summaryrefslogtreecommitdiff
path: root/src/ralloc.c
blob: a0731eee6fc4d2974e4903259928a33b76a0cd47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
/* Block-relocating memory allocator. 
   Copyright (C) 1993, 1995 Free Software Foundation, Inc.

This file is part of GNU Emacs.

GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* NOTES:

   Only relocate the blocs necessary for SIZE in r_alloc_sbrk,
   rather than all of them.  This means allowing for a possible
   hole between the first bloc and the end of malloc storage.  */

#ifdef emacs

#include <config.h>
#include "lisp.h"		/* Needed for VALBITS.  */

#undef NULL

/* The important properties of this type are that 1) it's a pointer, and
   2) arithmetic on it should work as if the size of the object pointed
   to has a size of 1.  */
#if 0 /* Arithmetic on void* is a GCC extension.  */
#ifdef __STDC__
typedef void *POINTER;
#else

#ifdef	HAVE_CONFIG_H
#include "config.h"
#endif

typedef char *POINTER;

#endif
#endif /* 0 */

/* Unconditionally use char * for this.  */
typedef char *POINTER;

typedef unsigned long SIZE;

/* Declared in dispnew.c, this version doesn't screw up if regions
   overlap.  */
extern void safe_bcopy ();

#else /* not emacs */

#include <stddef.h>

typedef size_t SIZE;
typedef void *POINTER;

#include <unistd.h>
#include <malloc.h>
#include <string.h>

#define safe_bcopy(x, y, z) memmove (y, x, z)
#define bzero(x, len) memset (x, 0, len)

#endif	/* not emacs */

#include "getpagesize.h"

#define NIL ((POINTER) 0)

/* A flag to indicate whether we have initialized ralloc yet.  For
   Emacs's sake, please do not make this local to malloc_init; on some
   machines, the dumping procedure makes all static variables
   read-only.  On these machines, the word static is #defined to be
   the empty string, meaning that r_alloc_initialized becomes an
   automatic variable, and loses its value each time Emacs is started up.  */
static int r_alloc_initialized = 0;

static void r_alloc_init ();

/* Declarations for working with the malloc, ralloc, and system breaks.  */

/* Function to set the real break value.  */
static POINTER (*real_morecore) ();

/* The break value, as seen by malloc.  */
static POINTER virtual_break_value;

/* The address of the end of the last data in use by ralloc,
   including relocatable blocs as well as malloc data.  */
static POINTER break_value;

/* This is the size of a page.  We round memory requests to this boundary.  */
static int page_size;

/* Whenever we get memory from the system, get this many extra bytes.  This 
   must be a multiple of page_size.  */
static int extra_bytes;

/* Macros for rounding.  Note that rounding to any value is possible
   by changing the definition of PAGE.  */
#define PAGE (getpagesize ())
#define ALIGNED(addr) (((unsigned long int) (addr) & (page_size - 1)) == 0)
#define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \
		       & ~(page_size - 1))
#define ROUND_TO_PAGE(addr) (addr & (~(page_size - 1)))

#define MEM_ALIGN sizeof(double)
#define MEM_ROUNDUP(addr) (((unsigned long int)(addr) + MEM_ALIGN - 1) \
				   & ~(MEM_ALIGN - 1))

/* Data structures of heaps and blocs.  */

/* The relocatable objects, or blocs, and the malloc data
   both reside within one or more heaps.
   Each heap contains malloc data, running from `start' to `bloc_start',
   and relocatable objects, running from `bloc_start' to `free'.

   Relocatable objects may relocate within the same heap
   or may move into another heap; the heaps themselves may grow
   but they never move.

   We try to make just one heap and make it larger as necessary.
   But sometimes we can't do that, because we can't get continguous
   space to add onto the heap.  When that happens, we start a new heap.  */
   
typedef struct heap
{
  struct heap *next;
  struct heap *prev;
  /* Start of memory range of this heap.  */
  POINTER start;
  /* End of memory range of this heap.  */
  POINTER end;
  /* Start of relocatable data in this heap.  */
  POINTER bloc_start;
  /* Start of unused space in this heap.  */
  POINTER free;
  /* First bloc in this heap.  */
  struct bp *first_bloc;
  /* Last bloc in this heap.  */
  struct bp *last_bloc;
} *heap_ptr;

#define NIL_HEAP ((heap_ptr) 0)
#define HEAP_PTR_SIZE (sizeof (struct heap))

/* This is the first heap object.
   If we need additional heap objects, each one resides at the beginning of
   the space it covers.   */
static struct heap heap_base;

/* Head and tail of the list of heaps.  */
static heap_ptr first_heap, last_heap;

/* These structures are allocated in the malloc arena.
   The linked list is kept in order of increasing '.data' members.
   The data blocks abut each other; if b->next is non-nil, then
   b->data + b->size == b->next->data.  */
typedef struct bp
{
  struct bp *next;
  struct bp *prev;
  POINTER *variable;
  POINTER data;
  SIZE size;
  POINTER new_data;		/* tmporarily used for relocation */
  /* Heap this bloc is in.  */
  struct heap *heap;
} *bloc_ptr;

#define NIL_BLOC ((bloc_ptr) 0)
#define BLOC_PTR_SIZE (sizeof (struct bp))

/* Head and tail of the list of relocatable blocs.  */
static bloc_ptr first_bloc, last_bloc;


/* Functions to get and return memory from the system.  */

/* Find the heap that ADDRESS falls within.  */

static heap_ptr
find_heap (address)
    POINTER address;
{
  heap_ptr heap;

  for (heap = last_heap; heap; heap = heap->prev)
    {
      if (heap->start <= address && address <= heap->end)
	return heap;
    }

  return NIL_HEAP;
}

/* Find SIZE bytes of space in a heap.
   Try to get them at ADDRESS (which must fall within some heap's range)
   if we can get that many within one heap.

   If enough space is not presently available in our reserve, this means
   getting more page-aligned space from the system. If the retuned space
   is not contiguos to the last heap, allocate a new heap, and append it

   obtain does not try to keep track of whether space is in use
   or not in use.  It just returns the address of SIZE bytes that
   fall within a single heap.  If you call obtain twice in a row
   with the same arguments, you typically get the same value.
   to the heap list.  It's the caller's responsibility to keep
   track of what space is in use.

   Return the address of the space if all went well, or zero if we couldn't
   allocate the memory.  */

static POINTER
obtain (address, size)
    POINTER address;
    SIZE size;
{
  heap_ptr heap;
  SIZE already_available;

  /* Find the heap that ADDRESS falls within.  */
  for (heap = last_heap; heap; heap = heap->prev)
    {
      if (heap->start <= address && address <= heap->end)
	break;
    }

  if (! heap)
    abort ();

  /* If we can't fit SIZE bytes in that heap,
     try successive later heaps.  */
  while (heap && address + size > heap->end)
    {
      heap = heap->next;
      if (heap == NIL_HEAP)
	break;
      address = heap->bloc_start;
    }

  /* If we can't fit them within any existing heap,
     get more space.  */
  if (heap == NIL_HEAP)
    {
      POINTER new = (*real_morecore)(0);
      SIZE get;

      already_available = (char *)last_heap->end - (char *)address;

      if (new != last_heap->end)
	{
	  /* Someone else called sbrk.  Make a new heap.  */

	  heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP (new);
	  POINTER bloc_start = (POINTER) MEM_ROUNDUP ((POINTER)(new_heap + 1));

	  if ((*real_morecore) (bloc_start - new) != new)
	    return 0;

	  new_heap->start = new;
	  new_heap->end = bloc_start;
	  new_heap->bloc_start = bloc_start;
	  new_heap->free = bloc_start;
	  new_heap->next = NIL_HEAP;
	  new_heap->prev = last_heap;
	  new_heap->first_bloc = NIL_BLOC;
	  new_heap->last_bloc = NIL_BLOC;
	  last_heap->next = new_heap;
	  last_heap = new_heap;

	  address = bloc_start;
	  already_available = 0;
	}

      /* Add space to the last heap (which we may have just created).
	 Get some extra, so we can come here less often.  */

      get = size + extra_bytes - already_available;
      get = (char *) ROUNDUP ((char *)last_heap->end + get)
	- (char *) last_heap->end;

      if ((*real_morecore) (get) != last_heap->end)
	return 0;

      last_heap->end += get;
    }

  return address;
}

/* Return unused heap space to the system
   if there is a lot of unused space now.
   This can make the last heap smaller;
   it can also eliminate the last heap entirely.  */

static void
relinquish ()
{
  register heap_ptr h;
  int excess = 0;

  /* Add the amount of space beyond break_value
     in all heaps which have extend beyond break_value at all.  */

  for (h = last_heap; h && break_value < h->end; h = h->prev)
    {
      excess += (char *) h->end - (char *) ((break_value < h->bloc_start)
					    ? h->bloc_start : break_value);
    }

  if (excess > extra_bytes * 2 && (*real_morecore) (0) == last_heap->end)
    {
      /* Keep extra_bytes worth of empty space.
	 And don't free anything unless we can free at least extra_bytes.  */
      excess -= extra_bytes;

      if ((char *)last_heap->end - (char *)last_heap->bloc_start <= excess)
	{
	  /* This heap should have no blocs in it.  */
	  if (last_heap->first_bloc != NIL_BLOC
	      || last_heap->last_bloc != NIL_BLOC)
	    abort ();

	  /* Return the last heap, with its header, to the system.  */
	  excess = (char *)last_heap->end - (char *)last_heap->start;
	  last_heap = last_heap->prev;
	  last_heap->next = NIL_HEAP;
	}
      else
	{
	  excess = (char *) last_heap->end
			- (char *) ROUNDUP ((char *)last_heap->end - excess);
	  last_heap->end -= excess;
	}

      if ((*real_morecore) (- excess) == 0)
	abort ();
    }
}

/* Return the total size in use by relocating allocator,
   above where malloc gets space.  */

long
r_alloc_size_in_use ()
{
  return break_value - virtual_break_value;
}

/* The meat - allocating, freeing, and relocating blocs.  */

/* Find the bloc referenced by the address in PTR.  Returns a pointer
   to that block.  */

static bloc_ptr
find_bloc (ptr)
     POINTER *ptr;
{
  register bloc_ptr p = first_bloc;

  while (p != NIL_BLOC)
    {
      if (p->variable == ptr && p->data == *ptr)
	return p;

      p = p->next;
    }

  return p;
}

/* Allocate a bloc of SIZE bytes and append it to the chain of blocs.
   Returns a pointer to the new bloc, or zero if we couldn't allocate
   memory for the new block.  */

static bloc_ptr
get_bloc (size)
     SIZE size;
{
  register bloc_ptr new_bloc;
  register heap_ptr heap;

  if (! (new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE))
      || ! (new_bloc->data = obtain (break_value, size)))
    {
      if (new_bloc)
	free (new_bloc);

      return 0;
    }

  break_value = new_bloc->data + size;

  new_bloc->size = size;
  new_bloc->next = NIL_BLOC;
  new_bloc->variable = (POINTER *) NIL;
  new_bloc->new_data = 0;

  /* Record in the heap that this space is in use.  */
  heap = find_heap (new_bloc->data);
  heap->free = break_value;

  /* Maintain the correspondence between heaps and blocs.  */
  new_bloc->heap = heap;
  heap->last_bloc = new_bloc;
  if (heap->first_bloc == NIL_BLOC)
    heap->first_bloc = new_bloc;

  /* Put this bloc on the doubly-linked list of blocs.  */
  if (first_bloc)
    {
      new_bloc->prev = last_bloc;
      last_bloc->next = new_bloc;
      last_bloc = new_bloc;
    }
  else
    {
      first_bloc = last_bloc = new_bloc;
      new_bloc->prev = NIL_BLOC;
    }

  return new_bloc;
}

/* Calculate new locations of blocs in the list beginning with BLOC,
   relocating it to start at ADDRESS, in heap HEAP.  If enough space is
   not presently available in our reserve, call obtain for
   more space. 
   
   Store the new location of each bloc in its new_data field.
   Do not touch the contents of blocs or break_value.  */

static int
relocate_blocs (bloc, heap, address)
    bloc_ptr bloc;
    heap_ptr heap;
    POINTER address;
{
  register bloc_ptr b = bloc;

  while (b)
    {
      /* If bloc B won't fit within HEAP,
	 move to the next heap and try again.  */
      while (heap && address + b->size > heap->end)
	{
	  heap = heap->next;
	  if (heap == NIL_HEAP)
	    break;
	  address = heap->bloc_start;
	}

      /* If BLOC won't fit in any heap,
	 get enough new space to hold BLOC and all following blocs.  */
      if (heap == NIL_HEAP)
	{
	  register bloc_ptr tb = b;
	  register SIZE s = 0;

	  /* Add up the size of all the following blocs.  */
	  while (tb != NIL_BLOC)
	    {
	      s += tb->size;
	      tb = tb->next;
	    }

	  /* Get that space.  */
	  address = obtain (address, s);
	  if (address == 0)
	    return 0;

	  heap = last_heap;
	}

      /* Record the new address of this bloc
	 and update where the next bloc can start.  */
      b->new_data = address;
      address += b->size;
      b = b->next;
    }

  return 1;
}

/* Reorder the bloc BLOC to go before bloc BEFORE in the doubly linked list.
   This is necessary if we put the memory of space of BLOC
   before that of BEFORE.  */

static void
reorder_bloc (bloc, before)
     bloc_ptr bloc, before;
{
  bloc_ptr prev, next;

  /* Splice BLOC out from where it is.  */
  prev = bloc->prev;
  next = bloc->next;

  if (prev)
    prev->next = next;
  if (next)
    next->prev = prev;

  /* Splice it in before BEFORE.  */
  prev = before->prev;

  if (prev)
    prev->next = bloc;
  bloc->prev = prev;

  before->prev = bloc;
  bloc->next = before;
}

/* Update the records of which heaps contain which blocs, starting
   with heap HEAP and bloc BLOC.  */

static void
update_heap_bloc_correspondence (bloc, heap)
     bloc_ptr bloc;
     heap_ptr heap;
{
  register bloc_ptr b;

  /* Initialize HEAP's status to reflect blocs before BLOC.  */
  if (bloc != NIL_BLOC && bloc->prev != NIL_BLOC && bloc->prev->heap == heap)
    {
      /* The previous bloc is in HEAP.  */
      heap->last_bloc = bloc->prev;
      heap->free = bloc->prev->data + bloc->prev->size;
    }
  else
    {
      /* HEAP contains no blocs before BLOC.  */
      heap->first_bloc = NIL_BLOC;
      heap->last_bloc = NIL_BLOC;
      heap->free = heap->bloc_start;
    }

  /* Advance through blocs one by one.  */
  for (b = bloc; b != NIL_BLOC; b = b->next)
    {
      /* Advance through heaps, marking them empty,
	 till we get to the one that B is in.  */
      while (heap)
	{
	  if (heap->bloc_start <= b->data && b->data <= heap->end)
	    break;
	  heap = heap->next;
	  /* We know HEAP is not null now,
	     because there has to be space for bloc B.  */
	  heap->first_bloc = NIL_BLOC;
	  heap->last_bloc = NIL_BLOC;
	  heap->free = heap->bloc_start;
	}

      /* Update HEAP's status for bloc B.  */
      heap->free = b->data + b->size;
      heap->last_bloc = b;
      if (heap->first_bloc == NIL_BLOC)
	heap->first_bloc = b;

      /* Record that B is in HEAP.  */
      b->heap = heap;
    }

  /* If there are any remaining heaps and no blocs left,
     mark those heaps as empty.  */
  heap = heap->next;
  while (heap)
    {
      heap->first_bloc = NIL_BLOC;
      heap->last_bloc = NIL_BLOC;
      heap->free = heap->bloc_start;
      heap = heap->next;
    }
}

/* Resize BLOC to SIZE bytes.  This relocates the blocs
   that come after BLOC in memory.  */

static int
resize_bloc (bloc, size)
    bloc_ptr bloc;
    SIZE size;
{
  register bloc_ptr b;
  heap_ptr heap;
  POINTER address;
  SIZE old_size;

  if (bloc == NIL_BLOC || size == bloc->size)
    return 1;

  for (heap = first_heap; heap != NIL_HEAP; heap = heap->next)
    {
      if (heap->bloc_start <= bloc->data && bloc->data <= heap->end)
	break;
    }

  if (heap == NIL_HEAP)
    abort ();

  old_size = bloc->size;
  bloc->size = size;

  /* Note that bloc could be moved into the previous heap.  */
  address = (bloc->prev ? bloc->prev->data + bloc->prev->size
	     : first_heap->bloc_start);
  while (heap)
    {
      if (heap->bloc_start <= address && address <= heap->end)
	break;
      heap = heap->prev;
    }

  if (! relocate_blocs (bloc, heap, address))
    {
      bloc->size = old_size;
      return 0;
    }

  if (size > old_size)
    {
      for (b = last_bloc; b != bloc; b = b->prev)
	{
	  safe_bcopy (b->data, b->new_data, b->size);
	  *b->variable = b->data = b->new_data;
	}
      safe_bcopy (bloc->data, bloc->new_data, old_size);
      bzero (bloc->new_data + old_size, size - old_size);
      *bloc->variable = bloc->data = bloc->new_data;
    }
  else
    {
      for (b = bloc; b != NIL_BLOC; b = b->next)
	{
	  safe_bcopy (b->data, b->new_data, b->size);
	  *b->variable = b->data = b->new_data;
	}
    }

  update_heap_bloc_correspondence (bloc, heap);

  break_value = (last_bloc ? last_bloc->data + last_bloc->size
		 : first_heap->bloc_start);
  return 1;
}

/* Free BLOC from the chain of blocs, relocating any blocs above it.
   This may return space to the system.  */

static void
free_bloc (bloc)
     bloc_ptr bloc;
{
  heap_ptr heap = bloc->heap;

  resize_bloc (bloc, 0);

  if (bloc == first_bloc && bloc == last_bloc)
    {
      first_bloc = last_bloc = NIL_BLOC;
    }
  else if (bloc == last_bloc)
    {
      last_bloc = bloc->prev;
      last_bloc->next = NIL_BLOC;
    }
  else if (bloc == first_bloc)
    {
      first_bloc = bloc->next;
      first_bloc->prev = NIL_BLOC;
    }
  else
    {
      bloc->next->prev = bloc->prev;
      bloc->prev->next = bloc->next;
    }

  /* Update the records of which blocs are in HEAP.  */
  if (heap->first_bloc == bloc)
    {
      if (bloc->next != 0 && bloc->next->heap == heap)
	heap->first_bloc = bloc->next;
      else
	heap->first_bloc = heap->last_bloc = NIL_BLOC;
    }
  if (heap->last_bloc == bloc)
    {
      if (bloc->prev != 0 && bloc->prev->heap == heap)
	heap->last_bloc = bloc->prev;
      else
	heap->first_bloc = heap->last_bloc = NIL_BLOC;
    }

  relinquish ();
  free (bloc);
}

/* Interface routines.  */

static int use_relocatable_buffers;
static int r_alloc_freeze_level;

/* Obtain SIZE bytes of storage from the free pool, or the system, as
   necessary.  If relocatable blocs are in use, this means relocating
   them.  This function gets plugged into the GNU malloc's __morecore
   hook.

   We provide hysteresis, never relocating by less than extra_bytes.

   If we're out of memory, we should return zero, to imitate the other
   __morecore hook values - in particular, __default_morecore in the
   GNU malloc package.  */

POINTER 
r_alloc_sbrk (size)
     long size;
{
  register bloc_ptr b;
  POINTER address;

  if (! use_relocatable_buffers)
    return (*real_morecore) (size);

  if (size == 0)
    return virtual_break_value;

  if (size > 0)
    {
      /* Allocate a page-aligned space.  GNU malloc would reclaim an
	 extra space if we passed an unaligned one.  But we could
	 not always find a space which is contiguos to the previous.  */
      POINTER new_bloc_start;
      heap_ptr h = first_heap;
      SIZE get = ROUNDUP (size);

      address = (POINTER) ROUNDUP (virtual_break_value);

      /* Search the list upward for a heap which is large enough.  */
      while ((char *) h->end < (char *) MEM_ROUNDUP ((char *)address + get))
	{
	  h = h->next;
	  if (h == NIL_HEAP)
	    break;
	  address = (POINTER) ROUNDUP (h->start);
	}

      /* If not found, obtain more space.  */
      if (h == NIL_HEAP)
	{
	  get += extra_bytes + page_size;

	  if (r_alloc_freeze_level > 0 || ! obtain (address, get))
	    return 0;

	  if (first_heap == last_heap)
	    address = (POINTER) ROUNDUP (virtual_break_value);
	  else
	    address = (POINTER) ROUNDUP (last_heap->start);
	  h = last_heap;
	}

      new_bloc_start = (POINTER) MEM_ROUNDUP ((char *)address + get);

      if (first_heap->bloc_start < new_bloc_start)
	{
	  /* Move all blocs upward.  */
	  if (r_alloc_freeze_level > 0
	      || ! relocate_blocs (first_bloc, h, new_bloc_start))
	    return 0;

	  /* Note that (POINTER)(h+1) <= new_bloc_start since
	     get >= page_size, so the following does not destroy the heap
	     header.  */
	  for (b = last_bloc; b != NIL_BLOC; b = b->prev)
	    {
	      safe_bcopy (b->data, b->new_data, b->size);
	      *b->variable = b->data = b->new_data;
	    }

	  h->bloc_start = new_bloc_start;

	  update_heap_bloc_correspondence (first_bloc, h);
	}

      if (h != first_heap)
	{
	  /* Give up managing heaps below the one the new
	     virtual_break_value points to.  */
	  first_heap->prev = NIL_HEAP;
	  first_heap->next = h->next;
	  first_heap->start = h->start;
	  first_heap->end = h->end;
	  first_heap->free = h->free;
	  first_heap->first_bloc = h->first_bloc;
	  first_heap->last_bloc = h->last_bloc;
	  first_heap->bloc_start = h->bloc_start;

	  if (first_heap->next)
	    first_heap->next->prev = first_heap;
	  else
	    last_heap = first_heap;
	}

      bzero (address, size);
    }
  else /* size < 0 */
    {
      SIZE excess = (char *)first_heap->bloc_start
		      - ((char *)virtual_break_value + size);

      address = virtual_break_value;

      if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes)
	{
	  excess -= extra_bytes;
	  first_heap->bloc_start
	    = (POINTER) MEM_ROUNDUP ((char *)first_heap->bloc_start - excess);

	  relocate_blocs (first_bloc, first_heap, first_heap->bloc_start);

	  for (b = first_bloc; b != NIL_BLOC; b = b->next)
	    {
	      safe_bcopy (b->data, b->new_data, b->size);
	      *b->variable = b->data = b->new_data;
	    }
	}

      if ((char *)virtual_break_value + size < (char *)first_heap->start)
	{
	  /* We found an additional space below the first heap */
	  first_heap->start = (POINTER) ((char *)virtual_break_value + size);
	}
    }

  virtual_break_value = (POINTER) ((char *)address + size);
  break_value = (last_bloc
		 ? last_bloc->data + last_bloc->size
		 : first_heap->bloc_start);
  if (size < 0)
    relinquish ();

  return address;
}

/* Allocate a relocatable bloc of storage of size SIZE.  A pointer to
   the data is returned in *PTR.  PTR is thus the address of some variable
   which will use the data area.

   If we can't allocate the necessary memory, set *PTR to zero, and
   return zero.  */

POINTER
r_alloc (ptr, size)
     POINTER *ptr;
     SIZE size;
{
  register bloc_ptr new_bloc;

  if (! r_alloc_initialized)
    r_alloc_init ();

  new_bloc = get_bloc (MEM_ROUNDUP (size));
  if (new_bloc)
    {
      new_bloc->variable = ptr;
      *ptr = new_bloc->data;
    }
  else
    *ptr = 0;

  return *ptr;
}

/* Free a bloc of relocatable storage whose data is pointed to by PTR.
   Store 0 in *PTR to show there's no block allocated.  */

void
r_alloc_free (ptr)
     register POINTER *ptr;
{
  register bloc_ptr dead_bloc;

  dead_bloc = find_bloc (ptr);
  if (dead_bloc == NIL_BLOC)
    abort ();

  free_bloc (dead_bloc);
  *ptr = 0;

#ifdef emacs
  refill_memory_reserve ();
#endif
}

/* Given a pointer at address PTR to relocatable data, resize it to SIZE.
   Do this by shifting all blocks above this one up in memory, unless
   SIZE is less than or equal to the current bloc size, in which case
   do nothing.

   Change *PTR to reflect the new bloc, and return this value.

   If more memory cannot be allocated, then leave *PTR unchanged, and
   return zero.  */

POINTER
r_re_alloc (ptr, size)
     POINTER *ptr;
     SIZE size;
{
  register bloc_ptr bloc;

  bloc = find_bloc (ptr);
  if (bloc == NIL_BLOC)
    abort ();

  if (size <= bloc->size)
    /* Wouldn't it be useful to actually resize the bloc here?  */
    return *ptr;

  if (! resize_bloc (bloc, MEM_ROUNDUP (size)))
    return 0;

  return *ptr;
}

/* Disable relocations, after making room for at least SIZE bytes
   of non-relocatable heap if possible.  The relocatable blocs are
   guaranteed to hold still until thawed, even if this means that
   malloc must return a null pointer.  */

void
r_alloc_freeze (size)
     long size;
{
  /* If already frozen, we can't make any more room, so don't try.  */
  if (r_alloc_freeze_level > 0)
    size = 0;
  /* If we can't get the amount requested, half is better than nothing.  */
  while (size > 0 && r_alloc_sbrk (size) == 0)
    size /= 2;
  ++r_alloc_freeze_level;
  if (size > 0)
    r_alloc_sbrk (-size);
}

void
r_alloc_thaw ()
{
  if (--r_alloc_freeze_level < 0)
    abort ();
}

/* The hook `malloc' uses for the function which gets more space
   from the system.  */
extern POINTER (*__morecore) ();

/* Initialize various things for memory allocation.  */

static void
r_alloc_init ()
{
  if (r_alloc_initialized)
    return;

  r_alloc_initialized = 1;
  real_morecore = __morecore;
  __morecore = r_alloc_sbrk;

  first_heap = last_heap = &heap_base;
  first_heap->next = first_heap->prev = NIL_HEAP;
  first_heap->start = first_heap->bloc_start
    = virtual_break_value = break_value = (*real_morecore) (0);
  if (break_value == NIL)
    abort ();

  page_size = PAGE;
  extra_bytes = ROUNDUP (50000);

  first_heap->end = (POINTER) ROUNDUP (first_heap->start);

  /* The extra call to real_morecore guarantees that the end of the
     address space is a multiple of page_size, even if page_size is
     not really the page size of the system running the binary in
     which page_size is stored.  This allows a binary to be built on a
     system with one page size and run on a system with a smaller page
     size.  */
  (*real_morecore) (first_heap->end - first_heap->start);

  /* Clear the rest of the last page; this memory is in our address space
     even though it is after the sbrk value.  */
  /* Doubly true, with the additional call that explicitly adds the
     rest of that page to the address space.  */
  bzero (first_heap->start, first_heap->end - first_heap->start);
  virtual_break_value = break_value = first_heap->bloc_start = first_heap->end;
  use_relocatable_buffers = 1;
}
#ifdef DEBUG
#include <assert.h>

int
r_alloc_check ()
{
    int found = 0;
    heap_ptr h, ph = 0;
    bloc_ptr b, pb = 0;

    if (!r_alloc_initialized)
      return;

    assert (first_heap);
    assert (last_heap->end <= (POINTER) sbrk (0));
    assert ((POINTER) first_heap < first_heap->start);
    assert (first_heap->start <= virtual_break_value);
    assert (virtual_break_value <= first_heap->end);

    for (h = first_heap; h; h = h->next)
      {
	assert (h->prev == ph);
	assert ((POINTER) ROUNDUP (h->end) == h->end);
	assert ((POINTER) MEM_ROUNDUP (h->start) == h->start);
	assert ((POINTER) MEM_ROUNDUP (h->bloc_start) == h->bloc_start);
	assert (h->start <= h->bloc_start && h->bloc_start <= h->end);

	if (ph)
	  {
	    assert (ph->end < h->start);
	    assert (h->start <= (POINTER)h && (POINTER)(h+1) <= h->bloc_start);
	  }

	if (h->bloc_start <= break_value && break_value <= h->end)
	    found = 1;

	ph = h;
      }

    assert (found);
    assert (last_heap == ph);

    for (b = first_bloc; b; b = b->next)
      {
	assert (b->prev == pb);
	assert ((POINTER) MEM_ROUNDUP (b->data) == b->data);
	assert ((SIZE) MEM_ROUNDUP (b->size) == b->size);

	ph = 0;
	for (h = first_heap; h; h = h->next)
	  {
	    if (h->bloc_start <= b->data && b->data + b->size <= h->end)
		break;
	    ph = h;
	  }

	assert (h);

	if (pb && pb->data + pb->size != b->data)
	  {
	    assert (ph && b->data == h->bloc_start);
	    while (ph)
	      {
		if (ph->bloc_start <= pb->data
		    && pb->data + pb->size <= ph->end)
		  {
		    assert (pb->data + pb->size + b->size > ph->end);
		    break;
		  }
		else
		  {
		    assert (ph->bloc_start + b->size > ph->end);
		  }
		ph = ph->prev;
	      }
	  }
	pb = b;
      }

    assert (last_bloc == pb);

    if (last_bloc)
	assert (last_bloc->data + last_bloc->size == break_value);
    else
	assert (first_heap->bloc_start == break_value);
}
#endif /* DEBUG */