summaryrefslogtreecommitdiff
path: root/src/modules/evas/engines/gl_generic/filters/gl_filter_blur.c
blob: 875d1baaf1f91fe38dfce237d112492a92d9b801 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#include "gl_engine_filter.h"

// sqrt(2 * M_PI)
#define SQRT_2_PI 2.506628274631

static inline double
_radius_to_sigma(double radius)
{
   // In theory, sqrt(radius / 3.0) but that means the outer pixel at radius
   // pixels away from the center have ~0.001 weight.

   // This is an experimental value - to be adjusted!
   return /*sqrt*/ (radius / 3.0);
}

static inline double
_gaussian_val(double a EINA_UNUSED, double b, double x)
{
   return /*a * */ exp(-(x*x/b));
}

static void
_gaussian_calc(double *values, int max_index, double radius)
{
   // Gaussian: f(x) = a * exp(-(x^2 / b))
   // sigma is such that variance v = sigma^2
   // v is such that after 3 v the value is almost 0 (ressembles a radius)
   // a = 1 / (sigma * sqrt (2 * pi))
   // b = 2 * sigma^2
   // The constant a is not required since we always calculate the dividor

   double a, b, sigma;
   int k;

   sigma = _radius_to_sigma(radius);
   a = 1.0 / (sigma * SQRT_2_PI);
   b = 2.0 * sigma * sigma;

   for (k = 0; k <= max_index; k++)
     {
        values[k] = _gaussian_val(a, b, k);
        XDBG("Gauss %d: %f", k, values[k]);
     }
}

static int
_gaussian_interpolate(double **weights, double **offsets, double radius)
{
   int k, count, max_index;
   double *w, *o;
   double *values;

   max_index = (int) ceil(radius);
   if (max_index & 0x1) max_index++;
   values = alloca((max_index + 1) * sizeof(*values));
    _gaussian_calc(values, max_index, radius);

   count = (max_index / 2) + 1;
   *offsets = o = calloc(1, count * sizeof(*o));
   *weights = w = calloc(1, count * sizeof(*w));

   // Center pixel's weight
   k = 0;
   o[k] = 0.0;
   w[k] = values[0];
   XDBG("Interpolating weights %d: w %f o %f", k, w[k], o[k]);

   // Left & right pixels' interpolated weights
   for (k = 1; k < count; k++)
     {
        double w1, w2;

        w1 = values[(k - 1) * 2 + 1];
        w2 = values[(k - 1) * 2 + 2];
        w[k] = w1 + w2;
        if (EINA_DBL_EQ(w[k], 0.0)) continue;
        o[k] = w2 / w[k];
        XDBG("Interpolating weights %d: %f %f -> w %f o %f", k, w1, w2, w[k], o[k]);
     }

   return count;
}

static inline Eina_Rectangle
_rect(int x, int y, int w, int h, int maxw, int maxh)
{
   Eina_Rectangle rect;

   if (x < 0)
     {
        w -= (-x);
        x = 0;
     }
   if (y < 0)
     {
        h -= (-y);
        y = 0;
     }
   if ((x + w) > maxw) w = maxw - x;
   if ((y + h) > maxh) h = maxh - y;
   if (w < 0) w = 0;
   if (h < 0) h = 0;

   rect.x = x;
   rect.y = y;
   rect.w = w;
   rect.h = h;
   return rect;
}

#define S_RECT(_x, _y, _w, _h) _rect(_x, _y, _w, _h, s_w, s_h)
#define D_RECT(_x, _y, _w, _h) _rect(_x, _y, _w, _h, d_w, d_h)

static inline void
_output_scale_get(Evas_Filter_Context *ctx, Evas_Filter_Command *cmd,
                  double *scale_x, double *scale_y)
{
   Evas_Filter_Buffer *fb;
   Eina_List *li;

   EINA_LIST_FOREACH(ctx->buffers, li, fb)
     if (fb->id == EVAS_FILTER_BUFFER_OUTPUT_ID)
       {
          *scale_x = (double) cmd->output->w / (double) fb->w;
          *scale_y = (double) cmd->output->h / (double) fb->h;
       }
}

static Eina_Bool
_gl_filter_blur(Render_Engine_GL_Generic *re, Evas_Filter_Command *cmd)
{
   Evas_Engine_GL_Context *gc;
   Evas_GL_Image *image, *surface;
   RGBA_Draw_Context *dc_save;
   Eina_Bool horiz;
   double sx, sy, sw, sh, ssx, ssy, ssw, ssh, dx, dy, dw, dh, radius;
   double s_w, s_h, d_w, d_h, scale_x = 1.0, scale_y = 1.0;
   Eina_Rectangle s_ob, d_ob, s_region[4], d_region[4];
   int nx, ny, nw, nh, regions, count = 0;
   double *weights, *offsets;

   DEBUG_TIME_BEGIN();

   s_w = cmd->input->w;
   s_h = cmd->input->h;
   d_w = cmd->output->w;
   d_h = cmd->output->h;
   EINA_SAFETY_ON_FALSE_RETURN_VAL(
     EINA_DBL_NONZERO(s_w) && EINA_DBL_NONZERO(s_h) && EINA_DBL_NONZERO(d_w) && EINA_DBL_NONZERO(d_h),
     EINA_FALSE
   );

   gc = gl_generic_context_find(re, 1);

   image = evas_ector_buffer_drawable_image_get(cmd->input->buffer);
   EINA_SAFETY_ON_NULL_RETURN_VAL(image, EINA_FALSE);

   surface = evas_ector_buffer_render_image_get(cmd->output->buffer);
   EINA_SAFETY_ON_NULL_RETURN_VAL(surface, EINA_FALSE);

   evas_gl_common_context_target_surface_set(gc, surface);

   if (EINA_DBL_NONZERO(cmd->blur.dx))
     {
        horiz = EINA_TRUE;
        radius = cmd->blur.dx;
     }
   else
     {
        horiz = EINA_FALSE;
        radius = cmd->blur.dy;
     }

   DBG("blur %d @%p -> %d @%p (%.0fpx %s)",
       cmd->input->id, cmd->input->buffer,
       cmd->output->id, cmd->output->buffer,
       radius, horiz ? "X" : "Y");

   dc_save = gc->dc;
   gc->dc = evas_common_draw_context_new();
   evas_common_draw_context_set_multiplier(gc->dc, cmd->draw.R, cmd->draw.G, cmd->draw.B, cmd->draw.A);

   // FIXME: Don't render to same FBO as input! This is not supposed to work!
   if (cmd->input == cmd->output)
     gc->dc->render_op = EVAS_RENDER_COPY;
   else
     gc->dc->render_op = _gfx_to_evas_render_op(cmd->draw.rop);

   count = _gaussian_interpolate(&weights, &offsets, radius);

   _output_scale_get(cmd->ctx, cmd, &scale_x, &scale_y);
   d_ob = cmd->ctx->obscured.effective;
   d_ob.x *= scale_x;
   d_ob.y *= scale_y;
   d_ob.w *= scale_x;
   d_ob.h *= scale_y;
   s_ob.x = d_ob.x * s_w / d_w;
   s_ob.y = d_ob.y * s_h / d_h;
   s_ob.w = d_ob.w * s_w / d_w;
   s_ob.h = d_ob.h * s_h / d_h;
   if (!d_ob.w || !d_ob.h)
     {
        s_region[0] = S_RECT(0, 0, s_w, s_h);
        d_region[0] = D_RECT(0, 0, d_w, d_h);
        regions = 1;
     }
   else if (horiz)
     {
        // top (full), left, right, bottom (full)
        s_region[0] = S_RECT(0, 0, s_w, s_ob.y);
        d_region[0] = D_RECT(0, 0, d_w, d_ob.y);
        s_region[1] = S_RECT(0, s_ob.y, s_ob.x, s_ob.h);
        d_region[1] = D_RECT(0, d_ob.y, d_ob.x, d_ob.h);
        s_region[2] = S_RECT(s_ob.x + s_ob.w, s_ob.y, s_w - s_ob.x - s_ob.w, s_ob.h);
        d_region[2] = D_RECT(d_ob.x + d_ob.w, d_ob.y, d_w - d_ob.x - d_ob.w, d_ob.h);
        s_region[3] = S_RECT(0, s_ob.y + s_ob.h, s_w, s_h - s_ob.y - s_ob.h);
        d_region[3] = D_RECT(0, d_ob.y + d_ob.h, d_w, d_h - d_ob.y - d_ob.h);
        regions = 4;
     }
   else
     {
        // left (full), top, bottom, right (full)
        s_region[0] = S_RECT(0, 0, s_ob.x, s_h);
        d_region[0] = D_RECT(0, 0, d_ob.x, d_h);
        s_region[1] = S_RECT(s_ob.x, 0, s_ob.w, s_ob.y);
        d_region[1] = D_RECT(d_ob.x, 0, d_ob.w, d_ob.y);
        s_region[2] = S_RECT(s_ob.x, s_ob.y + s_ob.h, s_ob.w, s_h - s_ob.y - s_ob.h);
        d_region[2] = D_RECT(d_ob.x, d_ob.y + d_ob.h, d_ob.w, d_h - d_ob.y - d_ob.h);
        s_region[3] = S_RECT(s_ob.x + s_ob.w, 0, s_w - s_ob.x - s_ob.w, s_h);
        d_region[3] = D_RECT(d_ob.x + d_ob.w, 0, d_w - d_ob.x - d_ob.w, d_h);
        regions = 4;
     }

   for (int k = 0; k < regions; k++)
     {
        sx = s_region[k].x;
        sy = s_region[k].y;
        sw = s_region[k].w;
        sh = s_region[k].h;

        dx = d_region[k].x + cmd->draw.ox;
        dy = d_region[k].y + cmd->draw.oy;
        dw = d_region[k].w;
        dh = d_region[k].h;

        nx = dx; ny = dy; nw = dw; nh = dh;
        RECTS_CLIP_TO_RECT(nx, ny, nw, nh, 0, 0, d_w, d_h);
        ssx = (double)sx + ((double)(sw * (nx - dx)) / (double)(dw));
        ssy = (double)sy + ((double)(sh * (ny - dy)) / (double)(dh));
        ssw = ((double)sw * (double)(nw)) / (double)(dw);
        ssh = ((double)sh * (double)(nh)) / (double)(dh);

        evas_gl_common_filter_blur_push(gc, image->tex, ssx, ssy, ssw, ssh, dx, dy, dw, dh,
                                        weights, offsets, count, radius, horiz,
                                        cmd->draw.alphaonly);
     }

   free(weights);
   free(offsets);

   evas_common_draw_context_free(gc->dc);
   gc->dc = dc_save;

   evas_ector_buffer_engine_image_release(cmd->input->buffer, image);
   evas_ector_buffer_engine_image_release(cmd->output->buffer, surface);

   DEBUG_TIME_END();

   return EINA_TRUE;
}

GL_Filter_Apply_Func
gl_filter_blur_func_get(Render_Engine_GL_Generic *re EINA_UNUSED, Evas_Filter_Command *cmd)
{
   EINA_SAFETY_ON_NULL_RETURN_VAL(cmd, NULL);
   EINA_SAFETY_ON_NULL_RETURN_VAL(cmd->output, NULL);
   EINA_SAFETY_ON_NULL_RETURN_VAL(cmd->input, NULL);

   // 1D blurs only, radius != 0
   EINA_SAFETY_ON_FALSE_RETURN_VAL(!EINA_DBL_EQ(cmd->blur.dx, 0) ^ !EINA_DBL_EQ(cmd->blur.dy, 0), NULL);

   return _gl_filter_blur;
}