summaryrefslogtreecommitdiff
path: root/lispref/lists.texi
blob: da9d57319edf789e7e423f5917870b75febaf47b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
@c -*-texinfo-*-
@c This is part of the GNU Emacs Lisp Reference Manual.
@c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc. 
@c See the file elisp.texi for copying conditions.
@setfilename ../info/lists
@node Lists, Sequences Arrays Vectors, Strings and Characters, Top
@chapter Lists
@cindex list
@cindex element (of list)

  A @dfn{list} represents a sequence of zero or more elements (which may
be any Lisp objects).  The important difference between lists and
vectors is that two or more lists can share part of their structure; in
addition, you can insert or delete elements in a list without copying
the whole list.

@menu
* Cons Cells::          How lists are made out of cons cells.
* Lists as Boxes::                 Graphical notation to explain lists.
* List-related Predicates::        Is this object a list?  Comparing two lists.
* List Elements::       Extracting the pieces of a list.
* Building Lists::      Creating list structure.
* Modifying Lists::     Storing new pieces into an existing list.
* Sets And Lists::      A list can represent a finite mathematical set.
* Association Lists::   A list can represent a finite relation or mapping.
@end menu

@node Cons Cells
@section Lists and Cons Cells
@cindex lists and cons cells
@cindex @code{nil} and lists

  Lists in Lisp are not a primitive data type; they are built up from
@dfn{cons cells}.  A cons cell is a data object that represents an
ordered pair.  It records two Lisp objects, one labeled as the @sc{car},
and the other labeled as the @sc{cdr}.  These names are traditional; see
@ref{Cons Cell Type}.  @sc{cdr} is pronounced ``could-er.''

  A list is a series of cons cells chained together, one cons cell per
element of the list.  By convention, the @sc{car}s of the cons cells are
the elements of the list, and the @sc{cdr}s are used to chain the list:
the @sc{cdr} of each cons cell is the following cons cell.  The @sc{cdr}
of the last cons cell is @code{nil}.  This asymmetry between the
@sc{car} and the @sc{cdr} is entirely a matter of convention; at the
level of cons cells, the @sc{car} and @sc{cdr} slots have the same
characteristics.

@cindex list structure
  Because most cons cells are used as part of lists, the phrase
@dfn{list structure} has come to mean any structure made out of cons
cells.

  The symbol @code{nil} is considered a list as well as a symbol; it is
the list with no elements.  For convenience, the symbol @code{nil} is
considered to have @code{nil} as its @sc{cdr} (and also as its
@sc{car}).

  The @sc{cdr} of any nonempty list @var{l} is a list containing all the
elements of @var{l} except the first.

@node Lists as Boxes
@comment  node-name,  next,  previous,  up
@section Lists as Linked Pairs of Boxes
@cindex box representation for lists
@cindex lists represented as boxes
@cindex cons cell as box

  A cons cell can be illustrated as a pair of boxes.  The first box
represents the @sc{car} and the second box represents the @sc{cdr}.
Here is an illustration of the two-element list, @code{(tulip lily)},
made from two cons cells:

@example
@group
 ---------------         ---------------
| car   | cdr   |       | car   | cdr   |
| tulip |   o---------->| lily  |  nil  |
|       |       |       |       |       |
 ---------------         ---------------
@end group
@end example

  Each pair of boxes represents a cons cell.  Each box ``refers to'',
``points to'' or ``contains'' a Lisp object.  (These terms are
synonymous.)  The first box, which is the @sc{car} of the first cons
cell, contains the symbol @code{tulip}.  The arrow from the @sc{cdr} of
the first cons cell to the second cons cell indicates that the @sc{cdr}
of the first cons cell points to the second cons cell.

  The same list can be illustrated in a different sort of box notation
like this:

@example
@group
    ___ ___      ___ ___
   |___|___|--> |___|___|--> nil
     |            |
     |            |
      --> tulip    --> lily
@end group
@end example

  Here is a more complex illustration, showing the three-element list,
@code{((pine needles) oak maple)}, the first element of which is a
two-element list:

@example
@group
    ___ ___      ___ ___      ___ ___
   |___|___|--> |___|___|--> |___|___|--> nil
     |            |            |
     |            |            |
     |             --> oak      --> maple
     |
     |     ___ ___      ___ ___
      --> |___|___|--> |___|___|--> nil
            |            |
            |            |
             --> pine     --> needles
@end group
@end example

  The same list represented in the first box notation looks like this:

@example
@group
 --------------       --------------       --------------
| car   | cdr  |     | car   | cdr  |     | car   | cdr  |
|   o   |   o------->| oak   |   o------->| maple |  nil |
|   |   |      |     |       |      |     |       |      |
 -- | ---------       --------------       --------------
    |
    |
    |        --------------       ----------------
    |       | car   | cdr  |     | car     | cdr  |
     ------>| pine  |   o------->| needles |  nil |
            |       |      |     |         |      |
             --------------       ----------------
@end group
@end example

  @xref{Cons Cell Type}, for the read and print syntax of cons cells and
lists, and for more ``box and arrow'' illustrations of lists.

@node List-related Predicates
@section Predicates on Lists

  The following predicates test whether a Lisp object is an atom, is a
cons cell or is a list, or whether it is the distinguished object
@code{nil}.  (Many of these predicates can be defined in terms of the
others, but they are used so often that it is worth having all of them.)

@defun consp object
This function returns @code{t} if @var{object} is a cons cell, @code{nil}
otherwise.  @code{nil} is not a cons cell, although it @emph{is} a list.
@end defun

@defun atom object
@cindex atoms
This function returns @code{t} if @var{object} is an atom, @code{nil}
otherwise.  All objects except cons cells are atoms.  The symbol
@code{nil} is an atom and is also a list; it is the only Lisp object
that is both.

@example
(atom @var{object}) @equiv{} (not (consp @var{object}))
@end example
@end defun

@defun listp object
This function returns @code{t} if @var{object} is a cons cell or
@code{nil}.  Otherwise, it returns @code{nil}.

@example
@group
(listp '(1))
     @result{} t
@end group
@group
(listp '())
     @result{} t
@end group
@end example
@end defun

@defun nlistp object
This function is the opposite of @code{listp}: it returns @code{t} if
@var{object} is not a list.  Otherwise, it returns @code{nil}.

@example
(listp @var{object}) @equiv{} (not (nlistp @var{object}))
@end example
@end defun

@defun null object
This function returns @code{t} if @var{object} is @code{nil}, and
returns @code{nil} otherwise.  This function is identical to @code{not},
but as a matter of clarity we use @code{null} when @var{object} is
considered a list and @code{not} when it is considered a truth value
(see @code{not} in @ref{Combining Conditions}).

@example
@group
(null '(1))
     @result{} nil
@end group
@group
(null '())
     @result{} t
@end group
@end example
@end defun

@need 2000

@node List Elements
@section Accessing Elements of Lists
@cindex list elements

@defun car cons-cell
This function returns the value pointed to by the first pointer of the
cons cell @var{cons-cell}.  Expressed another way, this function
returns the @sc{car} of @var{cons-cell}.

As a special case, if @var{cons-cell} is @code{nil}, then @code{car}
is defined to return @code{nil}; therefore, any list is a valid argument
for @code{car}.  An error is signaled if the argument is not a cons cell
or @code{nil}.

@example
@group
(car '(a b c))
     @result{} a
@end group
@group
(car '())
     @result{} nil
@end group
@end example
@end defun

@defun cdr cons-cell
This function returns the value pointed to by the second pointer of
the cons cell @var{cons-cell}.  Expressed another way, this function
returns the @sc{cdr} of @var{cons-cell}.

As a special case, if @var{cons-cell} is @code{nil}, then @code{cdr}
is defined to return @code{nil}; therefore, any list is a valid argument
for @code{cdr}.  An error is signaled if the argument is not a cons cell
or @code{nil}.

@example
@group
(cdr '(a b c))
     @result{} (b c)
@end group
@group
(cdr '())
     @result{} nil
@end group
@end example
@end defun

@defun car-safe object
This function lets you take the @sc{car} of a cons cell while avoiding
errors for other data types.  It returns the @sc{car} of @var{object} if
@var{object} is a cons cell, @code{nil} otherwise.  This is in contrast
to @code{car}, which signals an error if @var{object} is not a list.

@example
@group
(car-safe @var{object})
@equiv{}
(let ((x @var{object}))
  (if (consp x)
      (car x)
    nil))
@end group
@end example
@end defun

@defun cdr-safe object
This function lets you take the @sc{cdr} of a cons cell while
avoiding errors for other data types.  It returns the @sc{cdr} of
@var{object} if @var{object} is a cons cell, @code{nil} otherwise.
This is in contrast to @code{cdr}, which signals an error if
@var{object} is not a list.

@example
@group
(cdr-safe @var{object})
@equiv{}
(let ((x @var{object}))
  (if (consp x)
      (cdr x)
    nil))
@end group
@end example
@end defun

@defun nth n list
This function returns the @var{n}th element of @var{list}.  Elements
are numbered starting with zero, so the @sc{car} of @var{list} is
element number zero.  If the length of @var{list} is @var{n} or less,
the value is @code{nil}.

If @var{n} is negative, @code{nth} returns the first element of
@var{list}.

@example
@group
(nth 2 '(1 2 3 4))
     @result{} 3
@end group
@group
(nth 10 '(1 2 3 4))
     @result{} nil
@end group
@group
(nth -3 '(1 2 3 4))
     @result{} 1

(nth n x) @equiv{} (car (nthcdr n x))
@end group
@end example
@end defun

@defun nthcdr n list
This function returns the @var{n}th @sc{cdr} of @var{list}.  In other
words, it removes the first @var{n} links of @var{list} and returns
what follows.

If @var{n} is zero or negative, @code{nthcdr} returns all of
@var{list}.  If the length of @var{list} is @var{n} or less,
@code{nthcdr} returns @code{nil}.

@example
@group
(nthcdr 1 '(1 2 3 4))
     @result{} (2 3 4)
@end group
@group
(nthcdr 10 '(1 2 3 4))
     @result{} nil
@end group
@group
(nthcdr -3 '(1 2 3 4))
     @result{} (1 2 3 4)
@end group
@end example
@end defun

@node Building Lists
@comment  node-name,  next,  previous,  up
@section Building Cons Cells and Lists
@cindex cons cells
@cindex building lists

  Many functions build lists, as lists reside at the very heart of Lisp.
@code{cons} is the fundamental list-building function; however, it is
interesting to note that @code{list} is used more times in the source
code for Emacs than @code{cons}.

@defun cons object1 object2
This function is the fundamental function used to build new list
structure.  It creates a new cons cell, making @var{object1} the
@sc{car}, and @var{object2} the @sc{cdr}.  It then returns the new cons
cell.  The arguments @var{object1} and @var{object2} may be any Lisp
objects, but most often @var{object2} is a list.

@example
@group
(cons 1 '(2))
     @result{} (1 2)
@end group
@group
(cons 1 '())
     @result{} (1)
@end group
@group
(cons 1 2)
     @result{} (1 . 2)
@end group
@end example

@cindex consing
@code{cons} is often used to add a single element to the front of a
list.  This is called @dfn{consing the element onto the list}.  For
example:

@example
(setq list (cons newelt list))
@end example

Note that there is no conflict between the variable named @code{list}
used in this example and the function named @code{list} described below;
any symbol can serve both purposes.
@end defun

@defun list &rest objects
This function creates a list with @var{objects} as its elements.  The
resulting list is always @code{nil}-terminated.  If no @var{objects}
are given, the empty list is returned.

@example
@group
(list 1 2 3 4 5)
     @result{} (1 2 3 4 5)
@end group
@group
(list 1 2 '(3 4 5) 'foo)
     @result{} (1 2 (3 4 5) foo)
@end group
@group
(list)
     @result{} nil
@end group
@end example
@end defun

@defun make-list length object
This function creates a list of length @var{length}, in which all the
elements have the identical value @var{object}.  Compare
@code{make-list} with @code{make-string} (@pxref{Creating Strings}).

@example
@group
(make-list 3 'pigs)
     @result{} (pigs pigs pigs)
@end group
@group
(make-list 0 'pigs)
     @result{} nil
@end group
@end example
@end defun

@defun append &rest sequences
@cindex copying lists
This function returns a list containing all the elements of
@var{sequences}.  The @var{sequences} may be lists, vectors, or strings,
but the last one should be a list.  All arguments except the last one
are copied, so none of them are altered.

More generally, the final argument to @code{append} may be any Lisp
object.  The final argument is not copied or converted; it becomes the
@sc{cdr} of the last cons cell in the new list.  If the final argument
is itself a list, then its elements become in effect elements of the
result list.  If the final element is not a list, the result is a
``dotted list'' since its final @sc{cdr} is not @code{nil} as required
in a true list.

See @code{nconc} in @ref{Rearrangement}, for a way to join lists with no
copying.

Here is an example of using @code{append}:

@example
@group
(setq trees '(pine oak))
     @result{} (pine oak)
(setq more-trees (append '(maple birch) trees))
     @result{} (maple birch pine oak)
@end group

@group
trees
     @result{} (pine oak)
more-trees
     @result{} (maple birch pine oak)
@end group
@group
(eq trees (cdr (cdr more-trees)))
     @result{} t
@end group
@end example

You can see how @code{append} works by looking at a box diagram.  The
variable @code{trees} is set to the list @code{(pine oak)} and then the
variable @code{more-trees} is set to the list @code{(maple birch pine
oak)}.  However, the variable @code{trees} continues to refer to the
original list:

@smallexample
@group
more-trees                trees
|                           |
|     ___ ___      ___ ___   -> ___ ___      ___ ___
 --> |___|___|--> |___|___|--> |___|___|--> |___|___|--> nil
       |            |            |            |
       |            |            |            |
        --> maple    -->birch     --> pine     --> oak
@end group
@end smallexample

An empty sequence contributes nothing to the value returned by
@code{append}.  As a consequence of this, a final @code{nil} argument
forces a copy of the previous argument.

@example
@group
trees
     @result{} (pine oak)
@end group
@group
(setq wood (append trees ()))
     @result{} (pine oak)
@end group
@group
wood
     @result{} (pine oak)
@end group
@group
(eq wood trees)
     @result{} nil
@end group
@end example

@noindent
This once was the usual way to copy a list, before the function
@code{copy-sequence} was invented.  @xref{Sequences Arrays Vectors}.

With the help of @code{apply}, we can append all the lists in a list of
lists:

@example
@group
(apply 'append '((a b c) nil (x y z) nil))
     @result{} (a b c x y z)
@end group
@end example

If no @var{sequences} are given, @code{nil} is returned:

@example
@group
(append)
     @result{} nil
@end group
@end example

Here are some examples where the final argument is not a list:

@example
(append '(x y) 'z)
     @result{} (x y . z)
(append '(x y) [z])
     @result{} (x y . [z])
@end example

@noindent
The second example shows that when the final argument is a sequence but
not a list, the sequence's elements do not become elements of the
resulting list.  Instead, the sequence becomes the final @sc{cdr}, like
any other non-list final argument.

The @code{append} function also allows integers as arguments.  It
converts them to strings of digits, making up the decimal print
representation of the integer, and then uses the strings instead of the
original integers.  @strong{Don't use this feature; we plan to eliminate
it.  If you already use this feature, change your programs now!}  The
proper way to convert an integer to a decimal number in this way is with
@code{format} (@pxref{Formatting Strings}) or @code{number-to-string}
(@pxref{String Conversion}).
@end defun

@defun reverse list
This function creates a new list whose elements are the elements of
@var{list}, but in reverse order.  The original argument @var{list} is
@emph{not} altered.

@example
@group
(setq x '(1 2 3 4))
     @result{} (1 2 3 4)
@end group
@group
(reverse x)
     @result{} (4 3 2 1)
x
     @result{} (1 2 3 4)
@end group
@end example
@end defun

@node Modifying Lists
@section Modifying Existing List Structure

  You can modify the @sc{car} and @sc{cdr} contents of a cons cell with the
primitives @code{setcar} and @code{setcdr}.

@cindex CL note---@code{rplaca} vrs @code{setcar}
@quotation
@findex rplaca
@findex rplacd
@b{Common Lisp note:} Common Lisp uses functions @code{rplaca} and
@code{rplacd} to alter list structure; they change structure the same
way as @code{setcar} and @code{setcdr}, but the Common Lisp functions
return the cons cell while @code{setcar} and @code{setcdr} return the
new @sc{car} or @sc{cdr}.
@end quotation

@menu
* Setcar::          Replacing an element in a list.
* Setcdr::          Replacing part of the list backbone.
                      This can be used to remove or add elements.
* Rearrangement::   Reordering the elements in a list; combining lists.
@end menu

@node Setcar
@subsection Altering List Elements with @code{setcar}

  Changing the @sc{car} of a cons cell is done with @code{setcar}.  When
used on a list, @code{setcar} replaces one element of a list with a
different element.

@defun setcar cons object
This function stores @var{object} as the new @sc{car} of @var{cons},
replacing its previous @sc{car}.  It returns the value @var{object}.
For example:

@example
@group
(setq x '(1 2))
     @result{} (1 2)
@end group
@group
(setcar x 4)
     @result{} 4
@end group
@group
x
     @result{} (4 2)
@end group
@end example
@end defun

  When a cons cell is part of the shared structure of several lists,
storing a new @sc{car} into the cons changes one element of each of
these lists.  Here is an example:

@example
@group
;; @r{Create two lists that are partly shared.}
(setq x1 '(a b c))
     @result{} (a b c)
(setq x2 (cons 'z (cdr x1)))
     @result{} (z b c)
@end group

@group
;; @r{Replace the @sc{car} of a shared link.}
(setcar (cdr x1) 'foo)
     @result{} foo
x1                           ; @r{Both lists are changed.}
     @result{} (a foo c)
x2
     @result{} (z foo c)
@end group

@group
;; @r{Replace the @sc{car} of a link that is not shared.}
(setcar x1 'baz)
     @result{} baz
x1                           ; @r{Only one list is changed.}
     @result{} (baz foo c)
x2
     @result{} (z foo c)
@end group
@end example

  Here is a graphical depiction of the shared structure of the two lists
in the variables @code{x1} and @code{x2}, showing why replacing @code{b}
changes them both:

@example
@group
        ___ ___        ___ ___      ___ ___
x1---> |___|___|----> |___|___|--> |___|___|--> nil
         |        -->   |            |
         |       |      |            |
          --> a  |       --> b        --> c
                 |
       ___ ___   |
x2--> |___|___|--
        |
        |
         --> z
@end group
@end example

  Here is an alternative form of box diagram, showing the same relationship:

@example
@group
x1:
 --------------       --------------       --------------
| car   | cdr  |     | car   | cdr  |     | car   | cdr  |
|   a   |   o------->|   b   |   o------->|   c   |  nil |
|       |      |  -->|       |      |     |       |      |
 --------------  |    --------------       --------------
                 |
x2:              |
 --------------  |
| car   | cdr  | |
|   z   |   o----
|       |      |
 --------------
@end group
@end example

@node Setcdr
@subsection Altering the CDR of a List

  The lowest-level primitive for modifying a @sc{cdr} is @code{setcdr}:

@defun setcdr cons object
This function stores @var{object} as the new @sc{cdr} of @var{cons},
replacing its previous @sc{cdr}.  It returns the value @var{object}.
@end defun

  Here is an example of replacing the @sc{cdr} of a list with a
different list.  All but the first element of the list are removed in
favor of a different sequence of elements.  The first element is
unchanged, because it resides in the @sc{car} of the list, and is not
reached via the @sc{cdr}.

@example
@group
(setq x '(1 2 3))
     @result{} (1 2 3)
@end group
@group
(setcdr x '(4))
     @result{} (4)
@end group
@group
x
     @result{} (1 4)
@end group
@end example

  You can delete elements from the middle of a list by altering the
@sc{cdr}s of the cons cells in the list.  For example, here we delete
the second element, @code{b}, from the list @code{(a b c)}, by changing
the @sc{cdr} of the first cell:

@example
@group
(setq x1 '(a b c))
     @result{} (a b c)
(setcdr x1 (cdr (cdr x1)))
     @result{} (c)
x1
     @result{} (a c)
@end group
@end example

@need 4000
  Here is the result in box notation:

@example
@group
                   --------------------
                  |                    |
 --------------   |   --------------   |    --------------
| car   | cdr  |  |  | car   | cdr  |   -->| car   | cdr  |
|   a   |   o-----   |   b   |   o-------->|   c   |  nil |
|       |      |     |       |      |      |       |      |
 --------------       --------------        --------------
@end group
@end example

@noindent
The second cons cell, which previously held the element @code{b}, still
exists and its @sc{car} is still @code{b}, but it no longer forms part
of this list.

  It is equally easy to insert a new element by changing @sc{cdr}s:

@example
@group
(setq x1 '(a b c))
     @result{} (a b c)
(setcdr x1 (cons 'd (cdr x1)))
     @result{} (d b c)
x1
     @result{} (a d b c)
@end group
@end example

  Here is this result in box notation:

@smallexample
@group
 --------------        -------------       -------------
| car  | cdr   |      | car  | cdr  |     | car  | cdr  |
|   a  |   o   |   -->|   b  |   o------->|   c  |  nil |
|      |   |   |  |   |      |      |     |      |      |
 --------- | --   |    -------------       -------------
           |      |
     -----         --------
    |                      |
    |    ---------------   |
    |   | car   | cdr   |  |
     -->|   d   |   o------
        |       |       |
         ---------------
@end group
@end smallexample

@node Rearrangement
@subsection Functions that Rearrange Lists
@cindex rearrangement of lists
@cindex modification of lists

  Here are some functions that rearrange lists ``destructively'' by
modifying the @sc{cdr}s of their component cons cells.  We call these
functions ``destructive'' because they chew up the original lists passed
to them as arguments, to produce a new list that is the returned value.

@ifinfo
  See @code{delq}, in @ref{Sets And Lists}, for another function
that modifies cons cells.
@end ifinfo
@iftex
   The function @code{delq} in the following section is another example
of destructive list manipulation.
@end iftex

@defun nconc &rest lists
@cindex concatenating lists
@cindex joining lists
This function returns a list containing all the elements of @var{lists}.
Unlike @code{append} (@pxref{Building Lists}), the @var{lists} are
@emph{not} copied.  Instead, the last @sc{cdr} of each of the
@var{lists} is changed to refer to the following list.  The last of the
@var{lists} is not altered.  For example:

@example
@group
(setq x '(1 2 3))
     @result{} (1 2 3)
@end group
@group
(nconc x '(4 5))
     @result{} (1 2 3 4 5)
@end group
@group
x
     @result{} (1 2 3 4 5)
@end group
@end example

   Since the last argument of @code{nconc} is not itself modified, it is
reasonable to use a constant list, such as @code{'(4 5)}, as in the
above example.  For the same reason, the last argument need not be a
list:

@example
@group
(setq x '(1 2 3))
     @result{} (1 2 3)
@end group
@group
(nconc x 'z)
     @result{} (1 2 3 . z)
@end group
@group
x
     @result{} (1 2 3 . z)
@end group
@end example

A common pitfall is to use a quoted constant list as a non-last
argument to @code{nconc}.  If you do this, your program will change
each time you run it!  Here is what happens:

@smallexample
@group
(defun add-foo (x)            ; @r{We want this function to add}
  (nconc '(foo) x))           ;   @r{@code{foo} to the front of its arg.}
@end group

@group
(symbol-function 'add-foo)
     @result{} (lambda (x) (nconc (quote (foo)) x))
@end group

@group
(setq xx (add-foo '(1 2)))    ; @r{It seems to work.}
     @result{} (foo 1 2)
@end group
@group
(setq xy (add-foo '(3 4)))    ; @r{What happened?}
     @result{} (foo 1 2 3 4)
@end group
@group
(eq xx xy)
     @result{} t
@end group

@group
(symbol-function 'add-foo)
     @result{} (lambda (x) (nconc (quote (foo 1 2 3 4) x)))
@end group
@end smallexample
@end defun

@defun nreverse list
@cindex reversing a list
  This function reverses the order of the elements of @var{list}.
Unlike @code{reverse}, @code{nreverse} alters its argument by reversing
the @sc{cdr}s in the cons cells forming the list.  The cons cell that
used to be the last one in @var{list} becomes the first cell of the
value.

  For example:

@example
@group
(setq x '(1 2 3 4))
     @result{} (1 2 3 4)
@end group
@group
x
     @result{} (1 2 3 4)
(nreverse x)
     @result{} (4 3 2 1)
@end group
@group
;; @r{The cell that was first is now last.}
x
     @result{} (1)
@end group
@end example

  To avoid confusion, we usually store the result of @code{nreverse}
back in the same variable which held the original list:

@example
(setq x (nreverse x))
@end example

  Here is the @code{nreverse} of our favorite example, @code{(a b c)},
presented graphically:

@smallexample
@group
@r{Original list head:}                       @r{Reversed list:}
 -------------        -------------        ------------
| car  | cdr  |      | car  | cdr  |      | car | cdr  |
|   a  |  nil |<--   |   b  |   o  |<--   |   c |   o  |
|      |      |   |  |      |   |  |   |  |     |   |  |
 -------------    |   --------- | -    |   -------- | -
                  |             |      |            |
                   -------------        ------------
@end group
@end smallexample
@end defun

@defun sort list predicate
@cindex stable sort
@cindex sorting lists
This function sorts @var{list} stably, though destructively, and
returns the sorted list.  It compares elements using @var{predicate}.  A
stable sort is one in which elements with equal sort keys maintain their
relative order before and after the sort.  Stability is important when
successive sorts are used to order elements according to different
criteria.

The argument @var{predicate} must be a function that accepts two
arguments.  It is called with two elements of @var{list}.  To get an
increasing order sort, the @var{predicate} should return @code{t} if the
first element is ``less than'' the second, or @code{nil} if not.

The destructive aspect of @code{sort} is that it rearranges the cons
cells forming @var{list} by changing @sc{cdr}s.  A nondestructive sort
function would create new cons cells to store the elements in their
sorted order.  If you wish to make a sorted copy without destroying the
original, copy it first with @code{copy-sequence} and then sort.

Sorting does not change the @sc{car}s of the cons cells in @var{list};
the cons cell that originally contained the element @code{a} in
@var{list} still has @code{a} in its @sc{car} after sorting, but it now
appears in a different position in the list due to the change of
@sc{cdr}s.  For example:

@example
@group
(setq nums '(1 3 2 6 5 4 0))
     @result{} (1 3 2 6 5 4 0)
@end group
@group
(sort nums '<)
     @result{} (0 1 2 3 4 5 6)
@end group
@group
nums
     @result{} (1 2 3 4 5 6)
@end group
@end example

@noindent
Note that the list in @code{nums} no longer contains 0; this is the same
cons cell that it was before, but it is no longer the first one in the
list.  Don't assume a variable that formerly held the argument now holds
the entire sorted list!  Instead, save the result of @code{sort} and use
that.  Most often we store the result back into the variable that held
the original list:

@example
(setq nums (sort nums '<))
@end example

@xref{Sorting}, for more functions that perform sorting.
See @code{documentation} in @ref{Accessing Documentation}, for a
useful example of @code{sort}.
@end defun

@node Sets And Lists
@section Using Lists as Sets
@cindex lists as sets
@cindex sets

  A list can represent an unordered mathematical set---simply consider a
value an element of a set if it appears in the list, and ignore the
order of the list.  To form the union of two sets, use @code{append} (as
long as you don't mind having duplicate elements).  Other useful
functions for sets include @code{memq} and @code{delq}, and their
@code{equal} versions, @code{member} and @code{delete}.

@cindex CL note---lack @code{union}, @code{intersection}
@quotation
@b{Common Lisp note:} Common Lisp has functions @code{union} (which
avoids duplicate elements) and @code{intersection} for set operations,
but GNU Emacs Lisp does not have them.  You can write them in Lisp if
you wish.
@end quotation

@defun memq object list
@cindex membership in a list
This function tests to see whether @var{object} is a member of
@var{list}.  If it is, @code{memq} returns a list starting with the
first occurrence of @var{object}.  Otherwise, it returns @code{nil}.
The letter @samp{q} in @code{memq} says that it uses @code{eq} to
compare @var{object} against the elements of the list.  For example:

@example
@group
(memq 'b '(a b c b a))
     @result{} (b c b a)
@end group
@group
(memq '(2) '((1) (2)))    ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
     @result{} nil
@end group
@end example
@end defun

@defun delq object list
@cindex deletion of elements
This function destructively removes all elements @code{eq} to
@var{object} from @var{list}.  The letter @samp{q} in @code{delq} says
that it uses @code{eq} to compare @var{object} against the elements of
the list, like @code{memq}.
@end defun

When @code{delq} deletes elements from the front of the list, it does so
simply by advancing down the list and returning a sublist that starts
after those elements:

@example
@group
(delq 'a '(a b c)) @equiv{} (cdr '(a b c))
@end group
@end example

When an element to be deleted appears in the middle of the list,
removing it involves changing the @sc{cdr}s (@pxref{Setcdr}).

@example
@group
(setq sample-list '(a b c (4)))
     @result{} (a b c (4))
@end group
@group
(delq 'a sample-list)
     @result{} (b c (4))
@end group
@group
sample-list
     @result{} (a b c (4))
@end group
@group
(delq 'c sample-list)
     @result{} (a b (4))
@end group
@group
sample-list
     @result{} (a b (4))
@end group
@end example

Note that @code{(delq 'c sample-list)} modifies @code{sample-list} to
splice out the third element, but @code{(delq 'a sample-list)} does not
splice anything---it just returns a shorter list.  Don't assume that a
variable which formerly held the argument @var{list} now has fewer
elements, or that it still holds the original list!  Instead, save the
result of @code{delq} and use that.  Most often we store the result back
into the variable that held the original list:

@example
(setq flowers (delq 'rose flowers))
@end example

In the following example, the @code{(4)} that @code{delq} attempts to match
and the @code{(4)} in the @code{sample-list} are not @code{eq}:

@example
@group
(delq '(4) sample-list)
     @result{} (a c (4))
@end group
@end example

The following two functions are like @code{memq} and @code{delq} but use
@code{equal} rather than @code{eq} to compare elements.  They are new in
Emacs 19.

@defun member object list
The function @code{member} tests to see whether @var{object} is a member
of @var{list}, comparing members with @var{object} using @code{equal}.
If @var{object} is a member, @code{member} returns a list starting with
its first occurrence in @var{list}.  Otherwise, it returns @code{nil}.

Compare this with @code{memq}:

@example
@group
(member '(2) '((1) (2)))  ; @r{@code{(2)} and @code{(2)} are @code{equal}.}
     @result{} ((2))
@end group
@group
(memq '(2) '((1) (2)))    ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
     @result{} nil
@end group
@group
;; @r{Two strings with the same contents are @code{equal}.}
(member "foo" '("foo" "bar"))
     @result{} ("foo" "bar")
@end group
@end example
@end defun

@defun delete object list
This function destructively removes all elements @code{equal} to
@var{object} from @var{list}.  It is to @code{delq} as @code{member} is
to @code{memq}: it uses @code{equal} to compare elements with
@var{object}, like @code{member}; when it finds an element that matches,
it removes the element just as @code{delq} would.  For example:

@example
@group
(delete '(2) '((2) (1) (2)))
     @result{} ((1))
@end group
@end example
@end defun

@quotation
@b{Common Lisp note:} The functions @code{member} and @code{delete} in
GNU Emacs Lisp are derived from Maclisp, not Common Lisp.  The Common
Lisp versions do not use @code{equal} to compare elements.
@end quotation

  See also the function @code{add-to-list}, in @ref{Setting Variables},
for another way to add an element to a list stored in a variable.

@node Association Lists
@section Association Lists
@cindex association list
@cindex alist

  An @dfn{association list}, or @dfn{alist} for short, records a mapping
from keys to values.  It is a list of cons cells called
@dfn{associations}: the @sc{car} of each cell is the @dfn{key}, and the
@sc{cdr} is the @dfn{associated value}.@footnote{This usage of ``key''
is not related to the term ``key sequence''; it means a value used to
look up an item in a table.  In this case, the table is the alist, and
the alist associations are the items.}

  Here is an example of an alist.  The key @code{pine} is associated with
the value @code{cones}; the key @code{oak} is associated with
@code{acorns}; and the key @code{maple} is associated with @code{seeds}.

@example
@group
'((pine . cones)
  (oak . acorns)
  (maple . seeds))
@end group
@end example

  The associated values in an alist may be any Lisp objects; so may the
keys.  For example, in the following alist, the symbol @code{a} is
associated with the number @code{1}, and the string @code{"b"} is
associated with the @emph{list} @code{(2 3)}, which is the @sc{cdr} of
the alist element:

@example
((a . 1) ("b" 2 3))
@end example

  Sometimes it is better to design an alist to store the associated
value in the @sc{car} of the @sc{cdr} of the element.  Here is an
example:

@example
'((rose red) (lily white) (buttercup yellow))
@end example

@noindent
Here we regard @code{red} as the value associated with @code{rose}.  One
advantage of this method is that you can store other related
information---even a list of other items---in the @sc{cdr} of the
@sc{cdr}.  One disadvantage is that you cannot use @code{rassq} (see
below) to find the element containing a given value.  When neither of
these considerations is important, the choice is a matter of taste, as
long as you are consistent about it for any given alist.

  Note that the same alist shown above could be regarded as having the
associated value in the @sc{cdr} of the element; the value associated
with @code{rose} would be the list @code{(red)}.

  Association lists are often used to record information that you might
otherwise keep on a stack, since new associations may be added easily to
the front of the list.  When searching an association list for an
association with a given key, the first one found is returned, if there
is more than one.

  In Emacs Lisp, it is @emph{not} an error if an element of an
association list is not a cons cell.  The alist search functions simply
ignore such elements.  Many other versions of Lisp signal errors in such
cases.

  Note that property lists are similar to association lists in several
respects.  A property list behaves like an association list in which
each key can occur only once.  @xref{Property Lists}, for a comparison
of property lists and association lists.

@defun assoc key alist
This function returns the first association for @var{key} in
@var{alist}.  It compares @var{key} against the alist elements using
@code{equal} (@pxref{Equality Predicates}).  It returns @code{nil} if no
association in @var{alist} has a @sc{car} @code{equal} to @var{key}.
For example:

@smallexample
(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
     @result{} ((pine . cones) (oak . acorns) (maple . seeds))
(assoc 'oak trees)
     @result{} (oak . acorns)
(cdr (assoc 'oak trees))
     @result{} acorns
(assoc 'birch trees)
     @result{} nil
@end smallexample

Here is another example, in which the keys and values are not symbols:

@smallexample
(setq needles-per-cluster
      '((2 "Austrian Pine" "Red Pine")
        (3 "Pitch Pine")
        (5 "White Pine")))

(cdr (assoc 3 needles-per-cluster))
     @result{} ("Pitch Pine")
(cdr (assoc 2 needles-per-cluster))
     @result{} ("Austrian Pine" "Red Pine")
@end smallexample
@end defun

@defun rassoc value alist
This function returns the first association with value @var{value} in
@var{alist}.  It returns @code{nil} if no association in @var{alist} has
a @sc{cdr} @code{equal} to @var{value}.

@code{rassoc} is like @code{assoc} except that it compares the @sc{cdr} of
each @var{alist} association instead of the @sc{car}.  You can think of
this as ``reverse @code{assoc}'', finding the key for a given value.
@end defun

@defun assq key alist
This function is like @code{assoc} in that it returns the first
association for @var{key} in @var{alist}, but it makes the comparison
using @code{eq} instead of @code{equal}.  @code{assq} returns @code{nil}
if no association in @var{alist} has a @sc{car} @code{eq} to @var{key}.
This function is used more often than @code{assoc}, since @code{eq} is
faster than @code{equal} and most alists use symbols as keys.
@xref{Equality Predicates}.

@smallexample
(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
     @result{} ((pine . cones) (oak . acorns) (maple . seeds))
(assq 'pine trees)
     @result{} (pine . cones)
@end smallexample

On the other hand, @code{assq} is not usually useful in alists where the
keys may not be symbols:

@smallexample
(setq leaves
      '(("simple leaves" . oak)
        ("compound leaves" . horsechestnut)))

(assq "simple leaves" leaves)
     @result{} nil
(assoc "simple leaves" leaves)
     @result{} ("simple leaves" . oak)
@end smallexample
@end defun

@defun rassq value alist
This function returns the first association with value @var{value} in
@var{alist}.  It returns @code{nil} if no association in @var{alist} has
a @sc{cdr} @code{eq} to @var{value}.

@code{rassq} is like @code{assq} except that it compares the @sc{cdr} of
each @var{alist} association instead of the @sc{car}.  You can think of
this as ``reverse @code{assq}'', finding the key for a given value.

For example:

@smallexample
(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))

(rassq 'acorns trees)
     @result{} (oak . acorns)
(rassq 'spores trees)
     @result{} nil
@end smallexample

Note that @code{rassq} cannot search for a value stored in the @sc{car}
of the @sc{cdr} of an element:

@smallexample
(setq colors '((rose red) (lily white) (buttercup yellow)))

(rassq 'white colors)
     @result{} nil
@end smallexample

In this case, the @sc{cdr} of the association @code{(lily white)} is not
the symbol @code{white}, but rather the list @code{(white)}.  This
becomes clearer if the association is written in dotted pair notation:

@smallexample
(lily white) @equiv{} (lily . (white))
@end smallexample
@end defun

@defun copy-alist alist
@cindex copying alists
This function returns a two-level deep copy of @var{alist}: it creates a
new copy of each association, so that you can alter the associations of
the new alist without changing the old one.

@smallexample
@group
(setq needles-per-cluster
      '((2 . ("Austrian Pine" "Red Pine"))
        (3 . ("Pitch Pine"))
@end group
        (5 . ("White Pine"))))
@result{}
((2 "Austrian Pine" "Red Pine")
 (3 "Pitch Pine")
 (5 "White Pine"))

(setq copy (copy-alist needles-per-cluster))
@result{}
((2 "Austrian Pine" "Red Pine")
 (3 "Pitch Pine")
 (5 "White Pine"))

(eq needles-per-cluster copy)
     @result{} nil
(equal needles-per-cluster copy)
     @result{} t
(eq (car needles-per-cluster) (car copy))
     @result{} nil
(cdr (car (cdr needles-per-cluster)))
     @result{} ("Pitch Pine")
@group
(eq (cdr (car (cdr needles-per-cluster)))
    (cdr (car (cdr copy))))
     @result{} t
@end group
@end smallexample

  This example shows how @code{copy-alist} makes it possible to change
the associations of one copy without affecting the other:

@smallexample
@group
(setcdr (assq 3 copy) '("Martian Vacuum Pine"))
(cdr (assq 3 needles-per-cluster))
     @result{} ("Pitch Pine")
@end group
@end smallexample
@end defun