars), true}
- end.
-
-%% This handles escapes from things like primops and remote calls.
-
-%% escape(none, St) ->
-%% St;
-escape([X], St) ->
- Vars = St#state.vars,
- X0 = dict:fetch(escape, Vars),
- X1 = join_single(X, X0),
- case equal_single(X0, X1) of
- true ->
- St;
- false ->
-%%% io:fwrite("escape changed: ~w <- ~w + ~w.\n", [X1, X0, X]),
-%%% io:fwrite("updating escaping funs: ~w.\n", [set__to_list(X)]),
- Vars1 = dict:store(escape, X1, Vars),
- {W, Vars2} = update_esc(set__to_list(set__subtract(X, X0)),
- St#state.work, Vars1,
- St#state.funs),
- St#state{work = add_work([external], W), vars = Vars2}
- end.
-
-%% For all escaping lambdas, since they might be called from outside the
-%% program, all their arguments may be an external lambda. (Note that we
-%% only have to include the `external' label once per escaping lambda.)
-%% If the escape set has changed, we need to revisit the `external' fun.
-
-update_esc(Ls, W, V, Fs) ->
- update_esc(Ls, singleton(external), W, V, Fs).
-
-%% The external lambda is skipped here - the Escape variable is known to
-%% contain `external' from the start.
-
-update_esc([external | Ls], X, W, V, Fs) ->
- update_esc(Ls, X, W, V, Fs);
-update_esc([L | Ls], X, W, V, Fs) ->
- Vs = fun_vars(dict:fetch(L, Fs)),
- case bind_args_single(Vs, X, V) of
- {V1, true} ->
- update_esc(Ls, X, add_work([L], W), V1, Fs);
- {V1, false} ->
- update_esc(Ls, X, W, V1, Fs)
- end;
-update_esc([], _, W, V, _) ->
- {W, V}.
-
-set_parent([L | Ls], L1, D) ->
- set_parent(Ls, L1, dict:store(L, L1, D));
-set_parent([], _L1, D) ->
- D.
-
-%% Handle primop calls: (At present, we assume that all unknown primops
-%% yield exactly one value. This might have to be changed.)
-
-primop_call(F, A, Xs, St0) ->
- case is_pure_op(F, A) of
- %% XXX: this case is currently not possible -- commented out.
- %% true ->
- %% case is_literal_op(F, A) of
- %% true -> {[empty()], St0};
- %% false -> {[join_single_list(Xs)], St0}
- %% end;
- false ->
- St1 = case is_escape_op(F, A) of
- true -> escape([join_single_list(Xs)], St0);
- false -> St0
- end,
- case is_literal_op(F, A) of
- true -> {none, St1};
- false -> {[singleton(external)], St1}
- end
- end.
-
-%% Handle remote-calls: (At present, we assume that all unknown calls
-%% yield exactly one value. This might have to be changed.)
-
-remote_call(M, F, Xs, St) ->
- case is_c_atom(M) andalso is_c_atom(F) of
- true ->
- remote_call_1(atom_val(M), atom_val(F), length(Xs), Xs, St);
- false ->
- %% Unknown function
- {[singleton(external)], escape([join_single_list(Xs)], St)}
- end.
-
-remote_call_1(M, F, A, Xs, St0) ->
- case is_pure_op(M, F, A) of
- true ->
- case is_literal_op(M, F, A) of
- true -> {[empty()], St0};
- false -> {[join_single_list(Xs)], St0}
- end;
- false ->
- St1 = case is_escape_op(M, F, A) of
- true -> escape([join_single_list(Xs)], St0);
- false -> St0
- end,
- case is_literal_op(M, F, A) of
- true -> {[empty()], St1};
- false -> {[singleton(external)], St1}
- end
- end.
-
-%% Domain: none | [Vs], where Vs = set(integer()).
-
-join(none, Xs2) -> Xs2;
-join(Xs1, none) -> Xs1;
-join(Xs1, Xs2) ->
- if length(Xs1) =:= length(Xs2) ->
- join_1(Xs1, Xs2);
- true ->
- none
- end.
-
-join_1([X1 | Xs1], [X2 | Xs2]) ->
- [join_single(X1, X2) | join_1(Xs1, Xs2)];
-join_1([], []) ->
- [].
-
-empty() -> set__new().
-
-singleton(X) -> set__singleton(X).
-
-from_label_list(X) -> set__from_list(X).
-
-join_single(none, Y) -> Y;
-join_single(X, none) -> X;
-join_single(X, Y) -> set__union(X, Y).
-
-join_list([Xs | Xss]) ->
- join(Xs, join_list(Xss));
-join_list([]) ->
- none.
-
-join_single_list([X | Xs]) ->
- join_single(X, join_single_list(Xs));
-join_single_list([]) ->
- empty().
-
-equal(none, none) -> true;
-equal(none, _) -> false;
-equal(_, none) -> false;
-equal(X1, X2) -> equal_1(X1, X2).
-
-equal_1([X1 | Xs1], [X2 | Xs2]) ->
- equal_single(X1, X2) andalso equal_1(Xs1, Xs2);
-equal_1([], []) -> true;
-equal_1(_, _) -> false.
-
-equal_single(X, Y) -> set__equal(X, Y).
-
-%% Set abstraction for label sets in the domain.
-
-set__new() -> [].
-
-set__singleton(X) -> [X].
-
-set__to_list(S) -> S.
-
-set__from_list(S) -> ordsets:from_list(S).
-
-set__union(X, Y) -> ordsets:union(X, Y).
-
-set__add(X, S) -> ordsets:add_element(X, S).
-
-set__is_member(X, S) -> ordsets:is_element(X, S).
-
-set__subtract(X, Y) -> ordsets:subtract(X, Y).
-
-set__equal(X, Y) -> X =:= Y.
-
-%% A simple but efficient functional queue.
-
-queue__new() -> {[], []}.
-
-queue__put(X, {In, Out}) -> {[X | In], Out}.
-
-queue__get({In, [X | Out]}) -> {ok, X, {In, Out}};
-queue__get({[], _}) -> empty;
-queue__get({In, _}) ->
- [X | In1] = lists:reverse(In),
- {ok, X, {[], In1}}.
-
-%% The work list - a queue without repeated elements.
-
-init_work() ->
- {queue__new(), sets:new()}.
-
-add_work(Ls, {Q, Set}) ->
- add_work(Ls, Q, Set).
-
-%% Note that the elements are enqueued in order.
-
-add_work([L | Ls], Q, Set) ->
- case sets:is_element(L, Set) of
- true ->
- add_work(Ls, Q, Set);
- false ->
- add_work(Ls, queue__put(L, Q), sets:add_element(L, Set))
- end;
-add_work([], Q, Set) ->
- {Q, Set}.
-
-take_work({Queue0, Set0}) ->
- case queue__get(Queue0) of
- {ok, L, Queue1} ->
- Set1 = sets:del_element(L, Set0),
- {ok, L, {Queue1, Set1}};
- empty ->
- none
- end.
-
-%% Escape operators may let their arguments escape. Unless we know
-%% otherwise, and the function is not pure, we assume this is the case.
-%% Error-raising functions (fault/match_fail) are not considered as
-%% escapes (but throw/exit are). Zero-argument functions need not be
-%% listed.
-
--spec is_escape_op(atom(), arity()) -> boolean().
-
-is_escape_op(match_fail, 1) -> false;
-is_escape_op(recv_wait_timeout, 1) -> false;
-is_escape_op(F, A) when is_atom(F), is_integer(A) -> true.
-
--spec is_escape_op(atom(), atom(), arity()) -> boolean().
-
-is_escape_op(erlang, error, 1) -> false;
-is_escape_op(erlang, error, 2) -> false;
-is_escape_op(M, F, A) when is_atom(M), is_atom(F), is_integer(A) -> true.
-
-%% "Literal" operators will never return functional values even when
-%% found in their arguments. Unless we know otherwise, we assume this is
-%% not the case. (More functions can be added to this list, if needed
-%% for better precision. Note that the result of `term_to_binary' still
-%% contains an encoding of the closure.)
-
--spec is_literal_op(atom(), arity()) -> boolean().
-
-is_literal_op(recv_wait_timeout, 1) -> true;
-is_literal_op(match_fail, 1) -> true;
-is_literal_op(F, A) when is_atom(F), is_integer(A) -> false.
-
--spec is_literal_op(atom(), atom(), arity()) -> boolean().
-
-is_literal_op(erlang, '+', 2) -> true;
-is_literal_op(erlang, '-', 2) -> true;
-is_literal_op(erlang, '*', 2) -> true;
-is_literal_op(erlang, '/', 2) -> true;
-is_literal_op(erlang, '=:=', 2) -> true;
-is_literal_op(erlang, '==', 2) -> true;
-is_literal_op(erlang, '=/=', 2) -> true;
-is_literal_op(erlang, '/=', 2) -> true;
-is_literal_op(erlang, '<', 2) -> true;
-is_literal_op(erlang, '=<', 2) -> true;
-is_literal_op(erlang, '>', 2) -> true;
-is_literal_op(erlang, '>=', 2) -> true;
-is_literal_op(erlang, 'and', 2) -> true;
-is_literal_op(erlang, 'or', 2) -> true;
-is_literal_op(erlang, 'not', 1) -> true;
-is_literal_op(erlang, length, 1) -> true;
-is_literal_op(erlang, size, 1) -> true;
-is_literal_op(erlang, fun_info, 1) -> true;
-is_literal_op(erlang, fun_info, 2) -> true;
-is_literal_op(erlang, fun_to_list, 1) -> true;
-is_literal_op(erlang, throw, 1) -> true;
-is_literal_op(erlang, exit, 1) -> true;
-is_literal_op(erlang, error, 1) -> true;
-is_literal_op(erlang, error, 2) -> true;
-is_literal_op(M, F, A) when is_atom(M), is_atom(F), is_integer(A) -> false.
-
-%% Pure functions neither affect the state, nor depend on it.
-
-is_pure_op(F, A) when is_atom(F), is_integer(A) -> false.
-
-is_pure_op(M, F, A) -> erl_bifs:is_pure(M, F, A).
-
-%% =====================================================================