summaryrefslogtreecommitdiff
path: root/testcases.sml
blob: 2bc4b73d6f2e81ff5e2e134f37ad88e7dcdcfa21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
(* Copyright 1999, 2004, 2007, 2010 Stefan Monnier <monnier@gnu.org> *)

(let val a = 1 val b = 2
     val c = 3
 in 1
 end);

(* From "Christopher Dutchyn" <cdutchyn@cs.ubc.ca> *)
(case foo of
  (* FIXME: The line gets unindented by 2 every time you hit TAB :-( *)
  | BAR => baz)

(* sml-mode here treats the second `=' as an equal op because it assumes
 * that the first is the definitional equal for the structure.  FIXME!  *)
functor foo (structure s : S) where type t = s.t =
struct
val bar = 0
val ber = 1;
val sdfg = 1
val tut = fn (x,y) z y e r =>
             body
end


(x := 1;
 case x of
     FOO => 1
   | BAR =>
     2;
 case x of
     FOO => 1
   | BAR =>
     (case y of
	  FAR => 2
	| FRA => 3);
 hello);

let datatype foobar
      = FooB of int
      | FooA of bool * int
    datatype foo = FOO | BAR of baz
	 and baz = BAZ | QUUX of foo

    datatype foo = FOO
                 | BAR of baz
      and baz = BAZ			(* fixindent *)
	      | QUUX of foo
      and b = g

    datatype foo = datatype M.foo
    val _ = 42 val x = 5
		       
    signature S = S' where type foo = int
    val _ = 42

    val foo = [
	"blah"
      , let val x = f 42 in g (x,x,44) end
    ]
	      
    val foo = [ "blah"
	      , let val x = f 42 in g (x,x,44) end
	      , foldl (fn ((p,q),s) => g (p,q,Vector.length q) ^ ":" ^ s)
                      "" (Beeblebrox.masterCountList mlist2)
              , if null mlist2 then ";" else ""
	      ]
	      
    fun foo (true::rest)
      = 1 + 2 * foo rest
      | foo (false::rest)
      = let val _ = 1 in 2 end
	+ 2 * foo rest

    val x = if foo then
		1
	    else if bar then
		2
	    else
		3
    val y = if foo
	    then 1
	    else if foo
	    then 2
	    else 3

  ; val yt = 4

in
    if a then b else c;
    case M.find(m,f)
     of SOME(fl, filt) =>
	F.APP(F.VAR fl, OU.filter filt vs)
      | NONE => le;
    x := x + 1;
    (case foo
      of a => f
    )
end;

let
in a;
   foo("(*")
   * 2;
end;

let
in a
 ; b
end;

let
in
    a
  ; b
end;

let
in if a then
       b
   else
       c
end;

let
in case a of
       F => 1
     | D => 2
end;

let
in case a
 of F => 1
  | D => 2
end;

let
in if a then b else
   c
end;

structure Foo = struct
val x = 1
end

signature FSPLIT =
sig
    type flint = FLINT.prog
    val split: flint -> flint * flint option
end

structure FSplit :> FSPLIT =
struct

local
    structure F  = FLINT
    structure S  = IntRedBlackSet
    structure M  = FLINTIntMap
    structure O  = Option
    structure OU = OptUtils
    structure FU = FlintUtil
    structure LT = LtyExtern
    structure PO = PrimOp
    structure PP = PPFlint
    structure CTRL = FLINT_Control
in

val say = Control_Print.say
fun bug msg = ErrorMsg.impossible ("FSplit: "^msg)
fun buglexp (msg,le) = (say "\n"; PP.printLexp le; say " "; bug msg)
fun bugval (msg,v) = (say "\n"; PP.printSval v; say " "; bug msg)
fun assert p = if p then () else bug ("assertion failed")
				 
type flint = F.prog
val mklv = LambdaVar.mkLvar
val cplv = LambdaVar.dupLvar
	   
fun S_rmv(x, s) = S.delete(s, x) handle NotFound => s
						    
fun addv (s,F.VAR lv) = S.add(s, lv)
  | addv (s,_) = s
fun addvs (s,vs) = foldl (fn (v,s) => addv(s, v)) s vs
fun rmvs (s,lvs) = foldl (fn (l,s) => S_rmv(l, s)) s lvs
		   
exception Unknown
	  
fun split (fdec as (fk,f,args,body)) = let
    val {getLty,addLty,...} = Recover.recover (fdec, false)
			      
    val m = Intmap.new(64, Unknown)
    fun addpurefun f = Intmap.add m (f, false)
    fun funeffect f = (Intmap.map m f) handle Uknown => true

(* sexp: env -> lexp -> (leE, leI, fvI, leRet)
 * - env: IntSetF.set	current environment
 * - lexp: lexp		expression to split
 * - leRet: lexp	the core return expression of lexp
 * - leE: lexp -> lexp	recursively split lexp:  leE leRet == lexp
 * - leI: lexp option	inlinable part of lexp (if any)
 * - fvI: IntSetF.set	free variables of leI:   FU.freevars leI == fvI
 *
 * sexp splits the lexp into an expansive part and an inlinable part.
 * The inlinable part is guaranteed to be side-effect free.
 * The expansive part doesn't bother to eliminate unused copies of
 *   elements copied to the inlinable part.
 * If the inlinable part cannot be constructed, leI is set to F.RET[].
 *   This implies that fvI == S.empty, which in turn prevents us from
 *   mistakenly adding anything to leI.
 *)
fun sexp env lexp =			(* fixindent *)
    let 
	(* non-side effecting binds are copied to leI if exported *)
	fun let1 (le,lewrap,lv,vs,effect) =
	    let val (leE,leI,fvI,leRet) = sexp (S.add(env, lv)) le
		val leE = lewrap o leE
	    in if effect orelse not (S.member(fvI, lv))
	       then (leE, leI, fvI, leRet)
	       else (leE, lewrap leI, addvs(S_rmv(lv, fvI), vs), leRet)
	    end
	    
    in case lexp
	(* we can completely move both RET and TAPP to the I part *)
	of F.RECORD (rk,vs,lv,le as F.RET [F.VAR lv']) =>
	   if lv' = lv
	   then (fn e => e, lexp, addvs(S.empty, vs), lexp)
	   else (fn e => e, le, S.singleton lv', le)
	 | F.RET vs =>
	   (fn e => e, lexp, addvs(S.empty, vs), lexp)
	 | F.TAPP (F.VAR tf,tycs) =>
	   (fn e => e, lexp, S.singleton tf, lexp)
	   
	 (* recursive splittable lexps *)
	 | F.FIX (fdecs,le) => sfix env (fdecs, le)
	 | F.TFN (tfdec,le) => stfn env (tfdec, le)
			       
	 (* binding-lexps *)
	 | F.CON (dc,tycs,v,lv,le) =>
	   let1(le, fn e => F.CON(dc, tycs, v, lv, e), lv, [v], false)
	 | F.RECORD (rk,vs,lv,le) =>
	   let1(le, fn e => F.RECORD(rk, vs, lv, e), lv, vs, false)
	 | F.SELECT (v,i,lv,le) =>
	   let1(le, fn e => F.SELECT(v, i, lv, e), lv, [v], false)
	 | F.PRIMOP (po,vs,lv,le) =>
	   let1(le, fn e => F.PRIMOP(po, vs, lv, e), lv, vs, PO.effect(#2 po))
	   
	 (* IMPROVEME: lvs should not be restricted to [lv] *)
	 | F.LET(lvs as [lv],body as F.TAPP (v,tycs),le) =>
	   let1(le, fn e => F.LET(lvs, body, e), lv, [v], false)
	 | F.LET (lvs as [lv],body as F.APP (v as F.VAR f,vs),le) =>
	   let1(le, fn e => F.LET(lvs, body, e), lv, v::vs, funeffect f)
	   
	 | F.SWITCH (v,ac,[(dc as F.DATAcon(_,_,lv),le)],NONE) =>
	   let1(le, fn e => F.SWITCH(v, ac, [(dc, e)], NONE), lv, [v], false)
	   
	 | F.LET (lvs,body,le) =>
	   let val (leE,leI,fvI,leRet) = sexp (S.union(S.addList(S.empty, lvs), env)) le
	   in (fn e => F.LET(lvs, body, leE e), leI, fvI, leRet)
	   end
	   
	 (* useless sophistication *)
	 | F.APP (F.VAR f,args) =>
	   if funeffect f
	   then (fn e => e, F.RET[], S.empty, lexp)
	   else (fn e => e, lexp, addvs(S.singleton f, args), lexp)
		
	 (* other non-binding lexps result in unsplittable functions *)
	 | (F.APP _ | F.TAPP _) => bug "strange (T)APP"
	 | (F.SWITCH _ | F.RAISE _ | F.BRANCH _ | F.HANDLE _) =>
	   (fn e => e, F.RET[], S.empty, lexp)
    end
    
(* Functions definitions fall into the following categories:
 * - inlinable:  if exported, copy to leI
 * - (mutually) recursive:  don't bother
 * - non-inlinable non-recursive:  split recursively *)
and sfix env (fdecs,le) =
    let val nenv = S.union(S.addList(S.empty, map #2 fdecs), env)
	val (leE,leI,fvI,leRet) = sexp nenv le
	val nleE = fn e => F.FIX(fdecs, leE e)
    in case fdecs
	of [({inline=inl as (F.IH_ALWAYS | F.IH_MAYBE _),...},f,args,body)] =>
	   let val min = case inl of F.IH_MAYBE(n,_) => n | _ => 0
	   in if not(S.member(fvI, f)) orelse min > !CTRL.splitThreshold
	      then (nleE, leI, fvI, leRet)
	      else (nleE, F.FIX(fdecs, leI),
		    rmvs(S.union(fvI, FU.freevars body),
			 f::(map #1 args)),
		    leRet)
	   end
	 | [fdec as (fk as {cconv=F.CC_FCT,...},_,_,_)] =>
	   sfdec env (leE,leI,fvI,leRet) fdec
	   
	 | _ => (nleE, leI, fvI, leRet)
    end
    
and sfdec env (leE,leI,fvI,leRet) (fk,f,args,body) =
    let val benv = S.union(S.addList(S.empty, map #1 args), env)
	val (bodyE,bodyI,fvbI,bodyRet) = sexp benv body
    in case bodyI
	of F.RET[] =>
	   (fn e => F.FIX([(fk, f, args, bodyE bodyRet)], e),
	    leI, fvI, leRet)
	 | _ =>
	   let val fvbIs = S.listItems(S.difference(fvbI, benv))
	       val (nfk,fkE) = OU.fk_wrap(fk, NONE)
			       
	       (* fdecE *)
	       val fE = cplv f
	       val fErets = (map F.VAR fvbIs)
	       val bodyE = bodyE(F.RET fErets)
	       (* val tmp = mklv()
		  val bodyE = bodyE(F.RECORD(F.RK_STRUCT, map F.VAR fvbIs,
					     tmp, F.RET[F.VAR tmp])) *)
	       val fdecE = (fkE, fE, args, bodyE)
	       val fElty = LT.ltc_fct(map #2 args, map getLty fErets)
	       val _ = addLty(fE, fElty)
		       
	       (* fdecI *)
	       val fkI = {inline=F.IH_ALWAYS, cconv=F.CC_FCT,
			  known=true, isrec=NONE}
	       val argsI =
		   (map (fn lv => (lv, getLty(F.VAR lv))) fvbIs) @ args
	       val fdecI as (_,fI,_,_) = FU.copyfdec(fkI,f,argsI,bodyI)
	       val _ = addpurefun fI
		       
	       (* nfdec *)
	       val nargs = map (fn (v,t) => (cplv v, t)) args
	       val argsv = map (fn (v,t) => F.VAR v) nargs
	       val nbody =
		   let val lvs = map cplv fvbIs
		   in F.LET(lvs, F.APP(F.VAR fE, argsv),
			    F.APP(F.VAR fI, (map F.VAR lvs)@argsv))
		   end
	       (* let val lv = mklv()
		  in F.LET([lv], F.APP(F.VAR fE, argsv),
			   F.APP(F.VAR fI, (F.VAR lv)::argsv))
		  end *)
	       val nfdec = (nfk, f, nargs, nbody)
			   
	       (* and now, for the whole F.FIX *)
	       fun nleE e =
		   F.FIX([fdecE], F.FIX([fdecI], F.FIX([nfdec], leE e)))
		   
	   in if not(S.member(fvI, f)) then (nleE, leI, fvI, leRet)
	      else (nleE,
		    F.FIX([fdecI], F.FIX([nfdec], leI)),
		    S.add(S.union(S_rmv(f, fvI), S.intersection(env, fvbI)), fE),
		    leRet)
	   end
    end
    
(* TFNs are kinda like FIX except there's no recursion *)
and stfn env (tfdec as (tfk,tf,args,body),le) =
    let val (bodyE,bodyI,fvbI,bodyRet) =
	    if #inline tfk = F.IH_ALWAYS
	    then (fn e => body, body, FU.freevars body, body)
	    else sexp env body
	val nenv = S.add(env, tf)
	val (leE,leI,fvI,leRet) = sexp nenv le
    in case (bodyI, S.listItems(S.difference(fvbI, env)))
	of ((F.RET _ | F.RECORD(_,_,_,F.RET _)),_) =>
	   (* split failed *)
	   (fn e => F.TFN((tfk, tf, args, bodyE bodyRet), leE e),
	    leI, fvI, leRet)
	 | (_,[]) =>
	   (* everything was split out *)
	   let val ntfdec = ({inline=F.IH_ALWAYS}, tf, args, bodyE bodyRet)
	       val nlE = fn e => F.TFN(ntfdec, leE e)
	   in if not(S.member(fvI, tf)) then (nlE, leI, fvI, leRet)
	      else (nlE, F.TFN(ntfdec, leI),
		    S_rmv(tf, S.union(fvI, fvbI)), leRet)
	   end
	 | (_,fvbIs) =>
	   let (* tfdecE *)
	       val tfE = cplv tf
	       val tfEvs = map F.VAR fvbIs
	       val bodyE = bodyE(F.RET tfEvs)
	       val tfElty = LT.lt_nvpoly(args, map getLty tfEvs)
	       val _ = addLty(tfE, tfElty)
		       
	       (* tfdecI *)
	       val tfkI = {inline=F.IH_ALWAYS}
	       val argsI = map (fn (v,k) => (cplv v, k)) args
	       (* val tmap = ListPair.map (fn (a1,a2) =>
	        * 				(#1 a1, LT.tcc_nvar(#1 a2)))
	        * 			       (args, argsI) *)
	       val bodyI = FU.copy tmap M.empty
				   (F.LET(fvbIs, F.TAPP(F.VAR tfE, map #2 tmap),
					  bodyI))
	       (* F.TFN *)
	       fun nleE e =
		   F.TFN((tfk, tfE, args, bodyE),
			 F.TFN((tfkI, tf, argsI, bodyI), leE e))
		   
	   in if not(S.member(fvI, tf)) then (nleE, leI, fvI, leRet)
	      else (nleE,
		    F.TFN((tfkI, tf, argsI, bodyI), leI),
		    S.add(S.union(S_rmv(tf, fvI), S.intersection(env, fvbI)), tfE),
		    leRet)
	   end
    end
    
(* here, we use B-decomposition, so the args should not be
 * considered as being in scope *)
val (bodyE,bodyI,fvbI,bodyRet) = sexp S.empty body
in case (bodyI, bodyRet)
    of (F.RET _,_) => ((fk, f, args, bodyE bodyRet), NONE)
     | (_,F.RECORD (rk,vs,lv,F.RET[lv'])) =>
       let val fvbIs = S.listItems fvbI
		       
	   (* fdecE *)
	   val bodyE = bodyE(F.RECORD(rk, vs@(map F.VAR fvbIs), lv, F.RET[lv']))
	   val fdecE as (_,fE,_,_) = (fk, cplv f, args, bodyE)
				     
	   (* fdecI *)
	   val argI = mklv()
	   val argLtys = (map getLty vs) @ (map (getLty o F.VAR) fvbIs)
	   val argsI = [(argI, LT.ltc_str argLtys)]
	   val (_,bodyI) = foldl (fn (lv,(n,le)) =>
				  (n+1, F.SELECT(F.VAR argI, n, lv, le)))
				 (length vs, bodyI) fvbIs
	   val fdecI as (_,fI,_,_) = FU.copyfdec (fk, f, argsI, bodyI)
				     
	   val nargs = map (fn (v,t) => (cplv v, t)) args
       in
	   (fdecE, SOME fdecI)
       (* ((fk, f, nargs,
	    F.FIX([fdecE],
		  F.FIX([fdecI],
			F.LET([argI],
			      F.APP(F.VAR fE, map (F.VAR o #1) nargs),
			      F.APP(F.VAR fI, [F.VAR argI]))))),
	   NONE) *)
       end
       
     | _ => (fdec, NONE)		(* sorry, can't do that *)
(* (PPFlint.printLexp bodyRet; bug "couldn't find the returned record") *)
	    
end
				       
end
end