1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
|
/* CCL (Code Conversion Language) interpreter.
Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
Copyright (C) 2001, 2002 Free Software Foundation, Inc.
Licensed to the Free Software Foundation.
This file is part of GNU Emacs.
GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <config.h>
#include <stdio.h>
#include "lisp.h"
#include "charset.h"
#include "ccl.h"
#include "coding.h"
/* This contains all code conversion map available to CCL. */
Lisp_Object Vcode_conversion_map_vector;
/* Alist of fontname patterns vs corresponding CCL program. */
Lisp_Object Vfont_ccl_encoder_alist;
/* This symbol is a property which assocates with ccl program vector.
Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
Lisp_Object Qccl_program;
/* These symbols are properties which associate with code conversion
map and their ID respectively. */
Lisp_Object Qcode_conversion_map;
Lisp_Object Qcode_conversion_map_id;
/* Symbols of ccl program have this property, a value of the property
is an index for Vccl_protram_table. */
Lisp_Object Qccl_program_idx;
/* Table of registered CCL programs. Each element is a vector of
NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of
the program, CCL_PROG (vector) is the compiled code of the program,
RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is
already resolved to index numbers or not. */
Lisp_Object Vccl_program_table;
/* Vector of registered hash tables for translation. */
Lisp_Object Vtranslation_hash_table_vector;
/* Return a hash table of id number ID. */
#define GET_HASH_TABLE(id) \
(XHASH_TABLE (XCDR(XVECTOR(Vtranslation_hash_table_vector)->contents[(id)])))
/* CCL (Code Conversion Language) is a simple language which has
operations on one input buffer, one output buffer, and 7 registers.
The syntax of CCL is described in `ccl.el'. Emacs Lisp function
`ccl-compile' compiles a CCL program and produces a CCL code which
is a vector of integers. The structure of this vector is as
follows: The 1st element: buffer-magnification, a factor for the
size of output buffer compared with the size of input buffer. The
2nd element: address of CCL code to be executed when encountered
with end of input stream. The 3rd and the remaining elements: CCL
codes. */
/* Header of CCL compiled code */
#define CCL_HEADER_BUF_MAG 0
#define CCL_HEADER_EOF 1
#define CCL_HEADER_MAIN 2
/* CCL code is a sequence of 28-bit non-negative integers (i.e. the
MSB is always 0), each contains CCL command and/or arguments in the
following format:
|----------------- integer (28-bit) ------------------|
|------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
|--constant argument--|-register-|-register-|-command-|
ccccccccccccccccc RRR rrr XXXXX
or
|------- relative address -------|-register-|-command-|
cccccccccccccccccccc rrr XXXXX
or
|------------- constant or other args ----------------|
cccccccccccccccccccccccccccc
where, `cc...c' is a non-negative integer indicating constant value
(the left most `c' is always 0) or an absolute jump address, `RRR'
and `rrr' are CCL register number, `XXXXX' is one of the following
CCL commands. */
/* CCL commands
Each comment fields shows one or more lines for command syntax and
the following lines for semantics of the command. In semantics, IC
stands for Instruction Counter. */
#define CCL_SetRegister 0x00 /* Set register a register value:
1:00000000000000000RRRrrrXXXXX
------------------------------
reg[rrr] = reg[RRR];
*/
#define CCL_SetShortConst 0x01 /* Set register a short constant value:
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
------------------------------
reg[rrr] = CCCCCCCCCCCCCCCCCCC;
*/
#define CCL_SetConst 0x02 /* Set register a constant value:
1:00000000000000000000rrrXXXXX
2:CONSTANT
------------------------------
reg[rrr] = CONSTANT;
IC++;
*/
#define CCL_SetArray 0x03 /* Set register an element of array:
1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
2:ELEMENT[0]
3:ELEMENT[1]
...
------------------------------
if (0 <= reg[RRR] < CC..C)
reg[rrr] = ELEMENT[reg[RRR]];
IC += CC..C;
*/
#define CCL_Jump 0x04 /* Jump:
1:A--D--D--R--E--S--S-000XXXXX
------------------------------
IC += ADDRESS;
*/
/* Note: If CC..C is greater than 0, the second code is omitted. */
#define CCL_JumpCond 0x05 /* Jump conditional:
1:A--D--D--R--E--S--S-rrrXXXXX
------------------------------
if (!reg[rrr])
IC += ADDRESS;
*/
#define CCL_WriteRegisterJump 0x06 /* Write register and jump:
1:A--D--D--R--E--S--S-rrrXXXXX
------------------------------
write (reg[rrr]);
IC += ADDRESS;
*/
#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
1:A--D--D--R--E--S--S-rrrXXXXX
2:A--D--D--R--E--S--S-rrrYYYYY
-----------------------------
write (reg[rrr]);
IC++;
read (reg[rrr]);
IC += ADDRESS;
*/
/* Note: If read is suspended, the resumed execution starts from the
second code (YYYYY == CCL_ReadJump). */
#define CCL_WriteConstJump 0x08 /* Write constant and jump:
1:A--D--D--R--E--S--S-000XXXXX
2:CONST
------------------------------
write (CONST);
IC += ADDRESS;
*/
#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
1:A--D--D--R--E--S--S-rrrXXXXX
2:CONST
3:A--D--D--R--E--S--S-rrrYYYYY
-----------------------------
write (CONST);
IC += 2;
read (reg[rrr]);
IC += ADDRESS;
*/
/* Note: If read is suspended, the resumed execution starts from the
second code (YYYYY == CCL_ReadJump). */
#define CCL_WriteStringJump 0x0A /* Write string and jump:
1:A--D--D--R--E--S--S-000XXXXX
2:LENGTH
3:0000STRIN[0]STRIN[1]STRIN[2]
...
------------------------------
write_string (STRING, LENGTH);
IC += ADDRESS;
*/
#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
1:A--D--D--R--E--S--S-rrrXXXXX
2:LENGTH
3:ELEMENET[0]
4:ELEMENET[1]
...
N:A--D--D--R--E--S--S-rrrYYYYY
------------------------------
if (0 <= reg[rrr] < LENGTH)
write (ELEMENT[reg[rrr]]);
IC += LENGTH + 2; (... pointing at N+1)
read (reg[rrr]);
IC += ADDRESS;
*/
/* Note: If read is suspended, the resumed execution starts from the
Nth code (YYYYY == CCL_ReadJump). */
#define CCL_ReadJump 0x0C /* Read and jump:
1:A--D--D--R--E--S--S-rrrYYYYY
-----------------------------
read (reg[rrr]);
IC += ADDRESS;
*/
#define CCL_Branch 0x0D /* Jump by branch table:
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
2:A--D--D--R--E-S-S[0]000XXXXX
3:A--D--D--R--E-S-S[1]000XXXXX
...
------------------------------
if (0 <= reg[rrr] < CC..C)
IC += ADDRESS[reg[rrr]];
else
IC += ADDRESS[CC..C];
*/
#define CCL_ReadRegister 0x0E /* Read bytes into registers:
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
...
------------------------------
while (CCC--)
read (reg[rrr]);
*/
#define CCL_WriteExprConst 0x0F /* write result of expression:
1:00000OPERATION000RRR000XXXXX
2:CONSTANT
------------------------------
write (reg[RRR] OPERATION CONSTANT);
IC++;
*/
/* Note: If the Nth read is suspended, the resumed execution starts
from the Nth code. */
#define CCL_ReadBranch 0x10 /* Read one byte into a register,
and jump by branch table:
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
2:A--D--D--R--E-S-S[0]000XXXXX
3:A--D--D--R--E-S-S[1]000XXXXX
...
------------------------------
read (read[rrr]);
if (0 <= reg[rrr] < CC..C)
IC += ADDRESS[reg[rrr]];
else
IC += ADDRESS[CC..C];
*/
#define CCL_WriteRegister 0x11 /* Write registers:
1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
...
------------------------------
while (CCC--)
write (reg[rrr]);
...
*/
/* Note: If the Nth write is suspended, the resumed execution
starts from the Nth code. */
#define CCL_WriteExprRegister 0x12 /* Write result of expression
1:00000OPERATIONRrrRRR000XXXXX
------------------------------
write (reg[RRR] OPERATION reg[Rrr]);
*/
#define CCL_Call 0x13 /* Call the CCL program whose ID is
CC..C or cc..c.
1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
[2:00000000cccccccccccccccccccc]
------------------------------
if (FFF)
call (cc..c)
IC++;
else
call (CC..C)
*/
#define CCL_WriteConstString 0x14 /* Write a constant or a string:
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
[2:0000STRIN[0]STRIN[1]STRIN[2]]
[...]
-----------------------------
if (!rrr)
write (CC..C)
else
write_string (STRING, CC..C);
IC += (CC..C + 2) / 3;
*/
#define CCL_WriteArray 0x15 /* Write an element of array:
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
2:ELEMENT[0]
3:ELEMENT[1]
...
------------------------------
if (0 <= reg[rrr] < CC..C)
write (ELEMENT[reg[rrr]]);
IC += CC..C;
*/
#define CCL_End 0x16 /* Terminate:
1:00000000000000000000000XXXXX
------------------------------
terminate ();
*/
/* The following two codes execute an assignment arithmetic/logical
operation. The form of the operation is like REG OP= OPERAND. */
#define CCL_ExprSelfConst 0x17 /* REG OP= constant:
1:00000OPERATION000000rrrXXXXX
2:CONSTANT
------------------------------
reg[rrr] OPERATION= CONSTANT;
*/
#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
1:00000OPERATION000RRRrrrXXXXX
------------------------------
reg[rrr] OPERATION= reg[RRR];
*/
/* The following codes execute an arithmetic/logical operation. The
form of the operation is like REG_X = REG_Y OP OPERAND2. */
#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
1:00000OPERATION000RRRrrrXXXXX
2:CONSTANT
------------------------------
reg[rrr] = reg[RRR] OPERATION CONSTANT;
IC++;
*/
#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
1:00000OPERATIONRrrRRRrrrXXXXX
------------------------------
reg[rrr] = reg[RRR] OPERATION reg[Rrr];
*/
#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
an operation on constant:
1:A--D--D--R--E--S--S-rrrXXXXX
2:OPERATION
3:CONSTANT
-----------------------------
reg[7] = reg[rrr] OPERATION CONSTANT;
if (!(reg[7]))
IC += ADDRESS;
else
IC += 2
*/
#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
an operation on register:
1:A--D--D--R--E--S--S-rrrXXXXX
2:OPERATION
3:RRR
-----------------------------
reg[7] = reg[rrr] OPERATION reg[RRR];
if (!reg[7])
IC += ADDRESS;
else
IC += 2;
*/
#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
to an operation on constant:
1:A--D--D--R--E--S--S-rrrXXXXX
2:OPERATION
3:CONSTANT
-----------------------------
read (reg[rrr]);
reg[7] = reg[rrr] OPERATION CONSTANT;
if (!reg[7])
IC += ADDRESS;
else
IC += 2;
*/
#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
to an operation on register:
1:A--D--D--R--E--S--S-rrrXXXXX
2:OPERATION
3:RRR
-----------------------------
read (reg[rrr]);
reg[7] = reg[rrr] OPERATION reg[RRR];
if (!reg[7])
IC += ADDRESS;
else
IC += 2;
*/
#define CCL_Extension 0x1F /* Extended CCL code
1:ExtendedCOMMNDRrrRRRrrrXXXXX
2:ARGUEMENT
3:...
------------------------------
extended_command (rrr,RRR,Rrr,ARGS)
*/
/*
Here after, Extended CCL Instructions.
Bit length of extended command is 14.
Therefore, the instruction code range is 0..16384(0x3fff).
*/
/* Read a multibyte characeter.
A code point is stored into reg[rrr]. A charset ID is stored into
reg[RRR]. */
#define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
1:ExtendedCOMMNDRrrRRRrrrXXXXX */
/* Write a multibyte character.
Write a character whose code point is reg[rrr] and the charset ID
is reg[RRR]. */
#define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
1:ExtendedCOMMNDRrrRRRrrrXXXXX */
/* Translate a character whose code point is reg[rrr] and the charset
ID is reg[RRR] by a translation table whose ID is reg[Rrr].
A translated character is set in reg[rrr] (code point) and reg[RRR]
(charset ID). */
#define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
1:ExtendedCOMMNDRrrRRRrrrXXXXX */
/* Translate a character whose code point is reg[rrr] and the charset
ID is reg[RRR] by a translation table whose ID is ARGUMENT.
A translated character is set in reg[rrr] (code point) and reg[RRR]
(charset ID). */
#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
1:ExtendedCOMMNDRrrRRRrrrXXXXX
2:ARGUMENT(Translation Table ID)
*/
/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
reg[RRR]) MAP until some value is found.
Each MAP is a Lisp vector whose element is number, nil, t, or
lambda.
If the element is nil, ignore the map and proceed to the next map.
If the element is t or lambda, finish without changing reg[rrr].
If the element is a number, set reg[rrr] to the number and finish.
Detail of the map structure is descibed in the comment for
CCL_MapMultiple below. */
#define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
1:ExtendedCOMMNDXXXRRRrrrXXXXX
2:NUMBER of MAPs
3:MAP-ID1
4:MAP-ID2
...
*/
/* Map the code in reg[rrr] by MAPs starting from the Nth (N =
reg[RRR]) map.
MAPs are supplied in the succeeding CCL codes as follows:
When CCL program gives this nested structure of map to this command:
((MAP-ID11
MAP-ID12
(MAP-ID121 MAP-ID122 MAP-ID123)
MAP-ID13)
(MAP-ID21
(MAP-ID211 (MAP-ID2111) MAP-ID212)
MAP-ID22)),
the compiled CCL codes has this sequence:
CCL_MapMultiple (CCL code of this command)
16 (total number of MAPs and SEPARATORs)
-7 (1st SEPARATOR)
MAP-ID11
MAP-ID12
-3 (2nd SEPARATOR)
MAP-ID121
MAP-ID122
MAP-ID123
MAP-ID13
-7 (3rd SEPARATOR)
MAP-ID21
-4 (4th SEPARATOR)
MAP-ID211
-1 (5th SEPARATOR)
MAP_ID2111
MAP-ID212
MAP-ID22
A value of each SEPARATOR follows this rule:
MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
(*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
When some map fails to map (i.e. it doesn't have a value for
reg[rrr]), the mapping is treated as identity.
The mapping is iterated for all maps in each map set (set of maps
separated by SEPARATOR) except in the case that lambda is
encountered. More precisely, the mapping proceeds as below:
At first, VAL0 is set to reg[rrr], and it is translated by the
first map to VAL1. Then, VAL1 is translated by the next map to
VAL2. This mapping is iterated until the last map is used. The
result of the mapping is the last value of VAL?. When the mapping
process reached to the end of the map set, it moves to the next
map set. If the next does not exit, the mapping process terminates,
and regard the last value as a result.
But, when VALm is mapped to VALn and VALn is not a number, the
mapping proceed as below:
If VALn is nil, the lastest map is ignored and the mapping of VALm
proceed to the next map.
In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
proceed to the next map.
If VALn is lambda, move to the next map set like reaching to the
end of the current map set.
If VALn is a symbol, call the CCL program refered by it.
Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
Such special values are regarded as nil, t, and lambda respectively.
Each map is a Lisp vector of the following format (a) or (b):
(a)......[STARTPOINT VAL1 VAL2 ...]
(b)......[t VAL STARTPOINT ENDPOINT],
where
STARTPOINT is an offset to be used for indexing a map,
ENDPOINT is a maximum index number of a map,
VAL and VALn is a number, nil, t, or lambda.
Valid index range of a map of type (a) is:
STARTPOINT <= index < STARTPOINT + map_size - 1
Valid index range of a map of type (b) is:
STARTPOINT <= index < ENDPOINT */
#define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
1:ExtendedCOMMNDXXXRRRrrrXXXXX
2:N-2
3:SEPARATOR_1 (< 0)
4:MAP-ID_1
5:MAP-ID_2
...
M:SEPARATOR_x (< 0)
M+1:MAP-ID_y
...
N:SEPARATOR_z (< 0)
*/
#define MAX_MAP_SET_LEVEL 30
typedef struct
{
int rest_length;
int orig_val;
} tr_stack;
static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
static tr_stack *mapping_stack_pointer;
/* If this variable is non-zero, it indicates the stack_idx
of immediately called by CCL_MapMultiple. */
static int stack_idx_of_map_multiple;
#define PUSH_MAPPING_STACK(restlen, orig) \
do \
{ \
mapping_stack_pointer->rest_length = (restlen); \
mapping_stack_pointer->orig_val = (orig); \
mapping_stack_pointer++; \
} \
while (0)
#define POP_MAPPING_STACK(restlen, orig) \
do \
{ \
mapping_stack_pointer--; \
(restlen) = mapping_stack_pointer->rest_length; \
(orig) = mapping_stack_pointer->orig_val; \
} \
while (0)
#define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
do \
{ \
struct ccl_program called_ccl; \
if (stack_idx >= 256 \
|| (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
{ \
if (stack_idx > 0) \
{ \
ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
ic = ccl_prog_stack_struct[0].ic; \
} \
CCL_INVALID_CMD; \
} \
ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
stack_idx++; \
ccl_prog = called_ccl.prog; \
ic = CCL_HEADER_MAIN; \
goto ccl_repeat; \
} \
while (0)
#define CCL_MapSingle 0x12 /* Map by single code conversion map
1:ExtendedCOMMNDXXXRRRrrrXXXXX
2:MAP-ID
------------------------------
Map reg[rrr] by MAP-ID.
If some valid mapping is found,
set reg[rrr] to the result,
else
set reg[RRR] to -1.
*/
#define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
integer key. Afterwards R7 set
to 1 iff lookup succeeded.
1:ExtendedCOMMNDRrrRRRXXXXXXXX
2:ARGUMENT(Hash table ID) */
#define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
character key. Afterwards R7 set
to 1 iff lookup succeeded.
1:ExtendedCOMMNDRrrRRRrrrXXXXX
2:ARGUMENT(Hash table ID) */
/* CCL arithmetic/logical operators. */
#define CCL_PLUS 0x00 /* X = Y + Z */
#define CCL_MINUS 0x01 /* X = Y - Z */
#define CCL_MUL 0x02 /* X = Y * Z */
#define CCL_DIV 0x03 /* X = Y / Z */
#define CCL_MOD 0x04 /* X = Y % Z */
#define CCL_AND 0x05 /* X = Y & Z */
#define CCL_OR 0x06 /* X = Y | Z */
#define CCL_XOR 0x07 /* X = Y ^ Z */
#define CCL_LSH 0x08 /* X = Y << Z */
#define CCL_RSH 0x09 /* X = Y >> Z */
#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
#define CCL_LS 0x10 /* X = (X < Y) */
#define CCL_GT 0x11 /* X = (X > Y) */
#define CCL_EQ 0x12 /* X = (X == Y) */
#define CCL_LE 0x13 /* X = (X <= Y) */
#define CCL_GE 0x14 /* X = (X >= Y) */
#define CCL_NE 0x15 /* X = (X != Y) */
#define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
#define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
r[7] = LOWER_BYTE (SJIS (Y, Z) */
/* Terminate CCL program successfully. */
#define CCL_SUCCESS \
do \
{ \
ccl->status = CCL_STAT_SUCCESS; \
goto ccl_finish; \
} \
while(0)
/* Suspend CCL program because of reading from empty input buffer or
writing to full output buffer. When this program is resumed, the
same I/O command is executed. */
#define CCL_SUSPEND(stat) \
do \
{ \
ic--; \
ccl->status = stat; \
goto ccl_finish; \
} \
while (0)
/* Terminate CCL program because of invalid command. Should not occur
in the normal case. */
#define CCL_INVALID_CMD \
do \
{ \
ccl->status = CCL_STAT_INVALID_CMD; \
goto ccl_error_handler; \
} \
while(0)
/* Encode one character CH to multibyte form and write to the current
output buffer. If CH is less than 256, CH is written as is. */
#define CCL_WRITE_CHAR(ch) \
do { \
int bytes = SINGLE_BYTE_CHAR_P (ch) ? 1: CHAR_BYTES (ch); \
if (!dst) \
CCL_INVALID_CMD; \
else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
{ \
if (bytes == 1) \
{ \
*dst++ = (ch); \
if ((ch) >= 0x80 && (ch) < 0xA0) \
/* We may have to convert this eight-bit char to \
multibyte form later. */ \
extra_bytes++; \
} \
else if (CHAR_VALID_P (ch, 0)) \
dst += CHAR_STRING (ch, dst); \
else \
CCL_INVALID_CMD; \
} \
else \
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
} while (0)
/* Encode one character CH to multibyte form and write to the current
output buffer. The output bytes always forms a valid multibyte
sequence. */
#define CCL_WRITE_MULTIBYTE_CHAR(ch) \
do { \
int bytes = CHAR_BYTES (ch); \
if (!dst) \
CCL_INVALID_CMD; \
else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
{ \
if (CHAR_VALID_P ((ch), 0)) \
dst += CHAR_STRING ((ch), dst); \
else \
CCL_INVALID_CMD; \
} \
else \
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
} while (0)
/* Write a string at ccl_prog[IC] of length LEN to the current output
buffer. */
#define CCL_WRITE_STRING(len) \
do { \
if (!dst) \
CCL_INVALID_CMD; \
else if (dst + len <= (dst_bytes ? dst_end : src)) \
for (i = 0; i < len; i++) \
*dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
>> ((2 - (i % 3)) * 8)) & 0xFF; \
else \
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
} while (0)
/* Read one byte from the current input buffer into REGth register. */
#define CCL_READ_CHAR(REG) \
do { \
if (!src) \
CCL_INVALID_CMD; \
else if (src < src_end) \
{ \
REG = *src++; \
if (REG == '\n' \
&& ccl->eol_type != CODING_EOL_LF) \
{ \
/* We are encoding. */ \
if (ccl->eol_type == CODING_EOL_CRLF) \
{ \
if (ccl->cr_consumed) \
ccl->cr_consumed = 0; \
else \
{ \
ccl->cr_consumed = 1; \
REG = '\r'; \
src--; \
} \
} \
else \
REG = '\r'; \
} \
if (REG == LEADING_CODE_8_BIT_CONTROL \
&& ccl->multibyte) \
REG = *src++ - 0x20; \
} \
else if (ccl->last_block) \
{ \
ic = ccl->eof_ic; \
goto ccl_repeat; \
} \
else \
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
} while (0)
/* Set C to the character code made from CHARSET and CODE. This is
like MAKE_CHAR but check the validity of CHARSET and CODE. If they
are not valid, set C to (CODE & 0xFF) because that is usually the
case that CCL_ReadMultibyteChar2 read an invalid code and it set
CODE to that invalid byte. */
#define CCL_MAKE_CHAR(charset, code, c) \
do { \
if (charset == CHARSET_ASCII) \
c = code & 0xFF; \
else if (CHARSET_DEFINED_P (charset) \
&& (code & 0x7F) >= 32 \
&& (code < 256 || ((code >> 7) & 0x7F) >= 32)) \
{ \
int c1 = code & 0x7F, c2 = 0; \
\
if (code >= 256) \
c2 = c1, c1 = (code >> 7) & 0x7F; \
c = MAKE_CHAR (charset, c1, c2); \
} \
else \
c = code & 0xFF; \
} while (0)
/* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
text goes to a place pointed by DESTINATION, the length of which
should not exceed DST_BYTES. The bytes actually processed is
returned as *CONSUMED. The return value is the length of the
resulting text. As a side effect, the contents of CCL registers
are updated. If SOURCE or DESTINATION is NULL, only operations on
registers are permitted. */
#ifdef CCL_DEBUG
#define CCL_DEBUG_BACKTRACE_LEN 256
int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN];
int ccl_backtrace_idx;
#endif
struct ccl_prog_stack
{
Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
int ic; /* Instruction Counter. */
};
/* For the moment, we only support depth 256 of stack. */
static struct ccl_prog_stack ccl_prog_stack_struct[256];
int
ccl_driver (ccl, source, destination, src_bytes, dst_bytes, consumed)
struct ccl_program *ccl;
unsigned char *source, *destination;
int src_bytes, dst_bytes;
int *consumed;
{
register int *reg = ccl->reg;
register int ic = ccl->ic;
register int code = 0, field1, field2;
register Lisp_Object *ccl_prog = ccl->prog;
unsigned char *src = source, *src_end = src + src_bytes;
unsigned char *dst = destination, *dst_end = dst + dst_bytes;
int jump_address;
int i = 0, j, op;
int stack_idx = ccl->stack_idx;
/* Instruction counter of the current CCL code. */
int this_ic = 0;
/* CCL_WRITE_CHAR will produce 8-bit code of range 0x80..0x9F. But,
each of them will be converted to multibyte form of 2-byte
sequence. For that conversion, we remember how many more bytes
we must keep in DESTINATION in this variable. */
int extra_bytes = 0;
if (ic >= ccl->eof_ic)
ic = CCL_HEADER_MAIN;
if (ccl->buf_magnification == 0) /* We can't produce any bytes. */
dst = NULL;
/* Set mapping stack pointer. */
mapping_stack_pointer = mapping_stack;
#ifdef CCL_DEBUG
ccl_backtrace_idx = 0;
#endif
for (;;)
{
ccl_repeat:
#ifdef CCL_DEBUG
ccl_backtrace_table[ccl_backtrace_idx++] = ic;
if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
ccl_backtrace_idx = 0;
ccl_backtrace_table[ccl_backtrace_idx] = 0;
#endif
if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
{
/* We can't just signal Qquit, instead break the loop as if
the whole data is processed. Don't reset Vquit_flag, it
must be handled later at a safer place. */
if (consumed)
src = source + src_bytes;
ccl->status = CCL_STAT_QUIT;
break;
}
this_ic = ic;
code = XINT (ccl_prog[ic]); ic++;
field1 = code >> 8;
field2 = (code & 0xFF) >> 5;
#define rrr field2
#define RRR (field1 & 7)
#define Rrr ((field1 >> 3) & 7)
#define ADDR field1
#define EXCMD (field1 >> 6)
switch (code & 0x1F)
{
case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
reg[rrr] = reg[RRR];
break;
case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
reg[rrr] = field1;
break;
case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
reg[rrr] = XINT (ccl_prog[ic]);
ic++;
break;
case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
i = reg[RRR];
j = field1 >> 3;
if ((unsigned int) i < j)
reg[rrr] = XINT (ccl_prog[ic + i]);
ic += j;
break;
case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
ic += ADDR;
break;
case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
if (!reg[rrr])
ic += ADDR;
break;
case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
i = reg[rrr];
CCL_WRITE_CHAR (i);
ic += ADDR;
break;
case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
i = reg[rrr];
CCL_WRITE_CHAR (i);
ic++;
CCL_READ_CHAR (reg[rrr]);
ic += ADDR - 1;
break;
case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
i = XINT (ccl_prog[ic]);
CCL_WRITE_CHAR (i);
ic += ADDR;
break;
case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
i = XINT (ccl_prog[ic]);
CCL_WRITE_CHAR (i);
ic++;
CCL_READ_CHAR (reg[rrr]);
ic += ADDR - 1;
break;
case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
j = XINT (ccl_prog[ic]);
ic++;
CCL_WRITE_STRING (j);
ic += ADDR - 1;
break;
case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
i = reg[rrr];
j = XINT (ccl_prog[ic]);
if ((unsigned int) i < j)
{
i = XINT (ccl_prog[ic + 1 + i]);
CCL_WRITE_CHAR (i);
}
ic += j + 2;
CCL_READ_CHAR (reg[rrr]);
ic += ADDR - (j + 2);
break;
case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
CCL_READ_CHAR (reg[rrr]);
ic += ADDR;
break;
case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
CCL_READ_CHAR (reg[rrr]);
/* fall through ... */
case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
if ((unsigned int) reg[rrr] < field1)
ic += XINT (ccl_prog[ic + reg[rrr]]);
else
ic += XINT (ccl_prog[ic + field1]);
break;
case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
while (1)
{
CCL_READ_CHAR (reg[rrr]);
if (!field1) break;
code = XINT (ccl_prog[ic]); ic++;
field1 = code >> 8;
field2 = (code & 0xFF) >> 5;
}
break;
case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
rrr = 7;
i = reg[RRR];
j = XINT (ccl_prog[ic]);
op = field1 >> 6;
jump_address = ic + 1;
goto ccl_set_expr;
case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
while (1)
{
i = reg[rrr];
CCL_WRITE_CHAR (i);
if (!field1) break;
code = XINT (ccl_prog[ic]); ic++;
field1 = code >> 8;
field2 = (code & 0xFF) >> 5;
}
break;
case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
rrr = 7;
i = reg[RRR];
j = reg[Rrr];
op = field1 >> 6;
jump_address = ic;
goto ccl_set_expr;
case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
{
Lisp_Object slot;
int prog_id;
/* If FFF is nonzero, the CCL program ID is in the
following code. */
if (rrr)
{
prog_id = XINT (ccl_prog[ic]);
ic++;
}
else
prog_id = field1;
if (stack_idx >= 256
|| prog_id < 0
|| prog_id >= ASIZE (Vccl_program_table)
|| (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
|| !VECTORP (AREF (slot, 1)))
{
if (stack_idx > 0)
{
ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
ic = ccl_prog_stack_struct[0].ic;
}
CCL_INVALID_CMD;
}
ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
ccl_prog_stack_struct[stack_idx].ic = ic;
stack_idx++;
ccl_prog = XVECTOR (AREF (slot, 1))->contents;
ic = CCL_HEADER_MAIN;
}
break;
case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
if (!rrr)
CCL_WRITE_CHAR (field1);
else
{
CCL_WRITE_STRING (field1);
ic += (field1 + 2) / 3;
}
break;
case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
i = reg[rrr];
if ((unsigned int) i < field1)
{
j = XINT (ccl_prog[ic + i]);
CCL_WRITE_CHAR (j);
}
ic += field1;
break;
case CCL_End: /* 0000000000000000000000XXXXX */
if (stack_idx > 0)
{
stack_idx--;
ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
ic = ccl_prog_stack_struct[stack_idx].ic;
break;
}
if (src)
src = src_end;
/* ccl->ic should points to this command code again to
suppress further processing. */
ic--;
CCL_SUCCESS;
case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
i = XINT (ccl_prog[ic]);
ic++;
op = field1 >> 6;
goto ccl_expr_self;
case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
i = reg[RRR];
op = field1 >> 6;
ccl_expr_self:
switch (op)
{
case CCL_PLUS: reg[rrr] += i; break;
case CCL_MINUS: reg[rrr] -= i; break;
case CCL_MUL: reg[rrr] *= i; break;
case CCL_DIV: reg[rrr] /= i; break;
case CCL_MOD: reg[rrr] %= i; break;
case CCL_AND: reg[rrr] &= i; break;
case CCL_OR: reg[rrr] |= i; break;
case CCL_XOR: reg[rrr] ^= i; break;
case CCL_LSH: reg[rrr] <<= i; break;
case CCL_RSH: reg[rrr] >>= i; break;
case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
case CCL_LS: reg[rrr] = reg[rrr] < i; break;
case CCL_GT: reg[rrr] = reg[rrr] > i; break;
case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
case CCL_NE: reg[rrr] = reg[rrr] != i; break;
default: CCL_INVALID_CMD;
}
break;
case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
i = reg[RRR];
j = XINT (ccl_prog[ic]);
op = field1 >> 6;
jump_address = ++ic;
goto ccl_set_expr;
case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
i = reg[RRR];
j = reg[Rrr];
op = field1 >> 6;
jump_address = ic;
goto ccl_set_expr;
case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
CCL_READ_CHAR (reg[rrr]);
case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
i = reg[rrr];
op = XINT (ccl_prog[ic]);
jump_address = ic++ + ADDR;
j = XINT (ccl_prog[ic]);
ic++;
rrr = 7;
goto ccl_set_expr;
case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
CCL_READ_CHAR (reg[rrr]);
case CCL_JumpCondExprReg:
i = reg[rrr];
op = XINT (ccl_prog[ic]);
jump_address = ic++ + ADDR;
j = reg[XINT (ccl_prog[ic])];
ic++;
rrr = 7;
ccl_set_expr:
switch (op)
{
case CCL_PLUS: reg[rrr] = i + j; break;
case CCL_MINUS: reg[rrr] = i - j; break;
case CCL_MUL: reg[rrr] = i * j; break;
case CCL_DIV: reg[rrr] = i / j; break;
case CCL_MOD: reg[rrr] = i % j; break;
case CCL_AND: reg[rrr] = i & j; break;
case CCL_OR: reg[rrr] = i | j; break;
case CCL_XOR: reg[rrr] = i ^ j;; break;
case CCL_LSH: reg[rrr] = i << j; break;
case CCL_RSH: reg[rrr] = i >> j; break;
case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
case CCL_LS: reg[rrr] = i < j; break;
case CCL_GT: reg[rrr] = i > j; break;
case CCL_EQ: reg[rrr] = i == j; break;
case CCL_LE: reg[rrr] = i <= j; break;
case CCL_GE: reg[rrr] = i >= j; break;
case CCL_NE: reg[rrr] = i != j; break;
case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break;
case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break;
default: CCL_INVALID_CMD;
}
code &= 0x1F;
if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
{
i = reg[rrr];
CCL_WRITE_CHAR (i);
ic = jump_address;
}
else if (!reg[rrr])
ic = jump_address;
break;
case CCL_Extension:
switch (EXCMD)
{
case CCL_ReadMultibyteChar2:
if (!src)
CCL_INVALID_CMD;
if (src >= src_end)
{
src++;
goto ccl_read_multibyte_character_suspend;
}
if (!ccl->multibyte)
{
int bytes;
if (!UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
{
reg[RRR] = CHARSET_8_BIT_CONTROL;
reg[rrr] = *src++;
break;
}
}
i = *src++;
if (i == '\n' && ccl->eol_type != CODING_EOL_LF)
{
/* We are encoding. */
if (ccl->eol_type == CODING_EOL_CRLF)
{
if (ccl->cr_consumed)
ccl->cr_consumed = 0;
else
{
ccl->cr_consumed = 1;
i = '\r';
src--;
}
}
else
i = '\r';
reg[rrr] = i;
reg[RRR] = CHARSET_ASCII;
}
else if (i < 0x80)
{
/* ASCII */
reg[rrr] = i;
reg[RRR] = CHARSET_ASCII;
}
else if (i <= MAX_CHARSET_OFFICIAL_DIMENSION2)
{
int dimension = BYTES_BY_CHAR_HEAD (i) - 1;
if (dimension == 0)
{
/* `i' is a leading code for an undefined charset. */
reg[RRR] = CHARSET_8_BIT_GRAPHIC;
reg[rrr] = i;
}
else if (src + dimension > src_end)
goto ccl_read_multibyte_character_suspend;
else
{
reg[RRR] = i;
i = (*src++ & 0x7F);
if (dimension == 1)
reg[rrr] = i;
else
reg[rrr] = ((i << 7) | (*src++ & 0x7F));
}
}
else if ((i == LEADING_CODE_PRIVATE_11)
|| (i == LEADING_CODE_PRIVATE_12))
{
if ((src + 1) >= src_end)
goto ccl_read_multibyte_character_suspend;
reg[RRR] = *src++;
reg[rrr] = (*src++ & 0x7F);
}
else if ((i == LEADING_CODE_PRIVATE_21)
|| (i == LEADING_CODE_PRIVATE_22))
{
if ((src + 2) >= src_end)
goto ccl_read_multibyte_character_suspend;
reg[RRR] = *src++;
i = (*src++ & 0x7F);
reg[rrr] = ((i << 7) | (*src & 0x7F));
src++;
}
else if (i == LEADING_CODE_8_BIT_CONTROL)
{
if (src >= src_end)
goto ccl_read_multibyte_character_suspend;
reg[RRR] = CHARSET_8_BIT_CONTROL;
reg[rrr] = (*src++ - 0x20);
}
else if (i >= 0xA0)
{
reg[RRR] = CHARSET_8_BIT_GRAPHIC;
reg[rrr] = i;
}
else
{
/* INVALID CODE. Return a single byte character. */
reg[RRR] = CHARSET_ASCII;
reg[rrr] = i;
}
break;
ccl_read_multibyte_character_suspend:
if (src <= src_end && !ccl->multibyte && ccl->last_block)
{
reg[RRR] = CHARSET_8_BIT_CONTROL;
reg[rrr] = i;
break;
}
src--;
if (ccl->last_block)
{
ic = ccl->eof_ic;
goto ccl_repeat;
}
else
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);
break;
case CCL_WriteMultibyteChar2:
i = reg[RRR]; /* charset */
if (i == CHARSET_ASCII
|| i == CHARSET_8_BIT_CONTROL
|| i == CHARSET_8_BIT_GRAPHIC)
i = reg[rrr] & 0xFF;
else if (CHARSET_DIMENSION (i) == 1)
i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
else if (i < MIN_CHARSET_PRIVATE_DIMENSION2)
i = ((i - 0x8F) << 14) | reg[rrr];
else
i = ((i - 0xE0) << 14) | reg[rrr];
CCL_WRITE_MULTIBYTE_CHAR (i);
break;
case CCL_TranslateCharacter:
CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]),
i, -1, 0, 0);
SPLIT_CHAR (op, reg[RRR], i, j);
if (j != -1)
i = (i << 7) | j;
reg[rrr] = i;
break;
case CCL_TranslateCharacterConstTbl:
op = XINT (ccl_prog[ic]); /* table */
ic++;
CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0);
SPLIT_CHAR (op, reg[RRR], i, j);
if (j != -1)
i = (i << 7) | j;
reg[rrr] = i;
break;
case CCL_LookupIntConstTbl:
op = XINT (ccl_prog[ic]); /* table */
ic++;
{
struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
op = hash_lookup (h, make_number (reg[RRR]), NULL);
if (op >= 0)
{
Lisp_Object opl;
opl = HASH_VALUE (h, op);
if (!CHAR_VALID_P (XINT (opl), 0))
CCL_INVALID_CMD;
SPLIT_CHAR (XINT (opl), reg[RRR], i, j);
if (j != -1)
i = (i << 7) | j;
reg[rrr] = i;
reg[7] = 1; /* r7 true for success */
}
else
reg[7] = 0;
}
break;
case CCL_LookupCharConstTbl:
op = XINT (ccl_prog[ic]); /* table */
ic++;
CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
{
struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
op = hash_lookup (h, make_number (i), NULL);
if (op >= 0)
{
Lisp_Object opl;
opl = HASH_VALUE (h, op);
if (!INTEGERP (opl))
CCL_INVALID_CMD;
reg[RRR] = XINT (opl);
reg[7] = 1; /* r7 true for success */
}
else
reg[7] = 0;
}
break;
case CCL_IterateMultipleMap:
{
Lisp_Object map, content, attrib, value;
int point, size, fin_ic;
j = XINT (ccl_prog[ic++]); /* number of maps. */
fin_ic = ic + j;
op = reg[rrr];
if ((j > reg[RRR]) && (j >= 0))
{
ic += reg[RRR];
i = reg[RRR];
}
else
{
reg[RRR] = -1;
ic = fin_ic;
break;
}
for (;i < j;i++)
{
size = ASIZE (Vcode_conversion_map_vector);
point = XINT (ccl_prog[ic++]);
if (point >= size) continue;
map = AREF (Vcode_conversion_map_vector, point);
/* Check map varidity. */
if (!CONSP (map)) continue;
map = XCDR (map);
if (!VECTORP (map)) continue;
size = ASIZE (map);
if (size <= 1) continue;
content = AREF (map, 0);
/* check map type,
[STARTPOINT VAL1 VAL2 ...] or
[t ELELMENT STARTPOINT ENDPOINT] */
if (NUMBERP (content))
{
point = XUINT (content);
point = op - point + 1;
if (!((point >= 1) && (point < size))) continue;
content = AREF (map, point);
}
else if (EQ (content, Qt))
{
if (size != 4) continue;
if ((op >= XUINT (AREF (map, 2)))
&& (op < XUINT (AREF (map, 3))))
content = AREF (map, 1);
else
continue;
}
else
continue;
if (NILP (content))
continue;
else if (NUMBERP (content))
{
reg[RRR] = i;
reg[rrr] = XINT(content);
break;
}
else if (EQ (content, Qt) || EQ (content, Qlambda))
{
reg[RRR] = i;
break;
}
else if (CONSP (content))
{
attrib = XCAR (content);
value = XCDR (content);
if (!NUMBERP (attrib) || !NUMBERP (value))
continue;
reg[RRR] = i;
reg[rrr] = XUINT (value);
break;
}
else if (SYMBOLP (content))
CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
else
CCL_INVALID_CMD;
}
if (i == j)
reg[RRR] = -1;
ic = fin_ic;
}
break;
case CCL_MapMultiple:
{
Lisp_Object map, content, attrib, value;
int point, size, map_vector_size;
int map_set_rest_length, fin_ic;
int current_ic = this_ic;
/* inhibit recursive call on MapMultiple. */
if (stack_idx_of_map_multiple > 0)
{
if (stack_idx_of_map_multiple <= stack_idx)
{
stack_idx_of_map_multiple = 0;
mapping_stack_pointer = mapping_stack;
CCL_INVALID_CMD;
}
}
else
mapping_stack_pointer = mapping_stack;
stack_idx_of_map_multiple = 0;
map_set_rest_length =
XINT (ccl_prog[ic++]); /* number of maps and separators. */
fin_ic = ic + map_set_rest_length;
op = reg[rrr];
if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
{
ic += reg[RRR];
i = reg[RRR];
map_set_rest_length -= i;
}
else
{
ic = fin_ic;
reg[RRR] = -1;
mapping_stack_pointer = mapping_stack;
break;
}
if (mapping_stack_pointer <= (mapping_stack + 1))
{
/* Set up initial state. */
mapping_stack_pointer = mapping_stack;
PUSH_MAPPING_STACK (0, op);
reg[RRR] = -1;
}
else
{
/* Recover after calling other ccl program. */
int orig_op;
POP_MAPPING_STACK (map_set_rest_length, orig_op);
POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
switch (op)
{
case -1:
/* Regard it as Qnil. */
op = orig_op;
i++;
ic++;
map_set_rest_length--;
break;
case -2:
/* Regard it as Qt. */
op = reg[rrr];
i++;
ic++;
map_set_rest_length--;
break;
case -3:
/* Regard it as Qlambda. */
op = orig_op;
i += map_set_rest_length;
ic += map_set_rest_length;
map_set_rest_length = 0;
break;
default:
/* Regard it as normal mapping. */
i += map_set_rest_length;
ic += map_set_rest_length;
POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
break;
}
}
map_vector_size = ASIZE (Vcode_conversion_map_vector);
do {
for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
{
point = XINT(ccl_prog[ic]);
if (point < 0)
{
/* +1 is for including separator. */
point = -point + 1;
if (mapping_stack_pointer
>= &mapping_stack[MAX_MAP_SET_LEVEL])
CCL_INVALID_CMD;
PUSH_MAPPING_STACK (map_set_rest_length - point,
reg[rrr]);
map_set_rest_length = point;
reg[rrr] = op;
continue;
}
if (point >= map_vector_size) continue;
map = AREF (Vcode_conversion_map_vector, point);
/* Check map varidity. */
if (!CONSP (map)) continue;
map = XCDR (map);
if (!VECTORP (map)) continue;
size = ASIZE (map);
if (size <= 1) continue;
content = AREF (map, 0);
/* check map type,
[STARTPOINT VAL1 VAL2 ...] or
[t ELEMENT STARTPOINT ENDPOINT] */
if (NUMBERP (content))
{
point = XUINT (content);
point = op - point + 1;
if (!((point >= 1) && (point < size))) continue;
content = AREF (map, point);
}
else if (EQ (content, Qt))
{
if (size != 4) continue;
if ((op >= XUINT (AREF (map, 2))) &&
(op < XUINT (AREF (map, 3))))
content = AREF (map, 1);
else
continue;
}
else
continue;
if (NILP (content))
continue;
reg[RRR] = i;
if (NUMBERP (content))
{
op = XINT (content);
i += map_set_rest_length - 1;
ic += map_set_rest_length - 1;
POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
map_set_rest_length++;
}
else if (CONSP (content))
{
attrib = XCAR (content);
value = XCDR (content);
if (!NUMBERP (attrib) || !NUMBERP (value))
continue;
op = XUINT (value);
i += map_set_rest_length - 1;
ic += map_set_rest_length - 1;
POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
map_set_rest_length++;
}
else if (EQ (content, Qt))
{
op = reg[rrr];
}
else if (EQ (content, Qlambda))
{
i += map_set_rest_length;
ic += map_set_rest_length;
break;
}
else if (SYMBOLP (content))
{
if (mapping_stack_pointer
>= &mapping_stack[MAX_MAP_SET_LEVEL])
CCL_INVALID_CMD;
PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
PUSH_MAPPING_STACK (map_set_rest_length, op);
stack_idx_of_map_multiple = stack_idx + 1;
CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
}
else
CCL_INVALID_CMD;
}
if (mapping_stack_pointer <= (mapping_stack + 1))
break;
POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
i += map_set_rest_length;
ic += map_set_rest_length;
POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
} while (1);
ic = fin_ic;
}
reg[rrr] = op;
break;
case CCL_MapSingle:
{
Lisp_Object map, attrib, value, content;
int size, point;
j = XINT (ccl_prog[ic++]); /* map_id */
op = reg[rrr];
if (j >= ASIZE (Vcode_conversion_map_vector))
{
reg[RRR] = -1;
break;
}
map = AREF (Vcode_conversion_map_vector, j);
if (!CONSP (map))
{
reg[RRR] = -1;
break;
}
map = XCDR (map);
if (!VECTORP (map))
{
reg[RRR] = -1;
break;
}
size = ASIZE (map);
point = XUINT (AREF (map, 0));
point = op - point + 1;
reg[RRR] = 0;
if ((size <= 1) ||
(!((point >= 1) && (point < size))))
reg[RRR] = -1;
else
{
reg[RRR] = 0;
content = AREF (map, point);
if (NILP (content))
reg[RRR] = -1;
else if (NUMBERP (content))
reg[rrr] = XINT (content);
else if (EQ (content, Qt));
else if (CONSP (content))
{
attrib = XCAR (content);
value = XCDR (content);
if (!NUMBERP (attrib) || !NUMBERP (value))
continue;
reg[rrr] = XUINT(value);
break;
}
else if (SYMBOLP (content))
CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
else
reg[RRR] = -1;
}
}
break;
default:
CCL_INVALID_CMD;
}
break;
default:
CCL_INVALID_CMD;
}
}
ccl_error_handler:
/* The suppress_error member is set when e.g. a CCL-based coding
system is used for terminal output. */
if (!ccl->suppress_error && destination)
{
/* We can insert an error message only if DESTINATION is
specified and we still have a room to store the message
there. */
char msg[256];
int msglen;
if (!dst)
dst = destination;
switch (ccl->status)
{
case CCL_STAT_INVALID_CMD:
sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
code & 0x1F, code, this_ic);
#ifdef CCL_DEBUG
{
int i = ccl_backtrace_idx - 1;
int j;
msglen = strlen (msg);
if (dst + msglen <= (dst_bytes ? dst_end : src))
{
bcopy (msg, dst, msglen);
dst += msglen;
}
for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
{
if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
if (ccl_backtrace_table[i] == 0)
break;
sprintf(msg, " %d", ccl_backtrace_table[i]);
msglen = strlen (msg);
if (dst + msglen > (dst_bytes ? dst_end : src))
break;
bcopy (msg, dst, msglen);
dst += msglen;
}
goto ccl_finish;
}
#endif
break;
case CCL_STAT_QUIT:
sprintf(msg, "\nCCL: Quited.");
break;
default:
sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status);
}
msglen = strlen (msg);
if (dst + msglen <= (dst_bytes ? dst_end : src))
{
bcopy (msg, dst, msglen);
dst += msglen;
}
if (ccl->status == CCL_STAT_INVALID_CMD)
{
#if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
results in an invalid multibyte sequence. */
/* Copy the remaining source data. */
int i = src_end - src;
if (dst_bytes && (dst_end - dst) < i)
i = dst_end - dst;
bcopy (src, dst, i);
src += i;
dst += i;
#else
/* Signal that we've consumed everything. */
src = src_end;
#endif
}
}
ccl_finish:
ccl->ic = ic;
ccl->stack_idx = stack_idx;
ccl->prog = ccl_prog;
ccl->eight_bit_control = (extra_bytes > 0);
if (consumed)
*consumed = src - source;
return (dst ? dst - destination : 0);
}
/* Resolve symbols in the specified CCL code (Lisp vector). This
function converts symbols of code conversion maps and character
translation tables embeded in the CCL code into their ID numbers.
The return value is a vector (CCL itself or a new vector in which
all symbols are resolved), Qt if resolving of some symbol failed,
or nil if CCL contains invalid data. */
static Lisp_Object
resolve_symbol_ccl_program (ccl)
Lisp_Object ccl;
{
int i, veclen, unresolved = 0;
Lisp_Object result, contents, val;
result = ccl;
veclen = ASIZE (result);
for (i = 0; i < veclen; i++)
{
contents = AREF (result, i);
if (INTEGERP (contents))
continue;
else if (CONSP (contents)
&& SYMBOLP (XCAR (contents))
&& SYMBOLP (XCDR (contents)))
{
/* This is the new style for embedding symbols. The form is
(SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
an index number. */
if (EQ (result, ccl))
result = Fcopy_sequence (ccl);
val = Fget (XCAR (contents), XCDR (contents));
if (NATNUMP (val))
AREF (result, i) = val;
else
unresolved = 1;
continue;
}
else if (SYMBOLP (contents))
{
/* This is the old style for embedding symbols. This style
may lead to a bug if, for instance, a translation table
and a code conversion map have the same name. */
if (EQ (result, ccl))
result = Fcopy_sequence (ccl);
val = Fget (contents, Qtranslation_table_id);
if (NATNUMP (val))
AREF (result, i) = val;
else
{
val = Fget (contents, Qcode_conversion_map_id);
if (NATNUMP (val))
AREF (result, i) = val;
else
{
val = Fget (contents, Qccl_program_idx);
if (NATNUMP (val))
AREF (result, i) = val;
else
unresolved = 1;
}
}
continue;
}
return Qnil;
}
return (unresolved ? Qt : result);
}
/* Return the compiled code (vector) of CCL program CCL_PROG.
CCL_PROG is a name (symbol) of the program or already compiled
code. If necessary, resolve symbols in the compiled code to index
numbers. If we failed to get the compiled code or to resolve
symbols, return Qnil. */
static Lisp_Object
ccl_get_compiled_code (ccl_prog)
Lisp_Object ccl_prog;
{
Lisp_Object val, slot;
if (VECTORP (ccl_prog))
{
val = resolve_symbol_ccl_program (ccl_prog);
return (VECTORP (val) ? val : Qnil);
}
if (!SYMBOLP (ccl_prog))
return Qnil;
val = Fget (ccl_prog, Qccl_program_idx);
if (! NATNUMP (val)
|| XINT (val) >= ASIZE (Vccl_program_table))
return Qnil;
slot = AREF (Vccl_program_table, XINT (val));
if (! VECTORP (slot)
|| ASIZE (slot) != 3
|| ! VECTORP (AREF (slot, 1)))
return Qnil;
if (NILP (AREF (slot, 2)))
{
val = resolve_symbol_ccl_program (AREF (slot, 1));
if (! VECTORP (val))
return Qnil;
AREF (slot, 1) = val;
AREF (slot, 2) = Qt;
}
return AREF (slot, 1);
}
/* Setup fields of the structure pointed by CCL appropriately for the
execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
of the CCL program or the already compiled code (vector).
Return 0 if we succeed this setup, else return -1.
If CCL_PROG is nil, we just reset the structure pointed by CCL. */
int
setup_ccl_program (ccl, ccl_prog)
struct ccl_program *ccl;
Lisp_Object ccl_prog;
{
int i;
if (! NILP (ccl_prog))
{
struct Lisp_Vector *vp;
ccl_prog = ccl_get_compiled_code (ccl_prog);
if (! VECTORP (ccl_prog))
return -1;
vp = XVECTOR (ccl_prog);
ccl->size = vp->size;
ccl->prog = vp->contents;
ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
}
ccl->ic = CCL_HEADER_MAIN;
for (i = 0; i < 8; i++)
ccl->reg[i] = 0;
ccl->last_block = 0;
ccl->private_state = 0;
ccl->status = 0;
ccl->stack_idx = 0;
ccl->eol_type = CODING_EOL_LF;
ccl->suppress_error = 0;
return 0;
}
DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
See the documentation of `define-ccl-program' for the detail of CCL program. */)
(object)
Lisp_Object object;
{
Lisp_Object val;
if (VECTORP (object))
{
val = resolve_symbol_ccl_program (object);
return (VECTORP (val) ? Qt : Qnil);
}
if (!SYMBOLP (object))
return Qnil;
val = Fget (object, Qccl_program_idx);
return ((! NATNUMP (val)
|| XINT (val) >= ASIZE (Vccl_program_table))
? Qnil : Qt);
}
DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
CCL-PROGRAM is a CCL program name (symbol)
or compiled code generated by `ccl-compile' (for backward compatibility.
In the latter case, the execution overhead is bigger than in the former).
No I/O commands should appear in CCL-PROGRAM.
REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
for the Nth register.
As side effect, each element of REGISTERS holds the value of
the corresponding register after the execution.
See the documentation of `define-ccl-program' for a definition of CCL
programs. */)
(ccl_prog, reg)
Lisp_Object ccl_prog, reg;
{
struct ccl_program ccl;
int i;
if (setup_ccl_program (&ccl, ccl_prog) < 0)
error ("Invalid CCL program");
CHECK_VECTOR (reg);
if (ASIZE (reg) != 8)
error ("Length of vector REGISTERS is not 8");
for (i = 0; i < 8; i++)
ccl.reg[i] = (INTEGERP (AREF (reg, i))
? XINT (AREF (reg, i))
: 0);
ccl_driver (&ccl, (unsigned char *)0, (unsigned char *)0, 0, 0, (int *)0);
QUIT;
if (ccl.status != CCL_STAT_SUCCESS)
error ("Error in CCL program at %dth code", ccl.ic);
for (i = 0; i < 8; i++)
XSETINT (AREF (reg, i), ccl.reg[i]);
return Qnil;
}
DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
3, 5, 0,
doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
CCL-PROGRAM is a symbol registered by register-ccl-program,
or a compiled code generated by `ccl-compile' (for backward compatibility,
in this case, the execution is slower).
Read buffer is set to STRING, and write buffer is allocated automatically.
STATUS is a vector of [R0 R1 ... R7 IC], where
R0..R7 are initial values of corresponding registers,
IC is the instruction counter specifying from where to start the program.
If R0..R7 are nil, they are initialized to 0.
If IC is nil, it is initialized to head of the CCL program.
If optional 4th arg CONTINUE is non-nil, keep IC on read operation
when read buffer is exausted, else, IC is always set to the end of
CCL-PROGRAM on exit.
It returns the contents of write buffer as a string,
and as side effect, STATUS is updated.
If the optional 5th arg UNIBYTE-P is non-nil, the returned string
is a unibyte string. By default it is a multibyte string.
See the documentation of `define-ccl-program' for the detail of CCL program. */)
(ccl_prog, status, str, contin, unibyte_p)
Lisp_Object ccl_prog, status, str, contin, unibyte_p;
{
Lisp_Object val;
struct ccl_program ccl;
int i, produced;
int outbufsize;
char *outbuf;
struct gcpro gcpro1, gcpro2;
if (setup_ccl_program (&ccl, ccl_prog) < 0)
error ("Invalid CCL program");
CHECK_VECTOR (status);
if (ASIZE (status) != 9)
error ("Length of vector STATUS is not 9");
CHECK_STRING (str);
GCPRO2 (status, str);
for (i = 0; i < 8; i++)
{
if (NILP (AREF (status, i)))
XSETINT (AREF (status, i), 0);
if (INTEGERP (AREF (status, i)))
ccl.reg[i] = XINT (AREF (status, i));
}
if (INTEGERP (AREF (status, i)))
{
i = XFASTINT (AREF (status, 8));
if (ccl.ic < i && i < ccl.size)
ccl.ic = i;
}
outbufsize = SBYTES (str) * ccl.buf_magnification + 256;
outbuf = (char *) xmalloc (outbufsize);
ccl.last_block = NILP (contin);
ccl.multibyte = STRING_MULTIBYTE (str);
produced = ccl_driver (&ccl, SDATA (str), outbuf,
SBYTES (str), outbufsize, (int *) 0);
for (i = 0; i < 8; i++)
XSET (AREF (status, i), Lisp_Int, ccl.reg[i]);
XSETINT (AREF (status, 8), ccl.ic);
UNGCPRO;
if (NILP (unibyte_p))
{
int nchars;
produced = str_as_multibyte (outbuf, outbufsize, produced, &nchars);
val = make_multibyte_string (outbuf, nchars, produced);
}
else
val = make_unibyte_string (outbuf, produced);
xfree (outbuf);
QUIT;
if (ccl.status == CCL_STAT_SUSPEND_BY_DST)
error ("Output buffer for the CCL programs overflow");
if (ccl.status != CCL_STAT_SUCCESS
&& ccl.status != CCL_STAT_SUSPEND_BY_SRC)
error ("Error in CCL program at %dth code", ccl.ic);
return val;
}
DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
2, 2, 0,
doc: /* Register CCL program CCL_PROG as NAME in `ccl-program-table'.
CCL_PROG should be a compiled CCL program (vector), or nil.
If it is nil, just reserve NAME as a CCL program name.
Return index number of the registered CCL program. */)
(name, ccl_prog)
Lisp_Object name, ccl_prog;
{
int len = ASIZE (Vccl_program_table);
int idx;
Lisp_Object resolved;
CHECK_SYMBOL (name);
resolved = Qnil;
if (!NILP (ccl_prog))
{
CHECK_VECTOR (ccl_prog);
resolved = resolve_symbol_ccl_program (ccl_prog);
if (NILP (resolved))
error ("Error in CCL program");
if (VECTORP (resolved))
{
ccl_prog = resolved;
resolved = Qt;
}
else
resolved = Qnil;
}
for (idx = 0; idx < len; idx++)
{
Lisp_Object slot;
slot = AREF (Vccl_program_table, idx);
if (!VECTORP (slot))
/* This is the first unsed slot. Register NAME here. */
break;
if (EQ (name, AREF (slot, 0)))
{
/* Update this slot. */
AREF (slot, 1) = ccl_prog;
AREF (slot, 2) = resolved;
return make_number (idx);
}
}
if (idx == len)
{
/* Extend the table. */
Lisp_Object new_table;
int j;
new_table = Fmake_vector (make_number (len * 2), Qnil);
for (j = 0; j < len; j++)
AREF (new_table, j)
= AREF (Vccl_program_table, j);
Vccl_program_table = new_table;
}
{
Lisp_Object elt;
elt = Fmake_vector (make_number (3), Qnil);
AREF (elt, 0) = name;
AREF (elt, 1) = ccl_prog;
AREF (elt, 2) = resolved;
AREF (Vccl_program_table, idx) = elt;
}
Fput (name, Qccl_program_idx, make_number (idx));
return make_number (idx);
}
/* Register code conversion map.
A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
The first element is the start code point.
The other elements are mapped numbers.
Symbol t means to map to an original number before mapping.
Symbol nil means that the corresponding element is empty.
Symbol lambda means to terminate mapping here.
*/
DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
Sregister_code_conversion_map,
2, 2, 0,
doc: /* Register SYMBOL as code conversion map MAP.
Return index number of the registered map. */)
(symbol, map)
Lisp_Object symbol, map;
{
int len = ASIZE (Vcode_conversion_map_vector);
int i;
Lisp_Object index;
CHECK_SYMBOL (symbol);
CHECK_VECTOR (map);
for (i = 0; i < len; i++)
{
Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
if (!CONSP (slot))
break;
if (EQ (symbol, XCAR (slot)))
{
index = make_number (i);
XSETCDR (slot, map);
Fput (symbol, Qcode_conversion_map, map);
Fput (symbol, Qcode_conversion_map_id, index);
return index;
}
}
if (i == len)
{
Lisp_Object new_vector = Fmake_vector (make_number (len * 2), Qnil);
int j;
for (j = 0; j < len; j++)
AREF (new_vector, j)
= AREF (Vcode_conversion_map_vector, j);
Vcode_conversion_map_vector = new_vector;
}
index = make_number (i);
Fput (symbol, Qcode_conversion_map, map);
Fput (symbol, Qcode_conversion_map_id, index);
AREF (Vcode_conversion_map_vector, i) = Fcons (symbol, map);
return index;
}
void
syms_of_ccl ()
{
staticpro (&Vccl_program_table);
Vccl_program_table = Fmake_vector (make_number (32), Qnil);
Qccl_program = intern ("ccl-program");
staticpro (&Qccl_program);
Qccl_program_idx = intern ("ccl-program-idx");
staticpro (&Qccl_program_idx);
Qcode_conversion_map = intern ("code-conversion-map");
staticpro (&Qcode_conversion_map);
Qcode_conversion_map_id = intern ("code-conversion-map-id");
staticpro (&Qcode_conversion_map_id);
DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector,
doc: /* Vector of code conversion maps. */);
Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist,
doc: /* Alist of fontname patterns vs corresponding CCL program.
Each element looks like (REGEXP . CCL-CODE),
where CCL-CODE is a compiled CCL program.
When a font whose name matches REGEXP is used for displaying a character,
CCL-CODE is executed to calculate the code point in the font
from the charset number and position code(s) of the character which are set
in CCL registers R0, R1, and R2 before the execution.
The code point in the font is set in CCL registers R1 and R2
when the execution terminated.
If the font is single-byte font, the register R2 is not used. */);
Vfont_ccl_encoder_alist = Qnil;
DEFVAR_LISP ("translation-hash-table-vector", &Vtranslation_hash_table_vector,
doc: /* Vector containing all translation hash tables ever defined.
Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
to `define-translation-hash-table'. The vector is indexed by the table id
used by CCL. */);
Vtranslation_hash_table_vector = Qnil;
defsubr (&Sccl_program_p);
defsubr (&Sccl_execute);
defsubr (&Sccl_execute_on_string);
defsubr (&Sregister_ccl_program);
defsubr (&Sregister_code_conversion_map);
}
|