1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
|
/* Block-relocating memory allocator.
Copyright (C) 1993 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* NOTES:
Only relocate the blocs necessary for SIZE in r_alloc_sbrk,
rather than all of them. This means allowing for a possible
hole between the first bloc and the end of malloc storage. */
#ifdef emacs
#include <config.h>
#include "lisp.h" /* Needed for VALBITS. */
#undef NULL
/* The important properties of this type are that 1) it's a pointer, and
2) arithmetic on it should work as if the size of the object pointed
to has a size of 1. */
#if 0 /* Arithmetic on void* is a GCC extension. */
#ifdef __STDC__
typedef void *POINTER;
#else
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
typedef char *POINTER;
#endif
#endif /* 0 */
/* Unconditionally use char * for this. */
typedef char *POINTER;
typedef unsigned long SIZE;
/* Declared in dispnew.c, this version doesn't screw up if regions
overlap. */
extern void safe_bcopy ();
#include "getpagesize.h"
#else /* Not emacs. */
#include <stddef.h>
typedef size_t SIZE;
typedef void *POINTER;
#include <unistd.h>
#include <malloc.h>
#include <string.h>
#define safe_bcopy(x, y, z) memmove (y, x, z)
#endif /* emacs. */
#define NIL ((POINTER) 0)
/* A flag to indicate whether we have initialized ralloc yet. For
Emacs's sake, please do not make this local to malloc_init; on some
machines, the dumping procedure makes all static variables
read-only. On these machines, the word static is #defined to be
the empty string, meaning that r_alloc_initialized becomes an
automatic variable, and loses its value each time Emacs is started up. */
static int r_alloc_initialized = 0;
static void r_alloc_init ();
/* Declarations for working with the malloc, ralloc, and system breaks. */
/* Function to set the real break value. */
static POINTER (*real_morecore) ();
/* The break value, as seen by malloc (). */
static POINTER virtual_break_value;
/* The break value, viewed by the relocatable blocs. */
static POINTER break_value;
/* This is the size of a page. We round memory requests to this boundary. */
static int page_size;
/* Whenever we get memory from the system, get this many extra bytes. This
must be a multiple of page_size. */
static int extra_bytes;
/* Macros for rounding. Note that rounding to any value is possible
by changing the definition of PAGE. */
#define PAGE (getpagesize ())
#define ALIGNED(addr) (((unsigned long int) (addr) & (page_size - 1)) == 0)
#define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \
& ~(page_size - 1))
#define ROUND_TO_PAGE(addr) (addr & (~(page_size - 1)))
#define MEM_ALIGN sizeof(double)
#define MEM_ROUNDUP(addr) (((unsigned long int)(addr) + MEM_ALIGN - 1) \
& ~(MEM_ALIGN - 1))
/* Data structures of heaps and blocs */
typedef struct heap
{
struct heap *next;
struct heap *prev;
POINTER start;
POINTER end;
POINTER bloc_start; /* start of relocatable blocs */
} *heap_ptr;
#define NIL_HEAP ((heap_ptr) 0)
#define HEAP_PTR_SIZE (sizeof (struct heap))
/* Head and tail of the list of heaps. */
static heap_ptr first_heap, last_heap;
/* These structures are allocated in the malloc arena.
The linked list is kept in order of increasing '.data' members.
The data blocks abut each other; if b->next is non-nil, then
b->data + b->size == b->next->data. */
typedef struct bp
{
struct bp *next;
struct bp *prev;
POINTER *variable;
POINTER data;
SIZE size;
POINTER new_data; /* tmporarily used for relocation */
} *bloc_ptr;
#define NIL_BLOC ((bloc_ptr) 0)
#define BLOC_PTR_SIZE (sizeof (struct bp))
/* Head and tail of the list of relocatable blocs. */
static bloc_ptr first_bloc, last_bloc;
/* Functions to get and return memory from the system. */
/* Obtain SIZE bytes of space starting at ADDRESS in a heap.
If enough space is not presently available in our reserve, this means
getting more page-aligned space from the system. If the retuned space
is not contiguos to the last heap, allocate a new heap, and append it
to the heap list.
Return the address of the space if all went well, or zero if we couldn't
allocate the memory. */
static POINTER
obtain (address, size)
POINTER address;
SIZE size;
{
heap_ptr heap;
SIZE already_available;
for (heap = last_heap; heap; heap = heap->prev)
{
if (heap->start <= address && address <= heap->end)
break;
}
if (! heap)
abort();
while (heap && address + size > heap->end)
{
heap = heap->next;
if (heap == NIL_HEAP)
break;
address = heap->bloc_start;
}
if (heap == NIL_HEAP)
{
POINTER new = (*real_morecore)(0);
SIZE get;
already_available = (char *)last_heap->end - (char *)address;
if (new != last_heap->end)
{
/* Someone else called sbrk(). */
heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP(new);
POINTER bloc_start = (POINTER) MEM_ROUNDUP((POINTER)(new_heap + 1));
if ((*real_morecore) (bloc_start - new) != new)
return 0;
new_heap->start = new;
new_heap->end = bloc_start;
new_heap->bloc_start = bloc_start;
new_heap->next = NIL_HEAP;
new_heap->prev = last_heap;
last_heap->next = new_heap;
last_heap = new_heap;
address = bloc_start;
already_available = 0;
}
/* Get some extra, so we can come here less often. */
get = size + extra_bytes - already_available;
get = (char *) ROUNDUP((char *)last_heap->end + get)
- (char *) last_heap->end;
if ((*real_morecore) (get) != last_heap->end)
return 0;
last_heap->end += get;
}
return address;
}
/* If the last heap has a excessive space, return it to the system. */
static void
relinquish ()
{
register heap_ptr h;
int excess = 0;
for (h = last_heap; h && break_value < h->end; h = h->prev)
{
excess += (char *) h->end - (char *) ((break_value < h->bloc_start)
? h->bloc_start : break_value);
}
if (excess > extra_bytes * 2 && (*real_morecore) (0) == last_heap->end)
{
/* Keep extra_bytes worth of empty space.
And don't free anything unless we can free at least extra_bytes. */
excess -= extra_bytes;
if ((char *)last_heap->end - (char *)last_heap->bloc_start <= excess)
{
/* Return the last heap with its header to the system */
excess = (char *)last_heap->end - (char *)last_heap->start;
last_heap = last_heap->prev;
last_heap->next = NIL_HEAP;
}
else
{
excess = (char *) last_heap->end
- (char *) ROUNDUP((char *)last_heap->end - excess);
last_heap->end -= excess;
}
if ((*real_morecore) (- excess) == 0)
abort ();
}
}
/* The meat - allocating, freeing, and relocating blocs. */
/* Find the bloc referenced by the address in PTR. Returns a pointer
to that block. */
static bloc_ptr
find_bloc (ptr)
POINTER *ptr;
{
register bloc_ptr p = first_bloc;
while (p != NIL_BLOC)
{
if (p->variable == ptr && p->data == *ptr)
return p;
p = p->next;
}
return p;
}
/* Allocate a bloc of SIZE bytes and append it to the chain of blocs.
Returns a pointer to the new bloc, or zero if we couldn't allocate
memory for the new block. */
static bloc_ptr
get_bloc (size)
SIZE size;
{
register bloc_ptr new_bloc;
if (! (new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE))
|| ! (new_bloc->data = obtain (break_value, size)))
{
if (new_bloc)
free (new_bloc);
return 0;
}
break_value = new_bloc->data + size;
new_bloc->size = size;
new_bloc->next = NIL_BLOC;
new_bloc->variable = (POINTER *) NIL;
new_bloc->new_data = 0;
if (first_bloc)
{
new_bloc->prev = last_bloc;
last_bloc->next = new_bloc;
last_bloc = new_bloc;
}
else
{
first_bloc = last_bloc = new_bloc;
new_bloc->prev = NIL_BLOC;
}
return new_bloc;
}
/* Calculate new locations of blocs in the list begining with BLOC,
whose spaces is started at ADDRESS in HEAP. If enough space is
not presently available in our reserve, obtain() is called for
more space.
Do not touch the contents of blocs or break_value. */
static int
relocate_blocs (bloc, heap, address)
bloc_ptr bloc;
heap_ptr heap;
POINTER address;
{
register bloc_ptr b = bloc;
while (b)
{
while (heap && address + b->size > heap->end)
{
heap = heap->next;
if (heap == NIL_HEAP)
break;
address = heap->bloc_start;
}
if (heap == NIL_HEAP)
{
register bloc_ptr tb = b;
register SIZE s = 0;
while (tb != NIL_BLOC)
{
s += tb->size;
tb = tb->next;
}
if (! (address = obtain(address, s)))
return 0;
heap = last_heap;
}
b->new_data = address;
address += b->size;
b = b->next;
}
return 1;
}
/* Resize BLOC to SIZE bytes. */
static int
resize_bloc (bloc, size)
bloc_ptr bloc;
SIZE size;
{
register bloc_ptr b;
heap_ptr heap;
POINTER address;
SIZE old_size;
if (bloc == NIL_BLOC || size == bloc->size)
return 1;
for (heap = first_heap; heap != NIL_HEAP; heap = heap->next)
{
if (heap->bloc_start <= bloc->data && bloc->data <= heap->end)
break;
}
if (heap == NIL_HEAP)
abort();
old_size = bloc->size;
bloc->size = size;
/* Note that bloc could be moved into the previous heap. */
address = bloc->prev ? bloc->prev->data + bloc->prev->size
: first_heap->bloc_start;
while (heap)
{
if (heap->bloc_start <= address && address <= heap->end)
break;
heap = heap->prev;
}
if (! relocate_blocs (bloc, heap, address))
{
bloc->size = old_size;
return 0;
}
if (size > old_size)
{
for (b = last_bloc; b != bloc; b = b->prev)
{
safe_bcopy (b->data, b->new_data, b->size);
*b->variable = b->data = b->new_data;
}
safe_bcopy (bloc->data, bloc->new_data, old_size);
bzero (bloc->new_data + old_size, size - old_size);
*bloc->variable = bloc->data = bloc->new_data;
}
else
{
for (b = bloc; b != NIL_BLOC; b = b->next)
{
safe_bcopy (b->data, b->new_data, b->size);
*b->variable = b->data = b->new_data;
}
}
break_value = last_bloc ? last_bloc->data + last_bloc->size
: first_heap->bloc_start;
return 1;
}
/* Free BLOC from the chain of blocs, relocating any blocs above it
and returning BLOC->size bytes to the free area. */
static void
free_bloc (bloc)
bloc_ptr bloc;
{
resize_bloc (bloc, 0);
if (bloc == first_bloc && bloc == last_bloc)
{
first_bloc = last_bloc = NIL_BLOC;
}
else if (bloc == last_bloc)
{
last_bloc = bloc->prev;
last_bloc->next = NIL_BLOC;
}
else if (bloc == first_bloc)
{
first_bloc = bloc->next;
first_bloc->prev = NIL_BLOC;
}
else
{
bloc->next->prev = bloc->prev;
bloc->prev->next = bloc->next;
}
relinquish ();
free (bloc);
}
/* Interface routines. */
static int use_relocatable_buffers;
static int r_alloc_freeze_level;
/* Obtain SIZE bytes of storage from the free pool, or the system, as
necessary. If relocatable blocs are in use, this means relocating
them. This function gets plugged into the GNU malloc's __morecore
hook.
We provide hysteresis, never relocating by less than extra_bytes.
If we're out of memory, we should return zero, to imitate the other
__morecore hook values - in particular, __default_morecore in the
GNU malloc package. */
POINTER
r_alloc_sbrk (size)
long size;
{
register bloc_ptr b;
POINTER address;
if (! use_relocatable_buffers)
return (*real_morecore) (size);
if (size == 0)
return virtual_break_value;
if (size > 0)
{
/* Allocate a page-aligned space. GNU malloc would reclaim an
extra space if we passed an unaligned one. But we could
not always find a space which is contiguos to the previous. */
POINTER new_bloc_start;
heap_ptr h = first_heap;
SIZE get = ROUNDUP(size);
address = (POINTER) ROUNDUP(virtual_break_value);
/* Search the list upward for a heap which is large enough. */
while ((char *) h->end < (char *) MEM_ROUNDUP((char *)address + get))
{
h = h->next;
if (h == NIL_HEAP)
break;
address = (POINTER) ROUNDUP(h->start);
}
/* If not found, obatin more space. */
if (h == NIL_HEAP)
{
get += extra_bytes + page_size;
if (r_alloc_freeze_level > 0 || ! obtain(address, get))
return 0;
if (first_heap == last_heap)
address = (POINTER) ROUNDUP(virtual_break_value);
else
address = (POINTER) ROUNDUP(last_heap->start);
h = last_heap;
}
new_bloc_start = (POINTER) MEM_ROUNDUP((char *)address + get);
if (first_heap->bloc_start < new_bloc_start)
{
/* Move all blocs upward. */
if (r_alloc_freeze_level > 0
|| ! relocate_blocs (first_bloc, h, new_bloc_start))
return 0;
/* Note that (POINTER)(h+1) <= new_bloc_start since
get >= page_size, so the following does not destroy the heap
header. */
for (b = last_bloc; b != NIL_BLOC; b = b->prev)
{
safe_bcopy (b->data, b->new_data, b->size);
*b->variable = b->data = b->new_data;
}
h->bloc_start = new_bloc_start;
}
if (h != first_heap)
{
/* Give up managing heaps below the one the new
virtual_break_value points to. */
first_heap->prev = NIL_HEAP;
first_heap->next = h->next;
first_heap->start = h->start;
first_heap->end = h->end;
first_heap->bloc_start = h->bloc_start;
if (first_heap->next)
first_heap->next->prev = first_heap;
else
last_heap = first_heap;
}
bzero (address, size);
}
else /* size < 0 */
{
SIZE excess = (char *)first_heap->bloc_start
- ((char *)virtual_break_value + size);
address = virtual_break_value;
if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes)
{
excess -= extra_bytes;
first_heap->bloc_start
= (POINTER) MEM_ROUNDUP((char *)first_heap->bloc_start - excess);
relocate_blocs(first_bloc, first_heap, first_heap->bloc_start);
for (b = first_bloc; b != NIL_BLOC; b = b->next)
{
safe_bcopy (b->data, b->new_data, b->size);
*b->variable = b->data = b->new_data;
}
}
if ((char *)virtual_break_value + size < (char *)first_heap->start)
{
/* We found an additional space below the first heap */
first_heap->start = (POINTER) ((char *)virtual_break_value + size);
}
}
virtual_break_value = (POINTER) ((char *)address + size);
break_value = last_bloc ? last_bloc->data + last_bloc->size
: first_heap->bloc_start;
if (size < 0)
relinquish();
return address;
}
/* Allocate a relocatable bloc of storage of size SIZE. A pointer to
the data is returned in *PTR. PTR is thus the address of some variable
which will use the data area.
If we can't allocate the necessary memory, set *PTR to zero, and
return zero. */
POINTER
r_alloc (ptr, size)
POINTER *ptr;
SIZE size;
{
register bloc_ptr new_bloc;
if (! r_alloc_initialized)
r_alloc_init ();
new_bloc = get_bloc (MEM_ROUNDUP(size));
if (new_bloc)
{
new_bloc->variable = ptr;
*ptr = new_bloc->data;
}
else
*ptr = 0;
return *ptr;
}
/* Free a bloc of relocatable storage whose data is pointed to by PTR.
Store 0 in *PTR to show there's no block allocated. */
void
r_alloc_free (ptr)
register POINTER *ptr;
{
register bloc_ptr dead_bloc;
dead_bloc = find_bloc (ptr);
if (dead_bloc == NIL_BLOC)
abort ();
free_bloc (dead_bloc);
*ptr = 0;
}
/* Given a pointer at address PTR to relocatable data, resize it to SIZE.
Do this by shifting all blocks above this one up in memory, unless
SIZE is less than or equal to the current bloc size, in which case
do nothing.
Change *PTR to reflect the new bloc, and return this value.
If more memory cannot be allocated, then leave *PTR unchanged, and
return zero. */
POINTER
r_re_alloc (ptr, size)
POINTER *ptr;
SIZE size;
{
register bloc_ptr bloc;
bloc = find_bloc (ptr);
if (bloc == NIL_BLOC)
abort ();
if (size <= bloc->size)
/* Wouldn't it be useful to actually resize the bloc here? */
return *ptr;
if (! resize_bloc (bloc, MEM_ROUNDUP(size)))
return 0;
return *ptr;
}
/* Disable relocations, after making room for at least SIZE bytes
of non-relocatable heap if possible. The relocatable blocs are
guaranteed to hold still until thawed, even if this means that
malloc must return a null pointer. */
void
r_alloc_freeze (size)
long size;
{
/* If already frozen, we can't make any more room, so don't try. */
if (r_alloc_freeze_level > 0)
size = 0;
/* If we can't get the amount requested, half is better than nothing. */
while (size > 0 && r_alloc_sbrk (size) == 0)
size /= 2;
++r_alloc_freeze_level;
if (size > 0)
r_alloc_sbrk (-size);
}
void
r_alloc_thaw ()
{
if (--r_alloc_freeze_level < 0)
abort ();
}
/* The hook `malloc' uses for the function which gets more space
from the system. */
extern POINTER (*__morecore) ();
/* Initialize various things for memory allocation. */
static void
r_alloc_init ()
{
static struct heap heap_base;
POINTER end;
if (r_alloc_initialized)
return;
r_alloc_initialized = 1;
real_morecore = __morecore;
__morecore = r_alloc_sbrk;
first_heap = last_heap = &heap_base;
first_heap->next = first_heap->prev = NIL_HEAP;
first_heap->start = first_heap->bloc_start
= virtual_break_value = break_value = (*real_morecore) (0);
if (break_value == NIL)
abort ();
page_size = PAGE;
extra_bytes = ROUNDUP (50000);
first_heap->end = (POINTER) ROUNDUP (first_heap->start);
/* The extra call to real_morecore guarantees that the end of the
address space is a multiple of page_size, even if page_size is
not really the page size of the system running the binary in
which page_size is stored. This allows a binary to be built on a
system with one page size and run on a system with a smaller page
size. */
(*real_morecore) (first_heap->end - first_heap->start);
/* Clear the rest of the last page; this memory is in our address space
even though it is after the sbrk value. */
/* Doubly true, with the additional call that explicitly adds the
rest of that page to the address space. */
bzero (first_heap->start, first_heap->end - first_heap->start);
virtual_break_value = break_value = first_heap->bloc_start = first_heap->end;
use_relocatable_buffers = 1;
}
#ifdef DEBUG
#include <assert.h>
int
r_alloc_check ()
{
int found = 0;
heap_ptr h, ph = 0;
bloc_ptr b, pb = 0;
if (!r_alloc_initialized)
return;
assert(first_heap);
assert(last_heap->end <= (POINTER) sbrk(0));
assert((POINTER) first_heap < first_heap->start);
assert(first_heap->start <= virtual_break_value);
assert(virtual_break_value <= first_heap->end);
for (h = first_heap; h; h = h->next)
{
assert(h->prev == ph);
assert((POINTER) ROUNDUP(h->end) == h->end);
assert((POINTER) MEM_ROUNDUP(h->start) == h->start);
assert((POINTER) MEM_ROUNDUP(h->bloc_start) == h->bloc_start);
assert(h->start <= h->bloc_start && h->bloc_start <= h->end);
if (ph)
{
assert (ph->end < h->start);
assert (h->start <= (POINTER)h && (POINTER)(h+1) <= h->bloc_start);
}
if (h->bloc_start <= break_value && break_value <= h->end)
found = 1;
ph = h;
}
assert(found);
assert(last_heap == ph);
for (b = first_bloc; b; b = b->next)
{
assert(b->prev == pb);
assert((POINTER) MEM_ROUNDUP(b->data) == b->data);
assert((SIZE) MEM_ROUNDUP(b->size) == b->size);
ph = 0;
for (h = first_heap; h; h = h->next)
{
if (h->bloc_start <= b->data && b->data + b->size <= h->end)
break;
ph = h;
}
assert(h);
if (pb && pb->data + pb->size != b->data)
{
assert(ph && b->data == h->bloc_start);
while (ph)
{
if (ph->bloc_start <= pb->data
&& pb->data + pb->size <= ph->end)
{
assert(pb->data + pb->size + b->size > ph->end);
break;
}
else
{
assert(ph->bloc_start + b->size > ph->end);
}
ph = ph->prev;
}
}
pb = b;
}
assert(last_bloc == pb);
if (last_bloc)
assert(last_bloc->data + last_bloc->size == break_value);
else
assert(first_heap->bloc_start == break_value);
}
#endif /* DEBUG */
|