summaryrefslogtreecommitdiff
path: root/src/itree.c
blob: 5df2d8d1cc595be779a276dd7c2bc59962851a44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
/* This file implements an efficient interval data-structure.

Copyright (C) 2017 Andreas Politz (politza@hochschule-trier.de)

This file is not part of GNU Emacs.

GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs.  If not, see <http://www.gnu.org/licenses/>.  */

#include <config.h>
#include <math.h>
#include "lisp.h"
#include "itree.h"

/*
   Intervals of the form [BEGIN, END), are stored as nodes inside a RB
   tree, sorted by BEGIN .  The core operation of this tree (besides
   insert, remove, etc.) is finding all intervals intersecting with
   some given interval.  In order to perform this operation
   efficiently, every node stores a third value called LIMIT. (See
   https://en.wikipedia.org/wiki/Interval_tree#Augmented_tree and its
   source Introduction to Algorithms (Section 14.3), Cormen et al. .)

   ==== Finding intervals ====

   If we search for all intervals intersecting with (X, Y], we look at
   some node and test whether

   NODE.BEGIN > Y

   Due to the invariant of the search tree, we know, that we may
   safely prune NODE's right subtree if this test succeeds, since all
   intervals begin strictly after Y.

   But we can not make such an assumptions about the left tree, since
   all we know is that the intervals in this subtree must start before
   or at NODE.BEGIN.  So we can't tell, whether they end before X or
   not.  To solve this problem we add another attribute to each node,
   called LIMIT.

   The LIMIT of a node is the largest END value occurring in the nodes
   subtree (including the node itself).  Thus, we may look at the left
   child of some NODE and test whether

   NODE.left.LIMIT < X

   and this tells us, if all intervals in the left subtree of NODE end
   before X and if they can be pruned.

   Conversely, if this inequality is false, the left subtree must
   contain at least one intersecting interval, giving a resulting time
   complexity of O(K*log(N)) for this operation, where K is the size
   of the result set and N the size of the tree.

   ==== Adjusting intervals ====

   Since this data-structure will be used for overlays in an Emacs
   buffer, a second core operation implements the ability to insert or
   delete gaps in resp. from the tree.  This models the insertion
   resp. deletion of text in a buffer and the effects it may have on
   the positions of overlays.

   Consider this: Something gets inserted at position P into a buffer
   and assume that all overlays occur strictly after P.  Ordinarily,
   we would have to iterate all overlays and increment their BEGIN and
   END values accordingly (the insertion of text pushes them back).
   In order to avoid this, we introduce yet another node attribute,
   called OFFSET.

   The OFFSET of some some subtree, represented by its root, is the
   amount of shift that needs to be applied to its BEGIN, END and
   LIMIT values, in order to get to the real values.  Coming back to
   the example, all we would need to do in this case, is to increment
   the OFFSET of the tree's root, without any traversal of the tree
   itself.

   As a consequence, the real values of BEGIN, END and LIMIT of some
   NODE need to be computed by incrementing them by the sum of NODE's
   OFFSET and all of its ancestors offsets.  Therefore, we store a
   counter (otick) inside every node and also the tree, by which we
   remember the fact, that a node's path to the root has no offsets
   applied (i.e. its values are up to date).  This is the case if some
   node's value differs from the tree's one, the later of which is
   incremented whenever some node's offset has changed.
*/

static struct interval_node *interval_tree_validate(struct interval_tree *, struct interval_node *);
static void interval_generator_ensure_space(struct interval_generator *);
static bool interval_node_intersects(const struct interval_node *, ptrdiff_t, ptrdiff_t);
static int interval_tree_max_height(const struct interval_tree *);
static struct interval_stack *interval_stack_create(intmax_t);
static void interval_stack_destroy(struct interval_stack *);
static void interval_stack_clear(struct interval_stack *);
static void interval_stack_ensure_space(struct interval_stack *, intmax_t);
static void interval_stack_push(struct interval_stack *, struct interval_node *);
static void interval_stack_push_flagged(struct interval_stack *, struct interval_node *, bool);
static struct interval_node *interval_stack_pop(struct interval_stack *);
static void interval_tree_update_limit(const struct interval_tree *, struct interval_node *);
static void interval_tree_inherit_offset(const struct interval_tree *, struct interval_node *);
static void interval_tree_propagate_limit(const struct interval_tree *, struct interval_node *);
static void interval_tree_rotate_left(struct interval_tree *, struct interval_node *);
static void interval_tree_rotate_right(struct interval_tree *, struct interval_node *);
static void interval_tree_insert_fix(struct interval_tree *, struct interval_node *);
static void interval_tree_remove_fix(struct interval_tree *, struct interval_node *);
static void interval_tree_transplant(struct interval_tree *, struct interval_node *, struct interval_node *);
static struct interval_node *interval_tree_subtree_min(const struct interval_tree *, struct interval_node *);
static struct interval_generator* interval_generator_create (struct interval_tree *);
static void interval_generator_destroy (struct interval_generator *);
static void interval_generator_reset (struct interval_generator *,
                               ptrdiff_t, ptrdiff_t,
                               enum interval_tree_order);
static void
interval_generator_narrow (struct interval_generator *g,
                             ptrdiff_t begin, ptrdiff_t end);
static inline struct interval_node*
interval_generator_next (struct interval_generator *g);
static inline void interval_tree_iter_ensure_space(struct interval_tree *);



/* +------------------------------------------------------------------------------------+ */

/* Simple dynamic array. */
struct interval_stack
{
  struct interval_node **nodes;
  size_t size;
  size_t length;
};

/* State used when iterating interval. */
struct interval_generator
{
  struct interval_tree *tree;
  struct interval_stack *stack;
  ptrdiff_t begin;
  ptrdiff_t end;
  enum interval_tree_order order;
};



/* +===================================================================================+
 * | Tree operations
 * +===================================================================================+ */

/* Initialize an allocated node. */

void
interval_node_init (struct interval_node *node,
                    ptrdiff_t begin, ptrdiff_t end,
                    bool front_advance, bool rear_advance,
                    Lisp_Object data)
{
  node->begin = begin;
  node->end = max (begin, end);
  node->front_advance = front_advance;
  node->rear_advance = rear_advance;
  node->data = data;
}

/* Return NODE's begin value, computing it if necessary. */

ptrdiff_t
interval_node_begin (struct interval_tree *tree,
                     struct interval_node *node)
{
  interval_tree_validate (tree, node);
  return node->begin;
}

/* Return NODE's end value, computing it if necessary. */

ptrdiff_t
interval_node_end (struct interval_tree *tree,
                   struct interval_node *node)
{
  interval_tree_validate (tree, node);
  return node->end;
}

/* Safely modify a node's interval. */

void
interval_node_set_region (struct interval_tree *tree,
                          struct interval_node *node,
                          ptrdiff_t begin, ptrdiff_t end)
{
  interval_tree_validate (tree, node);
  if (begin != node->begin)
    {
      interval_tree_remove (tree, node);
      node->begin = min (begin, PTRDIFF_MAX - 1);
      node->end = max (node->begin, end);
      interval_tree_insert (tree, node);
    }
  else if (end != node->end)
    {
      node->end = max (node->begin, end);
      interval_tree_propagate_limit (tree, node);
    }
}

/* Allocate an interval_tree. Free with interval_tree_destroy. */

struct interval_tree*
interval_tree_create (void)
{
  struct interval_tree *tree = xmalloc (sizeof (*tree));
  interval_tree_clear (tree);
  tree->iter = interval_generator_create (tree);
  return tree;
}

/* Reset the tree TREE to its empty state. */

void
interval_tree_clear (struct interval_tree *tree)
{
  struct interval_node *nil = &tree->nil;
  nil->left = nil->right = nil->parent = nil;
  nil->offset = nil->otick = 0;
  nil->begin = PTRDIFF_MIN;
  nil->end = PTRDIFF_MIN;
  nil->limit = PTRDIFF_MIN;     /* => max(x, nil.limit) = x */
  nil->color = ITREE_BLACK;
  tree->root = nil;
  tree->otick = 1;
  tree->size = 0;
  tree->iter_running = 0;
}

#ifdef ITREE_TESTING
/* Initialize a pre-allocated tree (presumably on the stack). */

static void
interval_tree_init (struct interval_tree *tree)
{
  interval_tree_clear (tree);
  tree->iter = interval_generator_create (tree);
}
#endif

/* Release a tree, freeing its allocated memory. */
void
interval_tree_destroy (struct interval_tree *tree)
{
  if (! tree)
    return;
  if (tree->iter)
    interval_generator_destroy (tree->iter);
  xfree (tree);
}

/* Return the number of nodes in TREE.  */

intmax_t
interval_tree_size (struct interval_tree *tree)
{
  return tree->size;
}

/* Insert a NODE into the TREE.

   Note, that inserting a node twice results in undefined behaviour.
*/

void
interval_tree_insert (struct interval_tree *tree, struct interval_node *node)
{
  eassert (node && node->begin <= node->end && node != &tree->nil);

  struct interval_node *parent = &tree->nil;
  struct interval_node *child = tree->root;
  ptrdiff_t offset = 0;

  /* Find the insertion point, accumulate node's offset and update
     ancestors limit values. */
  while (child != &tree->nil)
    {
      parent = child;
      offset += child->offset;
      child->limit = max (child->limit, node->end - offset);
      /* This suggests that nodes in the right subtree are strictly
         greater.  But this is not true due to later rotations. */
      child = node->begin <= child->begin ? child->left : child->right;
    }

  /* Insert the node */
  if (parent == &tree->nil)
    tree->root = node;
  else if (node->begin <= parent->begin)
    parent->left = node;
  else
    parent->right = node;

  /* Init the node */
  node->parent = parent;
  node->left = &tree->nil;
  node->right = &tree->nil;
  node->color = ITREE_RED;
  node->offset = offset;
  node->limit = node->end;
  node->otick = tree->otick - 1;

  /* Fix/update the tree */
  ++tree->size;
  interval_tree_insert_fix (tree, node);
  interval_tree_iter_ensure_space (tree);
}

/* Return true, if NODE is a member of TREE. */

bool
interval_tree_contains (struct interval_tree *tree, struct interval_node *node)
{
  struct interval_node *other;

  interval_tree_iter_start (tree, node->begin, PTRDIFF_MAX, ITREE_ASCENDING);
  while ((other = interval_tree_iter_next (tree)))
    if (other == node)
      break;

  interval_tree_iter_finish (tree);
  return other == node;
}

/* Remove NODE from TREE and return it. NODE must exist in TREE.*/

struct interval_node*
interval_tree_remove (struct interval_tree *tree, struct interval_node *node)
{
  eassert (interval_tree_contains (tree, node));

  struct interval_node *broken = NULL;

  interval_tree_inherit_offset (tree, node);
  if (node->left == &tree->nil || node->right == &tree->nil)
    {
      struct interval_node *subst =
        (node->right == &tree->nil) ? node->left : node->right;
      if (node->color == ITREE_BLACK)
        broken = subst;
      interval_tree_transplant (tree, subst, node);
      interval_tree_propagate_limit (tree, subst);
    }
  else
    {
      struct interval_node *min = interval_tree_subtree_min (tree, node->right);
      struct interval_node *min_right = min->right;

      if (min->color == ITREE_BLACK)
        broken = min->right;
      if (min->parent == node)
        min_right->parent = min; /* set parent, if min_right = nil */
      else
        {
          interval_tree_transplant (tree, min->right, min);
          min->right = node->right;
          min->right->parent = min;
        }
      interval_tree_inherit_offset (tree, min);
      interval_tree_transplant (tree, min, node);
      min->left = node->left;
      min->left->parent = min;
      min->color = node->color;
      interval_tree_propagate_limit (tree, min_right);
      interval_tree_propagate_limit (tree, min);
    }

  if (broken)
    interval_tree_remove_fix (tree, broken);

  node->right = node->left = node->parent = NULL;
  --tree->size;

  eassert (tree->size == 0 || (tree->size > 0 && tree->root != &tree->nil));

  return node;
}

static struct interval_node*
interval_tree_validate (struct interval_tree *tree, struct interval_node *node)
{

  if (tree->otick == node->otick || node == &tree->nil)
    return node;
  if (node != tree->root)
    interval_tree_validate (tree, node->parent);

  interval_tree_inherit_offset (tree, node);
  return node;
}

/* Start a generator iterating all intervals in [BEGIN,END) in the
   given ORDER. Only one iterator per tree can be running at any
   time.
*/

void
interval_tree_iter_start (struct interval_tree *tree,
                          ptrdiff_t begin, ptrdiff_t end,
                          enum interval_tree_order order)
{
  if (tree->iter_running)
    emacs_abort ();
  interval_generator_reset (tree->iter, begin, end, order);
  tree->iter_running = 1;
}

/* Limit the search interval of the iterator to the given values.  The
   interval can only shrink, but never grow.*/

inline void
interval_tree_iter_narrow(struct interval_tree *tree,
                               ptrdiff_t begin, ptrdiff_t end)
{
  if (! tree->iter_running)
    emacs_abort ();
  interval_generator_narrow (tree->iter, begin, end);
}

/* Stop using the iterator. */

void
interval_tree_iter_finish (struct interval_tree *tree)
{
  if (! tree->iter_running)
    emacs_abort ();
  tree->iter_running = 0;
}

/* Return the next node of the iterator in the order given when it was
   started; or NULL if there are no more nodes. */

inline struct interval_node*
interval_tree_iter_next (struct interval_tree *tree)
{
  if (! tree->iter_running)
    emacs_abort ();
  return interval_generator_next (tree->iter);
}

/* Ensure that the tree's iterator does not need to allocate space
   until the tree grows in size. */

static inline void
interval_tree_iter_ensure_space (struct interval_tree *tree)
{
  interval_generator_ensure_space (tree->iter);
}

static int
interval_tree_max_height (const struct interval_tree *tree)
{
  return 2 * log (tree->size + 1) / log (2) + 0.5;
}


/* +===================================================================================+
 * | Insert/Delete Gaps
 * +===================================================================================+ */

/* Insert a gap at POS of length LENGTH expanding all intervals
   intersecting it, while respecting their rear_advance and
   front_advance setting. */

void
interval_tree_insert_gap (struct interval_tree *tree, ptrdiff_t pos, ptrdiff_t length)
{
  if (length <= 0 || tree->size == 0)
    return;

  /* FIXME: Don't allocate generator/stack anew every time. */

  /* Nodes with front_advance starting at pos may mess up the tree
     order, so we need to remove them first. */
  struct interval_stack *saved = interval_stack_create (0);
  struct interval_node *node = NULL;
  interval_tree_iter_start (tree, pos, pos + 1, ITREE_PRE_ORDER);
  while ((node = interval_tree_iter_next (tree)))
    {
      if (node->begin == pos && node->front_advance
          && (node->begin != node->end || node->rear_advance))
        interval_stack_push (saved, node);
    }
  interval_tree_iter_finish (tree);
  for (int i = 0; i < saved->length; ++i)
    interval_tree_remove (tree, saved->nodes[i]);


  /* We can't use a generator here, because we can't effectively
     narrow AND shift some subtree at the same time. */
  const int size = interval_tree_max_height (tree) + 1;
  struct interval_stack *stack = interval_stack_create (size);
  interval_stack_push (stack, tree->root);
  while ((node = interval_stack_pop (stack)))
    {
      /* Process in pre-order. */
      interval_tree_inherit_offset (tree, node);
      if (node->right != &tree->nil)
        {
          if (node->begin > pos)
            {
              /* All nodes in this subtree are shifted by length. */
              node->right->offset += length;
              ++tree->otick;
            }
          else
            interval_stack_push (stack, node->right);
        }
      if (node->left != &tree->nil
          && pos <= node->left->limit + node->left->offset)
        interval_stack_push (stack, node->left);

      /* node->begin == pos implies no front-advance. */
      if (node->begin > pos)
        node->begin += length;
      if (node->end > pos || (node->end == pos && node->rear_advance))
        {
          node->end += length;
          interval_tree_propagate_limit (tree, node);
        }
    }
  interval_stack_destroy (stack);

  /* Reinsert nodes starting at POS having front-advance. */
  while ((node = interval_stack_pop (saved)))
    {
      node->begin += length;
      if (node->end != pos || node->rear_advance)
        node->end += length;
      interval_tree_insert (tree, node);
    }

  interval_stack_destroy (saved);
}

/* Delete a gap at POS of length LENGTH, contracting all intervals
   intersecting it. */

void
interval_tree_delete_gap (struct interval_tree *tree, ptrdiff_t pos, ptrdiff_t length)
{
  if (length <= 0 || tree->size == 0)
    return;

  /* FIXME: Don't allocate stack anew every time. */

  /* Can't use the generator here, because by decrementing begin, we
     might unintentionally bring shifted nodes back into our search
     space. */
  const int size = interval_tree_max_height (tree) + 1;
  struct interval_stack *stack = interval_stack_create (size);
  struct interval_node *node;

  interval_stack_push (stack, tree->root);
  while ((node = interval_stack_pop (stack)))
    {
      interval_tree_inherit_offset (tree, node);
      if (node->right != &tree->nil)
        {
          if (node->begin > pos + length)
            {
              /* Shift right subtree to the left. */
              node->right->offset -= length;
              ++tree->otick;
            }
          else
            interval_stack_push (stack, node->right);
        }
      if (node->left != &tree->nil
          && pos <= node->left->limit + node->left->offset)
        interval_stack_push (stack, node->left);

      if (pos < node->begin)
        node->begin = max (pos, node->begin - length);
      if (node->end > pos)
        {
          node->end = max (pos , node->end - length);
          interval_tree_propagate_limit (tree, node);
        }
    }
  interval_stack_destroy (stack);
}



/* +===================================================================================+
 * | Generator
 * +===================================================================================+ */

/* Allocate a new generator for TREE. */

static struct interval_generator*
interval_generator_create  (struct interval_tree *tree)
{
  struct interval_generator *g = xmalloc (sizeof *g);
  const int size = interval_tree_max_height (tree) + 1;

  g->stack = interval_stack_create (size);
  g->tree = tree;
  interval_generator_reset (g, 1, 0, 0);
  return g;
}

/* Reset generator G such that it iterates over intervals intersecting
   with [BEGIN, END) in the given ORDER. */

void
interval_generator_reset (struct interval_generator *g,
                          ptrdiff_t begin, ptrdiff_t end,
                          enum interval_tree_order order)
{
  if (! g) return;

  g->begin = begin;
  g->end = end;
  g->order = order;
  interval_stack_clear (g->stack);
  if (begin <= end  && g->tree->size > 0)
    interval_stack_push_flagged (g->stack, g->tree->root, false);
}

/* Allocate enough space for the tree of G in its current shape. */

static inline void
interval_generator_ensure_space (struct interval_generator *g)
{
  interval_stack_ensure_space (g->stack, interval_tree_max_height (g->tree) + 1);
}

/* Return true, if NODE's interval intersects with [BEGIN, END). */

static inline bool
interval_node_intersects (const struct interval_node *node,
                          ptrdiff_t begin, ptrdiff_t end)
{
  return (begin < node->end && node->begin < end)
    || (node->begin == node->end && begin == node->begin);
}

/* Return the next node of G, or NULL if there is none. */

inline struct interval_node*
interval_generator_next (struct interval_generator *g)
{
  if (! g) return NULL;

  struct interval_node * const nil = &g->tree->nil;
  struct interval_node *node;

  do {
    node = interval_stack_pop (g->stack);

    while (node && ! node->visited)
      {
        struct interval_node * const left = node->left;
        struct interval_node * const right = node->right;

        interval_tree_inherit_offset (g->tree, node);
        switch (g->order)
          {
          case ITREE_ASCENDING:
            if (right != nil && node->begin <= g->end)
              interval_stack_push_flagged (g->stack, right, false);
            if (interval_node_intersects (node, g->begin, g->end))
              interval_stack_push_flagged (g->stack, node, true);
            /* Node's children may still be off-set and we need to add it. */
            if (left != nil && g->begin <= left->limit + left->offset)
              interval_stack_push_flagged (g->stack, left, false);
            break;
          case ITREE_DESCENDING:
            if (left != nil && g->begin <= left->limit + left->offset)
              interval_stack_push_flagged (g->stack, left, false);
            if (interval_node_intersects (node, g->begin, g->end))
              interval_stack_push_flagged (g->stack, node, true);
            if (right != nil && node->begin <= g->end)
              interval_stack_push_flagged (g->stack, right, false);
            break;
          case ITREE_PRE_ORDER:
            if (right != nil && node->begin <= g->end)
              interval_stack_push_flagged (g->stack, right, false);
            if (left != nil && g->begin <= left->limit + left->offset)
              interval_stack_push_flagged (g->stack, left, false);
            if (interval_node_intersects (node, g->begin, g->end))
              interval_stack_push_flagged (g->stack, node, true);
            break;
          }
        node = interval_stack_pop (g->stack);
      }
    /* Node may have been invalidated by interval_generator_narrow
       after it was pushed: Check if it still intersects. */
  } while (node && ! interval_node_intersects (node, g->begin, g->end));

  return node;
}

/* Limit G to the new interval [BEGIN, END), which must be a subset of
   the current one.  I.E. it can't grow on either side. */

static inline void
interval_generator_narrow (struct interval_generator *g,
                           ptrdiff_t begin, ptrdiff_t end)
{
  g->begin =  max (begin, g->begin);
  g->end =  min (end, g->end);
}

/* Free the memory allocated for G. */

void
interval_generator_destroy (struct interval_generator *g)
{
  if (! g) return;
  if (g->stack)
    interval_stack_destroy (g->stack);
  xfree (g);
}


/* +===================================================================================+
 * | Stack
 * +===================================================================================+ */

/* This is just a simple dynamic array with stack semantics. */

static struct interval_stack*
interval_stack_create (intmax_t initial_size)
{
  struct interval_stack *stack = xmalloc (sizeof (struct interval_stack));
  stack->size = max (0, initial_size);
  stack->nodes = xmalloc (stack->size * sizeof (struct interval_node*));
  stack->length = 0;
  return stack;
}

static void
interval_stack_destroy (struct interval_stack *stack)
{
  if (! stack)
    return;
  if (stack->nodes)
    xfree (stack->nodes);
  xfree (stack);
}

static void
interval_stack_clear (struct interval_stack *stack)
{
  stack->length = 0;
}

static inline void
interval_stack_ensure_space (struct interval_stack *stack, intmax_t nelements)
{
  if (nelements > stack->size)
    {
      stack->size = (nelements + 1) * 2;
      stack->nodes = xrealloc (stack->nodes, stack->size * sizeof (*stack->nodes));
    }
}

static inline void
interval_stack_push (struct interval_stack *stack, struct interval_node *node)
{
  interval_stack_ensure_space (stack, stack->length + 1);
  stack->nodes[stack->length] = node;
  stack->length++;
}

/* Push NODE on the STACK, while settings its visited flag to FLAG. */

static inline void
interval_stack_push_flagged (struct interval_stack *stack,
                             struct interval_node *node, bool flag)
{
  interval_stack_push (stack, node);
  node->visited = flag;
}

static inline struct interval_node*
interval_stack_pop (struct interval_stack *stack)
{
  if (stack->length == 0)
    return NULL;
  return stack->nodes[--stack->length];
}


/* +===================================================================================+
 * | Internal Functions
 * +===================================================================================+ */

/* Update NODE's limit attribute according to its children. */

static void
interval_tree_update_limit (const struct interval_tree *tree,
                            struct interval_node *node)
{
  if (node == &tree->nil)
    return;

  node->limit = max (node->end, max (node->left->limit + node->left->offset,
                                     node->right->limit + node->right->offset));
}

/* Apply NODE's offset to its begin, end and limit values and
   propagate it to its children.

   Does nothing, if NODE is clean, i.e. NODE.otick = tree.otick .
*/

static void
interval_tree_inherit_offset (const struct interval_tree *tree,
                              struct interval_node *node)
{

  if (node->otick == tree->otick)
    return;

  node->begin += node->offset;
  node->end += node->offset;
  node->limit += node->offset;
  if (node->left != &tree->nil)
    node->left->offset += node->offset;
  if (node->right != &tree->nil)
    node->right->offset += node->offset;
  node->offset = 0;
  if (node == tree->root || node->parent->otick == tree->otick)
    node->otick = tree->otick;
}

/* Update limit of NODE and its ancestors.  Stop when it becomes
   stable, i.e. new_limit = old_limit.

   NODE may also be the nil node, in which case its parent is
   used. (This feature is due to the RB algorithm.)
*/

static void
interval_tree_propagate_limit (const struct interval_tree *tree,
                               struct interval_node *node)
{
  if (node == &tree->nil)
    node = node->parent;
  if (node == &tree->nil)
    return;

  while (1) {
    ptrdiff_t newlimit = max (node->end, max (node->left->limit + node->left->offset,
                                              node->right->limit + node->right->offset));
    if (newlimit == node->limit)
      break;
    node->limit = newlimit;
    if (node == tree->root)
      break;
    node = node->parent;
  }
}

/* Perform the familiar left-rotation on node NODE. */

static void
interval_tree_rotate_left (struct interval_tree *tree, struct interval_node *node)
{
  eassert (node->right != &tree->nil);

  struct interval_node *right = node->right;

  interval_tree_inherit_offset (tree, node);
  interval_tree_inherit_offset (tree, right);

  /* Turn right's left subtree into node's right subtree.  */
  node->right = right->left;
  if (right->left != &tree->nil)
    right->left->parent = node;

  /* right's parent was node's parent.  */
  if (right != &tree->nil)
    right->parent = node->parent;

  /* Get the parent to point to right instead of node.  */
  if (node != tree->root)
    {
      if (node == node->parent->left)
	node->parent->left = right;
      else
	node->parent->right = right;
    }
  else
    tree->root = right;

  /* Put node on right's left.  */
  right->left = node;
  if (node != &tree->nil)
    node->parent = right;

  /* Order matters here. */
  interval_tree_update_limit (tree, node);
  interval_tree_update_limit (tree, right);
}

/* Perform the familiar right-rotation on node NODE. */

static void
interval_tree_rotate_right (struct interval_tree *tree, struct interval_node *node)
{
  eassert (tree && node && node->left != &tree->nil);

  struct interval_node *left = node->left;

  interval_tree_inherit_offset (tree, node);
  interval_tree_inherit_offset (tree, left);

  node->left = left->right;
  if (left->right != &tree->nil)
    left->right->parent = node;

  if (left != &tree->nil)
    left->parent = node->parent;
  if (node != tree->root)
    {
      if (node == node->parent->right)
	node->parent->right = left;
      else
	node->parent->left = left;
    }
  else
    tree->root = left;

  left->right = node;
  if (node != &tree->nil)
    node->parent = left;

  interval_tree_update_limit (tree, left);
  interval_tree_update_limit (tree, node);
}

/* Repair the tree after an insertion.  Part of the RB-Tree
   algorithm. */

static void
interval_tree_insert_fix (struct interval_tree *tree, struct interval_node *node)
{
  while (node->parent->color == ITREE_RED)
    {
      /* NODE is red and its parent is red.  This is a violation of
	 red-black tree property #3.  */

      if (node->parent == node->parent->parent->left)
	{
	  /* We're on the left side of our grandparent, and OTHER is
	     our "uncle".  */
	  struct interval_node *uncle = node->parent->parent->right;

	  if (uncle->color == ITREE_RED) /* case 1.a */
	    {
	      /* Uncle and parent are red but should be black because
		 NODE is red.  Change the colors accordingly and
		 proceed with the grandparent.  */
	      node->parent->color = ITREE_BLACK;
	      uncle->color = ITREE_BLACK;
	      node->parent->parent->color = ITREE_RED;
	      node = node->parent->parent;
            }
	  else
	    {
	      /* Parent and uncle have different colors; parent is
		 red, uncle is black.  */
	      if (node == node->parent->right) /* case 2.a */
		{
		  node = node->parent;
		  interval_tree_rotate_left (tree, node);
                }
              /* case 3.a */
	      node->parent->color = ITREE_BLACK;
	      node->parent->parent->color = ITREE_RED;
	      interval_tree_rotate_right (tree, node->parent->parent);
            }
        }
      else
	{
	  /* This is the symmetrical case of above.  */
	  struct interval_node *uncle = node->parent->parent->left;

	  if (uncle->color == ITREE_RED) /* case 1.b */
	    {
	      node->parent->color = ITREE_BLACK;
	      uncle->color = ITREE_BLACK;
	      node->parent->parent->color = ITREE_RED;
	      node = node->parent->parent;
            }
	  else
	    {
	      if (node == node->parent->left) /* case 2.b */
		{
		  node = node->parent;
		  interval_tree_rotate_right (tree, node);
		}
              /* case 3.b */
	      node->parent->color = ITREE_BLACK;
	      node->parent->parent->color = ITREE_RED;
	      interval_tree_rotate_left (tree, node->parent->parent);
            }
        }
    }

  /* The root may have been changed to red due to the algorithm.  Set
     it to black so that property #5 is satisfied.  */
  tree->root->color = ITREE_BLACK;
}

/* Repair the tree after a deletion.  Part of the RB-Tree
   algorithm. */

static void
interval_tree_remove_fix (struct interval_tree *tree, struct interval_node *node)
{
  while (node != tree->root && node->color == ITREE_BLACK)
    {
      if (node == node->parent->left)
	{
	  struct interval_node *other = node->parent->right;

	  if (other->color == ITREE_RED) /* case 1.a */
	    {
	      other->color = ITREE_BLACK;
	      node->parent->color = ITREE_RED;
	      interval_tree_rotate_left (tree, node->parent);
	      other = node->parent->right;
            }

	  if (other->left->color == ITREE_BLACK /* 2.a */
              && other->right->color == ITREE_BLACK)
	    {
	      other->color = ITREE_RED;
	      node = node->parent;
            }
	  else
	    {
	      if (other->right->color == ITREE_BLACK) /* 3.a */
		{
		  other->left->color = ITREE_BLACK;
		  other->color = ITREE_RED;
		  interval_tree_rotate_right (tree, other);
		  other = node->parent->right;
                }
	      other->color = node->parent->color; /* 4.a */
	      node->parent->color = ITREE_BLACK;
	      other->right->color = ITREE_BLACK;
	      interval_tree_rotate_left (tree, node->parent);
	      node = tree->root;
            }
        }
      else
	{
	  struct interval_node *other = node->parent->left;

	  if (other->color == ITREE_RED) /* 1.b */
	    {
	      other->color = ITREE_BLACK;
	      node->parent->color = ITREE_RED;
	      interval_tree_rotate_right (tree, node->parent);
	      other = node->parent->left;
            }

	  if (other->right->color == ITREE_BLACK /* 2.b */
              && other->left->color == ITREE_BLACK)
	    {
	      other->color = ITREE_RED;
	      node = node->parent;
            }
	  else
	    {
	      if (other->left->color == ITREE_BLACK) /* 3.b */
		{
		  other->right->color = ITREE_BLACK;
		  other->color = ITREE_RED;
		  interval_tree_rotate_left (tree, other);
		  other = node->parent->left;
                }

	      other->color = node->parent->color; /* 4.b */
	      node->parent->color = ITREE_BLACK;
	      other->left->color = ITREE_BLACK;
	      interval_tree_rotate_right (tree, node->parent);
	      node = tree->root;
            }
        }
    }

  node->color = ITREE_BLACK;
}

/* Link node SOURCE in DEST's place. */

static void
interval_tree_transplant (struct interval_tree *tree, struct interval_node *source,
                          struct interval_node *dest)
{
  eassert (tree && source && dest && dest != &tree->nil);

  if (dest == tree->root)
    tree->root = source;
  else if (dest == dest->parent->left)
    dest->parent->left = source;
  else
    dest->parent->right = source;

  source->parent = dest->parent;
}


static struct interval_node*
interval_tree_subtree_min (const struct interval_tree *tree, struct interval_node *node)
{
  if (node == &tree->nil)
    return node;
  while (node->left != &tree->nil)
    node = node->left;
  return node;
}


/* +===================================================================================+
 * | Debugging
 * +===================================================================================+ */

/* See Foverlay_tree in buffer.c */