summaryrefslogtreecommitdiff
path: root/src/intervals.c
blob: cff718d1f8e1b48c86bba2cffac6eaf50b351b43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
/* Code for doing intervals.
   Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.

This file is part of GNU Emacs.

GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


/* NOTES:

   Have to ensure that we can't put symbol nil on a plist, or some
   functions may work incorrectly.

   An idea:  Have the owner of the tree keep count of splits and/or
   insertion lengths (in intervals), and balance after every N.

   Need to call *_left_hook when buffer is killed.

   Scan for zero-length, or 0-length to see notes about handling
   zero length interval-markers.

   There are comments around about freeing intervals.  It might be
   faster to explicitly free them (put them on the free list) than
   to GC them.

*/


#include <config.h>
#include "lisp.h"
#include "intervals.h"
#include "buffer.h"
#include "puresize.h"
#include "keyboard.h"

/* The rest of the file is within this conditional.  */
#ifdef USE_TEXT_PROPERTIES

/* Test for membership, allowing for t (actually any non-cons) to mean the
   universal set.  */

#define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))

#define min(x, y) ((x) < (y) ? (x) : (y))

Lisp_Object merge_properties_sticky ();

/* Utility functions for intervals.  */


/* Create the root interval of some object, a buffer or string.  */

INTERVAL
create_root_interval (parent)
     Lisp_Object parent;
{
  INTERVAL new;

  CHECK_IMPURE (parent);

  new = make_interval ();

  if (BUFFERP (parent))
    {
      new->total_length = (BUF_Z (XBUFFER (parent))
			   - BUF_BEG (XBUFFER (parent)));
      BUF_INTERVALS (XBUFFER (parent)) = new;
    }
  else if (STRINGP (parent))
    {
      new->total_length = XSTRING (parent)->size;
      XSTRING (parent)->intervals = new;
    }

  new->parent = (INTERVAL) parent;
  new->position = 1;

  return new;
}

/* Make the interval TARGET have exactly the properties of SOURCE */

void
copy_properties (source, target)
     register INTERVAL source, target;
{
  if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
    return;

  COPY_INTERVAL_CACHE (source, target);
  target->plist = Fcopy_sequence (source->plist);
}

/* Merge the properties of interval SOURCE into the properties
   of interval TARGET.  That is to say, each property in SOURCE
   is added to TARGET if TARGET has no such property as yet.  */

static void
merge_properties (source, target)
     register INTERVAL source, target;
{
  register Lisp_Object o, sym, val;

  if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
    return;

  MERGE_INTERVAL_CACHE (source, target);

  o = source->plist;
  while (! EQ (o, Qnil))
    {
      sym = Fcar (o);
      val = Fmemq (sym, target->plist);

      if (NILP (val))
	{
	  o = Fcdr (o);
	  val = Fcar (o);
	  target->plist = Fcons (sym, Fcons (val, target->plist));
	  o = Fcdr (o);
	}
      else
	o = Fcdr (Fcdr (o));
    }
}

/* Return 1 if the two intervals have the same properties,
   0 otherwise.  */

int
intervals_equal (i0, i1)
     INTERVAL i0, i1;
{
  register Lisp_Object i0_cdr, i0_sym, i1_val;
  register i1_len;

  if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
    return 1;

  if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
    return 0;

  i1_len = XFASTINT (Flength (i1->plist));
  if (i1_len & 0x1)		/* Paranoia -- plists are always even */
    abort ();
  i1_len /= 2;
  i0_cdr = i0->plist;
  while (!NILP (i0_cdr))
    {
      /* Lengths of the two plists were unequal.  */
      if (i1_len == 0)
	return 0;

      i0_sym = Fcar (i0_cdr);
      i1_val = Fmemq (i0_sym, i1->plist);

      /* i0 has something i1 doesn't.  */
      if (EQ (i1_val, Qnil))
	return 0;

      /* i0 and i1 both have sym, but it has different values in each.  */
      i0_cdr = Fcdr (i0_cdr);
      if (! EQ (Fcar (Fcdr (i1_val)), Fcar (i0_cdr)))
	return 0;

      i0_cdr = Fcdr (i0_cdr);
      i1_len--;
    }

  /* Lengths of the two plists were unequal.  */
  if (i1_len > 0)
    return 0;

  return 1;
}

static int icount;
static int idepth;
static int zero_length;

/* Traverse an interval tree TREE, performing FUNCTION on each node.
   Pass FUNCTION two args: an interval, and ARG.  */

void
traverse_intervals (tree, position, depth, function, arg)
     INTERVAL tree;
     int position, depth;
     void (* function) ();
     Lisp_Object arg;
{
  if (NULL_INTERVAL_P (tree))
    return;

  traverse_intervals (tree->left, position, depth + 1, function, arg);
  position += LEFT_TOTAL_LENGTH (tree);
  tree->position = position;
  (*function) (tree, arg);
  position += LENGTH (tree);
  traverse_intervals (tree->right, position, depth + 1,  function, arg);
}

#if 0
/* These functions are temporary, for debugging purposes only.  */

INTERVAL search_interval, found_interval;

void
check_for_interval (i)
     register INTERVAL i;
{
  if (i == search_interval)
    {
      found_interval = i;
      icount++;
    }
}

INTERVAL
search_for_interval (i, tree)
     register INTERVAL i, tree;
{
  icount = 0;
  search_interval = i;
  found_interval = NULL_INTERVAL;
  traverse_intervals (tree, 1, 0, &check_for_interval, Qnil);
  return found_interval;
}

static void
inc_interval_count (i)
     INTERVAL i;
{
  icount++;
  if (LENGTH (i) == 0)
    zero_length++;
  if (depth > idepth)
    idepth = depth;
}

int
count_intervals (i)
     register INTERVAL i;
{
  icount = 0;
  idepth = 0;
  zero_length = 0;
  traverse_intervals (i, 1, 0, &inc_interval_count, Qnil);

  return icount;
}

static INTERVAL
root_interval (interval)
     INTERVAL interval;
{
  register INTERVAL i = interval;

  while (! ROOT_INTERVAL_P (i))
    i = i->parent;

  return i;
}
#endif

/* Assuming that a left child exists, perform the following operation:

     A		  B
    / \		 / \
   B       =>       A
  / \		   / \
     c		  c
*/

static INTERVAL
rotate_right (interval)
     INTERVAL interval;
{
  INTERVAL i;
  INTERVAL B = interval->left;
  int old_total = interval->total_length;

  /* Deal with any Parent of A;  make it point to B.  */
  if (! ROOT_INTERVAL_P (interval))
    if (AM_LEFT_CHILD (interval))
      interval->parent->left = B;
    else
      interval->parent->right = B;
  B->parent = interval->parent;

  /* Make B the parent of A */
  i = B->right;
  B->right = interval;
  interval->parent = B;

  /* Make A point to c */
  interval->left = i;
  if (! NULL_INTERVAL_P (i))
    i->parent = interval;

  /* A's total length is decreased by the length of B and its left child.  */
  interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);

  /* B must have the same total length of A.  */
  B->total_length = old_total;

  return B;
}

/* Assuming that a right child exists, perform the following operation:

    A               B   
   / \	           / \  
      B	   =>     A
     / \         / \    
    c               c
*/

static INTERVAL
rotate_left (interval)
     INTERVAL interval;
{
  INTERVAL i;
  INTERVAL B = interval->right;
  int old_total = interval->total_length;

  /* Deal with any parent of A;  make it point to B.  */
  if (! ROOT_INTERVAL_P (interval))
    if (AM_LEFT_CHILD (interval))
      interval->parent->left = B;
    else
      interval->parent->right = B;
  B->parent = interval->parent;

  /* Make B the parent of A */
  i = B->left;
  B->left = interval;
  interval->parent = B;

  /* Make A point to c */
  interval->right = i;
  if (! NULL_INTERVAL_P (i))
    i->parent = interval;

  /* A's total length is decreased by the length of B and its right child.  */
  interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);

  /* B must have the same total length of A.  */
  B->total_length = old_total;

  return B;
}

/* Balance an interval tree with the assumption that the subtrees
   themselves are already balanced.  */

static INTERVAL
balance_an_interval (i)
     INTERVAL i;
{
  register int old_diff, new_diff;

  while (1)
    {
      old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
      if (old_diff > 0)
	{
	  new_diff = i->total_length - i->left->total_length
	    + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
	  if (abs (new_diff) >= old_diff)
	    break;
	  i = rotate_right (i);
	  balance_an_interval (i->right);
	}
      else if (old_diff < 0)
	{
	  new_diff = i->total_length - i->right->total_length
	    + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
	  if (abs (new_diff) >= -old_diff)
	    break;
	  i = rotate_left (i);
	  balance_an_interval (i->left);
	}
      else
	break;
    }
  return i;
}

/* Balance INTERVAL, potentially stuffing it back into its parent
   Lisp Object.  */

static INLINE INTERVAL
balance_possible_root_interval (interval)
     register INTERVAL interval;
{
  Lisp_Object parent;

  if (interval->parent == NULL_INTERVAL)
    return interval;

  parent = (Lisp_Object) (interval->parent);
  interval = balance_an_interval (interval);

  if (BUFFERP (parent))
    BUF_INTERVALS (XBUFFER (parent)) = interval;
  else if (STRINGP (parent))
    XSTRING (parent)->intervals = interval;

  return interval;
}

/* Balance the interval tree TREE.  Balancing is by weight
   (the amount of text).  */

static INTERVAL
balance_intervals_internal (tree)
     register INTERVAL tree;
{
  /* Balance within each side.  */
  if (tree->left)
    balance_intervals_internal (tree->left);
  if (tree->right)
    balance_intervals_internal (tree->right);
  return balance_an_interval (tree);
}

/* Advertised interface to balance intervals.  */

INTERVAL
balance_intervals (tree)
     INTERVAL tree;
{
  if (tree == NULL_INTERVAL)
    return NULL_INTERVAL;

  return balance_intervals_internal (tree);
}

/* Split INTERVAL into two pieces, starting the second piece at
   character position OFFSET (counting from 0), relative to INTERVAL.
   INTERVAL becomes the left-hand piece, and the right-hand piece
   (second, lexicographically) is returned.

   The size and position fields of the two intervals are set based upon
   those of the original interval.  The property list of the new interval
   is reset, thus it is up to the caller to do the right thing with the
   result.

   Note that this does not change the position of INTERVAL;  if it is a root,
   it is still a root after this operation.  */

INTERVAL
split_interval_right (interval, offset)
     INTERVAL interval;
     int offset;
{
  INTERVAL new = make_interval ();
  int position = interval->position;
  int new_length = LENGTH (interval) - offset;

  new->position = position + offset;
  new->parent = interval;

  if (NULL_RIGHT_CHILD (interval))
    {
      interval->right = new;
      new->total_length = new_length;

      return new;
    }

  /* Insert the new node between INTERVAL and its right child.  */
  new->right = interval->right;
  interval->right->parent = new;
  interval->right = new;
  new->total_length = new_length + new->right->total_length;

  balance_an_interval (new);
  balance_possible_root_interval (interval);

  return new;
}

/* Split INTERVAL into two pieces, starting the second piece at
   character position OFFSET (counting from 0), relative to INTERVAL.
   INTERVAL becomes the right-hand piece, and the left-hand piece
   (first, lexicographically) is returned.

   The size and position fields of the two intervals are set based upon
   those of the original interval.  The property list of the new interval
   is reset, thus it is up to the caller to do the right thing with the
   result.

   Note that this does not change the position of INTERVAL;  if it is a root,
   it is still a root after this operation.  */

INTERVAL
split_interval_left (interval, offset)
     INTERVAL interval;
     int offset;
{
  INTERVAL new = make_interval ();
  int position = interval->position;
  int new_length = offset;

  new->position = interval->position;
  interval->position = interval->position + offset;
  new->parent = interval;

  if (NULL_LEFT_CHILD (interval))
    {
      interval->left = new;
      new->total_length = new_length;

      return new;
    }

  /* Insert the new node between INTERVAL and its left child.  */
  new->left = interval->left;
  new->left->parent = new;
  interval->left = new;
  new->total_length = new_length + new->left->total_length;

  balance_an_interval (new);
  balance_possible_root_interval (interval);

  return new;
}

/* Find the interval containing text position POSITION in the text
   represented by the interval tree TREE.  POSITION is a buffer
   position; the earliest position is 1.  If POSITION is at the end of
   the buffer, return the interval containing the last character.

   The `position' field, which is a cache of an interval's position,
   is updated in the interval found.  Other functions (e.g., next_interval)
   will update this cache based on the result of find_interval.  */

INLINE INTERVAL
find_interval (tree, position)
     register INTERVAL tree;
     register int position;
{
  /* The distance from the left edge of the subtree at TREE
                    to POSITION.  */
  register int relative_position = position - BEG;

  if (NULL_INTERVAL_P (tree))
    return NULL_INTERVAL;

  if (relative_position > TOTAL_LENGTH (tree))
    abort ();			/* Paranoia */

  tree = balance_possible_root_interval (tree);

  while (1)
    {
      if (relative_position < LEFT_TOTAL_LENGTH (tree))
	{
	  tree = tree->left;
	}
      else if (! NULL_RIGHT_CHILD (tree)
	       && relative_position >= (TOTAL_LENGTH (tree)
					- RIGHT_TOTAL_LENGTH (tree)))
	{
	  relative_position -= (TOTAL_LENGTH (tree)
				- RIGHT_TOTAL_LENGTH (tree));
	  tree = tree->right;
	}
      else
	{
	  tree->position =
	    (position - relative_position /* the left edge of *tree */
	     + LEFT_TOTAL_LENGTH (tree)); /* the left edge of this interval */

	  return tree;
	}
    }
}

/* Find the succeeding interval (lexicographically) to INTERVAL.
   Sets the `position' field based on that of INTERVAL (see
   find_interval).  */

INTERVAL
next_interval (interval)
     register INTERVAL interval;
{
  register INTERVAL i = interval;
  register int next_position;

  if (NULL_INTERVAL_P (i))
    return NULL_INTERVAL;
  next_position = interval->position + LENGTH (interval);

  if (! NULL_RIGHT_CHILD (i))
    {
      i = i->right;
      while (! NULL_LEFT_CHILD (i))
	i = i->left;

      i->position = next_position;
      return i;
    }

  while (! NULL_PARENT (i))
    {
      if (AM_LEFT_CHILD (i))
	{
	  i = i->parent;
	  i->position = next_position;
	  return i;
	}

      i = i->parent;
    }

  return NULL_INTERVAL;
}

/* Find the preceding interval (lexicographically) to INTERVAL.
   Sets the `position' field based on that of INTERVAL (see
   find_interval).  */

INTERVAL
previous_interval (interval)
     register INTERVAL interval;
{
  register INTERVAL i;
  register position_of_previous;

  if (NULL_INTERVAL_P (interval))
    return NULL_INTERVAL;

  if (! NULL_LEFT_CHILD (interval))
    {
      i = interval->left;
      while (! NULL_RIGHT_CHILD (i))
	i = i->right;

      i->position = interval->position - LENGTH (i);
      return i;
    }

  i = interval;
  while (! NULL_PARENT (i))
    {
      if (AM_RIGHT_CHILD (i))
	{
	  i = i->parent;

	  i->position = interval->position - LENGTH (i);
	  return i;
	}
      i = i->parent;
    }

  return NULL_INTERVAL;
}

#if 0
/* Traverse a path down the interval tree TREE to the interval
   containing POSITION, adjusting all nodes on the path for
   an addition of LENGTH characters.  Insertion between two intervals
   (i.e., point == i->position, where i is second interval) means
   text goes into second interval.

   Modifications are needed to handle the hungry bits -- after simply
   finding the interval at position (don't add length going down),
   if it's the beginning of the interval, get the previous interval
   and check the hungry bits of both.  Then add the length going back up
   to the root.  */

static INTERVAL
adjust_intervals_for_insertion (tree, position, length)
     INTERVAL tree;
     int position, length;
{
  register int relative_position;
  register INTERVAL this;

  if (TOTAL_LENGTH (tree) == 0)	/* Paranoia */
    abort ();

  /* If inserting at point-max of a buffer, that position
     will be out of range */
  if (position > TOTAL_LENGTH (tree))
    position = TOTAL_LENGTH (tree);
  relative_position = position;
  this = tree;

  while (1)
    {
      if (relative_position <= LEFT_TOTAL_LENGTH (this))
	{
	  this->total_length += length;
	  this = this->left;
	}
      else if (relative_position > (TOTAL_LENGTH (this)
				    - RIGHT_TOTAL_LENGTH (this)))
	{
	  relative_position -= (TOTAL_LENGTH (this)
				- RIGHT_TOTAL_LENGTH (this));
	  this->total_length += length;
	  this = this->right;
	}
      else
	{
	  /* If we are to use zero-length intervals as buffer pointers,
	     then this code will have to change.  */
	  this->total_length += length;
	  this->position = LEFT_TOTAL_LENGTH (this)
	                   + position - relative_position + 1;
	  return tree;
	}
    }
}
#endif

/* Effect an adjustment corresponding to the addition of LENGTH characters
   of text.  Do this by finding the interval containing POSITION in the
   interval tree TREE, and then adjusting all of its ancestors by adding
   LENGTH to them.

   If POSITION is the first character of an interval, meaning that point
   is actually between the two intervals, make the new text belong to
   the interval which is "sticky".

   If both intervals are "sticky", then make them belong to the left-most
   interval.  Another possibility would be to create a new interval for
   this text, and make it have the merged properties of both ends.  */

static INTERVAL
adjust_intervals_for_insertion (tree, position, length)
     INTERVAL tree;
     int position, length;
{
  register INTERVAL i;
  register INTERVAL temp;
  int eobp = 0;
  
  if (TOTAL_LENGTH (tree) == 0)	/* Paranoia */
    abort ();

  /* If inserting at point-max of a buffer, that position will be out
     of range.  Remember that buffer positions are 1-based.  */
  if (position >= BEG + TOTAL_LENGTH (tree)){
    position = BEG + TOTAL_LENGTH (tree);
    eobp = 1;
  }

  i = find_interval (tree, position);

  /* If in middle of an interval which is not sticky either way,
     we must not just give its properties to the insertion.
     So split this interval at the insertion point.  */
  if (! (position == i->position || eobp)
      && END_NONSTICKY_P (i)
      && FRONT_NONSTICKY_P (i))
    {
      Lisp_Object tail;
      Lisp_Object front, rear;

      front = textget (i->plist, Qfront_sticky);
      rear  = textget (i->plist, Qrear_nonsticky);

      /* Does any actual property pose an actual problem?  */
      for (tail = i->plist; ! NILP (tail); tail = Fcdr (Fcdr (tail)))
	{
	  Lisp_Object prop;
	  prop = XCONS (tail)->car;

	  /* Is this particular property rear-sticky?
	     Note, if REAR isn't a cons, it must be non-nil,
	     which means that all properties are rear-nonsticky.  */
	  if (CONSP (rear) && NILP (Fmemq (prop, rear)))
	    continue;

	  /* Is this particular property front-sticky?
	     Note, if FRONT isn't a cons, it must be nil,
	     which means that all properties are front-nonsticky.  */
	  if (CONSP (front) && ! NILP (Fmemq (prop, front)))
	    continue;

	  /* PROP isn't sticky on either side => it is a real problem.  */
	  break;
	}

      /* If any property is a real problem, split the interval.  */
      if (! NILP (tail))
	{
	  temp = split_interval_right (i, position - i->position);
	  copy_properties (i, temp);
	  i = temp;
	}
    }

  /* If we are positioned between intervals, check the stickiness of
     both of them.  We have to do this too, if we are at BEG or Z.  */
  if (position == i->position || eobp)
    {
      register INTERVAL prev;

      if (position == BEG)
	prev = 0;
      else if (eobp)
	{
	  prev = i;
	  i = 0;
	}
      else
	prev = previous_interval (i);

      /* Even if we are positioned between intervals, we default
	 to the left one if it exists.  We extend it now and split
	 off a part later, if stickiness demands it.  */
      for (temp = prev ? prev : i;! NULL_INTERVAL_P (temp); temp = temp->parent)
	{
	  temp->total_length += length;
	  temp = balance_possible_root_interval (temp);
	}
      
      /* If at least one interval has sticky properties,
	 we check the stickiness property by property.  */
      if (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
	{
	  Lisp_Object pleft, pright;
	  struct interval newi;

	  pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
	  pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
	  newi.plist = merge_properties_sticky (pleft, pright);

	  if(! prev) /* i.e. position == BEG */
	    {
	      if (! intervals_equal (i, &newi))
		{
		  i = split_interval_left (i, length);
		  i->plist = newi.plist;
		}
	    }
	  else if (! intervals_equal (prev, &newi))
	    {
	      prev = split_interval_right (prev,
					   position - prev->position);
	      prev->plist = newi.plist;
	      if (! NULL_INTERVAL_P (i)
		  && intervals_equal (prev, i))
		merge_interval_right (prev);
	    }

	  /* We will need to update the cache here later.  */
	}
      else if (! prev && ! NILP (i->plist))
        {
	  /* Just split off a new interval at the left.
	     Since I wasn't front-sticky, the empty plist is ok.  */
	  i = split_interval_left (i, length);
        }
    }

  /* Otherwise just extend the interval.  */
  else
    {
      for (temp = i; ! NULL_INTERVAL_P (temp); temp = temp->parent)
	{
	  temp->total_length += length;
	  temp = balance_possible_root_interval (temp);
	}
    }
      
  return tree;
}

/* Any property might be front-sticky on the left, rear-sticky on the left,
   front-sticky on the right, or rear-sticky on the right; the 16 combinations
   can be arranged in a matrix with rows denoting the left conditions and
   columns denoting the right conditions:
      _  __  _
_     FR FR FR FR
FR__   0  1  2  3
 _FR   4  5  6  7
FR     8  9  A  B
  FR   C  D  E  F

   left-props  = '(front-sticky (p8 p9 pa pb pc pd pe pf)
		   rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
		   p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
		   p8 L p9 L pa L pb L pc L pd L pe L pf L)
   right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
		   rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
		   p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
		   p8 R p9 R pa R pb R pc R pd R pe R pf R)

   We inherit from whoever has a sticky side facing us.  If both sides
   do (cases 2, 3, E, and F), then we inherit from whichever side has a
   non-nil value for the current property.  If both sides do, then we take
   from the left.

   When we inherit a property, we get its stickiness as well as its value.
   So, when we merge the above two lists, we expect to get this:

   result      = '(front-sticky (p6 p7 pa pb pc pd pe pf)
		   rear-nonsticky (p6 pa)
		   p0 L p1 L p2 L p3 L p6 R p7 R
		   pa R pb R pc L pd L pe L pf L)

   The optimizable special cases are:
       left rear-nonsticky = nil, right front-sticky = nil (inherit left)
       left rear-nonsticky = t,   right front-sticky = t   (inherit right)
       left rear-nonsticky = t,   right front-sticky = nil (inherit none)
*/

Lisp_Object
merge_properties_sticky (pleft, pright)
     Lisp_Object pleft, pright;
{
  register Lisp_Object props, front, rear;
  Lisp_Object lfront, lrear, rfront, rrear;
  register Lisp_Object tail1, tail2, sym, lval, rval, cat;
  int use_left, use_right;
  int lpresent;

  props = Qnil;
  front = Qnil;
  rear  = Qnil;
  lfront = textget (pleft, Qfront_sticky);
  lrear  = textget (pleft, Qrear_nonsticky);
  rfront = textget (pright, Qfront_sticky);
  rrear  = textget (pright, Qrear_nonsticky);

  /* Go through each element of PRIGHT.  */
  for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
    {
      sym = Fcar (tail1);

      /* Sticky properties get special treatment.  */
      if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
	continue;

      rval = Fcar (Fcdr (tail1));
      for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
	if (EQ (sym, Fcar (tail2)))
	  break;

      /* Indicate whether the property is explicitly defined on the left.
	 (We know it is defined explicitly on the right
	 because otherwise we don't get here.)  */
      lpresent = ! NILP (tail2);
      lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));

      use_left = ! TMEM (sym, lrear) && lpresent;
      use_right = TMEM (sym, rfront);
      if (use_left && use_right)
	{
	  if (NILP (lval))
	    use_left = 0;
	  else if (NILP (rval))
	    use_right = 0;
	}
      if (use_left)
	{
	  /* We build props as (value sym ...) rather than (sym value ...)
	     because we plan to nreverse it when we're done.  */
	  props = Fcons (lval, Fcons (sym, props));
	  if (TMEM (sym, lfront))
	    front = Fcons (sym, front);
	  if (TMEM (sym, lrear))
	    rear = Fcons (sym, rear);
	}
      else if (use_right)
	{
	  props = Fcons (rval, Fcons (sym, props));
	  if (TMEM (sym, rfront))
	    front = Fcons (sym, front);
	  if (TMEM (sym, rrear))
	    rear = Fcons (sym, rear);
	}
    }

  /* Now go through each element of PLEFT.  */
  for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
    {
      sym = Fcar (tail2);

      /* Sticky properties get special treatment.  */
      if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
	continue;

      /* If sym is in PRIGHT, we've already considered it.  */
      for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
	if (EQ (sym, Fcar (tail1)))
	  break;
      if (! NILP (tail1))
	continue;

      lval = Fcar (Fcdr (tail2));

      /* Since rval is known to be nil in this loop, the test simplifies.  */
      if (! TMEM (sym, lrear))
	{
	  props = Fcons (lval, Fcons (sym, props));
	  if (TMEM (sym, lfront))
	    front = Fcons (sym, front);
	}
      else if (TMEM (sym, rfront))
	{
	  /* The value is nil, but we still inherit the stickiness
	     from the right.  */
	  front = Fcons (sym, front);
	  if (TMEM (sym, rrear))
	    rear = Fcons (sym, rear);
	}
    }
  props = Fnreverse (props);
  if (! NILP (rear))
    props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));

  cat = textget (props, Qcategory);
  if (! NILP (front)
      && 
      /* If we have inherited a front-stick category property that is t,
	 we don't need to set up a detailed one.  */
      ! (! NILP (cat) && SYMBOLP (cat)
	 && EQ (Fget (cat, Qfront_sticky), Qt)))
    props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
  return props;
}


/* Delete an node I from its interval tree by merging its subtrees
   into one subtree which is then returned.  Caller is responsible for
   storing the resulting subtree into its parent.  */

static INTERVAL
delete_node (i)
     register INTERVAL i;
{
  register INTERVAL migrate, this;
  register int migrate_amt;

  if (NULL_INTERVAL_P (i->left))
    return i->right;
  if (NULL_INTERVAL_P (i->right))
    return i->left;

  migrate = i->left;
  migrate_amt = i->left->total_length;
  this = i->right;
  this->total_length += migrate_amt;
  while (! NULL_INTERVAL_P (this->left))
    {
      this = this->left;
      this->total_length += migrate_amt;
    }
  this->left = migrate;
  migrate->parent = this;

  return i->right;
}

/* Delete interval I from its tree by calling `delete_node'
   and properly connecting the resultant subtree.

   I is presumed to be empty; that is, no adjustments are made
   for the length of I.  */

void
delete_interval (i)
     register INTERVAL i;
{
  register INTERVAL parent;
  int amt = LENGTH (i);

  if (amt > 0)			/* Only used on zero-length intervals now.  */
    abort ();

  if (ROOT_INTERVAL_P (i))
    {
      Lisp_Object owner;
      owner = (Lisp_Object) i->parent;
      parent = delete_node (i);
      if (! NULL_INTERVAL_P (parent))
	parent->parent = (INTERVAL) owner;

      if (BUFFERP (owner))
	BUF_INTERVALS (XBUFFER (owner)) = parent;
      else if (STRINGP (owner))
	XSTRING (owner)->intervals = parent;
      else
	abort ();

      return;
    }

  parent = i->parent;
  if (AM_LEFT_CHILD (i))
    {
      parent->left = delete_node (i);
      if (! NULL_INTERVAL_P (parent->left))
	parent->left->parent = parent;
    }
  else
    {
      parent->right = delete_node (i);
      if (! NULL_INTERVAL_P (parent->right))
	parent->right->parent = parent;
    }
}

/* Find the interval in TREE corresponding to the relative position
   FROM and delete as much as possible of AMOUNT from that interval.
   Return the amount actually deleted, and if the interval was
   zeroed-out, delete that interval node from the tree.

   Note that FROM is actually origin zero, aka relative to the
   leftmost edge of tree.  This is appropriate since we call ourselves
   recursively on subtrees.

   Do this by recursing down TREE to the interval in question, and
   deleting the appropriate amount of text.  */

static int
interval_deletion_adjustment (tree, from, amount)
     register INTERVAL tree;
     register int from, amount;
{
  register int relative_position = from;

  if (NULL_INTERVAL_P (tree))
    return 0;

  /* Left branch */
  if (relative_position < LEFT_TOTAL_LENGTH (tree))
    {
      int subtract = interval_deletion_adjustment (tree->left,
						   relative_position,
						   amount);
      tree->total_length -= subtract;
      return subtract;
    }
  /* Right branch */
  else if (relative_position >= (TOTAL_LENGTH (tree)
				 - RIGHT_TOTAL_LENGTH (tree)))
    {
      int subtract;

      relative_position -= (tree->total_length
			    - RIGHT_TOTAL_LENGTH (tree));
      subtract = interval_deletion_adjustment (tree->right,
					       relative_position,
					       amount);
      tree->total_length -= subtract;
      return subtract;
    }
  /* Here -- this node.  */
  else
    {
      /* How much can we delete from this interval?  */
      int my_amount = ((tree->total_length 
			- RIGHT_TOTAL_LENGTH (tree))
		       - relative_position);

      if (amount > my_amount)
	amount = my_amount;

      tree->total_length -= amount;
      if (LENGTH (tree) == 0)
	delete_interval (tree);
      
      return amount;
    }

  /* Never reach here.  */
}

/* Effect the adjustments necessary to the interval tree of BUFFER to
   correspond to the deletion of LENGTH characters from that buffer
   text.  The deletion is effected at position START (which is a
   buffer position, i.e. origin 1).  */

static void
adjust_intervals_for_deletion (buffer, start, length)
     struct buffer *buffer;
     int start, length;
{
  register int left_to_delete = length;
  register INTERVAL tree = BUF_INTERVALS (buffer);
  register int deleted;

  if (NULL_INTERVAL_P (tree))
    return;

  if (start > BEG + TOTAL_LENGTH (tree)
      || start + length > BEG + TOTAL_LENGTH (tree))
    abort ();

  if (length == TOTAL_LENGTH (tree))
    {
      BUF_INTERVALS (buffer) = NULL_INTERVAL;
      return;
    }

  if (ONLY_INTERVAL_P (tree))
    {
      tree->total_length -= length;
      return;
    }

  if (start > BEG + TOTAL_LENGTH (tree))
    start = BEG + TOTAL_LENGTH (tree);
  while (left_to_delete > 0)
    {
      left_to_delete -= interval_deletion_adjustment (tree, start - 1,
						      left_to_delete);
      tree = BUF_INTERVALS (buffer);
      if (left_to_delete == tree->total_length)
	{
	  BUF_INTERVALS (buffer) = NULL_INTERVAL;
	  return;
	}
    }
}

/* Make the adjustments necessary to the interval tree of BUFFER to
   represent an addition or deletion of LENGTH characters starting
   at position START.  Addition or deletion is indicated by the sign
   of LENGTH.  */

INLINE void
offset_intervals (buffer, start, length)
     struct buffer *buffer;
     int start, length;
{
  if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
    return;

  if (length > 0)
    adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
  else
    adjust_intervals_for_deletion (buffer, start, -length);
}

/* Merge interval I with its lexicographic successor. The resulting
   interval is returned, and has the properties of the original
   successor.  The properties of I are lost.  I is removed from the
   interval tree.

   IMPORTANT:
   The caller must verify that this is not the last (rightmost)
   interval.  */

INTERVAL
merge_interval_right (i)
     register INTERVAL i;
{
  register int absorb = LENGTH (i);
  register INTERVAL successor;

  /* Zero out this interval.  */
  i->total_length -= absorb;

  /* Find the succeeding interval.  */
  if (! NULL_RIGHT_CHILD (i))      /* It's below us.  Add absorb
				      as we descend.  */
    {
      successor = i->right;
      while (! NULL_LEFT_CHILD (successor))
	{
	  successor->total_length += absorb;
	  successor = successor->left;
	}

      successor->total_length += absorb;
      delete_interval (i);
      return successor;
    }

  successor = i;
  while (! NULL_PARENT (successor))	   /* It's above us.  Subtract as
					      we ascend.  */
    {
      if (AM_LEFT_CHILD (successor))
	{
	  successor = successor->parent;
	  delete_interval (i);
	  return successor;
	}

      successor = successor->parent;
      successor->total_length -= absorb;
    }

  /* This must be the rightmost or last interval and cannot
     be merged right.  The caller should have known.  */
  abort ();
}

/* Merge interval I with its lexicographic predecessor. The resulting
   interval is returned, and has the properties of the original predecessor.
   The properties of I are lost.  Interval node I is removed from the tree.

   IMPORTANT:
   The caller must verify that this is not the first (leftmost) interval.  */

INTERVAL
merge_interval_left (i)
     register INTERVAL i;
{
  register int absorb = LENGTH (i);
  register INTERVAL predecessor;

  /* Zero out this interval.  */
  i->total_length -= absorb;

  /* Find the preceding interval.  */
  if (! NULL_LEFT_CHILD (i))	/* It's below us. Go down,
				   adding ABSORB as we go.  */
    {
      predecessor = i->left;
      while (! NULL_RIGHT_CHILD (predecessor))
	{
	  predecessor->total_length += absorb;
	  predecessor = predecessor->right;
	}

      predecessor->total_length += absorb;
      delete_interval (i);
      return predecessor;
    }

  predecessor = i;
  while (! NULL_PARENT (predecessor))	/* It's above us.  Go up,
				   subtracting ABSORB.  */
    {
      if (AM_RIGHT_CHILD (predecessor))
	{
	  predecessor = predecessor->parent;
	  delete_interval (i);
	  return predecessor;
	}

      predecessor = predecessor->parent;
      predecessor->total_length -= absorb;
    }

  /* This must be the leftmost or first interval and cannot
     be merged left.  The caller should have known.  */
  abort ();
}

/* Make an exact copy of interval tree SOURCE which descends from
   PARENT.  This is done by recursing through SOURCE, copying
   the current interval and its properties, and then adjusting
   the pointers of the copy.  */

static INTERVAL
reproduce_tree (source, parent)
     INTERVAL source, parent;
{
  register INTERVAL t = make_interval ();

  bcopy (source, t, INTERVAL_SIZE);
  copy_properties (source, t);
  t->parent = parent;
  if (! NULL_LEFT_CHILD (source))
    t->left = reproduce_tree (source->left, t);
  if (! NULL_RIGHT_CHILD (source))
    t->right = reproduce_tree (source->right, t);

  return t;
}

#if 0
/* Nobody calls this.  Perhaps it's a vestige of an earlier design.  */

/* Make a new interval of length LENGTH starting at START in the
   group of intervals INTERVALS, which is actually an interval tree.
   Returns the new interval.

   Generate an error if the new positions would overlap an existing
   interval.  */

static INTERVAL
make_new_interval (intervals, start, length)
     INTERVAL intervals;
     int start, length;
{
  INTERVAL slot;

  slot = find_interval (intervals, start);
  if (start + length > slot->position + LENGTH (slot))
    error ("Interval would overlap");

  if (start == slot->position && length == LENGTH (slot))
    return slot;

  if (slot->position == start)
    {
      /* New right node.  */
      split_interval_right (slot, length);
      return slot;
    }

  if (slot->position + LENGTH (slot) == start + length)
    {
      /* New left node.  */
      split_interval_left (slot, LENGTH (slot) - length);
      return slot;
    }

  /* Convert interval SLOT into three intervals.  */
  split_interval_left (slot, start - slot->position);
  split_interval_right (slot, length);
  return slot;
}
#endif

/* Insert the intervals of SOURCE into BUFFER at POSITION.
   LENGTH is the length of the text in SOURCE.

   This is used in insdel.c when inserting Lisp_Strings into the
   buffer.  The text corresponding to SOURCE is already in the buffer
   when this is called.  The intervals of new tree are a copy of those
   belonging to the string being inserted; intervals are never
   shared.

   If the inserted text had no intervals associated, and we don't
   want to inherit the surrounding text's properties, this function
   simply returns -- offset_intervals should handle placing the
   text in the correct interval, depending on the sticky bits.

   If the inserted text had properties (intervals), then there are two
   cases -- either insertion happened in the middle of some interval,
   or between two intervals.

   If the text goes into the middle of an interval, then new
   intervals are created in the middle with only the properties of
   the new text, *unless* the macro MERGE_INSERTIONS is true, in
   which case the new text has the union of its properties and those
   of the text into which it was inserted.

   If the text goes between two intervals, then if neither interval
   had its appropriate sticky property set (front_sticky, rear_sticky),
   the new text has only its properties.  If one of the sticky properties
   is set, then the new text "sticks" to that region and its properties
   depend on merging as above.  If both the preceding and succeeding
   intervals to the new text are "sticky", then the new text retains
   only its properties, as if neither sticky property were set.  Perhaps
   we should consider merging all three sets of properties onto the new
   text...  */

void
graft_intervals_into_buffer (source, position, length, buffer, inherit)
     INTERVAL source;
     int position, length;
     struct buffer *buffer;
     int inherit;
{
  register INTERVAL under, over, this, prev;
  register INTERVAL tree;
  int middle;

  tree = BUF_INTERVALS (buffer);

  /* If the new text has no properties, it becomes part of whatever
     interval it was inserted into.  */
  if (NULL_INTERVAL_P (source))
    {
      Lisp_Object buf;
      if (!inherit && ! NULL_INTERVAL_P (tree))
	{
	  XSETBUFFER (buf, buffer);
	  Fset_text_properties (make_number (position),
				make_number (position + length),
				Qnil, buf);
	}
      if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
	BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
      return;
    }

  if (NULL_INTERVAL_P (tree))
    {
      /* The inserted text constitutes the whole buffer, so
	 simply copy over the interval structure.  */
      if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
	{
	  Lisp_Object buf;
	  XSETBUFFER (buf, buffer);
	  BUF_INTERVALS (buffer) = reproduce_tree (source, buf);
	  /* Explicitly free the old tree here.  */

	  return;
	}

      /* Create an interval tree in which to place a copy
	 of the intervals of the inserted string.  */
      {
	Lisp_Object buf;
	XSETBUFFER (buf, buffer);
	tree = create_root_interval (buf);
      }
    }
  else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
    /* If the buffer contains only the new string, but
       there was already some interval tree there, then it may be
       some zero length intervals.  Eventually, do something clever
       about inserting properly.  For now, just waste the old intervals.  */
    {
      BUF_INTERVALS (buffer) = reproduce_tree (source, tree->parent);
      /* Explicitly free the old tree here.  */

      return;
    }
  /* Paranoia -- the text has already been added, so this buffer
     should be of non-zero length.  */
  else if (TOTAL_LENGTH (tree) == 0)
    abort ();

  this = under = find_interval (tree, position);
  if (NULL_INTERVAL_P (under))	/* Paranoia */
    abort ();
  over = find_interval (source, 1);

  /* Here for insertion in the middle of an interval.
     Split off an equivalent interval to the right,
     then don't bother with it any more.  */

  if (position > under->position)
    {
      INTERVAL end_unchanged
	= split_interval_left (this, position - under->position);
      copy_properties (under, end_unchanged);
      under->position = position;
      prev = 0;
      middle = 1;
    }
  else
    {
      prev = previous_interval (under);
      if (prev && !END_NONSTICKY_P (prev))
	prev = 0;
    }

  /* Insertion is now at beginning of UNDER.  */

  /* The inserted text "sticks" to the interval `under',
     which means it gets those properties.
     The properties of under are the result of
     adjust_intervals_for_insertion, so stickiness has
     already been taken care of.  */
     
  while (! NULL_INTERVAL_P (over))
    {
      if (LENGTH (over) < LENGTH (under))
	{
	  this = split_interval_left (under, LENGTH (over));
	  copy_properties (under, this);
	}
      else
	this = under;
      copy_properties (over, this);
      if (inherit)
	merge_properties (over, this);
      else
	copy_properties (over, this);
      over = next_interval (over);
    }

  if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
    BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
  return;
}

/* Get the value of property PROP from PLIST,
   which is the plist of an interval.
   We check for direct properties, for categories with property PROP, 
   and for PROP appearing on the default-text-properties list.  */

Lisp_Object
textget (plist, prop)
     Lisp_Object plist;
     register Lisp_Object prop;
{
  register Lisp_Object tail, fallback;
  fallback = Qnil;

  for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
    {
      register Lisp_Object tem;
      tem = Fcar (tail);
      if (EQ (prop, tem))
	return Fcar (Fcdr (tail));
      if (EQ (tem, Qcategory))
	{
	  tem = Fcar (Fcdr (tail));
	  if (SYMBOLP (tem))
	    fallback = Fget (tem, prop);
	}
    }

  if (! NILP (fallback))
    return fallback;
  if (CONSP (Vdefault_text_properties))
    return Fplist_get (Vdefault_text_properties, prop);
  return Qnil;
}


/* Set point in BUFFER to POSITION.  If the target position is 
   before an intangible character, move to an ok place.  */

void
set_point (position, buffer)
     register int position;
     register struct buffer *buffer;
{
  register INTERVAL to, from, toprev, fromprev, target;
  int buffer_point;
  register Lisp_Object obj;
  int old_position = BUF_PT (buffer);
  int backwards = (position < old_position ? 1 : 0);
  int have_overlays;
  int original_position;

  buffer->point_before_scroll = Qnil;

  if (position == BUF_PT (buffer))
    return;

  /* Check this now, before checking if the buffer has any intervals.
     That way, we can catch conditions which break this sanity check
     whether or not there are intervals in the buffer.  */
  if (position > BUF_ZV (buffer) || position < BUF_BEGV (buffer))
    abort ();

  have_overlays = (! NILP (buffer->overlays_before)
		   || ! NILP (buffer->overlays_after));

  /* If we have no text properties and overlays,
     then we can do it quickly.  */
  if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) && ! have_overlays)
    {
      BUF_PT (buffer) = position;
      return;
    }

  /* Set TO to the interval containing the char after POSITION,
     and TOPREV to the interval containing the char before POSITION.
     Either one may be null.  They may be equal.  */
  to = find_interval (BUF_INTERVALS (buffer), position);
  if (position == BUF_BEGV (buffer))
    toprev = 0;
  else if (to && to->position == position)
    toprev = previous_interval (to);
  else
    toprev = to;

  buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
		  ? BUF_ZV (buffer) - 1
		  : BUF_PT (buffer));

  /* Set FROM to the interval containing the char after PT,
     and FROMPREV to the interval containing the char before PT.
     Either one may be null.  They may be equal.  */
  /* We could cache this and save time.  */
  from = find_interval (BUF_INTERVALS (buffer), buffer_point);
  if (buffer_point == BUF_BEGV (buffer))
    fromprev = 0;
  else if (from && from->position == BUF_PT (buffer))
    fromprev = previous_interval (from);
  else if (buffer_point != BUF_PT (buffer))
    fromprev = from, from = 0;
  else
    fromprev = from;

  /* Moving within an interval.  */
  if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
      && ! have_overlays)
    {
      BUF_PT (buffer) = position;
      return;
    }

  original_position = position;

  /* If the new position is between two intangible characters
     with the same intangible property value,
     move forward or backward until a change in that property.  */
  if (NILP (Vinhibit_point_motion_hooks)
      && ((! NULL_INTERVAL_P (to) && ! NULL_INTERVAL_P (toprev))
	  || have_overlays)
      /* Intangibility never stops us from positioning at the beginning
	 or end of the buffer, so don't bother checking in that case.  */
      && position != BEGV && position != ZV)
    {
      Lisp_Object intangible_propval;
      Lisp_Object pos;

      XSETINT (pos, position);

      if (backwards)
	{
	  intangible_propval = Fget_char_property (make_number (position),
						   Qintangible, Qnil);

	  /* If following char is intangible,
	     skip back over all chars with matching intangible property.  */
	  if (! NILP (intangible_propval))
	    while (XINT (pos) > BUF_BEGV (buffer)
		   && EQ (Fget_char_property (make_number (XINT (pos) - 1),
					      Qintangible, Qnil),
			  intangible_propval))
	      pos = Fprevious_char_property_change (pos, Qnil);
	}
      else
	{
	  intangible_propval = Fget_char_property (make_number (position - 1),
						   Qintangible, Qnil);

	  /* If following char is intangible,
	     skip back over all chars with matching intangible property.  */
	  if (! NILP (intangible_propval))
	    while (XINT (pos) < BUF_ZV (buffer)
		   && EQ (Fget_char_property (pos, Qintangible, Qnil),
			  intangible_propval))
	      pos = Fnext_char_property_change (pos, Qnil);

	}

      position = XINT (pos);
    }

  if (position != original_position)
    {
      /* Set TO to the interval containing the char after POSITION,
	 and TOPREV to the interval containing the char before POSITION.
	 Either one may be null.  They may be equal.  */
      to = find_interval (BUF_INTERVALS (buffer), position);
      if (position == BUF_BEGV (buffer))
	toprev = 0;
      else if (to && to->position == position)
	toprev = previous_interval (to);
      else
	toprev = to;
    }

  /* Here TO is the interval after the stopping point
     and TOPREV is the interval before the stopping point.
     One or the other may be null.  */

  BUF_PT (buffer) = position;

  /* We run point-left and point-entered hooks here, iff the
     two intervals are not equivalent.  These hooks take
     (old_point, new_point) as arguments.  */
  if (NILP (Vinhibit_point_motion_hooks)
      && (! intervals_equal (from, to)
	  || ! intervals_equal (fromprev, toprev)))
    {
      Lisp_Object leave_after, leave_before, enter_after, enter_before;

      if (fromprev)
	leave_after = textget (fromprev->plist, Qpoint_left);
      else
	leave_after = Qnil;
      if (from)
	leave_before = textget (from->plist, Qpoint_left);
      else
	leave_before = Qnil;

      if (toprev)
	enter_after = textget (toprev->plist, Qpoint_entered);
      else
	enter_after = Qnil;
      if (to)
	enter_before = textget (to->plist, Qpoint_entered);
      else
	enter_before = Qnil;

      if (! EQ (leave_before, enter_before) && !NILP (leave_before))
	call2 (leave_before, old_position, position);
      if (! EQ (leave_after, enter_after) && !NILP (leave_after))
	call2 (leave_after, old_position, position);

      if (! EQ (enter_before, leave_before) && !NILP (enter_before))
	call2 (enter_before, old_position, position);
      if (! EQ (enter_after, leave_after) && !NILP (enter_after))
	call2 (enter_after, old_position, position);
    }
}

/* Set point temporarily, without checking any text properties.  */

INLINE void
temp_set_point (position, buffer)
     int position;
     struct buffer *buffer;
{
  BUF_PT (buffer) = position;
}

/* Return the proper local map for position POSITION in BUFFER.
   Use the map specified by the local-map property, if any.
   Otherwise, use BUFFER's local map.  */

Lisp_Object
get_local_map (position, buffer)
     register int position;
     register struct buffer *buffer;
{
  Lisp_Object prop, tem, lispy_position, lispy_buffer;
  int old_begv, old_zv;

  /* Perhaps we should just change `position' to the limit.  */
  if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
    abort ();

  /* Ignore narrowing, so that a local map continues to be valid even if
     the visible region contains no characters and hence no properties.  */
  old_begv = BUF_BEGV (buffer);
  old_zv = BUF_ZV (buffer);
  BUF_BEGV (buffer) = BUF_BEG (buffer);
  BUF_ZV (buffer) = BUF_Z (buffer);

  /* There are no properties at the end of the buffer, so in that case
     check for a local map on the last character of the buffer instead.  */
  if (position == BUF_Z (buffer) && BUF_Z (buffer) > BUF_BEG (buffer))
    --position;
  XSETFASTINT (lispy_position, position);
  XSETBUFFER (lispy_buffer, buffer);
  prop = Fget_char_property (lispy_position, Qlocal_map, lispy_buffer);

  BUF_BEGV (buffer) = old_begv;
  BUF_ZV (buffer) = old_zv;

  /* Use the local map only if it is valid.  */
  /* Do allow symbols that are defined as keymaps.  */
  if (SYMBOLP (prop) && !NILP (prop))
    prop = Findirect_function (prop);
  if (!NILP (prop)
      && (tem = Fkeymapp (prop), !NILP (tem)))
    return prop;

  return buffer->keymap;
}

/* Produce an interval tree reflecting the intervals in
   TREE from START to START + LENGTH.  */

INTERVAL
copy_intervals (tree, start, length)
     INTERVAL tree;
     int start, length;
{
  register INTERVAL i, new, t;
  register int got, prevlen;

  if (NULL_INTERVAL_P (tree) || length <= 0)
    return NULL_INTERVAL;

  i = find_interval (tree, start);
  if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
    abort ();

  /* If there is only one interval and it's the default, return nil.  */
  if ((start - i->position + 1 + length) < LENGTH (i)
      && DEFAULT_INTERVAL_P (i))
    return NULL_INTERVAL;

  new = make_interval ();
  new->position = 1;
  got = (LENGTH (i) - (start - i->position));
  new->total_length = length;
  copy_properties (i, new);

  t = new;
  prevlen = got;
  while (got < length)
    {
      i = next_interval (i);
      t = split_interval_right (t, prevlen);
      copy_properties (i, t);
      prevlen = LENGTH (i);
      got += prevlen;
    }

  return balance_an_interval (new);
}

/* Give STRING the properties of BUFFER from POSITION to LENGTH.  */

INLINE void
copy_intervals_to_string (string, buffer, position, length)
     Lisp_Object string;
     struct buffer *buffer;
     int position, length;
{
  INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (buffer),
					   position, length);
  if (NULL_INTERVAL_P (interval_copy))
    return;

  interval_copy->parent = (INTERVAL) string;
  XSTRING (string)->intervals = interval_copy;
}

/* Return 1 if string S1 and S2 have identical properties; 0 otherwise.
   Assume they have identical characters.  */

int
compare_string_intervals (s1, s2)
     Lisp_Object s1, s2;
{
  INTERVAL i1, i2;
  int pos = 1;
  int end = XSTRING (s1)->size + 1;

  /* We specify 1 as position because the interval functions
     always use positions starting at 1.  */
  i1 = find_interval (XSTRING (s1)->intervals, 1);
  i2 = find_interval (XSTRING (s2)->intervals, 1);

  while (pos < end)
    {
      /* Determine how far we can go before we reach the end of I1 or I2.  */
      int len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
      int len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
      int distance = min (len1, len2);

      /* If we ever find a mismatch between the strings,
	 they differ.  */
      if (! intervals_equal (i1, i2))
	return 0;

      /* Advance POS till the end of the shorter interval,
	 and advance one or both interval pointers for the new position.  */
      pos += distance;
      if (len1 == distance)
	i1 = next_interval (i1);
      if (len2 == distance)
	i2 = next_interval (i2);
    }
  return 1;
}

#endif /* USE_TEXT_PROPERTIES */