summaryrefslogtreecommitdiff
path: root/src/alloc.c
blob: 6f70976c345444f46142b7ed363fa861f8e72dbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
/* Storage allocation and gc for GNU Emacs Lisp interpreter.
   Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
      Free Software Foundation, Inc.

This file is part of GNU Emacs.

GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs.  If not, see <http://www.gnu.org/licenses/>.  */

#include <config.h>
#include <stdio.h>
#include <limits.h>		/* For CHAR_BIT.  */
#include <setjmp.h>

#include <signal.h>

#ifdef HAVE_PTHREAD
#include <pthread.h>
#endif

/* This file is part of the core Lisp implementation, and thus must
   deal with the real data structures.  If the Lisp implementation is
   replaced, this file likely will not be used.  */

#undef HIDE_LISP_IMPLEMENTATION
#include "lisp.h"
#include "process.h"
#include "intervals.h"
#include "puresize.h"
#include "buffer.h"
#include "window.h"
#include "keyboard.h"
#include "frame.h"
#include "blockinput.h"
#include "character.h"
#include "syssignal.h"
#include "termhooks.h"		/* For struct terminal.  */
#include <setjmp.h>
#include <verify.h>

/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
   memory.  Can do this only if using gmalloc.c.  */

#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
#undef GC_MALLOC_CHECK
#endif

#include <unistd.h>
#ifndef HAVE_UNISTD_H
extern POINTER_TYPE *sbrk ();
#endif

#include <fcntl.h>

#ifdef WINDOWSNT
#include "w32.h"
#endif

#ifdef DOUG_LEA_MALLOC

#include <malloc.h>

/* Specify maximum number of areas to mmap.  It would be nice to use a
   value that explicitly means "no limit".  */

#define MMAP_MAX_AREAS 100000000

#else /* not DOUG_LEA_MALLOC */

/* The following come from gmalloc.c.  */

extern size_t _bytes_used;
extern size_t __malloc_extra_blocks;

#endif /* not DOUG_LEA_MALLOC */

#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
#ifdef HAVE_PTHREAD

/* When GTK uses the file chooser dialog, different backends can be loaded
   dynamically.  One such a backend is the Gnome VFS backend that gets loaded
   if you run Gnome.  That backend creates several threads and also allocates
   memory with malloc.

   Also, gconf and gsettings may create several threads.

   If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
   functions below are called from malloc, there is a chance that one
   of these threads preempts the Emacs main thread and the hook variables
   end up in an inconsistent state.  So we have a mutex to prevent that (note
   that the backend handles concurrent access to malloc within its own threads
   but Emacs code running in the main thread is not included in that control).

   When UNBLOCK_INPUT is called, reinvoke_input_signal may be called.  If this
   happens in one of the backend threads we will have two threads that tries
   to run Emacs code at once, and the code is not prepared for that.
   To prevent that, we only call BLOCK/UNBLOCK from the main thread.  */

static pthread_mutex_t alloc_mutex;

#define BLOCK_INPUT_ALLOC                               \
  do                                                    \
    {                                                   \
      if (pthread_equal (pthread_self (), main_thread)) \
        BLOCK_INPUT;					\
      pthread_mutex_lock (&alloc_mutex);                \
    }                                                   \
  while (0)
#define UNBLOCK_INPUT_ALLOC                             \
  do                                                    \
    {                                                   \
      pthread_mutex_unlock (&alloc_mutex);              \
      if (pthread_equal (pthread_self (), main_thread)) \
        UNBLOCK_INPUT;					\
    }                                                   \
  while (0)

#else /* ! defined HAVE_PTHREAD */

#define BLOCK_INPUT_ALLOC BLOCK_INPUT
#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT

#endif /* ! defined HAVE_PTHREAD */
#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */

/* Mark, unmark, query mark bit of a Lisp string.  S must be a pointer
   to a struct Lisp_String.  */

#define MARK_STRING(S)		((S)->size |= ARRAY_MARK_FLAG)
#define UNMARK_STRING(S)	((S)->size &= ~ARRAY_MARK_FLAG)
#define STRING_MARKED_P(S)	(((S)->size & ARRAY_MARK_FLAG) != 0)

#define VECTOR_MARK(V)		((V)->header.size |= ARRAY_MARK_FLAG)
#define VECTOR_UNMARK(V)	((V)->header.size &= ~ARRAY_MARK_FLAG)
#define VECTOR_MARKED_P(V)	(((V)->header.size & ARRAY_MARK_FLAG) != 0)

/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
   Be careful during GC, because S->size contains the mark bit for
   strings.  */

#define GC_STRING_BYTES(S)	(STRING_BYTES (S))

/* Global variables.  */
struct emacs_globals globals;

/* Number of bytes of consing done since the last gc.  */

EMACS_INT consing_since_gc;

/* Similar minimum, computed from Vgc_cons_percentage.  */

EMACS_INT gc_relative_threshold;

/* Minimum number of bytes of consing since GC before next GC,
   when memory is full.  */

EMACS_INT memory_full_cons_threshold;

/* Nonzero during GC.  */

int gc_in_progress;

/* Nonzero means abort if try to GC.
   This is for code which is written on the assumption that
   no GC will happen, so as to verify that assumption.  */

int abort_on_gc;

/* Number of live and free conses etc.  */

static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
static EMACS_INT total_free_floats, total_floats;

/* Points to memory space allocated as "spare", to be freed if we run
   out of memory.  We keep one large block, four cons-blocks, and
   two string blocks.  */

static char *spare_memory[7];

/* Amount of spare memory to keep in large reserve block, or to see
   whether this much is available when malloc fails on a larger request.  */

#define SPARE_MEMORY (1 << 14)

/* Number of extra blocks malloc should get when it needs more core.  */

static int malloc_hysteresis;

/* Initialize it to a nonzero value to force it into data space
   (rather than bss space).  That way unexec will remap it into text
   space (pure), on some systems.  We have not implemented the
   remapping on more recent systems because this is less important
   nowadays than in the days of small memories and timesharing.  */

EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
#define PUREBEG (char *) pure

/* Pointer to the pure area, and its size.  */

static char *purebeg;
static ptrdiff_t pure_size;

/* Number of bytes of pure storage used before pure storage overflowed.
   If this is non-zero, this implies that an overflow occurred.  */

static ptrdiff_t pure_bytes_used_before_overflow;

/* Value is non-zero if P points into pure space.  */

#define PURE_POINTER_P(P)					\
  ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)

/* Index in pure at which next pure Lisp object will be allocated.. */

static EMACS_INT pure_bytes_used_lisp;

/* Number of bytes allocated for non-Lisp objects in pure storage.  */

static EMACS_INT pure_bytes_used_non_lisp;

/* If nonzero, this is a warning delivered by malloc and not yet
   displayed.  */

const char *pending_malloc_warning;

/* Maximum amount of C stack to save when a GC happens.  */

#ifndef MAX_SAVE_STACK
#define MAX_SAVE_STACK 16000
#endif

/* Buffer in which we save a copy of the C stack at each GC.  */

#if MAX_SAVE_STACK > 0
static char *stack_copy;
static ptrdiff_t stack_copy_size;
#endif

/* Non-zero means ignore malloc warnings.  Set during initialization.
   Currently not used.  */

static int ignore_warnings;

static Lisp_Object Qgc_cons_threshold;
Lisp_Object Qchar_table_extra_slots;

/* Hook run after GC has finished.  */

static Lisp_Object Qpost_gc_hook;

static void mark_buffer (Lisp_Object);
static void mark_terminals (void);
static void gc_sweep (void);
static void mark_glyph_matrix (struct glyph_matrix *);
static void mark_face_cache (struct face_cache *);

#if !defined REL_ALLOC || defined SYSTEM_MALLOC
static void refill_memory_reserve (void);
#endif
static struct Lisp_String *allocate_string (void);
static void compact_small_strings (void);
static void free_large_strings (void);
static void sweep_strings (void);
static void free_misc (Lisp_Object);
extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;

/* When scanning the C stack for live Lisp objects, Emacs keeps track
   of what memory allocated via lisp_malloc is intended for what
   purpose.  This enumeration specifies the type of memory.  */

enum mem_type
{
  MEM_TYPE_NON_LISP,
  MEM_TYPE_BUFFER,
  MEM_TYPE_CONS,
  MEM_TYPE_STRING,
  MEM_TYPE_MISC,
  MEM_TYPE_SYMBOL,
  MEM_TYPE_FLOAT,
  /* We used to keep separate mem_types for subtypes of vectors such as
     process, hash_table, frame, terminal, and window, but we never made
     use of the distinction, so it only caused source-code complexity
     and runtime slowdown.  Minor but pointless.  */
  MEM_TYPE_VECTORLIKE
};

static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);


#if GC_MARK_STACK || defined GC_MALLOC_CHECK

#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
#include <stdio.h>		/* For fprintf.  */
#endif

/* A unique object in pure space used to make some Lisp objects
   on free lists recognizable in O(1).  */

static Lisp_Object Vdead;
#define DEADP(x) EQ (x, Vdead)

#ifdef GC_MALLOC_CHECK

enum mem_type allocated_mem_type;
static int dont_register_blocks;

#endif /* GC_MALLOC_CHECK */

/* A node in the red-black tree describing allocated memory containing
   Lisp data.  Each such block is recorded with its start and end
   address when it is allocated, and removed from the tree when it
   is freed.

   A red-black tree is a balanced binary tree with the following
   properties:

   1. Every node is either red or black.
   2. Every leaf is black.
   3. If a node is red, then both of its children are black.
   4. Every simple path from a node to a descendant leaf contains
   the same number of black nodes.
   5. The root is always black.

   When nodes are inserted into the tree, or deleted from the tree,
   the tree is "fixed" so that these properties are always true.

   A red-black tree with N internal nodes has height at most 2
   log(N+1).  Searches, insertions and deletions are done in O(log N).
   Please see a text book about data structures for a detailed
   description of red-black trees.  Any book worth its salt should
   describe them.  */

struct mem_node
{
  /* Children of this node.  These pointers are never NULL.  When there
     is no child, the value is MEM_NIL, which points to a dummy node.  */
  struct mem_node *left, *right;

  /* The parent of this node.  In the root node, this is NULL.  */
  struct mem_node *parent;

  /* Start and end of allocated region.  */
  void *start, *end;

  /* Node color.  */
  enum {MEM_BLACK, MEM_RED} color;

  /* Memory type.  */
  enum mem_type type;
};

/* Base address of stack.  Set in main.  */

Lisp_Object *stack_base;

/* Root of the tree describing allocated Lisp memory.  */

static struct mem_node *mem_root;

/* Lowest and highest known address in the heap.  */

static void *min_heap_address, *max_heap_address;

/* Sentinel node of the tree.  */

static struct mem_node mem_z;
#define MEM_NIL &mem_z

static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
static void lisp_free (POINTER_TYPE *);
static void mark_stack (void);
static int live_vector_p (struct mem_node *, void *);
static int live_buffer_p (struct mem_node *, void *);
static int live_string_p (struct mem_node *, void *);
static int live_cons_p (struct mem_node *, void *);
static int live_symbol_p (struct mem_node *, void *);
static int live_float_p (struct mem_node *, void *);
static int live_misc_p (struct mem_node *, void *);
static void mark_maybe_object (Lisp_Object);
static void mark_memory (void *, void *);
static void mem_init (void);
static struct mem_node *mem_insert (void *, void *, enum mem_type);
static void mem_insert_fixup (struct mem_node *);
static void mem_rotate_left (struct mem_node *);
static void mem_rotate_right (struct mem_node *);
static void mem_delete (struct mem_node *);
static void mem_delete_fixup (struct mem_node *);
static inline struct mem_node *mem_find (void *);


#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
static void check_gcpros (void);
#endif

#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */

#ifndef DEADP
# define DEADP(x) 0
#endif

/* Recording what needs to be marked for gc.  */

struct gcpro *gcprolist;

/* Addresses of staticpro'd variables.  Initialize it to a nonzero
   value; otherwise some compilers put it into BSS.  */

#define NSTATICS 0x640
static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};

/* Index of next unused slot in staticvec.  */

static int staticidx = 0;

static POINTER_TYPE *pure_alloc (size_t, int);


/* Value is SZ rounded up to the next multiple of ALIGNMENT.
   ALIGNMENT must be a power of 2.  */

#define ALIGN(ptr, ALIGNMENT) \
  ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
		     & ~((ALIGNMENT) - 1)))



/************************************************************************
				Malloc
 ************************************************************************/

/* Function malloc calls this if it finds we are near exhausting storage.  */

void
malloc_warning (const char *str)
{
  pending_malloc_warning = str;
}


/* Display an already-pending malloc warning.  */

void
display_malloc_warning (void)
{
  call3 (intern ("display-warning"),
	 intern ("alloc"),
	 build_string (pending_malloc_warning),
	 intern ("emergency"));
  pending_malloc_warning = 0;
}

/* Called if we can't allocate relocatable space for a buffer.  */

void
buffer_memory_full (EMACS_INT nbytes)
{
  /* If buffers use the relocating allocator, no need to free
     spare_memory, because we may have plenty of malloc space left
     that we could get, and if we don't, the malloc that fails will
     itself cause spare_memory to be freed.  If buffers don't use the
     relocating allocator, treat this like any other failing
     malloc.  */

#ifndef REL_ALLOC
  memory_full (nbytes);
#endif

  /* This used to call error, but if we've run out of memory, we could
     get infinite recursion trying to build the string.  */
  xsignal (Qnil, Vmemory_signal_data);
}


#ifndef XMALLOC_OVERRUN_CHECK
#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
#else

/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
   around each block.

   The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
   followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
   block size in little-endian order.  The trailer consists of
   XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.

   The header is used to detect whether this block has been allocated
   through these functions, as some low-level libc functions may
   bypass the malloc hooks.  */

#define XMALLOC_OVERRUN_CHECK_SIZE 16
#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
  (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)

/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
   hold a size_t value and (2) the header size is a multiple of the
   alignment that Emacs needs for C types and for USE_LSB_TAG.  */
#define XMALLOC_BASE_ALIGNMENT				\
  offsetof (						\
    struct {						\
      union { long double d; intmax_t i; void *p; } u;	\
      char c;						\
    },							\
    c)
#ifdef USE_LSB_TAG
/* A common multiple of the positive integers A and B.  Ideally this
   would be the least common multiple, but there's no way to do that
   as a constant expression in C, so do the best that we can easily do.  */
# define COMMON_MULTIPLE(a, b) \
    ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
# define XMALLOC_HEADER_ALIGNMENT \
    COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
#else
# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
#endif
#define XMALLOC_OVERRUN_SIZE_SIZE				\
   (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t)		\
      + XMALLOC_HEADER_ALIGNMENT - 1)				\
     / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT)	\
    - XMALLOC_OVERRUN_CHECK_SIZE)

static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
  { '\x9a', '\x9b', '\xae', '\xaf',
    '\xbf', '\xbe', '\xce', '\xcf',
    '\xea', '\xeb', '\xec', '\xed',
    '\xdf', '\xde', '\x9c', '\x9d' };

static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
  { '\xaa', '\xab', '\xac', '\xad',
    '\xba', '\xbb', '\xbc', '\xbd',
    '\xca', '\xcb', '\xcc', '\xcd',
    '\xda', '\xdb', '\xdc', '\xdd' };

/* Insert and extract the block size in the header.  */

static void
xmalloc_put_size (unsigned char *ptr, size_t size)
{
  int i;
  for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
    {
      *--ptr = size & ((1 << CHAR_BIT) - 1);
      size >>= CHAR_BIT;
    }
}

static size_t
xmalloc_get_size (unsigned char *ptr)
{
  size_t size = 0;
  int i;
  ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
  for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
    {
      size <<= CHAR_BIT;
      size += *ptr++;
    }
  return size;
}


/* The call depth in overrun_check functions.  For example, this might happen:
   xmalloc()
     overrun_check_malloc()
       -> malloc -> (via hook)_-> emacs_blocked_malloc
          -> overrun_check_malloc
             call malloc  (hooks are NULL, so real malloc is called).
             malloc returns 10000.
             add overhead, return 10016.
      <- (back in overrun_check_malloc)
      add overhead again, return 10032
   xmalloc returns 10032.

   (time passes).

   xfree(10032)
     overrun_check_free(10032)
       decrease overhead
       free(10016)  <-  crash, because 10000 is the original pointer.  */

static ptrdiff_t check_depth;

/* Like malloc, but wraps allocated block with header and trailer.  */

static POINTER_TYPE *
overrun_check_malloc (size_t size)
{
  register unsigned char *val;
  int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
  if (SIZE_MAX - overhead < size)
    abort ();

  val = (unsigned char *) malloc (size + overhead);
  if (val && check_depth == 1)
    {
      memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
      val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
      xmalloc_put_size (val, size);
      memcpy (val + size, xmalloc_overrun_check_trailer,
	      XMALLOC_OVERRUN_CHECK_SIZE);
    }
  --check_depth;
  return (POINTER_TYPE *)val;
}


/* Like realloc, but checks old block for overrun, and wraps new block
   with header and trailer.  */

static POINTER_TYPE *
overrun_check_realloc (POINTER_TYPE *block, size_t size)
{
  register unsigned char *val = (unsigned char *) block;
  int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
  if (SIZE_MAX - overhead < size)
    abort ();

  if (val
      && check_depth == 1
      && memcmp (xmalloc_overrun_check_header,
		 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
		 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
    {
      size_t osize = xmalloc_get_size (val);
      if (memcmp (xmalloc_overrun_check_trailer, val + osize,
		  XMALLOC_OVERRUN_CHECK_SIZE))
	abort ();
      memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
      val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
      memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
    }

  val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);

  if (val && check_depth == 1)
    {
      memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
      val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
      xmalloc_put_size (val, size);
      memcpy (val + size, xmalloc_overrun_check_trailer,
	      XMALLOC_OVERRUN_CHECK_SIZE);
    }
  --check_depth;
  return (POINTER_TYPE *)val;
}

/* Like free, but checks block for overrun.  */

static void
overrun_check_free (POINTER_TYPE *block)
{
  unsigned char *val = (unsigned char *) block;

  ++check_depth;
  if (val
      && check_depth == 1
      && memcmp (xmalloc_overrun_check_header,
		 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
		 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
    {
      size_t osize = xmalloc_get_size (val);
      if (memcmp (xmalloc_overrun_check_trailer, val + osize,
		  XMALLOC_OVERRUN_CHECK_SIZE))
	abort ();
#ifdef XMALLOC_CLEAR_FREE_MEMORY
      val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
      memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
#else
      memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
      val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
      memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
#endif
    }

  free (val);
  --check_depth;
}

#undef malloc
#undef realloc
#undef free
#define malloc overrun_check_malloc
#define realloc overrun_check_realloc
#define free overrun_check_free
#endif

#ifdef SYNC_INPUT
/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
   there's no need to block input around malloc.  */
#define MALLOC_BLOCK_INPUT   ((void)0)
#define MALLOC_UNBLOCK_INPUT ((void)0)
#else
#define MALLOC_BLOCK_INPUT   BLOCK_INPUT
#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
#endif

/* Like malloc but check for no memory and block interrupt input..  */

POINTER_TYPE *
xmalloc (size_t size)
{
  register POINTER_TYPE *val;

  MALLOC_BLOCK_INPUT;
  val = (POINTER_TYPE *) malloc (size);
  MALLOC_UNBLOCK_INPUT;

  if (!val && size)
    memory_full (size);
  return val;
}


/* Like realloc but check for no memory and block interrupt input..  */

POINTER_TYPE *
xrealloc (POINTER_TYPE *block, size_t size)
{
  register POINTER_TYPE *val;

  MALLOC_BLOCK_INPUT;
  /* We must call malloc explicitly when BLOCK is 0, since some
     reallocs don't do this.  */
  if (! block)
    val = (POINTER_TYPE *) malloc (size);
  else
    val = (POINTER_TYPE *) realloc (block, size);
  MALLOC_UNBLOCK_INPUT;

  if (!val && size)
    memory_full (size);
  return val;
}


/* Like free but block interrupt input.  */

void
xfree (POINTER_TYPE *block)
{
  if (!block)
    return;
  MALLOC_BLOCK_INPUT;
  free (block);
  MALLOC_UNBLOCK_INPUT;
  /* We don't call refill_memory_reserve here
     because that duplicates doing so in emacs_blocked_free
     and the criterion should go there.  */
}


/* Other parts of Emacs pass large int values to allocator functions
   expecting ptrdiff_t.  This is portable in practice, but check it to
   be safe.  */
verify (INT_MAX <= PTRDIFF_MAX);


/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
   Signal an error on memory exhaustion, and block interrupt input.  */

void *
xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
{
  xassert (0 <= nitems && 0 < item_size);
  if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
    memory_full (SIZE_MAX);
  return xmalloc (nitems * item_size);
}


/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
   Signal an error on memory exhaustion, and block interrupt input.  */

void *
xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
{
  xassert (0 <= nitems && 0 < item_size);
  if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
    memory_full (SIZE_MAX);
  return xrealloc (pa, nitems * item_size);
}


/* Grow PA, which points to an array of *NITEMS items, and return the
   location of the reallocated array, updating *NITEMS to reflect its
   new size.  The new array will contain at least NITEMS_INCR_MIN more
   items, but will not contain more than NITEMS_MAX items total.
   ITEM_SIZE is the size of each item, in bytes.

   ITEM_SIZE and NITEMS_INCR_MIN must be positive.  *NITEMS must be
   nonnegative.  If NITEMS_MAX is -1, it is treated as if it were
   infinity.

   If PA is null, then allocate a new array instead of reallocating
   the old one.  Thus, to grow an array A without saving its old
   contents, invoke xfree (A) immediately followed by xgrowalloc (0,
   &NITEMS, ...).

   Block interrupt input as needed.  If memory exhaustion occurs, set
   *NITEMS to zero if PA is null, and signal an error (i.e., do not
   return).  */

void *
xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
	 ptrdiff_t nitems_max, ptrdiff_t item_size)
{
  /* The approximate size to use for initial small allocation
     requests.  This is the largest "small" request for the GNU C
     library malloc.  */
  enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };

  /* If the array is tiny, grow it to about (but no greater than)
     DEFAULT_MXFAST bytes.  Otherwise, grow it by about 50%.  */
  ptrdiff_t n = *nitems;
  ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
  ptrdiff_t half_again = n >> 1;
  ptrdiff_t incr_estimate = max (tiny_max, half_again);

  /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
     NITEMS_MAX, and what the C language can represent safely.  */
  ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
  ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
		     ? nitems_max : C_language_max);
  ptrdiff_t nitems_incr_max = n_max - n;
  ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));

  xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
  if (! pa)
    *nitems = 0;
  if (nitems_incr_max < incr)
    memory_full (SIZE_MAX);
  n += incr;
  pa = xrealloc (pa, n * item_size);
  *nitems = n;
  return pa;
}


/* Like strdup, but uses xmalloc.  */

char *
xstrdup (const char *s)
{
  size_t len = strlen (s) + 1;
  char *p = (char *) xmalloc (len);
  memcpy (p, s, len);
  return p;
}


/* Unwind for SAFE_ALLOCA */

Lisp_Object
safe_alloca_unwind (Lisp_Object arg)
{
  register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);

  p->dogc = 0;
  xfree (p->pointer);
  p->pointer = 0;
  free_misc (arg);
  return Qnil;
}


/* Like malloc but used for allocating Lisp data.  NBYTES is the
   number of bytes to allocate, TYPE describes the intended use of the
   allocated memory block (for strings, for conses, ...).  */

#ifndef USE_LSB_TAG
static void *lisp_malloc_loser;
#endif

static POINTER_TYPE *
lisp_malloc (size_t nbytes, enum mem_type type)
{
  register void *val;

  MALLOC_BLOCK_INPUT;

#ifdef GC_MALLOC_CHECK
  allocated_mem_type = type;
#endif

  val = (void *) malloc (nbytes);

#ifndef USE_LSB_TAG
  /* If the memory just allocated cannot be addressed thru a Lisp
     object's pointer, and it needs to be,
     that's equivalent to running out of memory.  */
  if (val && type != MEM_TYPE_NON_LISP)
    {
      Lisp_Object tem;
      XSETCONS (tem, (char *) val + nbytes - 1);
      if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
	{
	  lisp_malloc_loser = val;
	  free (val);
	  val = 0;
	}
    }
#endif

#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
  if (val && type != MEM_TYPE_NON_LISP)
    mem_insert (val, (char *) val + nbytes, type);
#endif

  MALLOC_UNBLOCK_INPUT;
  if (!val && nbytes)
    memory_full (nbytes);
  return val;
}

/* Free BLOCK.  This must be called to free memory allocated with a
   call to lisp_malloc.  */

static void
lisp_free (POINTER_TYPE *block)
{
  MALLOC_BLOCK_INPUT;
  free (block);
#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
  mem_delete (mem_find (block));
#endif
  MALLOC_UNBLOCK_INPUT;
}

/* Allocation of aligned blocks of memory to store Lisp data.              */
/* The entry point is lisp_align_malloc which returns blocks of at most    */
/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary.  */

/* Use posix_memalloc if the system has it and we're using the system's
   malloc (because our gmalloc.c routines don't have posix_memalign although
   its memalloc could be used).  */
#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
#define USE_POSIX_MEMALIGN 1
#endif

/* BLOCK_ALIGN has to be a power of 2.  */
#define BLOCK_ALIGN (1 << 10)

/* Padding to leave at the end of a malloc'd block.  This is to give
   malloc a chance to minimize the amount of memory wasted to alignment.
   It should be tuned to the particular malloc library used.
   On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
   posix_memalign on the other hand would ideally prefer a value of 4
   because otherwise, there's 1020 bytes wasted between each ablocks.
   In Emacs, testing shows that those 1020 can most of the time be
   efficiently used by malloc to place other objects, so a value of 0 can
   still preferable unless you have a lot of aligned blocks and virtually
   nothing else.  */
#define BLOCK_PADDING 0
#define BLOCK_BYTES \
  (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)

/* Internal data structures and constants.  */

#define ABLOCKS_SIZE 16

/* An aligned block of memory.  */
struct ablock
{
  union
  {
    char payload[BLOCK_BYTES];
    struct ablock *next_free;
  } x;
  /* `abase' is the aligned base of the ablocks.  */
  /* It is overloaded to hold the virtual `busy' field that counts
     the number of used ablock in the parent ablocks.
     The first ablock has the `busy' field, the others have the `abase'
     field.  To tell the difference, we assume that pointers will have
     integer values larger than 2 * ABLOCKS_SIZE.  The lowest bit of `busy'
     is used to tell whether the real base of the parent ablocks is `abase'
     (if not, the word before the first ablock holds a pointer to the
     real base).  */
  struct ablocks *abase;
  /* The padding of all but the last ablock is unused.  The padding of
     the last ablock in an ablocks is not allocated.  */
#if BLOCK_PADDING
  char padding[BLOCK_PADDING];
#endif
};

/* A bunch of consecutive aligned blocks.  */
struct ablocks
{
  struct ablock blocks[ABLOCKS_SIZE];
};

/* Size of the block requested from malloc or memalign.  */
#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)

#define ABLOCK_ABASE(block) \
  (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE)	\
   ? (struct ablocks *)(block)					\
   : (block)->abase)

/* Virtual `busy' field.  */
#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)

/* Pointer to the (not necessarily aligned) malloc block.  */
#ifdef USE_POSIX_MEMALIGN
#define ABLOCKS_BASE(abase) (abase)
#else
#define ABLOCKS_BASE(abase) \
  (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
#endif

/* The list of free ablock.   */
static struct ablock *free_ablock;

/* Allocate an aligned block of nbytes.
   Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
   smaller or equal to BLOCK_BYTES.  */
static POINTER_TYPE *
lisp_align_malloc (size_t nbytes, enum mem_type type)
{
  void *base, *val;
  struct ablocks *abase;

  eassert (nbytes <= BLOCK_BYTES);

  MALLOC_BLOCK_INPUT;

#ifdef GC_MALLOC_CHECK
  allocated_mem_type = type;
#endif

  if (!free_ablock)
    {
      int i;
      intptr_t aligned; /* int gets warning casting to 64-bit pointer.  */

#ifdef DOUG_LEA_MALLOC
      /* Prevent mmap'ing the chunk.  Lisp data may not be mmap'ed
	 because mapped region contents are not preserved in
	 a dumped Emacs.  */
      mallopt (M_MMAP_MAX, 0);
#endif

#ifdef USE_POSIX_MEMALIGN
      {
	int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
	if (err)
	  base = NULL;
	abase = base;
      }
#else
      base = malloc (ABLOCKS_BYTES);
      abase = ALIGN (base, BLOCK_ALIGN);
#endif

      if (base == 0)
	{
	  MALLOC_UNBLOCK_INPUT;
	  memory_full (ABLOCKS_BYTES);
	}

      aligned = (base == abase);
      if (!aligned)
	((void**)abase)[-1] = base;

#ifdef DOUG_LEA_MALLOC
      /* Back to a reasonable maximum of mmap'ed areas.  */
      mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
#endif

#ifndef USE_LSB_TAG
      /* If the memory just allocated cannot be addressed thru a Lisp
	 object's pointer, and it needs to be, that's equivalent to
	 running out of memory.  */
      if (type != MEM_TYPE_NON_LISP)
	{
	  Lisp_Object tem;
	  char *end = (char *) base + ABLOCKS_BYTES - 1;
	  XSETCONS (tem, end);
	  if ((char *) XCONS (tem) != end)
	    {
	      lisp_malloc_loser = base;
	      free (base);
	      MALLOC_UNBLOCK_INPUT;
	      memory_full (SIZE_MAX);
	    }
	}
#endif

      /* Initialize the blocks and put them on the free list.
	 Is `base' was not properly aligned, we can't use the last block.  */
      for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
	{
	  abase->blocks[i].abase = abase;
	  abase->blocks[i].x.next_free = free_ablock;
	  free_ablock = &abase->blocks[i];
	}
      ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;

      eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
      eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
      eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
      eassert (ABLOCKS_BASE (abase) == base);
      eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
    }

  abase = ABLOCK_ABASE (free_ablock);
  ABLOCKS_BUSY (abase) =
    (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
  val = free_ablock;
  free_ablock = free_ablock->x.next_free;

#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
  if (type != MEM_TYPE_NON_LISP)
    mem_insert (val, (char *) val + nbytes, type);
#endif

  MALLOC_UNBLOCK_INPUT;

  eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
  return val;
}

static void
lisp_align_free (POINTER_TYPE *block)
{
  struct ablock *ablock = block;
  struct ablocks *abase = ABLOCK_ABASE (ablock);

  MALLOC_BLOCK_INPUT;
#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
  mem_delete (mem_find (block));
#endif
  /* Put on free list.  */
  ablock->x.next_free = free_ablock;
  free_ablock = ablock;
  /* Update busy count.  */
  ABLOCKS_BUSY (abase) =
    (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));

  if (2 > (intptr_t) ABLOCKS_BUSY (abase))
    { /* All the blocks are free.  */
      int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
      struct ablock **tem = &free_ablock;
      struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];

      while (*tem)
	{
	  if (*tem >= (struct ablock *) abase && *tem < atop)
	    {
	      i++;
	      *tem = (*tem)->x.next_free;
	    }
	  else
	    tem = &(*tem)->x.next_free;
	}
      eassert ((aligned & 1) == aligned);
      eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
#ifdef USE_POSIX_MEMALIGN
      eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
#endif
      free (ABLOCKS_BASE (abase));
    }
  MALLOC_UNBLOCK_INPUT;
}

/* Return a new buffer structure allocated from the heap with
   a call to lisp_malloc.  */

struct buffer *
allocate_buffer (void)
{
  struct buffer *b
    = (struct buffer *) lisp_malloc (sizeof (struct buffer),
				     MEM_TYPE_BUFFER);
  XSETPVECTYPESIZE (b, PVEC_BUFFER,
		    ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
		     / sizeof (EMACS_INT)));
  return b;
}


#ifndef SYSTEM_MALLOC

/* Arranging to disable input signals while we're in malloc.

   This only works with GNU malloc.  To help out systems which can't
   use GNU malloc, all the calls to malloc, realloc, and free
   elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
   pair; unfortunately, we have no idea what C library functions
   might call malloc, so we can't really protect them unless you're
   using GNU malloc.  Fortunately, most of the major operating systems
   can use GNU malloc.  */

#ifndef SYNC_INPUT
/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
   there's no need to block input around malloc.  */

#ifndef DOUG_LEA_MALLOC
extern void * (*__malloc_hook) (size_t, const void *);
extern void * (*__realloc_hook) (void *, size_t, const void *);
extern void (*__free_hook) (void *, const void *);
/* Else declared in malloc.h, perhaps with an extra arg.  */
#endif /* DOUG_LEA_MALLOC */
static void * (*old_malloc_hook) (size_t, const void *);
static void * (*old_realloc_hook) (void *,  size_t, const void*);
static void (*old_free_hook) (void*, const void*);

#ifdef DOUG_LEA_MALLOC
#  define BYTES_USED (mallinfo ().uordblks)
#else
#  define BYTES_USED _bytes_used
#endif

static size_t bytes_used_when_reconsidered;

/* Value of _bytes_used, when spare_memory was freed.  */

static size_t bytes_used_when_full;

/* This function is used as the hook for free to call.  */

static void
emacs_blocked_free (void *ptr, const void *ptr2)
{
  BLOCK_INPUT_ALLOC;

#ifdef GC_MALLOC_CHECK
  if (ptr)
    {
      struct mem_node *m;

      m = mem_find (ptr);
      if (m == MEM_NIL || m->start != ptr)
	{
	  fprintf (stderr,
		   "Freeing `%p' which wasn't allocated with malloc\n", ptr);
	  abort ();
	}
      else
	{
	  /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
	  mem_delete (m);
	}
    }
#endif /* GC_MALLOC_CHECK */

  __free_hook = old_free_hook;
  free (ptr);

  /* If we released our reserve (due to running out of memory),
     and we have a fair amount free once again,
     try to set aside another reserve in case we run out once more.  */
  if (! NILP (Vmemory_full)
      /* Verify there is enough space that even with the malloc
	 hysteresis this call won't run out again.
	 The code here is correct as long as SPARE_MEMORY
	 is substantially larger than the block size malloc uses.  */
      && (bytes_used_when_full
	  > ((bytes_used_when_reconsidered = BYTES_USED)
	     + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
    refill_memory_reserve ();

  __free_hook = emacs_blocked_free;
  UNBLOCK_INPUT_ALLOC;
}


/* This function is the malloc hook that Emacs uses.  */

static void *
emacs_blocked_malloc (size_t size, const void *ptr)
{
  void *value;

  BLOCK_INPUT_ALLOC;
  __malloc_hook = old_malloc_hook;
#ifdef DOUG_LEA_MALLOC
  /* Segfaults on my system.  --lorentey */
  /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
#else
    __malloc_extra_blocks = malloc_hysteresis;
#endif

  value = (void *) malloc (size);

#ifdef GC_MALLOC_CHECK
  {
    struct mem_node *m = mem_find (value);
    if (m != MEM_NIL)
      {
	fprintf (stderr, "Malloc returned %p which is already in use\n",
		 value);
	fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
		 m->start, m->end, (char *) m->end - (char *) m->start,
		 m->type);
	abort ();
      }

    if (!dont_register_blocks)
      {
	mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
	allocated_mem_type = MEM_TYPE_NON_LISP;
      }
  }
#endif /* GC_MALLOC_CHECK */

  __malloc_hook = emacs_blocked_malloc;
  UNBLOCK_INPUT_ALLOC;

  /* fprintf (stderr, "%p malloc\n", value); */
  return value;
}


/* This function is the realloc hook that Emacs uses.  */

static void *
emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
{
  void *value;

  BLOCK_INPUT_ALLOC;
  __realloc_hook = old_realloc_hook;

#ifdef GC_MALLOC_CHECK
  if (ptr)
    {
      struct mem_node *m = mem_find (ptr);
      if (m == MEM_NIL || m->start != ptr)
	{
	  fprintf (stderr,
		   "Realloc of %p which wasn't allocated with malloc\n",
		   ptr);
	  abort ();
	}

      mem_delete (m);
    }

  /* fprintf (stderr, "%p -> realloc\n", ptr); */

  /* Prevent malloc from registering blocks.  */
  dont_register_blocks = 1;
#endif /* GC_MALLOC_CHECK */

  value = (void *) realloc (ptr, size);

#ifdef GC_MALLOC_CHECK
  dont_register_blocks = 0;

  {
    struct mem_node *m = mem_find (value);
    if (m != MEM_NIL)
      {
	fprintf (stderr, "Realloc returns memory that is already in use\n");
	abort ();
      }

    /* Can't handle zero size regions in the red-black tree.  */
    mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
  }

  /* fprintf (stderr, "%p <- realloc\n", value); */
#endif /* GC_MALLOC_CHECK */

  __realloc_hook = emacs_blocked_realloc;
  UNBLOCK_INPUT_ALLOC;

  return value;
}


#ifdef HAVE_PTHREAD
/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
   normal malloc.  Some thread implementations need this as they call
   malloc before main.  The pthread_self call in BLOCK_INPUT_ALLOC then
   calls malloc because it is the first call, and we have an endless loop.  */

void
reset_malloc_hooks (void)
{
  __free_hook = old_free_hook;
  __malloc_hook = old_malloc_hook;
  __realloc_hook = old_realloc_hook;
}
#endif /* HAVE_PTHREAD */


/* Called from main to set up malloc to use our hooks.  */

void
uninterrupt_malloc (void)
{
#ifdef HAVE_PTHREAD
#ifdef DOUG_LEA_MALLOC
  pthread_mutexattr_t attr;

  /*  GLIBC has a faster way to do this, but let's keep it portable.
      This is according to the Single UNIX Specification.  */
  pthread_mutexattr_init (&attr);
  pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
  pthread_mutex_init (&alloc_mutex, &attr);
#else  /* !DOUG_LEA_MALLOC */
  /* Some systems such as Solaris 2.6 don't have a recursive mutex,
     and the bundled gmalloc.c doesn't require it.  */
  pthread_mutex_init (&alloc_mutex, NULL);
#endif /* !DOUG_LEA_MALLOC */
#endif /* HAVE_PTHREAD */

  if (__free_hook != emacs_blocked_free)
    old_free_hook = __free_hook;
  __free_hook = emacs_blocked_free;

  if (__malloc_hook != emacs_blocked_malloc)
    old_malloc_hook = __malloc_hook;
  __malloc_hook = emacs_blocked_malloc;

  if (__realloc_hook != emacs_blocked_realloc)
    old_realloc_hook = __realloc_hook;
  __realloc_hook = emacs_blocked_realloc;
}

#endif /* not SYNC_INPUT */
#endif /* not SYSTEM_MALLOC */



/***********************************************************************
			 Interval Allocation
 ***********************************************************************/

/* Number of intervals allocated in an interval_block structure.
   The 1020 is 1024 minus malloc overhead.  */

#define INTERVAL_BLOCK_SIZE \
  ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))

/* Intervals are allocated in chunks in form of an interval_block
   structure.  */

struct interval_block
{
  /* Place `intervals' first, to preserve alignment.  */
  struct interval intervals[INTERVAL_BLOCK_SIZE];
  struct interval_block *next;
};

/* Current interval block.  Its `next' pointer points to older
   blocks.  */

static struct interval_block *interval_block;

/* Index in interval_block above of the next unused interval
   structure.  */

static int interval_block_index;

/* Number of free and live intervals.  */

static EMACS_INT total_free_intervals, total_intervals;

/* List of free intervals.  */

static INTERVAL interval_free_list;


/* Initialize interval allocation.  */

static void
init_intervals (void)
{
  interval_block = NULL;
  interval_block_index = INTERVAL_BLOCK_SIZE;
  interval_free_list = 0;
}


/* Return a new interval.  */

INTERVAL
make_interval (void)
{
  INTERVAL val;

  /* eassert (!handling_signal); */

  MALLOC_BLOCK_INPUT;

  if (interval_free_list)
    {
      val = interval_free_list;
      interval_free_list = INTERVAL_PARENT (interval_free_list);
    }
  else
    {
      if (interval_block_index == INTERVAL_BLOCK_SIZE)
	{
	  register struct interval_block *newi;

	  newi = (struct interval_block *) lisp_malloc (sizeof *newi,
							MEM_TYPE_NON_LISP);

	  newi->next = interval_block;
	  interval_block = newi;
	  interval_block_index = 0;
	}
      val = &interval_block->intervals[interval_block_index++];
    }

  MALLOC_UNBLOCK_INPUT;

  consing_since_gc += sizeof (struct interval);
  intervals_consed++;
  RESET_INTERVAL (val);
  val->gcmarkbit = 0;
  return val;
}


/* Mark Lisp objects in interval I. */

static void
mark_interval (register INTERVAL i, Lisp_Object dummy)
{
  eassert (!i->gcmarkbit);		/* Intervals are never shared.  */
  i->gcmarkbit = 1;
  mark_object (i->plist);
}


/* Mark the interval tree rooted in TREE.  Don't call this directly;
   use the macro MARK_INTERVAL_TREE instead.  */

static void
mark_interval_tree (register INTERVAL tree)
{
  /* No need to test if this tree has been marked already; this
     function is always called through the MARK_INTERVAL_TREE macro,
     which takes care of that.  */

  traverse_intervals_noorder (tree, mark_interval, Qnil);
}


/* Mark the interval tree rooted in I.  */

#define MARK_INTERVAL_TREE(i)				\
  do {							\
    if (!NULL_INTERVAL_P (i) && !i->gcmarkbit)		\
      mark_interval_tree (i);				\
  } while (0)


#define UNMARK_BALANCE_INTERVALS(i)			\
  do {							\
   if (! NULL_INTERVAL_P (i))				\
     (i) = balance_intervals (i);			\
  } while (0)


/* Number support.  If USE_LISP_UNION_TYPE is in effect, we
   can't create number objects in macros.  */
#ifndef make_number
Lisp_Object
make_number (EMACS_INT n)
{
  Lisp_Object obj;
  obj.s.val = n;
  obj.s.type = Lisp_Int;
  return obj;
}
#endif

/***********************************************************************
			  String Allocation
 ***********************************************************************/

/* Lisp_Strings are allocated in string_block structures.  When a new
   string_block is allocated, all the Lisp_Strings it contains are
   added to a free-list string_free_list.  When a new Lisp_String is
   needed, it is taken from that list.  During the sweep phase of GC,
   string_blocks that are entirely free are freed, except two which
   we keep.

   String data is allocated from sblock structures.  Strings larger
   than LARGE_STRING_BYTES, get their own sblock, data for smaller
   strings is sub-allocated out of sblocks of size SBLOCK_SIZE.

   Sblocks consist internally of sdata structures, one for each
   Lisp_String.  The sdata structure points to the Lisp_String it
   belongs to.  The Lisp_String points back to the `u.data' member of
   its sdata structure.

   When a Lisp_String is freed during GC, it is put back on
   string_free_list, and its `data' member and its sdata's `string'
   pointer is set to null.  The size of the string is recorded in the
   `u.nbytes' member of the sdata.  So, sdata structures that are no
   longer used, can be easily recognized, and it's easy to compact the
   sblocks of small strings which we do in compact_small_strings.  */

/* Size in bytes of an sblock structure used for small strings.  This
   is 8192 minus malloc overhead.  */

#define SBLOCK_SIZE 8188

/* Strings larger than this are considered large strings.  String data
   for large strings is allocated from individual sblocks.  */

#define LARGE_STRING_BYTES 1024

/* Structure describing string memory sub-allocated from an sblock.
   This is where the contents of Lisp strings are stored.  */

struct sdata
{
  /* Back-pointer to the string this sdata belongs to.  If null, this
     structure is free, and the NBYTES member of the union below
     contains the string's byte size (the same value that STRING_BYTES
     would return if STRING were non-null).  If non-null, STRING_BYTES
     (STRING) is the size of the data, and DATA contains the string's
     contents.  */
  struct Lisp_String *string;

#ifdef GC_CHECK_STRING_BYTES

  EMACS_INT nbytes;
  unsigned char data[1];

#define SDATA_NBYTES(S)	(S)->nbytes
#define SDATA_DATA(S)	(S)->data
#define SDATA_SELECTOR(member) member

#else /* not GC_CHECK_STRING_BYTES */

  union
  {
    /* When STRING is non-null.  */
    unsigned char data[1];

    /* When STRING is null.  */
    EMACS_INT nbytes;
  } u;

#define SDATA_NBYTES(S)	(S)->u.nbytes
#define SDATA_DATA(S)	(S)->u.data
#define SDATA_SELECTOR(member) u.member

#endif /* not GC_CHECK_STRING_BYTES */

#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
};


/* Structure describing a block of memory which is sub-allocated to
   obtain string data memory for strings.  Blocks for small strings
   are of fixed size SBLOCK_SIZE.  Blocks for large strings are made
   as large as needed.  */

struct sblock
{
  /* Next in list.  */
  struct sblock *next;

  /* Pointer to the next free sdata block.  This points past the end
     of the sblock if there isn't any space left in this block.  */
  struct sdata *next_free;

  /* Start of data.  */
  struct sdata first_data;
};

/* Number of Lisp strings in a string_block structure.  The 1020 is
   1024 minus malloc overhead.  */

#define STRING_BLOCK_SIZE \
  ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))

/* Structure describing a block from which Lisp_String structures
   are allocated.  */

struct string_block
{
  /* Place `strings' first, to preserve alignment.  */
  struct Lisp_String strings[STRING_BLOCK_SIZE];
  struct string_block *next;
};

/* Head and tail of the list of sblock structures holding Lisp string
   data.  We always allocate from current_sblock.  The NEXT pointers
   in the sblock structures go from oldest_sblock to current_sblock.  */

static struct sblock *oldest_sblock, *current_sblock;

/* List of sblocks for large strings.  */

static struct sblock *large_sblocks;

/* List of string_block structures.  */

static struct string_block *string_blocks;

/* Free-list of Lisp_Strings.  */

static struct Lisp_String *string_free_list;

/* Number of live and free Lisp_Strings.  */

static EMACS_INT total_strings, total_free_strings;

/* Number of bytes used by live strings.  */

static EMACS_INT total_string_size;

/* Given a pointer to a Lisp_String S which is on the free-list
   string_free_list, return a pointer to its successor in the
   free-list.  */

#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))

/* Return a pointer to the sdata structure belonging to Lisp string S.
   S must be live, i.e. S->data must not be null.  S->data is actually
   a pointer to the `u.data' member of its sdata structure; the
   structure starts at a constant offset in front of that.  */

#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))


#ifdef GC_CHECK_STRING_OVERRUN

/* We check for overrun in string data blocks by appending a small
   "cookie" after each allocated string data block, and check for the
   presence of this cookie during GC.  */

#define GC_STRING_OVERRUN_COOKIE_SIZE	4
static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
  { '\xde', '\xad', '\xbe', '\xef' };

#else
#define GC_STRING_OVERRUN_COOKIE_SIZE 0
#endif

/* Value is the size of an sdata structure large enough to hold NBYTES
   bytes of string data.  The value returned includes a terminating
   NUL byte, the size of the sdata structure, and padding.  */

#ifdef GC_CHECK_STRING_BYTES

#define SDATA_SIZE(NBYTES)			\
     ((SDATA_DATA_OFFSET			\
       + (NBYTES) + 1				\
       + sizeof (EMACS_INT) - 1)		\
      & ~(sizeof (EMACS_INT) - 1))

#else /* not GC_CHECK_STRING_BYTES */

/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
   less than the size of that member.  The 'max' is not needed when
   SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
   alignment code reserves enough space.  */

#define SDATA_SIZE(NBYTES)				      \
     ((SDATA_DATA_OFFSET				      \
       + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0	      \
	  ? NBYTES					      \
	  : max (NBYTES, sizeof (EMACS_INT) - 1))	      \
       + 1						      \
       + sizeof (EMACS_INT) - 1)			      \
      & ~(sizeof (EMACS_INT) - 1))

#endif /* not GC_CHECK_STRING_BYTES */

/* Extra bytes to allocate for each string.  */

#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)

/* Exact bound on the number of bytes in a string, not counting the
   terminating null.  A string cannot contain more bytes than
   STRING_BYTES_BOUND, nor can it be so long that the size_t
   arithmetic in allocate_string_data would overflow while it is
   calculating a value to be passed to malloc.  */
#define STRING_BYTES_MAX					  \
  min (STRING_BYTES_BOUND,					  \
       ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD		  \
	 - GC_STRING_EXTRA					  \
	 - offsetof (struct sblock, first_data)			  \
	 - SDATA_DATA_OFFSET)					  \
	& ~(sizeof (EMACS_INT) - 1)))

/* Initialize string allocation.  Called from init_alloc_once.  */

static void
init_strings (void)
{
  total_strings = total_free_strings = total_string_size = 0;
  oldest_sblock = current_sblock = large_sblocks = NULL;
  string_blocks = NULL;
  string_free_list = NULL;
  empty_unibyte_string = make_pure_string ("", 0, 0, 0);
  empty_multibyte_string = make_pure_string ("", 0, 0, 1);
}


#ifdef GC_CHECK_STRING_BYTES

static int check_string_bytes_count;

#define CHECK_STRING_BYTES(S)	STRING_BYTES (S)


/* Like GC_STRING_BYTES, but with debugging check.  */

EMACS_INT
string_bytes (struct Lisp_String *s)
{
  EMACS_INT nbytes =
    (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);

  if (!PURE_POINTER_P (s)
      && s->data
      && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
    abort ();
  return nbytes;
}

/* Check validity of Lisp strings' string_bytes member in B.  */

static void
check_sblock (struct sblock *b)
{
  struct sdata *from, *end, *from_end;

  end = b->next_free;

  for (from = &b->first_data; from < end; from = from_end)
    {
      /* Compute the next FROM here because copying below may
	 overwrite data we need to compute it.  */
      EMACS_INT nbytes;

      /* Check that the string size recorded in the string is the
	 same as the one recorded in the sdata structure. */
      if (from->string)
	CHECK_STRING_BYTES (from->string);

      if (from->string)
	nbytes = GC_STRING_BYTES (from->string);
      else
	nbytes = SDATA_NBYTES (from);

      nbytes = SDATA_SIZE (nbytes);
      from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
    }
}


/* Check validity of Lisp strings' string_bytes member.  ALL_P
   non-zero means check all strings, otherwise check only most
   recently allocated strings.  Used for hunting a bug.  */

static void
check_string_bytes (int all_p)
{
  if (all_p)
    {
      struct sblock *b;

      for (b = large_sblocks; b; b = b->next)
	{
	  struct Lisp_String *s = b->first_data.string;
	  if (s)
	    CHECK_STRING_BYTES (s);
	}

      for (b = oldest_sblock; b; b = b->next)
	check_sblock (b);
    }
  else
    check_sblock (current_sblock);
}

#endif /* GC_CHECK_STRING_BYTES */

#ifdef GC_CHECK_STRING_FREE_LIST

/* Walk through the string free list looking for bogus next pointers.
   This may catch buffer overrun from a previous string.  */

static void
check_string_free_list (void)
{
  struct Lisp_String *s;

  /* Pop a Lisp_String off the free-list.  */
  s = string_free_list;
  while (s != NULL)
    {
      if ((uintptr_t) s < 1024)
	abort ();
      s = NEXT_FREE_LISP_STRING (s);
    }
}
#else
#define check_string_free_list()
#endif

/* Return a new Lisp_String.  */

static struct Lisp_String *
allocate_string (void)
{
  struct Lisp_String *s;

  /* eassert (!handling_signal); */

  MALLOC_BLOCK_INPUT;

  /* If the free-list is empty, allocate a new string_block, and
     add all the Lisp_Strings in it to the free-list.  */
  if (string_free_list == NULL)
    {
      struct string_block *b;
      int i;

      b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
      memset (b, 0, sizeof *b);
      b->next = string_blocks;
      string_blocks = b;

      for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
	{
	  s = b->strings + i;
	  NEXT_FREE_LISP_STRING (s) = string_free_list;
	  string_free_list = s;
	}

      total_free_strings += STRING_BLOCK_SIZE;
    }

  check_string_free_list ();

  /* Pop a Lisp_String off the free-list.  */
  s = string_free_list;
  string_free_list = NEXT_FREE_LISP_STRING (s);

  MALLOC_UNBLOCK_INPUT;

  /* Probably not strictly necessary, but play it safe.  */
  memset (s, 0, sizeof *s);

  --total_free_strings;
  ++total_strings;
  ++strings_consed;
  consing_since_gc += sizeof *s;

#ifdef GC_CHECK_STRING_BYTES
  if (!noninteractive)
    {
      if (++check_string_bytes_count == 200)
	{
	  check_string_bytes_count = 0;
	  check_string_bytes (1);
	}
      else
	check_string_bytes (0);
    }
#endif /* GC_CHECK_STRING_BYTES */

  return s;
}


/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
   plus a NUL byte at the end.  Allocate an sdata structure for S, and
   set S->data to its `u.data' member.  Store a NUL byte at the end of
   S->data.  Set S->size to NCHARS and S->size_byte to NBYTES.  Free
   S->data if it was initially non-null.  */

void
allocate_string_data (struct Lisp_String *s,
		      EMACS_INT nchars, EMACS_INT nbytes)
{
  struct sdata *data, *old_data;
  struct sblock *b;
  EMACS_INT needed, old_nbytes;

  if (STRING_BYTES_MAX < nbytes)
    string_overflow ();

  /* Determine the number of bytes needed to store NBYTES bytes
     of string data.  */
  needed = SDATA_SIZE (nbytes);
  old_data = s->data ? SDATA_OF_STRING (s) : NULL;
  old_nbytes = GC_STRING_BYTES (s);

  MALLOC_BLOCK_INPUT;

  if (nbytes > LARGE_STRING_BYTES)
    {
      size_t size = offsetof (struct sblock, first_data) + needed;

#ifdef DOUG_LEA_MALLOC
      /* Prevent mmap'ing the chunk.  Lisp data may not be mmap'ed
	 because mapped region contents are not preserved in
	 a dumped Emacs.

         In case you think of allowing it in a dumped Emacs at the
         cost of not being able to re-dump, there's another reason:
         mmap'ed data typically have an address towards the top of the
         address space, which won't fit into an EMACS_INT (at least on
         32-bit systems with the current tagging scheme).  --fx  */
      mallopt (M_MMAP_MAX, 0);
#endif

      b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);

#ifdef DOUG_LEA_MALLOC
      /* Back to a reasonable maximum of mmap'ed areas. */
      mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
#endif

      b->next_free = &b->first_data;
      b->first_data.string = NULL;
      b->next = large_sblocks;
      large_sblocks = b;
    }
  else if (current_sblock == NULL
	   || (((char *) current_sblock + SBLOCK_SIZE
		- (char *) current_sblock->next_free)
	       < (needed + GC_STRING_EXTRA)))
    {
      /* Not enough room in the current sblock.  */
      b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
      b->next_free = &b->first_data;
      b->first_data.string = NULL;
      b->next = NULL;

      if (current_sblock)
	current_sblock->next = b;
      else
	oldest_sblock = b;
      current_sblock = b;
    }
  else
    b = current_sblock;

  data = b->next_free;
  b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);

  MALLOC_UNBLOCK_INPUT;

  data->string = s;
  s->data = SDATA_DATA (data);
#ifdef GC_CHECK_STRING_BYTES
  SDATA_NBYTES (data) = nbytes;
#endif
  s->size = nchars;
  s->size_byte = nbytes;
  s->data[nbytes] = '\0';
#ifdef GC_CHECK_STRING_OVERRUN
  memcpy ((char *) data + needed, string_overrun_cookie,
	  GC_STRING_OVERRUN_COOKIE_SIZE);
#endif

  /* If S had already data assigned, mark that as free by setting its
     string back-pointer to null, and recording the size of the data
     in it.  */
  if (old_data)
    {
      SDATA_NBYTES (old_data) = old_nbytes;
      old_data->string = NULL;
    }

  consing_since_gc += needed;
}


/* Sweep and compact strings.  */

static void
sweep_strings (void)
{
  struct string_block *b, *next;
  struct string_block *live_blocks = NULL;

  string_free_list = NULL;
  total_strings = total_free_strings = 0;
  total_string_size = 0;

  /* Scan strings_blocks, free Lisp_Strings that aren't marked.  */
  for (b = string_blocks; b; b = next)
    {
      int i, nfree = 0;
      struct Lisp_String *free_list_before = string_free_list;

      next = b->next;

      for (i = 0; i < STRING_BLOCK_SIZE; ++i)
	{
	  struct Lisp_String *s = b->strings + i;

	  if (s->data)
	    {
	      /* String was not on free-list before.  */
	      if (STRING_MARKED_P (s))
		{
		  /* String is live; unmark it and its intervals.  */
		  UNMARK_STRING (s);

		  if (!NULL_INTERVAL_P (s->intervals))
		    UNMARK_BALANCE_INTERVALS (s->intervals);

		  ++total_strings;
		  total_string_size += STRING_BYTES (s);
		}
	      else
		{
		  /* String is dead.  Put it on the free-list.  */
		  struct sdata *data = SDATA_OF_STRING (s);

		  /* Save the size of S in its sdata so that we know
		     how large that is.  Reset the sdata's string
		     back-pointer so that we know it's free.  */
#ifdef GC_CHECK_STRING_BYTES
		  if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
		    abort ();
#else
		  data->u.nbytes = GC_STRING_BYTES (s);
#endif
		  data->string = NULL;

		  /* Reset the strings's `data' member so that we
		     know it's free.  */
		  s->data = NULL;

		  /* Put the string on the free-list.  */
		  NEXT_FREE_LISP_STRING (s) = string_free_list;
		  string_free_list = s;
		  ++nfree;
		}
	    }
	  else
	    {
	      /* S was on the free-list before.  Put it there again.  */
	      NEXT_FREE_LISP_STRING (s) = string_free_list;
	      string_free_list = s;
	      ++nfree;
	    }
	}

      /* Free blocks that contain free Lisp_Strings only, except
	 the first two of them.  */
      if (nfree == STRING_BLOCK_SIZE
	  && total_free_strings > STRING_BLOCK_SIZE)
	{
	  lisp_free (b);
	  string_free_list = free_list_before;
	}
      else
	{
	  total_free_strings += nfree;
	  b->next = live_blocks;
	  live_blocks = b;
	}
    }

  check_string_free_list ();

  string_blocks = live_blocks;
  free_large_strings ();
  compact_small_strings ();

  check_string_free_list ();
}


/* Free dead large strings.  */

static void
free_large_strings (void)
{
  struct sblock *b, *next;
  struct sblock *live_blocks = NULL;

  for (b = large_sblocks; b; b = next)
    {
      next = b->next;

      if (b->first_data.string == NULL)
	lisp_free (b);
      else
	{
	  b->next = live_blocks;
	  live_blocks = b;
	}
    }

  large_sblocks = live_blocks;
}


/* Compact data of small strings.  Free sblocks that don't contain
   data of live strings after compaction.  */

static void
compact_small_strings (void)
{
  struct sblock *b, *tb, *next;
  struct sdata *from, *to, *end, *tb_end;
  struct sdata *to_end, *from_end;

  /* TB is the sblock we copy to, TO is the sdata within TB we copy
     to, and TB_END is the end of TB.  */
  tb = oldest_sblock;
  tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
  to = &tb->first_data;

  /* Step through the blocks from the oldest to the youngest.  We
     expect that old blocks will stabilize over time, so that less
     copying will happen this way.  */
  for (b = oldest_sblock; b; b = b->next)
    {
      end = b->next_free;
      xassert ((char *) end <= (char *) b + SBLOCK_SIZE);

      for (from = &b->first_data; from < end; from = from_end)
	{
	  /* Compute the next FROM here because copying below may
	     overwrite data we need to compute it.  */
	  EMACS_INT nbytes;

#ifdef GC_CHECK_STRING_BYTES
	  /* Check that the string size recorded in the string is the
	     same as the one recorded in the sdata structure. */
	  if (from->string
	      && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
	    abort ();
#endif /* GC_CHECK_STRING_BYTES */

	  if (from->string)
	    nbytes = GC_STRING_BYTES (from->string);
	  else
	    nbytes = SDATA_NBYTES (from);

	  if (nbytes > LARGE_STRING_BYTES)
	    abort ();

	  nbytes = SDATA_SIZE (nbytes);
	  from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);

#ifdef GC_CHECK_STRING_OVERRUN
	  if (memcmp (string_overrun_cookie,
		      (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
		      GC_STRING_OVERRUN_COOKIE_SIZE))
	    abort ();
#endif

	  /* FROM->string non-null means it's alive.  Copy its data.  */
	  if (from->string)
	    {
	      /* If TB is full, proceed with the next sblock.  */
	      to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
	      if (to_end > tb_end)
		{
		  tb->next_free = to;
		  tb = tb->next;
		  tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
		  to = &tb->first_data;
		  to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
		}

	      /* Copy, and update the string's `data' pointer.  */
	      if (from != to)
		{
		  xassert (tb != b || to < from);
		  memmove (to, from, nbytes + GC_STRING_EXTRA);
		  to->string->data = SDATA_DATA (to);
		}

	      /* Advance past the sdata we copied to.  */
	      to = to_end;
	    }
	}
    }

  /* The rest of the sblocks following TB don't contain live data, so
     we can free them.  */
  for (b = tb->next; b; b = next)
    {
      next = b->next;
      lisp_free (b);
    }

  tb->next_free = to;
  tb->next = NULL;
  current_sblock = tb;
}

void
string_overflow (void)
{
  error ("Maximum string size exceeded");
}

DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
       doc: /* Return a newly created string of length LENGTH, with INIT in each element.
LENGTH must be an integer.
INIT must be an integer that represents a character.  */)
  (Lisp_Object length, Lisp_Object init)
{
  register Lisp_Object val;
  register unsigned char *p, *end;
  int c;
  EMACS_INT nbytes;

  CHECK_NATNUM (length);
  CHECK_CHARACTER (init);

  c = XFASTINT (init);
  if (ASCII_CHAR_P (c))
    {
      nbytes = XINT (length);
      val = make_uninit_string (nbytes);
      p = SDATA (val);
      end = p + SCHARS (val);
      while (p != end)
	*p++ = c;
    }
  else
    {
      unsigned char str[MAX_MULTIBYTE_LENGTH];
      int len = CHAR_STRING (c, str);
      EMACS_INT string_len = XINT (length);

      if (string_len > STRING_BYTES_MAX / len)
	string_overflow ();
      nbytes = len * string_len;
      val = make_uninit_multibyte_string (string_len, nbytes);
      p = SDATA (val);
      end = p + nbytes;
      while (p != end)
	{
	  memcpy (p, str, len);
	  p += len;
	}
    }

  *p = 0;
  return val;
}


DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
       doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
LENGTH must be a number.  INIT matters only in whether it is t or nil.  */)
  (Lisp_Object length, Lisp_Object init)
{
  register Lisp_Object val;
  struct Lisp_Bool_Vector *p;
  EMACS_INT length_in_chars, length_in_elts;
  int bits_per_value;

  CHECK_NATNUM (length);

  bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;

  length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
  length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
		     / BOOL_VECTOR_BITS_PER_CHAR);

  /* We must allocate one more elements than LENGTH_IN_ELTS for the
     slot `size' of the struct Lisp_Bool_Vector.  */
  val = Fmake_vector (make_number (length_in_elts + 1), Qnil);

  /* No Lisp_Object to trace in there.  */
  XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);

  p = XBOOL_VECTOR (val);
  p->size = XFASTINT (length);

  if (length_in_chars)
    {
      memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);

      /* Clear any extraneous bits in the last byte.  */
      p->data[length_in_chars - 1]
	&= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
    }

  return val;
}


/* Make a string from NBYTES bytes at CONTENTS, and compute the number
   of characters from the contents.  This string may be unibyte or
   multibyte, depending on the contents.  */

Lisp_Object
make_string (const char *contents, EMACS_INT nbytes)
{
  register Lisp_Object val;
  EMACS_INT nchars, multibyte_nbytes;

  parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
			  &nchars, &multibyte_nbytes);
  if (nbytes == nchars || nbytes != multibyte_nbytes)
    /* CONTENTS contains no multibyte sequences or contains an invalid
       multibyte sequence.  We must make unibyte string.  */
    val = make_unibyte_string (contents, nbytes);
  else
    val = make_multibyte_string (contents, nchars, nbytes);
  return val;
}


/* Make an unibyte string from LENGTH bytes at CONTENTS.  */

Lisp_Object
make_unibyte_string (const char *contents, EMACS_INT length)
{
  register Lisp_Object val;
  val = make_uninit_string (length);
  memcpy (SDATA (val), contents, length);
  return val;
}


/* Make a multibyte string from NCHARS characters occupying NBYTES
   bytes at CONTENTS.  */

Lisp_Object
make_multibyte_string (const char *contents,
		       EMACS_INT nchars, EMACS_INT nbytes)
{
  register Lisp_Object val;
  val = make_uninit_multibyte_string (nchars, nbytes);
  memcpy (SDATA (val), contents, nbytes);
  return val;
}


/* Make a string from NCHARS characters occupying NBYTES bytes at
   CONTENTS.  It is a multibyte string if NBYTES != NCHARS.  */

Lisp_Object
make_string_from_bytes (const char *contents,
			EMACS_INT nchars, EMACS_INT nbytes)
{
  register Lisp_Object val;
  val = make_uninit_multibyte_string (nchars, nbytes);
  memcpy (SDATA (val), contents, nbytes);
  if (SBYTES (val) == SCHARS (val))
    STRING_SET_UNIBYTE (val);
  return val;
}


/* Make a string from NCHARS characters occupying NBYTES bytes at
   CONTENTS.  The argument MULTIBYTE controls whether to label the
   string as multibyte.  If NCHARS is negative, it counts the number of
   characters by itself.  */

Lisp_Object
make_specified_string (const char *contents,
		       EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
{
  register Lisp_Object val;

  if (nchars < 0)
    {
      if (multibyte)
	nchars = multibyte_chars_in_text ((const unsigned char *) contents,
					  nbytes);
      else
	nchars = nbytes;
    }
  val = make_uninit_multibyte_string (nchars, nbytes);
  memcpy (SDATA (val), contents, nbytes);
  if (!multibyte)
    STRING_SET_UNIBYTE (val);
  return val;
}


/* Make a string from the data at STR, treating it as multibyte if the
   data warrants.  */

Lisp_Object
build_string (const char *str)
{
  return make_string (str, strlen (str));
}


/* Return an unibyte Lisp_String set up to hold LENGTH characters
   occupying LENGTH bytes.  */

Lisp_Object
make_uninit_string (EMACS_INT length)
{
  Lisp_Object val;

  if (!length)
    return empty_unibyte_string;
  val = make_uninit_multibyte_string (length, length);
  STRING_SET_UNIBYTE (val);
  return val;
}


/* Return a multibyte Lisp_String set up to hold NCHARS characters
   which occupy NBYTES bytes.  */

Lisp_Object
make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
{
  Lisp_Object string;
  struct Lisp_String *s;

  if (nchars < 0)
    abort ();
  if (!nbytes)
    return empty_multibyte_string;

  s = allocate_string ();
  allocate_string_data (s, nchars, nbytes);
  XSETSTRING (string, s);
  string_chars_consed += nbytes;
  return string;
}



/***********************************************************************
			   Float Allocation
 ***********************************************************************/

/* We store float cells inside of float_blocks, allocating a new
   float_block with malloc whenever necessary.  Float cells reclaimed
   by GC are put on a free list to be reallocated before allocating
   any new float cells from the latest float_block.  */

#define FLOAT_BLOCK_SIZE					\
  (((BLOCK_BYTES - sizeof (struct float_block *)		\
     /* The compiler might add padding at the end.  */		\
     - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
   / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))

#define GETMARKBIT(block,n)				\
  (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)]	\
    >> ((n) % (sizeof (int) * CHAR_BIT)))		\
   & 1)

#define SETMARKBIT(block,n)				\
  (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)]	\
  |= 1 << ((n) % (sizeof (int) * CHAR_BIT))

#define UNSETMARKBIT(block,n)				\
  (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)]	\
  &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))

#define FLOAT_BLOCK(fptr) \
  ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))

#define FLOAT_INDEX(fptr) \
  ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))

struct float_block
{
  /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job.  */
  struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
  int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
  struct float_block *next;
};

#define FLOAT_MARKED_P(fptr) \
  GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))

#define FLOAT_MARK(fptr) \
  SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))

#define FLOAT_UNMARK(fptr) \
  UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))

/* Current float_block.  */

static struct float_block *float_block;

/* Index of first unused Lisp_Float in the current float_block.  */

static int float_block_index;

/* Free-list of Lisp_Floats.  */

static struct Lisp_Float *float_free_list;


/* Initialize float allocation.  */

static void
init_float (void)
{
  float_block = NULL;
  float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block.   */
  float_free_list = 0;
}


/* Return a new float object with value FLOAT_VALUE.  */

Lisp_Object
make_float (double float_value)
{
  register Lisp_Object val;

  /* eassert (!handling_signal); */

  MALLOC_BLOCK_INPUT;

  if (float_free_list)
    {
      /* We use the data field for chaining the free list
	 so that we won't use the same field that has the mark bit.  */
      XSETFLOAT (val, float_free_list);
      float_free_list = float_free_list->u.chain;
    }
  else
    {
      if (float_block_index == FLOAT_BLOCK_SIZE)
	{
	  register struct float_block *new;

	  new = (struct float_block *) lisp_align_malloc (sizeof *new,
							  MEM_TYPE_FLOAT);
	  new->next = float_block;
	  memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
	  float_block = new;
	  float_block_index = 0;
	}
      XSETFLOAT (val, &float_block->floats[float_block_index]);
      float_block_index++;
    }

  MALLOC_UNBLOCK_INPUT;

  XFLOAT_INIT (val, float_value);
  eassert (!FLOAT_MARKED_P (XFLOAT (val)));
  consing_since_gc += sizeof (struct Lisp_Float);
  floats_consed++;
  return val;
}



/***********************************************************************
			   Cons Allocation
 ***********************************************************************/

/* We store cons cells inside of cons_blocks, allocating a new
   cons_block with malloc whenever necessary.  Cons cells reclaimed by
   GC are put on a free list to be reallocated before allocating
   any new cons cells from the latest cons_block.  */

#define CONS_BLOCK_SIZE \
  (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
   / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))

#define CONS_BLOCK(fptr) \
  ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))

#define CONS_INDEX(fptr) \
  (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))

struct cons_block
{
  /* Place `conses' at the beginning, to ease up CONS_INDEX's job.  */
  struct Lisp_Cons conses[CONS_BLOCK_SIZE];
  int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
  struct cons_block *next;
};

#define CONS_MARKED_P(fptr) \
  GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))

#define CONS_MARK(fptr) \
  SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))

#define CONS_UNMARK(fptr) \
  UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))

/* Current cons_block.  */

static struct cons_block *cons_block;

/* Index of first unused Lisp_Cons in the current block.  */

static int cons_block_index;

/* Free-list of Lisp_Cons structures.  */

static struct Lisp_Cons *cons_free_list;


/* Initialize cons allocation.  */

static void
init_cons (void)
{
  cons_block = NULL;
  cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block.  */
  cons_free_list = 0;
}


/* Explicitly free a cons cell by putting it on the free-list.  */

void
free_cons (struct Lisp_Cons *ptr)
{
  ptr->u.chain = cons_free_list;
#if GC_MARK_STACK
  ptr->car = Vdead;
#endif
  cons_free_list = ptr;
}

DEFUN ("cons", Fcons, Scons, 2, 2, 0,
       doc: /* Create a new cons, give it CAR and CDR as components, and return it.  */)
  (Lisp_Object car, Lisp_Object cdr)
{
  register Lisp_Object val;

  /* eassert (!handling_signal); */

  MALLOC_BLOCK_INPUT;

  if (cons_free_list)
    {
      /* We use the cdr for chaining the free list
	 so that we won't use the same field that has the mark bit.  */
      XSETCONS (val, cons_free_list);
      cons_free_list = cons_free_list->u.chain;
    }
  else
    {
      if (cons_block_index == CONS_BLOCK_SIZE)
	{
	  register struct cons_block *new;
	  new = (struct cons_block *) lisp_align_malloc (sizeof *new,
							 MEM_TYPE_CONS);
	  memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
	  new->next = cons_block;
	  cons_block = new;
	  cons_block_index = 0;
	}
      XSETCONS (val, &cons_block->conses[cons_block_index]);
      cons_block_index++;
    }

  MALLOC_UNBLOCK_INPUT;

  XSETCAR (val, car);
  XSETCDR (val, cdr);
  eassert (!CONS_MARKED_P (XCONS (val)));
  consing_since_gc += sizeof (struct Lisp_Cons);
  cons_cells_consed++;
  return val;
}

#ifdef GC_CHECK_CONS_LIST
/* Get an error now if there's any junk in the cons free list.  */
void
check_cons_list (void)
{
  struct Lisp_Cons *tail = cons_free_list;

  while (tail)
    tail = tail->u.chain;
}
#endif

/* Make a list of 1, 2, 3, 4 or 5 specified objects.  */

Lisp_Object
list1 (Lisp_Object arg1)
{
  return Fcons (arg1, Qnil);
}

Lisp_Object
list2 (Lisp_Object arg1, Lisp_Object arg2)
{
  return Fcons (arg1, Fcons (arg2, Qnil));
}


Lisp_Object
list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
{
  return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
}


Lisp_Object
list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
{
  return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
}


Lisp_Object
list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
{
  return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
						       Fcons (arg5, Qnil)))));
}


DEFUN ("list", Flist, Slist, 0, MANY, 0,
       doc: /* Return a newly created list with specified arguments as elements.
Any number of arguments, even zero arguments, are allowed.
usage: (list &rest OBJECTS)  */)
  (ptrdiff_t nargs, Lisp_Object *args)
{
  register Lisp_Object val;
  val = Qnil;

  while (nargs > 0)
    {
      nargs--;
      val = Fcons (args[nargs], val);
    }
  return val;
}


DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
       doc: /* Return a newly created list of length LENGTH, with each element being INIT.  */)
  (register Lisp_Object length, Lisp_Object init)
{
  register Lisp_Object val;
  register EMACS_INT size;

  CHECK_NATNUM (length);
  size = XFASTINT (length);

  val = Qnil;
  while (size > 0)
    {
      val = Fcons (init, val);
      --size;

      if (size > 0)
	{
	  val = Fcons (init, val);
	  --size;

	  if (size > 0)
	    {
	      val = Fcons (init, val);
	      --size;

	      if (size > 0)
		{
		  val = Fcons (init, val);
		  --size;

		  if (size > 0)
		    {
		      val = Fcons (init, val);
		      --size;
		    }
		}
	    }
	}

      QUIT;
    }

  return val;
}



/***********************************************************************
			   Vector Allocation
 ***********************************************************************/

/* Singly-linked list of all vectors.  */

static struct Lisp_Vector *all_vectors;

/* Handy constants for vectorlike objects.  */
enum
  {
    header_size = offsetof (struct Lisp_Vector, contents),
    word_size = sizeof (Lisp_Object)
  };

/* Value is a pointer to a newly allocated Lisp_Vector structure
   with room for LEN Lisp_Objects.  */

static struct Lisp_Vector *
allocate_vectorlike (EMACS_INT len)
{
  struct Lisp_Vector *p;
  size_t nbytes;

  MALLOC_BLOCK_INPUT;

#ifdef DOUG_LEA_MALLOC
  /* Prevent mmap'ing the chunk.  Lisp data may not be mmap'ed
     because mapped region contents are not preserved in
     a dumped Emacs.  */
  mallopt (M_MMAP_MAX, 0);
#endif

  /* This gets triggered by code which I haven't bothered to fix.  --Stef  */
  /* eassert (!handling_signal); */

  nbytes = header_size + len * word_size;
  p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);

#ifdef DOUG_LEA_MALLOC
  /* Back to a reasonable maximum of mmap'ed areas.  */
  mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
#endif

  consing_since_gc += nbytes;
  vector_cells_consed += len;

  p->header.next.vector = all_vectors;
  all_vectors = p;

  MALLOC_UNBLOCK_INPUT;

  return p;
}


/* Allocate a vector with LEN slots.  */

struct Lisp_Vector *
allocate_vector (EMACS_INT len)
{
  struct Lisp_Vector *v;
  ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);

  if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
    memory_full (SIZE_MAX);
  v = allocate_vectorlike (len);
  v->header.size = len;
  return v;
}


/* Allocate other vector-like structures.  */

struct Lisp_Vector *
allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
{
  struct Lisp_Vector *v = allocate_vectorlike (memlen);
  int i;

  /* Only the first lisplen slots will be traced normally by the GC.  */
  for (i = 0; i < lisplen; ++i)
    v->contents[i] = Qnil;

  XSETPVECTYPESIZE (v, tag, lisplen);
  return v;
}

struct Lisp_Hash_Table *
allocate_hash_table (void)
{
  return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
}


struct window *
allocate_window (void)
{
  return ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
}


struct terminal *
allocate_terminal (void)
{
  struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
					      next_terminal, PVEC_TERMINAL);
  /* Zero out the non-GC'd fields.  FIXME: This should be made unnecessary.  */
  memset (&t->next_terminal, 0,
	  (char*) (t + 1) - (char*) &t->next_terminal);

  return t;
}

struct frame *
allocate_frame (void)
{
  struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
					   face_cache, PVEC_FRAME);
  /* Zero out the non-GC'd fields.  FIXME: This should be made unnecessary.  */
  memset (&f->face_cache, 0,
	  (char *) (f + 1) - (char *) &f->face_cache);
  return f;
}


struct Lisp_Process *
allocate_process (void)
{
  return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
}


DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
       doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
See also the function `vector'.  */)
  (register Lisp_Object length, Lisp_Object init)
{
  Lisp_Object vector;
  register EMACS_INT sizei;
  register EMACS_INT i;
  register struct Lisp_Vector *p;

  CHECK_NATNUM (length);
  sizei = XFASTINT (length);

  p = allocate_vector (sizei);
  for (i = 0; i < sizei; i++)
    p->contents[i] = init;

  XSETVECTOR (vector, p);
  return vector;
}


DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
       doc: /* Return a newly created vector with specified arguments as elements.
Any number of arguments, even zero arguments, are allowed.
usage: (vector &rest OBJECTS)  */)
  (ptrdiff_t nargs, Lisp_Object *args)
{
  register Lisp_Object len, val;
  ptrdiff_t i;
  register struct Lisp_Vector *p;

  XSETFASTINT (len, nargs);
  val = Fmake_vector (len, Qnil);
  p = XVECTOR (val);
  for (i = 0; i < nargs; i++)
    p->contents[i] = args[i];
  return val;
}


DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
       doc: /* Create a byte-code object with specified arguments as elements.
The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
and (optional) INTERACTIVE-SPEC.
The first four arguments are required; at most six have any
significance.
The ARGLIST can be either like the one of `lambda', in which case the arguments
will be dynamically bound before executing the byte code, or it can be an
integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
argument to catch the left-over arguments.  If such an integer is used, the
arguments will not be dynamically bound but will be instead pushed on the
stack before executing the byte-code.
usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS)  */)
  (ptrdiff_t nargs, Lisp_Object *args)
{
  register Lisp_Object len, val;
  ptrdiff_t i;
  register struct Lisp_Vector *p;

  XSETFASTINT (len, nargs);
  if (!NILP (Vpurify_flag))
    val = make_pure_vector (nargs);
  else
    val = Fmake_vector (len, Qnil);

  if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
    /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
       earlier because they produced a raw 8-bit string for byte-code
       and now such a byte-code string is loaded as multibyte while
       raw 8-bit characters converted to multibyte form.  Thus, now we
       must convert them back to the original unibyte form.  */
    args[1] = Fstring_as_unibyte (args[1]);

  p = XVECTOR (val);
  for (i = 0; i < nargs; i++)
    {
      if (!NILP (Vpurify_flag))
	args[i] = Fpurecopy (args[i]);
      p->contents[i] = args[i];
    }
  XSETPVECTYPE (p, PVEC_COMPILED);
  XSETCOMPILED (val, p);
  return val;
}



/***********************************************************************
			   Symbol Allocation
 ***********************************************************************/

/* Each symbol_block is just under 1020 bytes long, since malloc
   really allocates in units of powers of two and uses 4 bytes for its
   own overhead. */

#define SYMBOL_BLOCK_SIZE \
  ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))

struct symbol_block
{
  /* Place `symbols' first, to preserve alignment.  */
  struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
  struct symbol_block *next;
};

/* Current symbol block and index of first unused Lisp_Symbol
   structure in it.  */

static struct symbol_block *symbol_block;
static int symbol_block_index;

/* List of free symbols.  */

static struct Lisp_Symbol *symbol_free_list;


/* Initialize symbol allocation.  */

static void
init_symbol (void)
{
  symbol_block = NULL;
  symbol_block_index = SYMBOL_BLOCK_SIZE;
  symbol_free_list = 0;
}


DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
       doc: /* Return a newly allocated uninterned symbol whose name is NAME.
Its value and function definition are void, and its property list is nil.  */)
  (Lisp_Object name)
{
  register Lisp_Object val;
  register struct Lisp_Symbol *p;

  CHECK_STRING (name);

  /* eassert (!handling_signal); */

  MALLOC_BLOCK_INPUT;

  if (symbol_free_list)
    {
      XSETSYMBOL (val, symbol_free_list);
      symbol_free_list = symbol_free_list->next;
    }
  else
    {
      if (symbol_block_index == SYMBOL_BLOCK_SIZE)
	{
	  struct symbol_block *new;
	  new = (struct symbol_block *) lisp_malloc (sizeof *new,
						     MEM_TYPE_SYMBOL);
	  new->next = symbol_block;
	  symbol_block = new;
	  symbol_block_index = 0;
	}
      XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
      symbol_block_index++;
    }

  MALLOC_UNBLOCK_INPUT;

  p = XSYMBOL (val);
  p->xname = name;
  p->plist = Qnil;
  p->redirect = SYMBOL_PLAINVAL;
  SET_SYMBOL_VAL (p, Qunbound);
  p->function = Qunbound;
  p->next = NULL;
  p->gcmarkbit = 0;
  p->interned = SYMBOL_UNINTERNED;
  p->constant = 0;
  p->declared_special = 0;
  consing_since_gc += sizeof (struct Lisp_Symbol);
  symbols_consed++;
  return val;
}



/***********************************************************************
		       Marker (Misc) Allocation
 ***********************************************************************/

/* Allocation of markers and other objects that share that structure.
   Works like allocation of conses. */

#define MARKER_BLOCK_SIZE \
  ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))

struct marker_block
{
  /* Place `markers' first, to preserve alignment.  */
  union Lisp_Misc markers[MARKER_BLOCK_SIZE];
  struct marker_block *next;
};

static struct marker_block *marker_block;
static int marker_block_index;

static union Lisp_Misc *marker_free_list;

static void
init_marker (void)
{
  marker_block = NULL;
  marker_block_index = MARKER_BLOCK_SIZE;
  marker_free_list = 0;
}

/* Return a newly allocated Lisp_Misc object, with no substructure.  */

Lisp_Object
allocate_misc (void)
{
  Lisp_Object val;

  /* eassert (!handling_signal); */

  MALLOC_BLOCK_INPUT;

  if (marker_free_list)
    {
      XSETMISC (val, marker_free_list);
      marker_free_list = marker_free_list->u_free.chain;
    }
  else
    {
      if (marker_block_index == MARKER_BLOCK_SIZE)
	{
	  struct marker_block *new;
	  new = (struct marker_block *) lisp_malloc (sizeof *new,
						     MEM_TYPE_MISC);
	  new->next = marker_block;
	  marker_block = new;
	  marker_block_index = 0;
	  total_free_markers += MARKER_BLOCK_SIZE;
	}
      XSETMISC (val, &marker_block->markers[marker_block_index]);
      marker_block_index++;
    }

  MALLOC_UNBLOCK_INPUT;

  --total_free_markers;
  consing_since_gc += sizeof (union Lisp_Misc);
  misc_objects_consed++;
  XMISCANY (val)->gcmarkbit = 0;
  return val;
}

/* Free a Lisp_Misc object */

static void
free_misc (Lisp_Object misc)
{
  XMISCTYPE (misc) = Lisp_Misc_Free;
  XMISC (misc)->u_free.chain = marker_free_list;
  marker_free_list = XMISC (misc);

  total_free_markers++;
}

/* Return a Lisp_Misc_Save_Value object containing POINTER and
   INTEGER.  This is used to package C values to call record_unwind_protect.
   The unwind function can get the C values back using XSAVE_VALUE.  */

Lisp_Object
make_save_value (void *pointer, ptrdiff_t integer)
{
  register Lisp_Object val;
  register struct Lisp_Save_Value *p;

  val = allocate_misc ();
  XMISCTYPE (val) = Lisp_Misc_Save_Value;
  p = XSAVE_VALUE (val);
  p->pointer = pointer;
  p->integer = integer;
  p->dogc = 0;
  return val;
}

DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
       doc: /* Return a newly allocated marker which does not point at any place.  */)
  (void)
{
  register Lisp_Object val;
  register struct Lisp_Marker *p;

  val = allocate_misc ();
  XMISCTYPE (val) = Lisp_Misc_Marker;
  p = XMARKER (val);
  p->buffer = 0;
  p->bytepos = 0;
  p->charpos = 0;
  p->next = NULL;
  p->insertion_type = 0;
  return val;
}

/* Put MARKER back on the free list after using it temporarily.  */

void
free_marker (Lisp_Object marker)
{
  unchain_marker (XMARKER (marker));
  free_misc (marker);
}


/* Return a newly created vector or string with specified arguments as
   elements.  If all the arguments are characters that can fit
   in a string of events, make a string; otherwise, make a vector.

   Any number of arguments, even zero arguments, are allowed.  */

Lisp_Object
make_event_array (register int nargs, Lisp_Object *args)
{
  int i;

  for (i = 0; i < nargs; i++)
    /* The things that fit in a string
       are characters that are in 0...127,
       after discarding the meta bit and all the bits above it.  */
    if (!INTEGERP (args[i])
	|| (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
      return Fvector (nargs, args);

  /* Since the loop exited, we know that all the things in it are
     characters, so we can make a string.  */
  {
    Lisp_Object result;

    result = Fmake_string (make_number (nargs), make_number (0));
    for (i = 0; i < nargs; i++)
      {
	SSET (result, i, XINT (args[i]));
	/* Move the meta bit to the right place for a string char.  */
	if (XINT (args[i]) & CHAR_META)
	  SSET (result, i, SREF (result, i) | 0x80);
      }

    return result;
  }
}



/************************************************************************
			   Memory Full Handling
 ************************************************************************/


/* Called if malloc (NBYTES) returns zero.  If NBYTES == SIZE_MAX,
   there may have been size_t overflow so that malloc was never
   called, or perhaps malloc was invoked successfully but the
   resulting pointer had problems fitting into a tagged EMACS_INT.  In
   either case this counts as memory being full even though malloc did
   not fail.  */

void
memory_full (size_t nbytes)
{
  /* Do not go into hysterics merely because a large request failed.  */
  int enough_free_memory = 0;
  if (SPARE_MEMORY < nbytes)
    {
      void *p;

      MALLOC_BLOCK_INPUT;
      p = malloc (SPARE_MEMORY);
      if (p)
	{
	  free (p);
	  enough_free_memory = 1;
	}
      MALLOC_UNBLOCK_INPUT;
    }

  if (! enough_free_memory)
    {
      int i;

      Vmemory_full = Qt;

      memory_full_cons_threshold = sizeof (struct cons_block);

      /* The first time we get here, free the spare memory.  */
      for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
	if (spare_memory[i])
	  {
	    if (i == 0)
	      free (spare_memory[i]);
	    else if (i >= 1 && i <= 4)
	      lisp_align_free (spare_memory[i]);
	    else
	      lisp_free (spare_memory[i]);
	    spare_memory[i] = 0;
	  }

      /* Record the space now used.  When it decreases substantially,
	 we can refill the memory reserve.  */
#if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
      bytes_used_when_full = BYTES_USED;
#endif
    }

  /* This used to call error, but if we've run out of memory, we could
     get infinite recursion trying to build the string.  */
  xsignal (Qnil, Vmemory_signal_data);
}

/* If we released our reserve (due to running out of memory),
   and we have a fair amount free once again,
   try to set aside another reserve in case we run out once more.

   This is called when a relocatable block is freed in ralloc.c,
   and also directly from this file, in case we're not using ralloc.c.  */

void
refill_memory_reserve (void)
{
#ifndef SYSTEM_MALLOC
  if (spare_memory[0] == 0)
    spare_memory[0] = (char *) malloc (SPARE_MEMORY);
  if (spare_memory[1] == 0)
    spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
						  MEM_TYPE_CONS);
  if (spare_memory[2] == 0)
    spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
						  MEM_TYPE_CONS);
  if (spare_memory[3] == 0)
    spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
						  MEM_TYPE_CONS);
  if (spare_memory[4] == 0)
    spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
						  MEM_TYPE_CONS);
  if (spare_memory[5] == 0)
    spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
					    MEM_TYPE_STRING);
  if (spare_memory[6] == 0)
    spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
					    MEM_TYPE_STRING);
  if (spare_memory[0] && spare_memory[1] && spare_memory[5])
    Vmemory_full = Qnil;
#endif
}

/************************************************************************
			   C Stack Marking
 ************************************************************************/

#if GC_MARK_STACK || defined GC_MALLOC_CHECK

/* Conservative C stack marking requires a method to identify possibly
   live Lisp objects given a pointer value.  We do this by keeping
   track of blocks of Lisp data that are allocated in a red-black tree
   (see also the comment of mem_node which is the type of nodes in
   that tree).  Function lisp_malloc adds information for an allocated
   block to the red-black tree with calls to mem_insert, and function
   lisp_free removes it with mem_delete.  Functions live_string_p etc
   call mem_find to lookup information about a given pointer in the
   tree, and use that to determine if the pointer points to a Lisp
   object or not.  */

/* Initialize this part of alloc.c.  */

static void
mem_init (void)
{
  mem_z.left = mem_z.right = MEM_NIL;
  mem_z.parent = NULL;
  mem_z.color = MEM_BLACK;
  mem_z.start = mem_z.end = NULL;
  mem_root = MEM_NIL;
}


/* Value is a pointer to the mem_node containing START.  Value is
   MEM_NIL if there is no node in the tree containing START.  */

static inline struct mem_node *
mem_find (void *start)
{
  struct mem_node *p;

  if (start < min_heap_address || start > max_heap_address)
    return MEM_NIL;

  /* Make the search always successful to speed up the loop below.  */
  mem_z.start = start;
  mem_z.end = (char *) start + 1;

  p = mem_root;
  while (start < p->start || start >= p->end)
    p = start < p->start ? p->left : p->right;
  return p;
}


/* Insert a new node into the tree for a block of memory with start
   address START, end address END, and type TYPE.  Value is a
   pointer to the node that was inserted.  */

static struct mem_node *
mem_insert (void *start, void *end, enum mem_type type)
{
  struct mem_node *c, *parent, *x;

  if (min_heap_address == NULL || start < min_heap_address)
    min_heap_address = start;
  if (max_heap_address == NULL || end > max_heap_address)
    max_heap_address = end;

  /* See where in the tree a node for START belongs.  In this
     particular application, it shouldn't happen that a node is already
     present.  For debugging purposes, let's check that.  */
  c = mem_root;
  parent = NULL;

#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS

  while (c != MEM_NIL)
    {
      if (start >= c->start && start < c->end)
	abort ();
      parent = c;
      c = start < c->start ? c->left : c->right;
    }

#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */

  while (c != MEM_NIL)
    {
      parent = c;
      c = start < c->start ? c->left : c->right;
    }

#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */

  /* Create a new node.  */
#ifdef GC_MALLOC_CHECK
  x = (struct mem_node *) _malloc_internal (sizeof *x);
  if (x == NULL)
    abort ();
#else
  x = (struct mem_node *) xmalloc (sizeof *x);
#endif
  x->start = start;
  x->end = end;
  x->type = type;
  x->parent = parent;
  x->left = x->right = MEM_NIL;
  x->color = MEM_RED;

  /* Insert it as child of PARENT or install it as root.  */
  if (parent)
    {
      if (start < parent->start)
	parent->left = x;
      else
	parent->right = x;
    }
  else
    mem_root = x;

  /* Re-establish red-black tree properties.  */
  mem_insert_fixup (x);

  return x;
}


/* Re-establish the red-black properties of the tree, and thereby
   balance the tree, after node X has been inserted; X is always red.  */

static void
mem_insert_fixup (struct mem_node *x)
{
  while (x != mem_root && x->parent->color == MEM_RED)
    {
      /* X is red and its parent is red.  This is a violation of
	 red-black tree property #3.  */

      if (x->parent == x->parent->parent->left)
	{
	  /* We're on the left side of our grandparent, and Y is our
	     "uncle".  */
	  struct mem_node *y = x->parent->parent->right;

	  if (y->color == MEM_RED)
	    {
	      /* Uncle and parent are red but should be black because
		 X is red.  Change the colors accordingly and proceed
		 with the grandparent.  */
	      x->parent->color = MEM_BLACK;
	      y->color = MEM_BLACK;
	      x->parent->parent->color = MEM_RED;
	      x = x->parent->parent;
            }
	  else
	    {
	      /* Parent and uncle have different colors; parent is
		 red, uncle is black.  */
	      if (x == x->parent->right)
		{
		  x = x->parent;
		  mem_rotate_left (x);
                }

	      x->parent->color = MEM_BLACK;
	      x->parent->parent->color = MEM_RED;
	      mem_rotate_right (x->parent->parent);
            }
        }
      else
	{
	  /* This is the symmetrical case of above.  */
	  struct mem_node *y = x->parent->parent->left;

	  if (y->color == MEM_RED)
	    {
	      x->parent->color = MEM_BLACK;
	      y->color = MEM_BLACK;
	      x->parent->parent->color = MEM_RED;
	      x = x->parent->parent;
            }
	  else
	    {
	      if (x == x->parent->left)
		{
		  x = x->parent;
		  mem_rotate_right (x);
		}

	      x->parent->color = MEM_BLACK;
	      x->parent->parent->color = MEM_RED;
	      mem_rotate_left (x->parent->parent);
            }
        }
    }

  /* The root may have been changed to red due to the algorithm.  Set
     it to black so that property #5 is satisfied.  */
  mem_root->color = MEM_BLACK;
}


/*   (x)                   (y)
     / \                   / \
    a   (y)      ===>    (x)  c
        / \              / \
       b   c            a   b  */

static void
mem_rotate_left (struct mem_node *x)
{
  struct mem_node *y;

  /* Turn y's left sub-tree into x's right sub-tree.  */
  y = x->right;
  x->right = y->left;
  if (y->left != MEM_NIL)
    y->left->parent = x;

  /* Y's parent was x's parent.  */
  if (y != MEM_NIL)
    y->parent = x->parent;

  /* Get the parent to point to y instead of x.  */
  if (x->parent)
    {
      if (x == x->parent->left)
	x->parent->left = y;
      else
	x->parent->right = y;
    }
  else
    mem_root = y;

  /* Put x on y's left.  */
  y->left = x;
  if (x != MEM_NIL)
    x->parent = y;
}


/*     (x)                (Y)
       / \                / \
     (y)  c      ===>    a  (x)
     / \                    / \
    a   b                  b   c  */

static void
mem_rotate_right (struct mem_node *x)
{
  struct mem_node *y = x->left;

  x->left = y->right;
  if (y->right != MEM_NIL)
    y->right->parent = x;

  if (y != MEM_NIL)
    y->parent = x->parent;
  if (x->parent)
    {
      if (x == x->parent->right)
	x->parent->right = y;
      else
	x->parent->left = y;
    }
  else
    mem_root = y;

  y->right = x;
  if (x != MEM_NIL)
    x->parent = y;
}


/* Delete node Z from the tree.  If Z is null or MEM_NIL, do nothing.  */

static void
mem_delete (struct mem_node *z)
{
  struct mem_node *x, *y;

  if (!z || z == MEM_NIL)
    return;

  if (z->left == MEM_NIL || z->right == MEM_NIL)
    y = z;
  else
    {
      y = z->right;
      while (y->left != MEM_NIL)
	y = y->left;
    }

  if (y->left != MEM_NIL)
    x = y->left;
  else
    x = y->right;

  x->parent = y->parent;
  if (y->parent)
    {
      if (y == y->parent->left)
	y->parent->left = x;
      else
	y->parent->right = x;
    }
  else
    mem_root = x;

  if (y != z)
    {
      z->start = y->start;
      z->end = y->end;
      z->type = y->type;
    }

  if (y->color == MEM_BLACK)
    mem_delete_fixup (x);

#ifdef GC_MALLOC_CHECK
  _free_internal (y);
#else
  xfree (y);
#endif
}


/* Re-establish the red-black properties of the tree, after a
   deletion.  */

static void
mem_delete_fixup (struct mem_node *x)
{
  while (x != mem_root && x->color == MEM_BLACK)
    {
      if (x == x->parent->left)
	{
	  struct mem_node *w = x->parent->right;

	  if (w->color == MEM_RED)
	    {
	      w->color = MEM_BLACK;
	      x->parent->color = MEM_RED;
	      mem_rotate_left (x->parent);
	      w = x->parent->right;
            }

	  if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
	    {
	      w->color = MEM_RED;
	      x = x->parent;
            }
	  else
	    {
	      if (w->right->color == MEM_BLACK)
		{
		  w->left->color = MEM_BLACK;
		  w->color = MEM_RED;
		  mem_rotate_right (w);
		  w = x->parent->right;
                }
	      w->color = x->parent->color;
	      x->parent->color = MEM_BLACK;
	      w->right->color = MEM_BLACK;
	      mem_rotate_left (x->parent);
	      x = mem_root;
            }
        }
      else
	{
	  struct mem_node *w = x->parent->left;

	  if (w->color == MEM_RED)
	    {
	      w->color = MEM_BLACK;
	      x->parent->color = MEM_RED;
	      mem_rotate_right (x->parent);
	      w = x->parent->left;
            }

	  if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
	    {
	      w->color = MEM_RED;
	      x = x->parent;
            }
	  else
	    {
	      if (w->left->color == MEM_BLACK)
		{
		  w->right->color = MEM_BLACK;
		  w->color = MEM_RED;
		  mem_rotate_left (w);
		  w = x->parent->left;
                }

	      w->color = x->parent->color;
	      x->parent->color = MEM_BLACK;
	      w->left->color = MEM_BLACK;
	      mem_rotate_right (x->parent);
	      x = mem_root;
            }
        }
    }

  x->color = MEM_BLACK;
}


/* Value is non-zero if P is a pointer to a live Lisp string on
   the heap.  M is a pointer to the mem_block for P.  */

static inline int
live_string_p (struct mem_node *m, void *p)
{
  if (m->type == MEM_TYPE_STRING)
    {
      struct string_block *b = (struct string_block *) m->start;
      ptrdiff_t offset = (char *) p - (char *) &b->strings[0];

      /* P must point to the start of a Lisp_String structure, and it
	 must not be on the free-list.  */
      return (offset >= 0
	      && offset % sizeof b->strings[0] == 0
	      && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
	      && ((struct Lisp_String *) p)->data != NULL);
    }
  else
    return 0;
}


/* Value is non-zero if P is a pointer to a live Lisp cons on
   the heap.  M is a pointer to the mem_block for P.  */

static inline int
live_cons_p (struct mem_node *m, void *p)
{
  if (m->type == MEM_TYPE_CONS)
    {
      struct cons_block *b = (struct cons_block *) m->start;
      ptrdiff_t offset = (char *) p - (char *) &b->conses[0];

      /* P must point to the start of a Lisp_Cons, not be
	 one of the unused cells in the current cons block,
	 and not be on the free-list.  */
      return (offset >= 0
	      && offset % sizeof b->conses[0] == 0
	      && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
	      && (b != cons_block
		  || offset / sizeof b->conses[0] < cons_block_index)
	      && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
    }
  else
    return 0;
}


/* Value is non-zero if P is a pointer to a live Lisp symbol on
   the heap.  M is a pointer to the mem_block for P.  */

static inline int
live_symbol_p (struct mem_node *m, void *p)
{
  if (m->type == MEM_TYPE_SYMBOL)
    {
      struct symbol_block *b = (struct symbol_block *) m->start;
      ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];

      /* P must point to the start of a Lisp_Symbol, not be
	 one of the unused cells in the current symbol block,
	 and not be on the free-list.  */
      return (offset >= 0
	      && offset % sizeof b->symbols[0] == 0
	      && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
	      && (b != symbol_block
		  || offset / sizeof b->symbols[0] < symbol_block_index)
	      && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
    }
  else
    return 0;
}


/* Value is non-zero if P is a pointer to a live Lisp float on
   the heap.  M is a pointer to the mem_block for P.  */

static inline int
live_float_p (struct mem_node *m, void *p)
{
  if (m->type == MEM_TYPE_FLOAT)
    {
      struct float_block *b = (struct float_block *) m->start;
      ptrdiff_t offset = (char *) p - (char *) &b->floats[0];

      /* P must point to the start of a Lisp_Float and not be
	 one of the unused cells in the current float block.  */
      return (offset >= 0
	      && offset % sizeof b->floats[0] == 0
	      && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
	      && (b != float_block
		  || offset / sizeof b->floats[0] < float_block_index));
    }
  else
    return 0;
}


/* Value is non-zero if P is a pointer to a live Lisp Misc on
   the heap.  M is a pointer to the mem_block for P.  */

static inline int
live_misc_p (struct mem_node *m, void *p)
{
  if (m->type == MEM_TYPE_MISC)
    {
      struct marker_block *b = (struct marker_block *) m->start;
      ptrdiff_t offset = (char *) p - (char *) &b->markers[0];

      /* P must point to the start of a Lisp_Misc, not be
	 one of the unused cells in the current misc block,
	 and not be on the free-list.  */
      return (offset >= 0
	      && offset % sizeof b->markers[0] == 0
	      && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
	      && (b != marker_block
		  || offset / sizeof b->markers[0] < marker_block_index)
	      && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
    }
  else
    return 0;
}


/* Value is non-zero if P is a pointer to a live vector-like object.
   M is a pointer to the mem_block for P.  */

static inline int
live_vector_p (struct mem_node *m, void *p)
{
  return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
}


/* Value is non-zero if P is a pointer to a live buffer.  M is a
   pointer to the mem_block for P.  */

static inline int
live_buffer_p (struct mem_node *m, void *p)
{
  /* P must point to the start of the block, and the buffer
     must not have been killed.  */
  return (m->type == MEM_TYPE_BUFFER
	  && p == m->start
	  && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
}

#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */

#if GC_MARK_STACK

#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES

/* Array of objects that are kept alive because the C stack contains
   a pattern that looks like a reference to them .  */

#define MAX_ZOMBIES 10
static Lisp_Object zombies[MAX_ZOMBIES];

/* Number of zombie objects.  */

static EMACS_INT nzombies;

/* Number of garbage collections.  */

static EMACS_INT ngcs;

/* Average percentage of zombies per collection.  */

static double avg_zombies;

/* Max. number of live and zombie objects.  */

static EMACS_INT max_live, max_zombies;

/* Average number of live objects per GC.  */

static double avg_live;

DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
       doc: /* Show information about live and zombie objects.  */)
  (void)
{
  Lisp_Object args[8], zombie_list = Qnil;
  EMACS_INT i;
  for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
    zombie_list = Fcons (zombies[i], zombie_list);
  args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
  args[1] = make_number (ngcs);
  args[2] = make_float (avg_live);
  args[3] = make_float (avg_zombies);
  args[4] = make_float (avg_zombies / avg_live / 100);
  args[5] = make_number (max_live);
  args[6] = make_number (max_zombies);
  args[7] = zombie_list;
  return Fmessage (8, args);
}

#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */


/* Mark OBJ if we can prove it's a Lisp_Object.  */

static inline void
mark_maybe_object (Lisp_Object obj)
{
  void *po;
  struct mem_node *m;

  if (INTEGERP (obj))
    return;

  po = (void *) XPNTR (obj);
  m = mem_find (po);

  if (m != MEM_NIL)
    {
      int mark_p = 0;

      switch (XTYPE (obj))
	{
	case Lisp_String:
	  mark_p = (live_string_p (m, po)
		    && !STRING_MARKED_P ((struct Lisp_String *) po));
	  break;

	case Lisp_Cons:
	  mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
	  break;

	case Lisp_Symbol:
	  mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
	  break;

	case Lisp_Float:
	  mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
	  break;

	case Lisp_Vectorlike:
	  /* Note: can't check BUFFERP before we know it's a
	     buffer because checking that dereferences the pointer
	     PO which might point anywhere.  */
	  if (live_vector_p (m, po))
	    mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
	  else if (live_buffer_p (m, po))
	    mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
	  break;

	case Lisp_Misc:
	  mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
	  break;

	default:
	  break;
	}

      if (mark_p)
	{
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
	  if (nzombies < MAX_ZOMBIES)
	    zombies[nzombies] = obj;
	  ++nzombies;
#endif
	  mark_object (obj);
	}
    }
}


/* If P points to Lisp data, mark that as live if it isn't already
   marked.  */

static inline void
mark_maybe_pointer (void *p)
{
  struct mem_node *m;

  /* Quickly rule out some values which can't point to Lisp data.  */
  if ((intptr_t) p %
#ifdef USE_LSB_TAG
      8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8.  */
#else
      2 /* We assume that Lisp data is aligned on even addresses.  */
#endif
      )
    return;

  m = mem_find (p);
  if (m != MEM_NIL)
    {
      Lisp_Object obj = Qnil;

      switch (m->type)
	{
	case MEM_TYPE_NON_LISP:
	  /* Nothing to do; not a pointer to Lisp memory.  */
	  break;

	case MEM_TYPE_BUFFER:
	  if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
	    XSETVECTOR (obj, p);
	  break;

	case MEM_TYPE_CONS:
	  if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
	    XSETCONS (obj, p);
	  break;

	case MEM_TYPE_STRING:
	  if (live_string_p (m, p)
	      && !STRING_MARKED_P ((struct Lisp_String *) p))
	    XSETSTRING (obj, p);
	  break;

	case MEM_TYPE_MISC:
	  if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
	    XSETMISC (obj, p);
	  break;

	case MEM_TYPE_SYMBOL:
	  if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
	    XSETSYMBOL (obj, p);
	  break;

	case MEM_TYPE_FLOAT:
	  if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
	    XSETFLOAT (obj, p);
	  break;

	case MEM_TYPE_VECTORLIKE:
	  if (live_vector_p (m, p))
	    {
	      Lisp_Object tem;
	      XSETVECTOR (tem, p);
	      if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
		obj = tem;
	    }
	  break;

	default:
	  abort ();
	}

      if (!NILP (obj))
	mark_object (obj);
    }
}


/* Alignment of Lisp_Object and pointer values.  Use offsetof, as it
   sometimes returns a smaller alignment than GCC's __alignof__ and
   mark_memory might miss objects if __alignof__ were used.  For
   example, on x86 with WIDE_EMACS_INT, __alignof__ (Lisp_Object) is 8
   but GC_LISP_OBJECT_ALIGNMENT should be 4.  */
#ifndef GC_LISP_OBJECT_ALIGNMENT
# define GC_LISP_OBJECT_ALIGNMENT offsetof (struct {char a; Lisp_Object b;}, b)
#endif
#define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)

/* Mark Lisp objects referenced from the address range START+OFFSET..END
   or END+OFFSET..START. */

static void
mark_memory (void *start, void *end)
{
  Lisp_Object *p;
  void **pp;
  int i;

#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
  nzombies = 0;
#endif

  /* Make START the pointer to the start of the memory region,
     if it isn't already.  */
  if (end < start)
    {
      void *tem = start;
      start = end;
      end = tem;
    }

  /* Mark Lisp_Objects.  */
  for (p = start; (void *) p < end; p++)
    for (i = 0; i < sizeof *p; i += GC_LISP_OBJECT_ALIGNMENT)
      mark_maybe_object (*(Lisp_Object *) ((char *) p + i));

  /* Mark Lisp data pointed to.  This is necessary because, in some
     situations, the C compiler optimizes Lisp objects away, so that
     only a pointer to them remains.  Example:

     DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
     ()
     {
       Lisp_Object obj = build_string ("test");
       struct Lisp_String *s = XSTRING (obj);
       Fgarbage_collect ();
       fprintf (stderr, "test `%s'\n", s->data);
       return Qnil;
     }

     Here, `obj' isn't really used, and the compiler optimizes it
     away.  The only reference to the life string is through the
     pointer `s'.  */

  for (pp = start; (void *) pp < end; pp++)
    for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
      mark_maybe_pointer (*(void **) ((char *) pp + i));
}

/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
   the GCC system configuration.  In gcc 3.2, the only systems for
   which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
   by others?) and ns32k-pc532-min.  */

#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS

static int setjmp_tested_p, longjmps_done;

#define SETJMP_WILL_LIKELY_WORK "\
\n\
Emacs garbage collector has been changed to use conservative stack\n\
marking.  Emacs has determined that the method it uses to do the\n\
marking will likely work on your system, but this isn't sure.\n\
\n\
If you are a system-programmer, or can get the help of a local wizard\n\
who is, please take a look at the function mark_stack in alloc.c, and\n\
verify that the methods used are appropriate for your system.\n\
\n\
Please mail the result to <emacs-devel@gnu.org>.\n\
"

#define SETJMP_WILL_NOT_WORK "\
\n\
Emacs garbage collector has been changed to use conservative stack\n\
marking.  Emacs has determined that the default method it uses to do the\n\
marking will not work on your system.  We will need a system-dependent\n\
solution for your system.\n\
\n\
Please take a look at the function mark_stack in alloc.c, and\n\
try to find a way to make it work on your system.\n\
\n\
Note that you may get false negatives, depending on the compiler.\n\
In particular, you need to use -O with GCC for this test.\n\
\n\
Please mail the result to <emacs-devel@gnu.org>.\n\
"


/* Perform a quick check if it looks like setjmp saves registers in a
   jmp_buf.  Print a message to stderr saying so.  When this test
   succeeds, this is _not_ a proof that setjmp is sufficient for
   conservative stack marking.  Only the sources or a disassembly
   can prove that.  */

static void
test_setjmp (void)
{
  char buf[10];
  register int x;
  jmp_buf jbuf;
  int result = 0;

  /* Arrange for X to be put in a register.  */
  sprintf (buf, "1");
  x = strlen (buf);
  x = 2 * x - 1;

  setjmp (jbuf);
  if (longjmps_done == 1)
    {
      /* Came here after the longjmp at the end of the function.

         If x == 1, the longjmp has restored the register to its
         value before the setjmp, and we can hope that setjmp
         saves all such registers in the jmp_buf, although that
	 isn't sure.

         For other values of X, either something really strange is
         taking place, or the setjmp just didn't save the register.  */

      if (x == 1)
	fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
      else
	{
	  fprintf (stderr, SETJMP_WILL_NOT_WORK);
	  exit (1);
	}
    }

  ++longjmps_done;
  x = 2;
  if (longjmps_done == 1)
    longjmp (jbuf, 1);
}

#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */


#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS

/* Abort if anything GCPRO'd doesn't survive the GC.  */

static void
check_gcpros (void)
{
  struct gcpro *p;
  ptrdiff_t i;

  for (p = gcprolist; p; p = p->next)
    for (i = 0; i < p->nvars; ++i)
      if (!survives_gc_p (p->var[i]))
	/* FIXME: It's not necessarily a bug.  It might just be that the
	   GCPRO is unnecessary or should release the object sooner.  */
	abort ();
}

#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES

static void
dump_zombies (void)
{
  int i;

  fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
  for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
    {
      fprintf (stderr, "  %d = ", i);
      debug_print (zombies[i]);
    }
}

#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */


/* Mark live Lisp objects on the C stack.

   There are several system-dependent problems to consider when
   porting this to new architectures:

   Processor Registers

   We have to mark Lisp objects in CPU registers that can hold local
   variables or are used to pass parameters.

   If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
   something that either saves relevant registers on the stack, or
   calls mark_maybe_object passing it each register's contents.

   If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
   implementation assumes that calling setjmp saves registers we need
   to see in a jmp_buf which itself lies on the stack.  This doesn't
   have to be true!  It must be verified for each system, possibly
   by taking a look at the source code of setjmp.

   If __builtin_unwind_init is available (defined by GCC >= 2.8) we
   can use it as a machine independent method to store all registers
   to the stack.  In this case the macros described in the previous
   two paragraphs are not used.

   Stack Layout

   Architectures differ in the way their processor stack is organized.
   For example, the stack might look like this

     +----------------+
     |  Lisp_Object   |  size = 4
     +----------------+
     | something else |  size = 2
     +----------------+
     |  Lisp_Object   |  size = 4
     +----------------+
     |	...	      |

   In such a case, not every Lisp_Object will be aligned equally.  To
   find all Lisp_Object on the stack it won't be sufficient to walk
   the stack in steps of 4 bytes.  Instead, two passes will be
   necessary, one starting at the start of the stack, and a second
   pass starting at the start of the stack + 2.  Likewise, if the
   minimal alignment of Lisp_Objects on the stack is 1, four passes
   would be necessary, each one starting with one byte more offset
   from the stack start.  */

static void
mark_stack (void)
{
  void *end;

#ifdef HAVE___BUILTIN_UNWIND_INIT
  /* Force callee-saved registers and register windows onto the stack.
     This is the preferred method if available, obviating the need for
     machine dependent methods.  */
  __builtin_unwind_init ();
  end = &end;
#else /* not HAVE___BUILTIN_UNWIND_INIT */
#ifndef GC_SAVE_REGISTERS_ON_STACK
  /* jmp_buf may not be aligned enough on darwin-ppc64 */
  union aligned_jmpbuf {
    Lisp_Object o;
    jmp_buf j;
  } j;
  volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
#endif
  /* This trick flushes the register windows so that all the state of
     the process is contained in the stack.  */
  /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
     needed on ia64 too.  See mach_dep.c, where it also says inline
     assembler doesn't work with relevant proprietary compilers.  */
#ifdef __sparc__
#if defined (__sparc64__) && defined (__FreeBSD__)
  /* FreeBSD does not have a ta 3 handler.  */
  asm ("flushw");
#else
  asm ("ta 3");
#endif
#endif

  /* Save registers that we need to see on the stack.  We need to see
     registers used to hold register variables and registers used to
     pass parameters.  */
#ifdef GC_SAVE_REGISTERS_ON_STACK
  GC_SAVE_REGISTERS_ON_STACK (end);
#else /* not GC_SAVE_REGISTERS_ON_STACK */

#ifndef GC_SETJMP_WORKS  /* If it hasn't been checked yet that
			    setjmp will definitely work, test it
			    and print a message with the result
			    of the test.  */
  if (!setjmp_tested_p)
    {
      setjmp_tested_p = 1;
      test_setjmp ();
    }
#endif /* GC_SETJMP_WORKS */

  setjmp (j.j);
  end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
#endif /* not GC_SAVE_REGISTERS_ON_STACK */
#endif /* not HAVE___BUILTIN_UNWIND_INIT */

  /* This assumes that the stack is a contiguous region in memory.  If
     that's not the case, something has to be done here to iterate
     over the stack segments.  */
  mark_memory (stack_base, end);

  /* Allow for marking a secondary stack, like the register stack on the
     ia64.  */
#ifdef GC_MARK_SECONDARY_STACK
  GC_MARK_SECONDARY_STACK ();
#endif

#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
  check_gcpros ();
#endif
}

#endif /* GC_MARK_STACK != 0 */


/* Determine whether it is safe to access memory at address P.  */
static int
valid_pointer_p (void *p)
{
#ifdef WINDOWSNT
  return w32_valid_pointer_p (p, 16);
#else
  int fd[2];

  /* Obviously, we cannot just access it (we would SEGV trying), so we
     trick the o/s to tell us whether p is a valid pointer.
     Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
     not validate p in that case.  */

  if (pipe (fd) == 0)
    {
      int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
      emacs_close (fd[1]);
      emacs_close (fd[0]);
      return valid;
    }

    return -1;
#endif
}

/* Return 1 if OBJ is a valid lisp object.
   Return 0 if OBJ is NOT a valid lisp object.
   Return -1 if we cannot validate OBJ.
   This function can be quite slow,
   so it should only be used in code for manual debugging.  */

int
valid_lisp_object_p (Lisp_Object obj)
{
  void *p;
#if GC_MARK_STACK
  struct mem_node *m;
#endif

  if (INTEGERP (obj))
    return 1;

  p = (void *) XPNTR (obj);
  if (PURE_POINTER_P (p))
    return 1;

#if !GC_MARK_STACK
  return valid_pointer_p (p);
#else

  m = mem_find (p);

  if (m == MEM_NIL)
    {
      int valid = valid_pointer_p (p);
      if (valid <= 0)
	return valid;

      if (SUBRP (obj))
	return 1;

      return 0;
    }

  switch (m->type)
    {
    case MEM_TYPE_NON_LISP:
      return 0;

    case MEM_TYPE_BUFFER:
      return live_buffer_p (m, p);

    case MEM_TYPE_CONS:
      return live_cons_p (m, p);

    case MEM_TYPE_STRING:
      return live_string_p (m, p);

    case MEM_TYPE_MISC:
      return live_misc_p (m, p);

    case MEM_TYPE_SYMBOL:
      return live_symbol_p (m, p);

    case MEM_TYPE_FLOAT:
      return live_float_p (m, p);

    case MEM_TYPE_VECTORLIKE:
      return live_vector_p (m, p);

    default:
      break;
    }

  return 0;
#endif
}




/***********************************************************************
		       Pure Storage Management
 ***********************************************************************/

/* Allocate room for SIZE bytes from pure Lisp storage and return a
   pointer to it.  TYPE is the Lisp type for which the memory is
   allocated.  TYPE < 0 means it's not used for a Lisp object.  */

static POINTER_TYPE *
pure_alloc (size_t size, int type)
{
  POINTER_TYPE *result;
#ifdef USE_LSB_TAG
  size_t alignment = (1 << GCTYPEBITS);
#else
  size_t alignment = sizeof (EMACS_INT);

  /* Give Lisp_Floats an extra alignment.  */
  if (type == Lisp_Float)
    {
#if defined __GNUC__ && __GNUC__ >= 2
      alignment = __alignof (struct Lisp_Float);
#else
      alignment = sizeof (struct Lisp_Float);
#endif
    }
#endif

 again:
  if (type >= 0)
    {
      /* Allocate space for a Lisp object from the beginning of the free
	 space with taking account of alignment.  */
      result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
      pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
    }
  else
    {
      /* Allocate space for a non-Lisp object from the end of the free
	 space.  */
      pure_bytes_used_non_lisp += size;
      result = purebeg + pure_size - pure_bytes_used_non_lisp;
    }
  pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;

  if (pure_bytes_used <= pure_size)
    return result;

  /* Don't allocate a large amount here,
     because it might get mmap'd and then its address
     might not be usable.  */
  purebeg = (char *) xmalloc (10000);
  pure_size = 10000;
  pure_bytes_used_before_overflow += pure_bytes_used - size;
  pure_bytes_used = 0;
  pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
  goto again;
}


/* Print a warning if PURESIZE is too small.  */

void
check_pure_size (void)
{
  if (pure_bytes_used_before_overflow)
    message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
	      " bytes needed)"),
	     pure_bytes_used + pure_bytes_used_before_overflow);
}


/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
   the non-Lisp data pool of the pure storage, and return its start
   address.  Return NULL if not found.  */

static char *
find_string_data_in_pure (const char *data, EMACS_INT nbytes)
{
  int i;
  EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
  const unsigned char *p;
  char *non_lisp_beg;

  if (pure_bytes_used_non_lisp < nbytes + 1)
    return NULL;

  /* Set up the Boyer-Moore table.  */
  skip = nbytes + 1;
  for (i = 0; i < 256; i++)
    bm_skip[i] = skip;

  p = (const unsigned char *) data;
  while (--skip > 0)
    bm_skip[*p++] = skip;

  last_char_skip = bm_skip['\0'];

  non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
  start_max = pure_bytes_used_non_lisp - (nbytes + 1);

  /* See the comments in the function `boyer_moore' (search.c) for the
     use of `infinity'.  */
  infinity = pure_bytes_used_non_lisp + 1;
  bm_skip['\0'] = infinity;

  p = (const unsigned char *) non_lisp_beg + nbytes;
  start = 0;
  do
    {
      /* Check the last character (== '\0').  */
      do
	{
	  start += bm_skip[*(p + start)];
	}
      while (start <= start_max);

      if (start < infinity)
	/* Couldn't find the last character.  */
	return NULL;

      /* No less than `infinity' means we could find the last
	 character at `p[start - infinity]'.  */
      start -= infinity;

      /* Check the remaining characters.  */
      if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
	/* Found.  */
	return non_lisp_beg + start;

      start += last_char_skip;
    }
  while (start <= start_max);

  return NULL;
}


/* Return a string allocated in pure space.  DATA is a buffer holding
   NCHARS characters, and NBYTES bytes of string data.  MULTIBYTE
   non-zero means make the result string multibyte.

   Must get an error if pure storage is full, since if it cannot hold
   a large string it may be able to hold conses that point to that
   string; then the string is not protected from gc.  */

Lisp_Object
make_pure_string (const char *data,
		  EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
{
  Lisp_Object string;
  struct Lisp_String *s;

  s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
  s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
  if (s->data == NULL)
    {
      s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
      memcpy (s->data, data, nbytes);
      s->data[nbytes] = '\0';
    }
  s->size = nchars;
  s->size_byte = multibyte ? nbytes : -1;
  s->intervals = NULL_INTERVAL;
  XSETSTRING (string, s);
  return string;
}

/* Return a string a string allocated in pure space.  Do not allocate
   the string data, just point to DATA.  */

Lisp_Object
make_pure_c_string (const char *data)
{
  Lisp_Object string;
  struct Lisp_String *s;
  EMACS_INT nchars = strlen (data);

  s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
  s->size = nchars;
  s->size_byte = -1;
  s->data = (unsigned char *) data;
  s->intervals = NULL_INTERVAL;
  XSETSTRING (string, s);
  return string;
}

/* Return a cons allocated from pure space.  Give it pure copies
   of CAR as car and CDR as cdr.  */

Lisp_Object
pure_cons (Lisp_Object car, Lisp_Object cdr)
{
  register Lisp_Object new;
  struct Lisp_Cons *p;

  p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
  XSETCONS (new, p);
  XSETCAR (new, Fpurecopy (car));
  XSETCDR (new, Fpurecopy (cdr));
  return new;
}


/* Value is a float object with value NUM allocated from pure space.  */

static Lisp_Object
make_pure_float (double num)
{
  register Lisp_Object new;
  struct Lisp_Float *p;

  p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
  XSETFLOAT (new, p);
  XFLOAT_INIT (new, num);
  return new;
}


/* Return a vector with room for LEN Lisp_Objects allocated from
   pure space.  */

Lisp_Object
make_pure_vector (EMACS_INT len)
{
  Lisp_Object new;
  struct Lisp_Vector *p;
  size_t size = (offsetof (struct Lisp_Vector, contents)
		 + len * sizeof (Lisp_Object));

  p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
  XSETVECTOR (new, p);
  XVECTOR (new)->header.size = len;
  return new;
}


DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
       doc: /* Make a copy of object OBJ in pure storage.
Recursively copies contents of vectors and cons cells.
Does not copy symbols.  Copies strings without text properties.  */)
  (register Lisp_Object obj)
{
  if (NILP (Vpurify_flag))
    return obj;

  if (PURE_POINTER_P (XPNTR (obj)))
    return obj;

  if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing.  */
    {
      Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
      if (!NILP (tmp))
	return tmp;
    }

  if (CONSP (obj))
    obj = pure_cons (XCAR (obj), XCDR (obj));
  else if (FLOATP (obj))
    obj = make_pure_float (XFLOAT_DATA (obj));
  else if (STRINGP (obj))
    obj = make_pure_string (SSDATA (obj), SCHARS (obj),
			    SBYTES (obj),
			    STRING_MULTIBYTE (obj));
  else if (COMPILEDP (obj) || VECTORP (obj))
    {
      register struct Lisp_Vector *vec;
      register EMACS_INT i;
      EMACS_INT size;

      size = ASIZE (obj);
      if (size & PSEUDOVECTOR_FLAG)
	size &= PSEUDOVECTOR_SIZE_MASK;
      vec = XVECTOR (make_pure_vector (size));
      for (i = 0; i < size; i++)
	vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
      if (COMPILEDP (obj))
	{
	  XSETPVECTYPE (vec, PVEC_COMPILED);
	  XSETCOMPILED (obj, vec);
	}
      else
	XSETVECTOR (obj, vec);
    }
  else if (MARKERP (obj))
    error ("Attempt to copy a marker to pure storage");
  else
    /* Not purified, don't hash-cons.  */
    return obj;

  if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing.  */
    Fputhash (obj, obj, Vpurify_flag);

  return obj;
}



/***********************************************************************
			  Protection from GC
 ***********************************************************************/

/* Put an entry in staticvec, pointing at the variable with address
   VARADDRESS.  */

void
staticpro (Lisp_Object *varaddress)
{
  staticvec[staticidx++] = varaddress;
  if (staticidx >= NSTATICS)
    abort ();
}


/***********************************************************************
			  Protection from GC
 ***********************************************************************/

/* Temporarily prevent garbage collection.  */

int
inhibit_garbage_collection (void)
{
  int count = SPECPDL_INDEX ();

  specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
  return count;
}


DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
       doc: /* Reclaim storage for Lisp objects no longer needed.
Garbage collection happens automatically if you cons more than
`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
`garbage-collect' normally returns a list with info on amount of space in use:
 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
  (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
  (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
  (USED-STRINGS . FREE-STRINGS))
However, if there was overflow in pure space, `garbage-collect'
returns nil, because real GC can't be done.  */)
  (void)
{
  register struct specbinding *bind;
  char stack_top_variable;
  ptrdiff_t i;
  int message_p;
  Lisp_Object total[8];
  int count = SPECPDL_INDEX ();
  EMACS_TIME t1, t2, t3;

  if (abort_on_gc)
    abort ();

  /* Can't GC if pure storage overflowed because we can't determine
     if something is a pure object or not.  */
  if (pure_bytes_used_before_overflow)
    return Qnil;

  CHECK_CONS_LIST ();

  /* Don't keep undo information around forever.
     Do this early on, so it is no problem if the user quits.  */
  {
    register struct buffer *nextb = all_buffers;

    while (nextb)
      {
	/* If a buffer's undo list is Qt, that means that undo is
	   turned off in that buffer.  Calling truncate_undo_list on
	   Qt tends to return NULL, which effectively turns undo back on.
	   So don't call truncate_undo_list if undo_list is Qt.  */
	if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
	  truncate_undo_list (nextb);

	/* Shrink buffer gaps, but skip indirect and dead buffers.  */
	if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
	    && ! nextb->text->inhibit_shrinking)
	  {
	    /* If a buffer's gap size is more than 10% of the buffer
	       size, or larger than 2000 bytes, then shrink it
	       accordingly.  Keep a minimum size of 20 bytes.  */
	    int size = min (2000, max (20, (nextb->text->z_byte / 10)));

	    if (nextb->text->gap_size > size)
	      {
		struct buffer *save_current = current_buffer;
		current_buffer = nextb;
		make_gap (-(nextb->text->gap_size - size));
		current_buffer = save_current;
	      }
	  }

	nextb = nextb->header.next.buffer;
      }
  }

  EMACS_GET_TIME (t1);

  /* In case user calls debug_print during GC,
     don't let that cause a recursive GC.  */
  consing_since_gc = 0;

  /* Save what's currently displayed in the echo area.  */
  message_p = push_message ();
  record_unwind_protect (pop_message_unwind, Qnil);

  /* Save a copy of the contents of the stack, for debugging.  */
#if MAX_SAVE_STACK > 0
  if (NILP (Vpurify_flag))
    {
      char *stack;
      ptrdiff_t stack_size;
      if (&stack_top_variable < stack_bottom)
	{
	  stack = &stack_top_variable;
	  stack_size = stack_bottom - &stack_top_variable;
	}
      else
	{
	  stack = stack_bottom;
	  stack_size = &stack_top_variable - stack_bottom;
	}
      if (stack_size <= MAX_SAVE_STACK)
	{
	  if (stack_copy_size < stack_size)
	    {
	      stack_copy = (char *) xrealloc (stack_copy, stack_size);
	      stack_copy_size = stack_size;
	    }
	  memcpy (stack_copy, stack, stack_size);
	}
    }
#endif /* MAX_SAVE_STACK > 0 */

  if (garbage_collection_messages)
    message1_nolog ("Garbage collecting...");

  BLOCK_INPUT;

  shrink_regexp_cache ();

  gc_in_progress = 1;

  /* clear_marks (); */

  /* Mark all the special slots that serve as the roots of accessibility.  */

  for (i = 0; i < staticidx; i++)
    mark_object (*staticvec[i]);

  for (bind = specpdl; bind != specpdl_ptr; bind++)
    {
      mark_object (bind->symbol);
      mark_object (bind->old_value);
    }
  mark_terminals ();
  mark_kboards ();
  mark_ttys ();

#ifdef USE_GTK
  {
    extern void xg_mark_data (void);
    xg_mark_data ();
  }
#endif

#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
     || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
  mark_stack ();
#else
  {
    register struct gcpro *tail;
    for (tail = gcprolist; tail; tail = tail->next)
      for (i = 0; i < tail->nvars; i++)
	mark_object (tail->var[i]);
  }
  mark_byte_stack ();
  {
    struct catchtag *catch;
    struct handler *handler;

  for (catch = catchlist; catch; catch = catch->next)
    {
      mark_object (catch->tag);
      mark_object (catch->val);
    }
  for (handler = handlerlist; handler; handler = handler->next)
    {
      mark_object (handler->handler);
      mark_object (handler->var);
    }
  }
  mark_backtrace ();
#endif

#ifdef HAVE_WINDOW_SYSTEM
  mark_fringe_data ();
#endif

#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
  mark_stack ();
#endif

  /* Everything is now marked, except for the things that require special
     finalization, i.e. the undo_list.
     Look thru every buffer's undo list
     for elements that update markers that were not marked,
     and delete them.  */
  {
    register struct buffer *nextb = all_buffers;

    while (nextb)
      {
	/* If a buffer's undo list is Qt, that means that undo is
	   turned off in that buffer.  Calling truncate_undo_list on
	   Qt tends to return NULL, which effectively turns undo back on.
	   So don't call truncate_undo_list if undo_list is Qt.  */
	if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
	  {
	    Lisp_Object tail, prev;
	    tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
	    prev = Qnil;
	    while (CONSP (tail))
	      {
		if (CONSP (XCAR (tail))
		    && MARKERP (XCAR (XCAR (tail)))
		    && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
		  {
		    if (NILP (prev))
		      nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
		    else
		      {
			tail = XCDR (tail);
			XSETCDR (prev, tail);
		      }
		  }
		else
		  {
		    prev = tail;
		    tail = XCDR (tail);
		  }
	      }
	  }
	/* Now that we have stripped the elements that need not be in the
	   undo_list any more, we can finally mark the list.  */
	mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));

	nextb = nextb->header.next.buffer;
      }
  }

  gc_sweep ();

  /* Clear the mark bits that we set in certain root slots.  */

  unmark_byte_stack ();
  VECTOR_UNMARK (&buffer_defaults);
  VECTOR_UNMARK (&buffer_local_symbols);

#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
  dump_zombies ();
#endif

  UNBLOCK_INPUT;

  CHECK_CONS_LIST ();

  /* clear_marks (); */
  gc_in_progress = 0;

  consing_since_gc = 0;
  if (gc_cons_threshold < 10000)
    gc_cons_threshold = 10000;

  gc_relative_threshold = 0;
  if (FLOATP (Vgc_cons_percentage))
    { /* Set gc_cons_combined_threshold.  */
      double tot = 0;

      tot += total_conses  * sizeof (struct Lisp_Cons);
      tot += total_symbols * sizeof (struct Lisp_Symbol);
      tot += total_markers * sizeof (union Lisp_Misc);
      tot += total_string_size;
      tot += total_vector_size * sizeof (Lisp_Object);
      tot += total_floats  * sizeof (struct Lisp_Float);
      tot += total_intervals * sizeof (struct interval);
      tot += total_strings * sizeof (struct Lisp_String);

      tot *= XFLOAT_DATA (Vgc_cons_percentage);
      if (0 < tot)
	{
	  if (tot < TYPE_MAXIMUM (EMACS_INT))
	    gc_relative_threshold = tot;
	  else
	    gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
	}
    }

  if (garbage_collection_messages)
    {
      if (message_p || minibuf_level > 0)
	restore_message ();
      else
	message1_nolog ("Garbage collecting...done");
    }

  unbind_to (count, Qnil);

  total[0] = Fcons (make_number (total_conses),
		    make_number (total_free_conses));
  total[1] = Fcons (make_number (total_symbols),
		    make_number (total_free_symbols));
  total[2] = Fcons (make_number (total_markers),
		    make_number (total_free_markers));
  total[3] = make_number (total_string_size);
  total[4] = make_number (total_vector_size);
  total[5] = Fcons (make_number (total_floats),
		    make_number (total_free_floats));
  total[6] = Fcons (make_number (total_intervals),
		    make_number (total_free_intervals));
  total[7] = Fcons (make_number (total_strings),
		    make_number (total_free_strings));

#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
  {
    /* Compute average percentage of zombies.  */
    double nlive = 0;

    for (i = 0; i < 7; ++i)
      if (CONSP (total[i]))
	nlive += XFASTINT (XCAR (total[i]));

    avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
    max_live = max (nlive, max_live);
    avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
    max_zombies = max (nzombies, max_zombies);
    ++ngcs;
    }
#endif

  if (!NILP (Vpost_gc_hook))
    {
      int gc_count = inhibit_garbage_collection ();
      safe_run_hooks (Qpost_gc_hook);
      unbind_to (gc_count, Qnil);
    }

  /* Accumulate statistics.  */
  EMACS_GET_TIME (t2);
  EMACS_SUB_TIME (t3, t2, t1);
  if (FLOATP (Vgc_elapsed))
    Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
			      EMACS_SECS (t3) +
			      EMACS_USECS (t3) * 1.0e-6);
  gcs_done++;

  return Flist (sizeof total / sizeof *total, total);
}


/* Mark Lisp objects in glyph matrix MATRIX.  Currently the
   only interesting objects referenced from glyphs are strings.  */

static void
mark_glyph_matrix (struct glyph_matrix *matrix)
{
  struct glyph_row *row = matrix->rows;
  struct glyph_row *end = row + matrix->nrows;

  for (; row < end; ++row)
    if (row->enabled_p)
      {
	int area;
	for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
	  {
	    struct glyph *glyph = row->glyphs[area];
	    struct glyph *end_glyph = glyph + row->used[area];

	    for (; glyph < end_glyph; ++glyph)
	      if (STRINGP (glyph->object)
		  && !STRING_MARKED_P (XSTRING (glyph->object)))
		mark_object (glyph->object);
	  }
      }
}


/* Mark Lisp faces in the face cache C.  */

static void
mark_face_cache (struct face_cache *c)
{
  if (c)
    {
      int i, j;
      for (i = 0; i < c->used; ++i)
	{
	  struct face *face = FACE_FROM_ID (c->f, i);

	  if (face)
	    {
	      for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
		mark_object (face->lface[j]);
	    }
	}
    }
}



/* Mark reference to a Lisp_Object.
   If the object referred to has not been seen yet, recursively mark
   all the references contained in it.  */

#define LAST_MARKED_SIZE 500
static Lisp_Object last_marked[LAST_MARKED_SIZE];
static int last_marked_index;

/* For debugging--call abort when we cdr down this many
   links of a list, in mark_object.  In debugging,
   the call to abort will hit a breakpoint.
   Normally this is zero and the check never goes off.  */
ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;

static void
mark_vectorlike (struct Lisp_Vector *ptr)
{
  EMACS_INT size = ptr->header.size;
  EMACS_INT i;

  eassert (!VECTOR_MARKED_P (ptr));
  VECTOR_MARK (ptr);		/* Else mark it */
  if (size & PSEUDOVECTOR_FLAG)
    size &= PSEUDOVECTOR_SIZE_MASK;

  /* Note that this size is not the memory-footprint size, but only
     the number of Lisp_Object fields that we should trace.
     The distinction is used e.g. by Lisp_Process which places extra
     non-Lisp_Object fields at the end of the structure.  */
  for (i = 0; i < size; i++) /* and then mark its elements */
    mark_object (ptr->contents[i]);
}

/* Like mark_vectorlike but optimized for char-tables (and
   sub-char-tables) assuming that the contents are mostly integers or
   symbols.  */

static void
mark_char_table (struct Lisp_Vector *ptr)
{
  int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
  int i;

  eassert (!VECTOR_MARKED_P (ptr));
  VECTOR_MARK (ptr);
  for (i = 0; i < size; i++)
    {
      Lisp_Object val = ptr->contents[i];

      if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
	continue;
      if (SUB_CHAR_TABLE_P (val))
	{
	  if (! VECTOR_MARKED_P (XVECTOR (val)))
	    mark_char_table (XVECTOR (val));
	}
      else
	mark_object (val);
    }
}

void
mark_object (Lisp_Object arg)
{
  register Lisp_Object obj = arg;
#ifdef GC_CHECK_MARKED_OBJECTS
  void *po;
  struct mem_node *m;
#endif
  ptrdiff_t cdr_count = 0;

 loop:

  if (PURE_POINTER_P (XPNTR (obj)))
    return;

  last_marked[last_marked_index++] = obj;
  if (last_marked_index == LAST_MARKED_SIZE)
    last_marked_index = 0;

  /* Perform some sanity checks on the objects marked here.  Abort if
     we encounter an object we know is bogus.  This increases GC time
     by ~80%, and requires compilation with GC_MARK_STACK != 0.  */
#ifdef GC_CHECK_MARKED_OBJECTS

  po = (void *) XPNTR (obj);

  /* Check that the object pointed to by PO is known to be a Lisp
     structure allocated from the heap.  */
#define CHECK_ALLOCATED()			\
  do {						\
    m = mem_find (po);				\
    if (m == MEM_NIL)				\
      abort ();					\
  } while (0)

  /* Check that the object pointed to by PO is live, using predicate
     function LIVEP.  */
#define CHECK_LIVE(LIVEP)			\
  do {						\
    if (!LIVEP (m, po))				\
      abort ();					\
  } while (0)

  /* Check both of the above conditions.  */
#define CHECK_ALLOCATED_AND_LIVE(LIVEP)		\
  do {						\
    CHECK_ALLOCATED ();				\
    CHECK_LIVE (LIVEP);				\
  } while (0)					\

#else /* not GC_CHECK_MARKED_OBJECTS */

#define CHECK_LIVE(LIVEP)		(void) 0
#define CHECK_ALLOCATED_AND_LIVE(LIVEP)	(void) 0

#endif /* not GC_CHECK_MARKED_OBJECTS */

  switch (SWITCH_ENUM_CAST (XTYPE (obj)))
    {
    case Lisp_String:
      {
	register struct Lisp_String *ptr = XSTRING (obj);
	if (STRING_MARKED_P (ptr))
	  break;
	CHECK_ALLOCATED_AND_LIVE (live_string_p);
	MARK_INTERVAL_TREE (ptr->intervals);
	MARK_STRING (ptr);
#ifdef GC_CHECK_STRING_BYTES
	/* Check that the string size recorded in the string is the
	   same as the one recorded in the sdata structure. */
	CHECK_STRING_BYTES (ptr);
#endif /* GC_CHECK_STRING_BYTES */
      }
      break;

    case Lisp_Vectorlike:
      if (VECTOR_MARKED_P (XVECTOR (obj)))
	break;
#ifdef GC_CHECK_MARKED_OBJECTS
      m = mem_find (po);
      if (m == MEM_NIL && !SUBRP (obj)
	  && po != &buffer_defaults
	  && po != &buffer_local_symbols)
	abort ();
#endif /* GC_CHECK_MARKED_OBJECTS */

      if (BUFFERP (obj))
	{
#ifdef GC_CHECK_MARKED_OBJECTS
	  if (po != &buffer_defaults && po != &buffer_local_symbols)
	    {
	      struct buffer *b;
	      for (b = all_buffers; b && b != po; b = b->header.next.buffer)
		;
	      if (b == NULL)
		abort ();
	    }
#endif /* GC_CHECK_MARKED_OBJECTS */
	  mark_buffer (obj);
	}
      else if (SUBRP (obj))
	break;
      else if (COMPILEDP (obj))
	/* We could treat this just like a vector, but it is better to
	   save the COMPILED_CONSTANTS element for last and avoid
	   recursion there.  */
	{
	  register struct Lisp_Vector *ptr = XVECTOR (obj);
	  int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
	  int i;

	  CHECK_LIVE (live_vector_p);
	  VECTOR_MARK (ptr);	/* Else mark it */
	  for (i = 0; i < size; i++) /* and then mark its elements */
	    {
	      if (i != COMPILED_CONSTANTS)
		mark_object (ptr->contents[i]);
	    }
	  obj = ptr->contents[COMPILED_CONSTANTS];
	  goto loop;
	}
      else if (FRAMEP (obj))
	{
	  register struct frame *ptr = XFRAME (obj);
	  mark_vectorlike (XVECTOR (obj));
	  mark_face_cache (ptr->face_cache);
	}
      else if (WINDOWP (obj))
	{
	  register struct Lisp_Vector *ptr = XVECTOR (obj);
	  struct window *w = XWINDOW (obj);
	  mark_vectorlike (ptr);
	  /* Mark glyphs for leaf windows.  Marking window matrices is
	     sufficient because frame matrices use the same glyph
	     memory.  */
	  if (NILP (w->hchild)
	      && NILP (w->vchild)
	      && w->current_matrix)
	    {
	      mark_glyph_matrix (w->current_matrix);
	      mark_glyph_matrix (w->desired_matrix);
	    }
	}
      else if (HASH_TABLE_P (obj))
	{
	  struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
	  mark_vectorlike ((struct Lisp_Vector *)h);
	  /* If hash table is not weak, mark all keys and values.
	     For weak tables, mark only the vector.  */
	  if (NILP (h->weak))
	    mark_object (h->key_and_value);
	  else
	    VECTOR_MARK (XVECTOR (h->key_and_value));
	}
      else if (CHAR_TABLE_P (obj))
	mark_char_table (XVECTOR (obj));
      else
	mark_vectorlike (XVECTOR (obj));
      break;

    case Lisp_Symbol:
      {
	register struct Lisp_Symbol *ptr = XSYMBOL (obj);
	struct Lisp_Symbol *ptrx;

	if (ptr->gcmarkbit)
	  break;
	CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
	ptr->gcmarkbit = 1;
	mark_object (ptr->function);
	mark_object (ptr->plist);
	switch (ptr->redirect)
	  {
	  case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
	  case SYMBOL_VARALIAS:
	    {
	      Lisp_Object tem;
	      XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
	      mark_object (tem);
	      break;
	    }
	  case SYMBOL_LOCALIZED:
	    {
	      struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
	      /* If the value is forwarded to a buffer or keyboard field,
		 these are marked when we see the corresponding object.
		 And if it's forwarded to a C variable, either it's not
		 a Lisp_Object var, or it's staticpro'd already.  */
	      mark_object (blv->where);
	      mark_object (blv->valcell);
	      mark_object (blv->defcell);
	      break;
	    }
	  case SYMBOL_FORWARDED:
	    /* If the value is forwarded to a buffer or keyboard field,
	       these are marked when we see the corresponding object.
	       And if it's forwarded to a C variable, either it's not
	       a Lisp_Object var, or it's staticpro'd already.  */
	    break;
	  default: abort ();
	  }
	if (!PURE_POINTER_P (XSTRING (ptr->xname)))
	  MARK_STRING (XSTRING (ptr->xname));
	MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));

	ptr = ptr->next;
	if (ptr)
	  {
	    ptrx = ptr;		/* Use of ptrx avoids compiler bug on Sun */
	    XSETSYMBOL (obj, ptrx);
	    goto loop;
	  }
      }
      break;

    case Lisp_Misc:
      CHECK_ALLOCATED_AND_LIVE (live_misc_p);
      if (XMISCANY (obj)->gcmarkbit)
	break;
      XMISCANY (obj)->gcmarkbit = 1;

      switch (XMISCTYPE (obj))
	{

	case Lisp_Misc_Marker:
	  /* DO NOT mark thru the marker's chain.
	     The buffer's markers chain does not preserve markers from gc;
	     instead, markers are removed from the chain when freed by gc.  */
	  break;

	case Lisp_Misc_Save_Value:
#if GC_MARK_STACK
	  {
	    register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
	    /* If DOGC is set, POINTER is the address of a memory
	       area containing INTEGER potential Lisp_Objects.  */
	    if (ptr->dogc)
	      {
		Lisp_Object *p = (Lisp_Object *) ptr->pointer;
		ptrdiff_t nelt;
		for (nelt = ptr->integer; nelt > 0; nelt--, p++)
		  mark_maybe_object (*p);
	      }
	  }
#endif
	  break;

	case Lisp_Misc_Overlay:
	  {
	    struct Lisp_Overlay *ptr = XOVERLAY (obj);
	    mark_object (ptr->start);
	    mark_object (ptr->end);
	    mark_object (ptr->plist);
	    if (ptr->next)
	      {
		XSETMISC (obj, ptr->next);
		goto loop;
	      }
	  }
	  break;

	default:
	  abort ();
	}
      break;

    case Lisp_Cons:
      {
	register struct Lisp_Cons *ptr = XCONS (obj);
	if (CONS_MARKED_P (ptr))
	  break;
	CHECK_ALLOCATED_AND_LIVE (live_cons_p);
	CONS_MARK (ptr);
	/* If the cdr is nil, avoid recursion for the car.  */
	if (EQ (ptr->u.cdr, Qnil))
	  {
	    obj = ptr->car;
	    cdr_count = 0;
	    goto loop;
	  }
	mark_object (ptr->car);
	obj = ptr->u.cdr;
	cdr_count++;
	if (cdr_count == mark_object_loop_halt)
	  abort ();
	goto loop;
      }

    case Lisp_Float:
      CHECK_ALLOCATED_AND_LIVE (live_float_p);
      FLOAT_MARK (XFLOAT (obj));
      break;

    case_Lisp_Int:
      break;

    default:
      abort ();
    }

#undef CHECK_LIVE
#undef CHECK_ALLOCATED
#undef CHECK_ALLOCATED_AND_LIVE
}

/* Mark the pointers in a buffer structure.  */

static void
mark_buffer (Lisp_Object buf)
{
  register struct buffer *buffer = XBUFFER (buf);
  register Lisp_Object *ptr, tmp;
  Lisp_Object base_buffer;

  eassert (!VECTOR_MARKED_P (buffer));
  VECTOR_MARK (buffer);

  MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));

  /* For now, we just don't mark the undo_list.  It's done later in
     a special way just before the sweep phase, and after stripping
     some of its elements that are not needed any more.  */

  if (buffer->overlays_before)
    {
      XSETMISC (tmp, buffer->overlays_before);
      mark_object (tmp);
    }
  if (buffer->overlays_after)
    {
      XSETMISC (tmp, buffer->overlays_after);
      mark_object (tmp);
    }

  /* buffer-local Lisp variables start at `undo_list',
     tho only the ones from `name' on are GC'd normally.  */
  for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
       ptr <= &PER_BUFFER_VALUE (buffer,
				 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
       ptr++)
    mark_object (*ptr);

  /* If this is an indirect buffer, mark its base buffer.  */
  if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
    {
      XSETBUFFER (base_buffer, buffer->base_buffer);
      mark_buffer (base_buffer);
    }
}

/* Mark the Lisp pointers in the terminal objects.
   Called by the Fgarbage_collector.  */

static void
mark_terminals (void)
{
  struct terminal *t;
  for (t = terminal_list; t; t = t->next_terminal)
    {
      eassert (t->name != NULL);
#ifdef HAVE_WINDOW_SYSTEM
      /* If a terminal object is reachable from a stacpro'ed object,
	 it might have been marked already.  Make sure the image cache
	 gets marked.  */
      mark_image_cache (t->image_cache);
#endif /* HAVE_WINDOW_SYSTEM */
      if (!VECTOR_MARKED_P (t))
	mark_vectorlike ((struct Lisp_Vector *)t);
    }
}



/* Value is non-zero if OBJ will survive the current GC because it's
   either marked or does not need to be marked to survive.  */

int
survives_gc_p (Lisp_Object obj)
{
  int survives_p;

  switch (XTYPE (obj))
    {
    case_Lisp_Int:
      survives_p = 1;
      break;

    case Lisp_Symbol:
      survives_p = XSYMBOL (obj)->gcmarkbit;
      break;

    case Lisp_Misc:
      survives_p = XMISCANY (obj)->gcmarkbit;
      break;

    case Lisp_String:
      survives_p = STRING_MARKED_P (XSTRING (obj));
      break;

    case Lisp_Vectorlike:
      survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
      break;

    case Lisp_Cons:
      survives_p = CONS_MARKED_P (XCONS (obj));
      break;

    case Lisp_Float:
      survives_p = FLOAT_MARKED_P (XFLOAT (obj));
      break;

    default:
      abort ();
    }

  return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
}



/* Sweep: find all structures not marked, and free them. */

static void
gc_sweep (void)
{
  /* Remove or mark entries in weak hash tables.
     This must be done before any object is unmarked.  */
  sweep_weak_hash_tables ();

  sweep_strings ();
#ifdef GC_CHECK_STRING_BYTES
  if (!noninteractive)
    check_string_bytes (1);
#endif

  /* Put all unmarked conses on free list */
  {
    register struct cons_block *cblk;
    struct cons_block **cprev = &cons_block;
    register int lim = cons_block_index;
    EMACS_INT num_free = 0, num_used = 0;

    cons_free_list = 0;

    for (cblk = cons_block; cblk; cblk = *cprev)
      {
	register int i = 0;
	int this_free = 0;
	int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;

	/* Scan the mark bits an int at a time.  */
	for (i = 0; i < ilim; i++)
	  {
	    if (cblk->gcmarkbits[i] == -1)
	      {
		/* Fast path - all cons cells for this int are marked.  */
		cblk->gcmarkbits[i] = 0;
		num_used += BITS_PER_INT;
	      }
	    else
	      {
		/* Some cons cells for this int are not marked.
		   Find which ones, and free them.  */
		int start, pos, stop;

		start = i * BITS_PER_INT;
		stop = lim - start;
		if (stop > BITS_PER_INT)
		  stop = BITS_PER_INT;
		stop += start;

		for (pos = start; pos < stop; pos++)
		  {
		    if (!CONS_MARKED_P (&cblk->conses[pos]))
		      {
			this_free++;
			cblk->conses[pos].u.chain = cons_free_list;
			cons_free_list = &cblk->conses[pos];
#if GC_MARK_STACK
			cons_free_list->car = Vdead;
#endif
		      }
		    else
		      {
			num_used++;
			CONS_UNMARK (&cblk->conses[pos]);
		      }
		  }
	      }
	  }

	lim = CONS_BLOCK_SIZE;
	/* If this block contains only free conses and we have already
	   seen more than two blocks worth of free conses then deallocate
	   this block.  */
	if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
	  {
	    *cprev = cblk->next;
	    /* Unhook from the free list.  */
	    cons_free_list = cblk->conses[0].u.chain;
	    lisp_align_free (cblk);
	  }
	else
	  {
	    num_free += this_free;
	    cprev = &cblk->next;
	  }
      }
    total_conses = num_used;
    total_free_conses = num_free;
  }

  /* Put all unmarked floats on free list */
  {
    register struct float_block *fblk;
    struct float_block **fprev = &float_block;
    register int lim = float_block_index;
    EMACS_INT num_free = 0, num_used = 0;

    float_free_list = 0;

    for (fblk = float_block; fblk; fblk = *fprev)
      {
	register int i;
	int this_free = 0;
	for (i = 0; i < lim; i++)
	  if (!FLOAT_MARKED_P (&fblk->floats[i]))
	    {
	      this_free++;
	      fblk->floats[i].u.chain = float_free_list;
	      float_free_list = &fblk->floats[i];
	    }
	  else
	    {
	      num_used++;
	      FLOAT_UNMARK (&fblk->floats[i]);
	    }
	lim = FLOAT_BLOCK_SIZE;
	/* If this block contains only free floats and we have already
	   seen more than two blocks worth of free floats then deallocate
	   this block.  */
	if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
	  {
	    *fprev = fblk->next;
	    /* Unhook from the free list.  */
	    float_free_list = fblk->floats[0].u.chain;
	    lisp_align_free (fblk);
	  }
	else
	  {
	    num_free += this_free;
	    fprev = &fblk->next;
	  }
      }
    total_floats = num_used;
    total_free_floats = num_free;
  }

  /* Put all unmarked intervals on free list */
  {
    register struct interval_block *iblk;
    struct interval_block **iprev = &interval_block;
    register int lim = interval_block_index;
    EMACS_INT num_free = 0, num_used = 0;

    interval_free_list = 0;

    for (iblk = interval_block; iblk; iblk = *iprev)
      {
	register int i;
	int this_free = 0;

	for (i = 0; i < lim; i++)
	  {
	    if (!iblk->intervals[i].gcmarkbit)
	      {
		SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
		interval_free_list = &iblk->intervals[i];
		this_free++;
	      }
	    else
	      {
		num_used++;
		iblk->intervals[i].gcmarkbit = 0;
	      }
	  }
	lim = INTERVAL_BLOCK_SIZE;
	/* If this block contains only free intervals and we have already
	   seen more than two blocks worth of free intervals then
	   deallocate this block.  */
	if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
	  {
	    *iprev = iblk->next;
	    /* Unhook from the free list.  */
	    interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
	    lisp_free (iblk);
	  }
	else
	  {
	    num_free += this_free;
	    iprev = &iblk->next;
	  }
      }
    total_intervals = num_used;
    total_free_intervals = num_free;
  }

  /* Put all unmarked symbols on free list */
  {
    register struct symbol_block *sblk;
    struct symbol_block **sprev = &symbol_block;
    register int lim = symbol_block_index;
    EMACS_INT num_free = 0, num_used = 0;

    symbol_free_list = NULL;

    for (sblk = symbol_block; sblk; sblk = *sprev)
      {
	int this_free = 0;
	struct Lisp_Symbol *sym = sblk->symbols;
	struct Lisp_Symbol *end = sym + lim;

	for (; sym < end; ++sym)
	  {
	    /* Check if the symbol was created during loadup.  In such a case
	       it might be pointed to by pure bytecode which we don't trace,
	       so we conservatively assume that it is live.  */
	    int pure_p = PURE_POINTER_P (XSTRING (sym->xname));

	    if (!sym->gcmarkbit && !pure_p)
	      {
		if (sym->redirect == SYMBOL_LOCALIZED)
		  xfree (SYMBOL_BLV (sym));
		sym->next = symbol_free_list;
		symbol_free_list = sym;
#if GC_MARK_STACK
		symbol_free_list->function = Vdead;
#endif
		++this_free;
	      }
	    else
	      {
		++num_used;
		if (!pure_p)
		  UNMARK_STRING (XSTRING (sym->xname));
		sym->gcmarkbit = 0;
	      }
	  }

	lim = SYMBOL_BLOCK_SIZE;
	/* If this block contains only free symbols and we have already
	   seen more than two blocks worth of free symbols then deallocate
	   this block.  */
	if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
	  {
	    *sprev = sblk->next;
	    /* Unhook from the free list.  */
	    symbol_free_list = sblk->symbols[0].next;
	    lisp_free (sblk);
	  }
	else
	  {
	    num_free += this_free;
	    sprev = &sblk->next;
	  }
      }
    total_symbols = num_used;
    total_free_symbols = num_free;
  }

  /* Put all unmarked misc's on free list.
     For a marker, first unchain it from the buffer it points into.  */
  {
    register struct marker_block *mblk;
    struct marker_block **mprev = &marker_block;
    register int lim = marker_block_index;
    EMACS_INT num_free = 0, num_used = 0;

    marker_free_list = 0;

    for (mblk = marker_block; mblk; mblk = *mprev)
      {
	register int i;
	int this_free = 0;

	for (i = 0; i < lim; i++)
	  {
	    if (!mblk->markers[i].u_any.gcmarkbit)
	      {
		if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
		  unchain_marker (&mblk->markers[i].u_marker);
		/* Set the type of the freed object to Lisp_Misc_Free.
		   We could leave the type alone, since nobody checks it,
		   but this might catch bugs faster.  */
		mblk->markers[i].u_marker.type = Lisp_Misc_Free;
		mblk->markers[i].u_free.chain = marker_free_list;
		marker_free_list = &mblk->markers[i];
		this_free++;
	      }
	    else
	      {
		num_used++;
		mblk->markers[i].u_any.gcmarkbit = 0;
	      }
	  }
	lim = MARKER_BLOCK_SIZE;
	/* If this block contains only free markers and we have already
	   seen more than two blocks worth of free markers then deallocate
	   this block.  */
	if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
	  {
	    *mprev = mblk->next;
	    /* Unhook from the free list.  */
	    marker_free_list = mblk->markers[0].u_free.chain;
	    lisp_free (mblk);
	  }
	else
	  {
	    num_free += this_free;
	    mprev = &mblk->next;
	  }
      }

    total_markers = num_used;
    total_free_markers = num_free;
  }

  /* Free all unmarked buffers */
  {
    register struct buffer *buffer = all_buffers, *prev = 0, *next;

    while (buffer)
      if (!VECTOR_MARKED_P (buffer))
	{
	  if (prev)
	    prev->header.next = buffer->header.next;
	  else
	    all_buffers = buffer->header.next.buffer;
	  next = buffer->header.next.buffer;
	  lisp_free (buffer);
	  buffer = next;
	}
      else
	{
	  VECTOR_UNMARK (buffer);
	  UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
	  prev = buffer, buffer = buffer->header.next.buffer;
	}
  }

  /* Free all unmarked vectors */
  {
    register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
    total_vector_size = 0;

    while (vector)
      if (!VECTOR_MARKED_P (vector))
	{
	  if (prev)
	    prev->header.next = vector->header.next;
	  else
	    all_vectors = vector->header.next.vector;
	  next = vector->header.next.vector;
	  lisp_free (vector);
	  vector = next;

	}
      else
	{
	  VECTOR_UNMARK (vector);
	  if (vector->header.size & PSEUDOVECTOR_FLAG)
	    total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
	  else
	    total_vector_size += vector->header.size;
	  prev = vector, vector = vector->header.next.vector;
	}
  }

#ifdef GC_CHECK_STRING_BYTES
  if (!noninteractive)
    check_string_bytes (1);
#endif
}




/* Debugging aids.  */

DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
       doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
This may be helpful in debugging Emacs's memory usage.
We divide the value by 1024 to make sure it fits in a Lisp integer.  */)
  (void)
{
  Lisp_Object end;

  XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);

  return end;
}

DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
       doc: /* Return a list of counters that measure how much consing there has been.
Each of these counters increments for a certain kind of object.
The counters wrap around from the largest positive integer to zero.
Garbage collection does not decrease them.
The elements of the value are as follows:
  (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
All are in units of 1 = one object consed
except for VECTOR-CELLS and STRING-CHARS, which count the total length of
objects consed.
MISCS include overlays, markers, and some internal types.
Frames, windows, buffers, and subprocesses count as vectors
  (but the contents of a buffer's text do not count here).  */)
  (void)
{
  Lisp_Object consed[8];

  consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
  consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
  consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
  consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
  consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
  consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
  consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
  consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));

  return Flist (8, consed);
}

/* Find at most FIND_MAX symbols which have OBJ as their value or
   function.  This is used in gdbinit's `xwhichsymbols' command.  */

Lisp_Object
which_symbols (Lisp_Object obj, EMACS_INT find_max)
{
   struct symbol_block *sblk;
   int gc_count = inhibit_garbage_collection ();
   Lisp_Object found = Qnil;

   if (! DEADP (obj))
     {
       for (sblk = symbol_block; sblk; sblk = sblk->next)
	 {
	   struct Lisp_Symbol *sym = sblk->symbols;
	   int bn;

	   for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, sym++)
	     {
	       Lisp_Object val;
	       Lisp_Object tem;

	       if (sblk == symbol_block && bn >= symbol_block_index)
		 break;

	       XSETSYMBOL (tem, sym);
	       val = find_symbol_value (tem);
	       if (EQ (val, obj)
		   || EQ (sym->function, obj)
		   || (!NILP (sym->function)
		       && COMPILEDP (sym->function)
		       && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
		   || (!NILP (val)
		       && COMPILEDP (val)
		       && EQ (AREF (val, COMPILED_BYTECODE), obj)))
		 {
		   found = Fcons (tem, found);
		   if (--find_max == 0)
		     goto out;
		 }
	     }
	 }
     }

  out:
   unbind_to (gc_count, Qnil);
   return found;
}

#ifdef ENABLE_CHECKING
int suppress_checking;

void
die (const char *msg, const char *file, int line)
{
  fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
	   file, line, msg);
  abort ();
}
#endif

/* Initialization */

void
init_alloc_once (void)
{
  /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet!  */
  purebeg = PUREBEG;
  pure_size = PURESIZE;
  pure_bytes_used = 0;
  pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
  pure_bytes_used_before_overflow = 0;

  /* Initialize the list of free aligned blocks.  */
  free_ablock = NULL;

#if GC_MARK_STACK || defined GC_MALLOC_CHECK
  mem_init ();
  Vdead = make_pure_string ("DEAD", 4, 4, 0);
#endif

  all_vectors = 0;
  ignore_warnings = 1;
#ifdef DOUG_LEA_MALLOC
  mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
  mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
  mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
#endif
  init_strings ();
  init_cons ();
  init_symbol ();
  init_marker ();
  init_float ();
  init_intervals ();
  init_weak_hash_tables ();

#ifdef REL_ALLOC
  malloc_hysteresis = 32;
#else
  malloc_hysteresis = 0;
#endif

  refill_memory_reserve ();

  ignore_warnings = 0;
  gcprolist = 0;
  byte_stack_list = 0;
  staticidx = 0;
  consing_since_gc = 0;
  gc_cons_threshold = 100000 * sizeof (Lisp_Object);
  gc_relative_threshold = 0;
}

void
init_alloc (void)
{
  gcprolist = 0;
  byte_stack_list = 0;
#if GC_MARK_STACK
#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
  setjmp_tested_p = longjmps_done = 0;
#endif
#endif
  Vgc_elapsed = make_float (0.0);
  gcs_done = 0;
}

void
syms_of_alloc (void)
{
  DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
	      doc: /* *Number of bytes of consing between garbage collections.
Garbage collection can happen automatically once this many bytes have been
allocated since the last garbage collection.  All data types count.

Garbage collection happens automatically only when `eval' is called.

By binding this temporarily to a large number, you can effectively
prevent garbage collection during a part of the program.
See also `gc-cons-percentage'.  */);

  DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
	       doc: /* *Portion of the heap used for allocation.
Garbage collection can happen automatically once this portion of the heap
has been allocated since the last garbage collection.
If this portion is smaller than `gc-cons-threshold', this is ignored.  */);
  Vgc_cons_percentage = make_float (0.1);

  DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
	      doc: /* Number of bytes of shareable Lisp data allocated so far.  */);

  DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
	      doc: /* Number of cons cells that have been consed so far.  */);

  DEFVAR_INT ("floats-consed", floats_consed,
	      doc: /* Number of floats that have been consed so far.  */);

  DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
	      doc: /* Number of vector cells that have been consed so far.  */);

  DEFVAR_INT ("symbols-consed", symbols_consed,
	      doc: /* Number of symbols that have been consed so far.  */);

  DEFVAR_INT ("string-chars-consed", string_chars_consed,
	      doc: /* Number of string characters that have been consed so far.  */);

  DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
	      doc: /* Number of miscellaneous objects that have been consed so far.  */);

  DEFVAR_INT ("intervals-consed", intervals_consed,
	      doc: /* Number of intervals that have been consed so far.  */);

  DEFVAR_INT ("strings-consed", strings_consed,
	      doc: /* Number of strings that have been consed so far.  */);

  DEFVAR_LISP ("purify-flag", Vpurify_flag,
	       doc: /* Non-nil means loading Lisp code in order to dump an executable.
This means that certain objects should be allocated in shared (pure) space.
It can also be set to a hash-table, in which case this table is used to
do hash-consing of the objects allocated to pure space.  */);

  DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
	       doc: /* Non-nil means display messages at start and end of garbage collection.  */);
  garbage_collection_messages = 0;

  DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
	       doc: /* Hook run after garbage collection has finished.  */);
  Vpost_gc_hook = Qnil;
  DEFSYM (Qpost_gc_hook, "post-gc-hook");

  DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
	       doc: /* Precomputed `signal' argument for memory-full error.  */);
  /* We build this in advance because if we wait until we need it, we might
     not be able to allocate the memory to hold it.  */
  Vmemory_signal_data
    = pure_cons (Qerror,
		 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));

  DEFVAR_LISP ("memory-full", Vmemory_full,
	       doc: /* Non-nil means Emacs cannot get much more Lisp memory.  */);
  Vmemory_full = Qnil;

  DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
  DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");

  DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
	       doc: /* Accumulated time elapsed in garbage collections.
The time is in seconds as a floating point value.  */);
  DEFVAR_INT ("gcs-done", gcs_done,
	      doc: /* Accumulated number of garbage collections done.  */);

  defsubr (&Scons);
  defsubr (&Slist);
  defsubr (&Svector);
  defsubr (&Smake_byte_code);
  defsubr (&Smake_list);
  defsubr (&Smake_vector);
  defsubr (&Smake_string);
  defsubr (&Smake_bool_vector);
  defsubr (&Smake_symbol);
  defsubr (&Smake_marker);
  defsubr (&Spurecopy);
  defsubr (&Sgarbage_collect);
  defsubr (&Smemory_limit);
  defsubr (&Smemory_use_counts);

#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
  defsubr (&Sgc_status);
#endif
}