1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
|
/* Header for multibyte character handler.
Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN.
Licensed to the Free Software Foundation.
Copyright (C) 2001 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#ifndef EMACS_CHARSET_H
#define EMACS_CHARSET_H
/* #define BYTE_COMBINING_DEBUG */
/*** GENERAL NOTE on CHARACTER SET (CHARSET) ***
A character set ("charset" hereafter) is a meaningful collection
(i.e. language, culture, functionality, etc) of characters. Emacs
handles multiple charsets at once. Each charset corresponds to one
of the ISO charsets. Emacs identifies a charset by a unique
identification number, whereas ISO identifies a charset by a triplet
of DIMENSION, CHARS and FINAL-CHAR. So, hereafter, just saying
"charset" means an identification number (integer value).
The value range of charsets is 0x00, 0x81..0xFE. There are four
kinds of charset depending on DIMENSION (1 or 2) and CHARS (94 or
96). For instance, a charset of DIMENSION2_CHARS94 contains 94x94
characters.
Within Emacs Lisp, a charset is treated as a symbol which has a
property `charset'. The property value is a vector containing
various information about the charset. For readability of C code,
we use the following convention for C variable names:
charset_symbol: Emacs Lisp symbol of a charset
charset_id: Emacs Lisp integer of an identification number of a charset
charset: C integer of an identification number of a charset
Each charset (except for ascii) is assigned a base leading-code
(range 0x80..0x9E). In addition, a charset of greater than 0xA0
(whose base leading-code is 0x9A..0x9D) is assigned an extended
leading-code (range 0xA0..0xFE). In this case, each base
leading-code specifies the allowable range of extended leading-code
as shown in the table below. A leading-code is used to represent a
character in Emacs' buffer and string.
We call a charset which has extended leading-code a "private
charset" because those are mainly for a charset which is not yet
registered by ISO. On the contrary, we call a charset which does
not have extended leading-code an "official charset".
---------------------------------------------------------------------------
charset dimension base leading-code extended leading-code
---------------------------------------------------------------------------
0x00 official dim1 -- none -- -- none --
(ASCII)
0x01..0x7F --never used--
0x80 official dim1 -- none -- -- none --
(eight-bit-graphic)
0x81..0x8F official dim1 same as charset -- none --
0x90..0x99 official dim2 same as charset -- none --
0x9A..0x9D --never used--
0x9E official dim1 same as charset -- none --
(eight-bit-control)
0x9F --never used--
0xA0..0xDF private dim1 0x9A same as charset
of 1-column width
0xE0..0xEF private dim1 0x9B same as charset
of 2-column width
0xF0..0xF4 private dim2 0x9C same as charset
of 1-column width
0xF5..0xFE private dim2 0x9D same as charset
of 2-column width
0xFF --never used--
---------------------------------------------------------------------------
*/
/* Definition of special leading-codes. */
/* Leading-code followed by extended leading-code. */
#define LEADING_CODE_PRIVATE_11 0x9A /* for private DIMENSION1 of 1-column */
#define LEADING_CODE_PRIVATE_12 0x9B /* for private DIMENSION1 of 2-column */
#define LEADING_CODE_PRIVATE_21 0x9C /* for private DIMENSION2 of 1-column */
#define LEADING_CODE_PRIVATE_22 0x9D /* for private DIMENSION2 of 2-column */
#define LEADING_CODE_8_BIT_CONTROL 0x9E /* for `eight-bit-control' */
/* Extended leading-code. */
/* Start of each extended leading-codes. */
#define LEADING_CODE_EXT_11 0xA0 /* follows LEADING_CODE_PRIVATE_11 */
#define LEADING_CODE_EXT_12 0xE0 /* follows LEADING_CODE_PRIVATE_12 */
#define LEADING_CODE_EXT_21 0xF0 /* follows LEADING_CODE_PRIVATE_21 */
#define LEADING_CODE_EXT_22 0xF5 /* follows LEADING_CODE_PRIVATE_22 */
/* Maximum value of extended leading-codes. */
#define LEADING_CODE_EXT_MAX 0xFE
/* Definition of minimum/maximum charset of each DIMENSION. */
#define MIN_CHARSET_OFFICIAL_DIMENSION1 0x80
#define MAX_CHARSET_OFFICIAL_DIMENSION1 0x8F
#define MIN_CHARSET_OFFICIAL_DIMENSION2 0x90
#define MAX_CHARSET_OFFICIAL_DIMENSION2 0x99
#define MIN_CHARSET_PRIVATE_DIMENSION1 LEADING_CODE_EXT_11
#define MIN_CHARSET_PRIVATE_DIMENSION2 LEADING_CODE_EXT_21
/* Maximum value of overall charset identification number. */
#define MAX_CHARSET 0xFE
/* Definition of special charsets. */
#define CHARSET_ASCII 0 /* 0x00..0x7F */
#define CHARSET_8_BIT_CONTROL 0x9E /* 0x80..0x9F */
#define CHARSET_8_BIT_GRAPHIC 0x80 /* 0xA0..0xFF */
extern int charset_latin_iso8859_1; /* ISO8859-1 (Latin-1) */
extern int charset_jisx0208_1978; /* JISX0208.1978 (Japanese Kanji old set) */
extern int charset_jisx0208; /* JISX0208.1983 (Japanese Kanji) */
extern int charset_katakana_jisx0201; /* JISX0201.Kana (Japanese Katakana) */
extern int charset_latin_jisx0201; /* JISX0201.Roman (Japanese Roman) */
extern int charset_big5_1; /* Big5 Level 1 (Chinese Traditional) */
extern int charset_big5_2; /* Big5 Level 2 (Chinese Traditional) */
/* Check if CH is an ASCII character or a base leading-code.
Nowadays, any byte can be the first byte of a character in a
multibyte buffer/string. So this macro name is not appropriate. */
#define CHAR_HEAD_P(ch) ((unsigned char) (ch) < 0xA0)
/*** GENERAL NOTE on CHARACTER REPRESENTATION ***
Firstly, the term "character" or "char" is used for a multilingual
character (of course, including ASCII characters), not for a byte in
computer memory. We use the term "code" or "byte" for the latter
case.
A character is identified by charset and one or two POSITION-CODEs.
POSITION-CODE is the position of the character in the charset. A
character of DIMENSION1 charset has one POSITION-CODE: POSITION-CODE-1.
A character of DIMENSION2 charset has two POSITION-CODE:
POSITION-CODE-1 and POSITION-CODE-2. The code range of
POSITION-CODE is 0x20..0x7F.
Emacs has two kinds of representation of a character: multi-byte
form (for buffers and strings) and single-word form (for character
objects in Emacs Lisp). The latter is called "character code"
hereafter. Both representations encode the information of charset
and POSITION-CODE but in a different way (for instance, the MSB of
POSITION-CODE is set in multi-byte form).
For details of the multi-byte form, see the section "2. Emacs
internal format handlers" of `coding.c'.
Emacs uses 19 bits for a character code. The bits are divided into
3 fields: FIELD1(5bits):FIELD2(7bits):FIELD3(7bits).
A character code of DIMENSION1 character uses FIELD2 to hold charset
and FIELD3 to hold POSITION-CODE-1. A character code of DIMENSION2
character uses FIELD1 to hold charset, FIELD2 and FIELD3 to hold
POSITION-CODE-1 and POSITION-CODE-2 respectively.
More precisely...
FIELD2 of DIMENSION1 character (except for ascii, eight-bit-control,
and eight-bit-graphic) is "charset - 0x70". This is to make all
character codes except for ASCII and 8-bit codes greater than 256.
So, the range of FIELD2 of DIMENSION1 character is 0, 1, or
0x11..0x7F.
FIELD1 of DIMENSION2 character is "charset - 0x8F" for official
charset and "charset - 0xE0" for private charset. So, the range of
FIELD1 of DIMENSION2 character is 0x01..0x1E.
-----------------------------------------------------------------------------
charset FIELD1 (5-bit) FIELD2 (7-bit) FIELD3 (7-bit)
-----------------------------------------------------------------------------
ascii 0 0 0x00..0x7F
eight-bit-control 0 1 0x00..0x1F
eight-bit-graphic 0 1 0x20..0x7F
DIMENSION1 0 charset - 0x70 POSITION-CODE-1
DIMENSION2(o) charset - 0x8F POSITION-CODE-1 POSITION-CODE-2
DIMENSION2(p) charset - 0xE0 POSITION-CODE-1 POSITION-CODE-2
-----------------------------------------------------------------------------
"(o)": official, "(p)": private
-----------------------------------------------------------------------------
*/
/* Masks of each field of character code. */
#define CHAR_FIELD1_MASK (0x1F << 14)
#define CHAR_FIELD2_MASK (0x7F << 7)
#define CHAR_FIELD3_MASK 0x7F
/* Macros to access each field of character C. */
#define CHAR_FIELD1(c) (((c) & CHAR_FIELD1_MASK) >> 14)
#define CHAR_FIELD2(c) (((c) & CHAR_FIELD2_MASK) >> 7)
#define CHAR_FIELD3(c) ((c) & CHAR_FIELD3_MASK)
/* Minimum character code of character of each DIMENSION. */
#define MIN_CHAR_OFFICIAL_DIMENSION1 \
((0x81 - 0x70) << 7)
#define MIN_CHAR_PRIVATE_DIMENSION1 \
((MIN_CHARSET_PRIVATE_DIMENSION1 - 0x70) << 7)
#define MIN_CHAR_OFFICIAL_DIMENSION2 \
((MIN_CHARSET_OFFICIAL_DIMENSION2 - 0x8F) << 14)
#define MIN_CHAR_PRIVATE_DIMENSION2 \
((MIN_CHARSET_PRIVATE_DIMENSION2 - 0xE0) << 14)
/* Maximum character code currently used plus 1. */
#define MAX_CHAR (0x1F << 14)
/* 1 if C is a single byte character, else 0. */
#define SINGLE_BYTE_CHAR_P(c) ((unsigned) (c) < 0x100)
/* 1 if BYTE is an ASCII character in itself, in multibyte mode. */
#define ASCII_BYTE_P(byte) ((byte) < 0x80)
/* A char-table containing information on each character set.
Unlike ordinary char-tables, this doesn't contain any nested tables.
Only the top level elements are used. Each element is a vector of
the following information:
CHARSET-ID, BYTES, DIMENSION, CHARS, WIDTH, DIRECTION,
LEADING-CODE-BASE, LEADING-CODE-EXT,
ISO-FINAL-CHAR, ISO-GRAPHIC-PLANE,
REVERSE-CHARSET, SHORT-NAME, LONG-NAME, DESCRIPTION,
PLIST.
CHARSET-ID (integer) is the identification number of the charset.
BYTES (integer) is the length of the multi-byte form of a character
in the charset: one of 1, 2, 3, and 4.
DIMENSION (integer) is the number of bytes to represent a character: 1 or 2.
CHARS (integer) is the number of characters in a dimension: 94 or 96.
WIDTH (integer) is the number of columns a character in the charset
occupies on the screen: one of 0, 1, and 2..
DIRECTION (integer) is the rendering direction of characters in the
charset when rendering. If 0, render from left to right, else
render from right to left.
LEADING-CODE-BASE (integer) is the base leading-code for the
charset.
LEADING-CODE-EXT (integer) is the extended leading-code for the
charset. All charsets of less than 0xA0 have the value 0.
ISO-FINAL-CHAR (character) is the final character of the
corresponding ISO 2022 charset. It is -1 for such a character
that is used only internally (e.g. `eight-bit-control').
ISO-GRAPHIC-PLANE (integer) is the graphic plane to be invoked
while encoding to variants of ISO 2022 coding system, one of the
following: 0/graphic-plane-left(GL), 1/graphic-plane-right(GR). It
is -1 for such a character that is used only internally
(e.g. `eight-bit-control').
REVERSE-CHARSET (integer) is the charset which differs only in
LEFT-TO-RIGHT value from the charset. If there's no such a
charset, the value is -1.
SHORT-NAME (string) is the short name to refer to the charset.
LONG-NAME (string) is the long name to refer to the charset.
DESCRIPTION (string) is the description string of the charset.
PLIST (property list) may contain any type of information a user
wants to put and get by functions `put-charset-property' and
`get-charset-property' respectively. */
extern Lisp_Object Vcharset_table;
/* Macros to access various information of CHARSET in Vcharset_table.
We provide these macros for efficiency. No range check of CHARSET. */
/* Return entry of CHARSET (C integer) in Vcharset_table. */
#define CHARSET_TABLE_ENTRY(charset) \
XCHAR_TABLE (Vcharset_table)->contents[((charset) == CHARSET_ASCII \
? 0 : (charset) + 128)]
/* Return information INFO-IDX of CHARSET. */
#define CHARSET_TABLE_INFO(charset, info_idx) \
XVECTOR (CHARSET_TABLE_ENTRY (charset))->contents[info_idx]
#define CHARSET_ID_IDX (0)
#define CHARSET_BYTES_IDX (1)
#define CHARSET_DIMENSION_IDX (2)
#define CHARSET_CHARS_IDX (3)
#define CHARSET_WIDTH_IDX (4)
#define CHARSET_DIRECTION_IDX (5)
#define CHARSET_LEADING_CODE_BASE_IDX (6)
#define CHARSET_LEADING_CODE_EXT_IDX (7)
#define CHARSET_ISO_FINAL_CHAR_IDX (8)
#define CHARSET_ISO_GRAPHIC_PLANE_IDX (9)
#define CHARSET_REVERSE_CHARSET_IDX (10)
#define CHARSET_SHORT_NAME_IDX (11)
#define CHARSET_LONG_NAME_IDX (12)
#define CHARSET_DESCRIPTION_IDX (13)
#define CHARSET_PLIST_IDX (14)
/* Size of a vector of each entry of Vcharset_table. */
#define CHARSET_MAX_IDX (15)
/* And several more macros to be used frequently. */
#define CHARSET_BYTES(charset) \
XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_BYTES_IDX))
#define CHARSET_DIMENSION(charset) \
XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_DIMENSION_IDX))
#define CHARSET_CHARS(charset) \
XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_CHARS_IDX))
#define CHARSET_WIDTH(charset) \
XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_WIDTH_IDX))
#define CHARSET_DIRECTION(charset) \
XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_DIRECTION_IDX))
#define CHARSET_LEADING_CODE_BASE(charset) \
XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_LEADING_CODE_BASE_IDX))
#define CHARSET_LEADING_CODE_EXT(charset) \
XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_LEADING_CODE_EXT_IDX))
#define CHARSET_ISO_FINAL_CHAR(charset) \
XINT (CHARSET_TABLE_INFO (charset, CHARSET_ISO_FINAL_CHAR_IDX))
#define CHARSET_ISO_GRAPHIC_PLANE(charset) \
XINT (CHARSET_TABLE_INFO (charset, CHARSET_ISO_GRAPHIC_PLANE_IDX))
#define CHARSET_REVERSE_CHARSET(charset) \
XINT (CHARSET_TABLE_INFO (charset, CHARSET_REVERSE_CHARSET_IDX))
/* Macros to specify direction of a charset. */
#define CHARSET_DIRECTION_LEFT_TO_RIGHT 0
#define CHARSET_DIRECTION_RIGHT_TO_LEFT 1
/* A vector of charset symbol indexed by charset-id. This is used
only for returning charset symbol from C functions. */
extern Lisp_Object Vcharset_symbol_table;
/* Return symbol of CHARSET. */
#define CHARSET_SYMBOL(charset) \
XVECTOR (Vcharset_symbol_table)->contents[charset]
/* 1 if CHARSET is in valid value range, else 0. */
#define CHARSET_VALID_P(charset) \
((charset) == 0 \
|| ((charset) > 0x80 && (charset) <= MAX_CHARSET_OFFICIAL_DIMENSION2) \
|| ((charset) >= MIN_CHARSET_PRIVATE_DIMENSION1 \
&& (charset) <= MAX_CHARSET) \
|| ((charset) == CHARSET_8_BIT_CONTROL) \
|| ((charset) == CHARSET_8_BIT_GRAPHIC))
/* 1 if CHARSET is already defined, else 0. */
#define CHARSET_DEFINED_P(charset) \
(((charset) >= 0) && ((charset) <= MAX_CHARSET) \
&& !NILP (CHARSET_TABLE_ENTRY (charset)))
/* Since the information CHARSET-BYTES and CHARSET-WIDTH of
Vcharset_table can be retrieved only by the first byte of
multi-byte form (an ASCII code or a base leading-code), we provide
here tables to be used by macros BYTES_BY_CHAR_HEAD and
WIDTH_BY_CHAR_HEAD for faster information retrieval. */
extern int bytes_by_char_head[256];
extern int width_by_char_head[256];
#define BYTES_BY_CHAR_HEAD(char_head) \
(ASCII_BYTE_P (char_head) ? 1 : bytes_by_char_head[char_head])
#define WIDTH_BY_CHAR_HEAD(char_head) \
(ASCII_BYTE_P (char_head) ? 1 : width_by_char_head[char_head])
/* Charset of the character C. */
#define CHAR_CHARSET(c) \
(SINGLE_BYTE_CHAR_P (c) \
? (ASCII_BYTE_P (c) \
? CHARSET_ASCII \
: (c) < 0xA0 ? CHARSET_8_BIT_CONTROL : CHARSET_8_BIT_GRAPHIC) \
: ((c) < MIN_CHAR_OFFICIAL_DIMENSION2 \
? CHAR_FIELD2 (c) + 0x70 \
: ((c) < MIN_CHAR_PRIVATE_DIMENSION2 \
? CHAR_FIELD1 (c) + 0x8F \
: CHAR_FIELD1 (c) + 0xE0)))
/* Check if two characters C1 and C2 belong to the same charset. */
#define SAME_CHARSET_P(c1, c2) \
(c1 < MIN_CHAR_OFFICIAL_DIMENSION2 \
? (c1 & CHAR_FIELD2_MASK) == (c2 & CHAR_FIELD2_MASK) \
: (c1 & CHAR_FIELD1_MASK) == (c2 & CHAR_FIELD1_MASK))
/* Return a character of which charset is CHARSET and position-codes
are C1 and C2. DIMENSION1 character ignores C2. */
#define MAKE_CHAR(charset, c1, c2) \
((charset) == CHARSET_ASCII \
? (c1) & 0x7F \
: (((charset) == CHARSET_8_BIT_CONTROL \
|| (charset) == CHARSET_8_BIT_GRAPHIC) \
? ((c1) & 0x7F) | 0x80 \
: ((CHARSET_DEFINED_P (charset) \
? CHARSET_DIMENSION (charset) == 1 \
: (charset) < MIN_CHARSET_PRIVATE_DIMENSION2) \
? (((charset) - 0x70) << 7) | ((c1) <= 0 ? 0 : ((c1) & 0x7F)) \
: ((((charset) \
- ((charset) < MIN_CHARSET_PRIVATE_DIMENSION2 ? 0x8F : 0xE0)) \
<< 14) \
| ((c2) <= 0 ? 0 : ((c2) & 0x7F)) \
| ((c1) <= 0 ? 0 : (((c1) & 0x7F) << 7))))))
/* If GENERICP is nonzero, return nonzero iff C is a valid normal or
generic character. If GENERICP is zero, return nonzero iff C is a
valid normal character. */
#define CHAR_VALID_P(c, genericp) \
((c) >= 0 \
&& (SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, genericp)))
/* This default value is used when nonascii-translation-table or
nonascii-insert-offset fail to convert unibyte character to a valid
multibyte character. This makes a Latin-1 character. */
#define DEFAULT_NONASCII_INSERT_OFFSET 0x800
/* Parse multibyte string STR of length LENGTH and set BYTES to the
byte length of a character at STR. */
#ifdef BYTE_COMBINING_DEBUG
#define PARSE_MULTIBYTE_SEQ(str, length, bytes) \
do { \
int i = 1; \
while (i < (length) && ! CHAR_HEAD_P ((str)[i])) i++; \
(bytes) = BYTES_BY_CHAR_HEAD ((str)[0]); \
if ((bytes) > i) \
abort (); \
} while (0)
#else /* not BYTE_COMBINING_DEBUG */
#define PARSE_MULTIBYTE_SEQ(str, length, bytes) \
((void)(length), (bytes) = BYTES_BY_CHAR_HEAD ((str)[0]))
#endif /* not BYTE_COMBINING_DEBUG */
#define VALID_LEADING_CODE_P(code) \
(! NILP (CHARSET_TABLE_ENTRY (code)))
/* Return 1 iff the byte sequence at unibyte string STR (LENGTH bytes)
is valid as a multibyte form. If valid, by a side effect, BYTES is
set to the byte length of the multibyte form. */
#define UNIBYTE_STR_AS_MULTIBYTE_P(str, length, bytes) \
(((str)[0] < 0x80 || (str)[0] >= 0xA0) \
? ((bytes) = 1) \
: (((bytes) = BYTES_BY_CHAR_HEAD ((str)[0])), \
((bytes) <= (length) \
&& !CHAR_HEAD_P ((str)[1]) \
&& ((bytes) == 2 \
? (str)[0] != LEADING_CODE_8_BIT_CONTROL \
: (!CHAR_HEAD_P ((str)[2]) \
&& ((bytes) == 3 \
? (((str)[0] != LEADING_CODE_PRIVATE_11 \
&& (str)[0] != LEADING_CODE_PRIVATE_12) \
|| VALID_LEADING_CODE_P (str[1])) \
: (!CHAR_HEAD_P ((str)[3]) \
&& VALID_LEADING_CODE_P (str[1]))))))))
/* Return 1 iff the byte sequence at multibyte string STR is valid as
a unibyte form. By a side effect, BYTES is set to the byte length
of one character at STR. */
#define MULTIBYTE_STR_AS_UNIBYTE_P(str, bytes) \
((bytes) = BYTES_BY_CHAR_HEAD ((str)[0]), \
(str)[0] != LEADING_CODE_8_BIT_CONTROL)
/* The charset of character C is stored in CHARSET, and the
position-codes of C are stored in C1 and C2.
We store -1 in C2 if the dimension of the charset is 1. */
#define SPLIT_CHAR(c, charset, c1, c2) \
(SINGLE_BYTE_CHAR_P (c) \
? ((charset \
= (ASCII_BYTE_P (c) \
? CHARSET_ASCII \
: ((c) < 0xA0 ? CHARSET_8_BIT_CONTROL : CHARSET_8_BIT_GRAPHIC))), \
c1 = (c), c2 = -1) \
: ((c) & CHAR_FIELD1_MASK \
? (charset = (CHAR_FIELD1 (c) \
+ ((c) < MIN_CHAR_PRIVATE_DIMENSION2 ? 0x8F : 0xE0)), \
c1 = CHAR_FIELD2 (c), \
c2 = CHAR_FIELD3 (c)) \
: (charset = CHAR_FIELD2 (c) + 0x70, \
c1 = CHAR_FIELD3 (c), \
c2 = -1)))
/* Return 1 iff character C has valid printable glyph. */
#define CHAR_PRINTABLE_P(c) (ASCII_BYTE_P (c) || char_printable_p (c))
/* The charset of the character at STR is stored in CHARSET, and the
position-codes are stored in C1 and C2.
We store -1 in C2 if the character is just 2 bytes. */
#define SPLIT_STRING(str, len, charset, c1, c2) \
((BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) < 2 \
|| BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) > len \
|| split_string (str, len, &charset, &c1, &c2) < 0) \
? c1 = *(str), charset = CHARSET_ASCII \
: charset)
/* Mapping table from ISO2022's charset (specified by DIMENSION,
CHARS, and FINAL_CHAR) to Emacs' charset. Should be accessed by
macro ISO_CHARSET_TABLE (DIMENSION, CHARS, FINAL_CHAR). */
extern int iso_charset_table[2][2][128];
#define ISO_CHARSET_TABLE(dimension, chars, final_char) \
iso_charset_table[XINT (dimension) - 1][XINT (chars) > 94][XINT (final_char)]
#define BASE_LEADING_CODE_P(c) (BYTES_BY_CHAR_HEAD ((unsigned char) (c)) > 1)
/* Return how many bytes C will occupy in a multibyte buffer. */
#define CHAR_BYTES(c) \
(SINGLE_BYTE_CHAR_P (c) \
? ((ASCII_BYTE_P (c) || (c) >= 0xA0) ? 1 : 2) \
: char_bytes (c))
/* The following two macros CHAR_STRING and STRING_CHAR are the main
entry points to convert between Emacs's two types of character
representations: multi-byte form and single-word form (character
code). */
/* Store multi-byte form of the character C in STR. The caller should
allocate at least MAX_MULTIBYTE_LENGTH bytes area at STR in
advance. Returns the length of the multi-byte form. If C is an
invalid character code, signal an error. */
#define CHAR_STRING(c, str) \
(SINGLE_BYTE_CHAR_P (c) \
? ((ASCII_BYTE_P (c) || c >= 0xA0) \
? (*(str) = (unsigned char)(c), 1) \
: (*(str) = LEADING_CODE_8_BIT_CONTROL, *((str)+ 1) = c + 0x20, 2)) \
: char_to_string (c, (unsigned char *) str))
/* Like CHAR_STRING but don't signal an error if C is invalid.
Value is -1 in this case. */
#define CHAR_STRING_NO_SIGNAL(c, str) \
(SINGLE_BYTE_CHAR_P (c) \
? ((ASCII_BYTE_P (c) || c >= 0xA0) \
? (*(str) = (unsigned char)(c), 1) \
: (*(str) = LEADING_CODE_8_BIT_CONTROL, *((str)+ 1) = c + 0x20, 2)) \
: char_to_string_1 (c, (unsigned char *) str))
/* Return a character code of the character of which multi-byte form
is at STR and the length is LEN. If STR doesn't contain valid
multi-byte form, only the first byte in STR is returned. */
#define STRING_CHAR(str, len) \
(BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) == 1 \
? (unsigned char) *(str) \
: string_to_char (str, len, 0))
/* This is like STRING_CHAR but the third arg ACTUAL_LEN is set to the
length of the multi-byte form. Just to know the length, use
MULTIBYTE_FORM_LENGTH. */
#define STRING_CHAR_AND_LENGTH(str, len, actual_len) \
(BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) == 1 \
? ((actual_len) = 1), (unsigned char) *(str) \
: string_to_char (str, len, &(actual_len)))
/* Fetch the "next" character from Lisp string STRING at byte position
BYTEIDX, character position CHARIDX. Store it into OUTPUT.
All the args must be side-effect-free.
BYTEIDX and CHARIDX must be lvalues;
we increment them past the character fetched. */
#define FETCH_STRING_CHAR_ADVANCE(OUTPUT, STRING, CHARIDX, BYTEIDX) \
if (1) \
{ \
CHARIDX++; \
if (STRING_MULTIBYTE (STRING)) \
{ \
const unsigned char *ptr = SDATA (STRING) + BYTEIDX; \
int space_left = SBYTES (STRING) - BYTEIDX; \
int actual_len; \
\
OUTPUT = STRING_CHAR_AND_LENGTH (ptr, space_left, actual_len); \
BYTEIDX += actual_len; \
} \
else \
OUTPUT = SREF (STRING, BYTEIDX++); \
} \
else
/* Like FETCH_STRING_CHAR_ADVANCE but assume STRING is multibyte. */
#define FETCH_STRING_CHAR_ADVANCE_NO_CHECK(OUTPUT, STRING, CHARIDX, BYTEIDX) \
if (1) \
{ \
const unsigned char *fetch_string_char_ptr = SDATA (STRING) + BYTEIDX; \
int fetch_string_char_space_left = SBYTES (STRING) - BYTEIDX; \
int actual_len; \
\
OUTPUT \
= STRING_CHAR_AND_LENGTH (fetch_string_char_ptr, \
fetch_string_char_space_left, actual_len); \
\
BYTEIDX += actual_len; \
CHARIDX++; \
} \
else
/* Like FETCH_STRING_CHAR_ADVANCE but fetch character from the current
buffer. */
#define FETCH_CHAR_ADVANCE(OUTPUT, CHARIDX, BYTEIDX) \
if (1) \
{ \
CHARIDX++; \
if (!NILP (current_buffer->enable_multibyte_characters)) \
{ \
unsigned char *ptr = BYTE_POS_ADDR (BYTEIDX); \
int space_left = ((CHARIDX < GPT ? GPT_BYTE : Z_BYTE) - BYTEIDX); \
int actual_len; \
\
OUTPUT= STRING_CHAR_AND_LENGTH (ptr, space_left, actual_len); \
BYTEIDX += actual_len; \
} \
else \
{ \
OUTPUT = *(BYTE_POS_ADDR (BYTEIDX)); \
BYTEIDX++; \
} \
} \
else
/* Return the length of the multi-byte form at string STR of length LEN. */
#define MULTIBYTE_FORM_LENGTH(str, len) \
(BYTES_BY_CHAR_HEAD (*(unsigned char *)(str)) == 1 \
? 1 \
: multibyte_form_length (str, len))
/* If P is before LIMIT, advance P to the next character boundary. It
assumes that P is already at a character boundary of the sane
mulitbyte form whose end address is LIMIT. */
#define NEXT_CHAR_BOUNDARY(p, limit) \
do { \
if ((p) < (limit)) \
(p) += BYTES_BY_CHAR_HEAD (*(p)); \
} while (0)
/* If P is after LIMIT, advance P to the previous character boundary.
It assumes that P is already at a character boundary of the sane
mulitbyte form whose beginning address is LIMIT. */
#define PREV_CHAR_BOUNDARY(p, limit) \
do { \
if ((p) > (limit)) \
{ \
const unsigned char *p0 = (p); \
do { \
p0--; \
} while (p0 >= limit && ! CHAR_HEAD_P (*p0)); \
(p) = (BYTES_BY_CHAR_HEAD (*p0) == (p) - p0) ? p0 : (p) - 1; \
} \
} while (0)
#ifdef emacs
/* Increase the buffer byte position POS_BYTE of the current buffer to
the next character boundary. This macro relies on the fact that
*GPT_ADDR and *Z_ADDR are always accessible and the values are
'\0'. No range checking of POS. */
#ifdef BYTE_COMBINING_DEBUG
#define INC_POS(pos_byte) \
do { \
unsigned char *p = BYTE_POS_ADDR (pos_byte); \
if (BASE_LEADING_CODE_P (*p)) \
{ \
int len, bytes; \
len = Z_BYTE - pos_byte; \
PARSE_MULTIBYTE_SEQ (p, len, bytes); \
pos_byte += bytes; \
} \
else \
pos_byte++; \
} while (0)
#else /* not BYTE_COMBINING_DEBUG */
#define INC_POS(pos_byte) \
do { \
unsigned char *p = BYTE_POS_ADDR (pos_byte); \
pos_byte += BYTES_BY_CHAR_HEAD (*p); \
} while (0)
#endif /* not BYTE_COMBINING_DEBUG */
/* Decrease the buffer byte position POS_BYTE of the current buffer to
the previous character boundary. No range checking of POS. */
#define DEC_POS(pos_byte) \
do { \
unsigned char *p, *p_min; \
\
pos_byte--; \
if (pos_byte < GPT_BYTE) \
p = BEG_ADDR + pos_byte - BEG_BYTE, p_min = BEG_ADDR; \
else \
p = BEG_ADDR + GAP_SIZE + pos_byte - BEG_BYTE, p_min = GAP_END_ADDR;\
if (p > p_min && !CHAR_HEAD_P (*p)) \
{ \
unsigned char *pend = p--; \
int len, bytes; \
if (p_min < p - MAX_MULTIBYTE_LENGTH) \
p_min = p - MAX_MULTIBYTE_LENGTH; \
while (p > p_min && !CHAR_HEAD_P (*p)) p--; \
len = pend + 1 - p; \
PARSE_MULTIBYTE_SEQ (p, len, bytes); \
if (bytes == len) \
pos_byte -= len - 1; \
} \
} while (0)
/* Increment both CHARPOS and BYTEPOS, each in the appropriate way. */
#define INC_BOTH(charpos, bytepos) \
do \
{ \
(charpos)++; \
if (NILP (current_buffer->enable_multibyte_characters)) \
(bytepos)++; \
else \
INC_POS ((bytepos)); \
} \
while (0)
/* Decrement both CHARPOS and BYTEPOS, each in the appropriate way. */
#define DEC_BOTH(charpos, bytepos) \
do \
{ \
(charpos)--; \
if (NILP (current_buffer->enable_multibyte_characters)) \
(bytepos)--; \
else \
DEC_POS ((bytepos)); \
} \
while (0)
/* Increase the buffer byte position POS_BYTE of the current buffer to
the next character boundary. This macro relies on the fact that
*GPT_ADDR and *Z_ADDR are always accessible and the values are
'\0'. No range checking of POS_BYTE. */
#ifdef BYTE_COMBINING_DEBUG
#define BUF_INC_POS(buf, pos_byte) \
do { \
unsigned char *p = BUF_BYTE_ADDRESS (buf, pos_byte); \
if (BASE_LEADING_CODE_P (*p)) \
{ \
int len, bytes; \
len = BUF_Z_BYTE (buf) - pos_byte; \
PARSE_MULTIBYTE_SEQ (p, len, bytes); \
pos_byte += bytes; \
} \
else \
pos_byte++; \
} while (0)
#else /* not BYTE_COMBINING_DEBUG */
#define BUF_INC_POS(buf, pos_byte) \
do { \
unsigned char *p = BUF_BYTE_ADDRESS (buf, pos_byte); \
pos_byte += BYTES_BY_CHAR_HEAD (*p); \
} while (0)
#endif /* not BYTE_COMBINING_DEBUG */
/* Decrease the buffer byte position POS_BYTE of the current buffer to
the previous character boundary. No range checking of POS_BYTE. */
#define BUF_DEC_POS(buf, pos_byte) \
do { \
unsigned char *p, *p_min; \
pos_byte--; \
if (pos_byte < BUF_GPT_BYTE (buf)) \
{ \
p = BUF_BEG_ADDR (buf) + pos_byte - BEG_BYTE; \
p_min = BUF_BEG_ADDR (buf); \
} \
else \
{ \
p = BUF_BEG_ADDR (buf) + BUF_GAP_SIZE (buf) + pos_byte - BEG_BYTE;\
p_min = BUF_GAP_END_ADDR (buf); \
} \
if (p > p_min && !CHAR_HEAD_P (*p)) \
{ \
unsigned char *pend = p--; \
int len, bytes; \
if (p_min < p - MAX_MULTIBYTE_LENGTH) \
p_min = p - MAX_MULTIBYTE_LENGTH; \
while (p > p_min && !CHAR_HEAD_P (*p)) p--; \
len = pend + 1 - p; \
PARSE_MULTIBYTE_SEQ (p, len, bytes); \
if (bytes == len) \
pos_byte -= len - 1; \
} \
} while (0)
#endif /* emacs */
/* This is the maximum byte length of multi-byte sequence. */
#define MAX_MULTIBYTE_LENGTH 4
extern void invalid_character P_ ((int));
extern int translate_char P_ ((Lisp_Object, int, int, int, int));
extern int split_string P_ ((const unsigned char *, int, int *,
unsigned char *, unsigned char *));
extern int char_to_string P_ ((int, unsigned char *));
extern int char_to_string_1 P_ ((int, unsigned char *));
extern int string_to_char P_ ((const unsigned char *, int, int *));
extern int char_printable_p P_ ((int c));
extern int multibyte_form_length P_ ((const unsigned char *, int));
extern void parse_str_as_multibyte P_ ((const unsigned char *, int, int *,
int *));
extern int str_as_multibyte P_ ((unsigned char *, int, int, int *));
extern int parse_str_to_multibyte P_ ((unsigned char *, int));
extern int str_to_multibyte P_ ((unsigned char *, int, int));
extern int str_as_unibyte P_ ((unsigned char *, int));
extern int get_charset_id P_ ((Lisp_Object));
extern int find_charset_in_text P_ ((const unsigned char *, int, int, int *,
Lisp_Object));
extern int strwidth P_ ((unsigned char *, int));
extern int c_string_width P_ ((const unsigned char *, int, int, int *, int *));
extern int lisp_string_width P_ ((Lisp_Object, int, int *, int *));
extern int char_bytes P_ ((int));
extern int char_valid_p P_ ((int, int));
EXFUN (Funibyte_char_to_multibyte, 1);
extern Lisp_Object Vtranslation_table_vector;
/* Return a translation table of id number ID. */
#define GET_TRANSLATION_TABLE(id) \
(XCDR(XVECTOR(Vtranslation_table_vector)->contents[(id)]))
/* A char-table for characters which may invoke auto-filling. */
extern Lisp_Object Vauto_fill_chars;
/* Copy LEN bytes from FROM to TO. This macro should be used only
when a caller knows that LEN is short and the obvious copy loop is
faster than calling bcopy which has some overhead. Copying a
multibyte sequence of a multibyte character is the typical case. */
#define BCOPY_SHORT(from, to, len) \
do { \
int i = len; \
const unsigned char *from_p = from; \
unsigned char *to_p = to; \
while (i--) *to_p++ = *from_p++; \
} while (0)
#endif /* EMACS_CHARSET_H */
|