1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
|
@c -*-texinfo-*-
@c This is part of the GNU Emacs Lisp Reference Manual.
@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1998 Free Software Foundation, Inc.
@c See the file elisp.texi for copying conditions.
@setfilename ../info/debugging
@node Debugging, Read and Print, Advising, Top
@chapter Debugging Lisp Programs
There are three ways to investigate a problem in an Emacs Lisp program,
depending on what you are doing with the program when the problem appears.
@itemize @bullet
@item
If the problem occurs when you run the program, you can use a Lisp
debugger (either the default debugger or Edebug) to investigate what is
happening during execution.
@item
If the problem is syntactic, so that Lisp cannot even read the program,
you can use the Emacs facilities for editing Lisp to localize it.
@item
If the problem occurs when trying to compile the program with the byte
compiler, you need to know how to examine the compiler's input buffer.
@end itemize
@menu
* Debugger:: How the Emacs Lisp debugger is implemented.
* Syntax Errors:: How to find syntax errors.
* Compilation Errors:: How to find errors that show up in byte compilation.
* Edebug:: A source-level Emacs Lisp debugger.
@end menu
Another useful debugging tool is the dribble file. When a dribble
file is open, Emacs copies all keyboard input characters to that file.
Afterward, you can examine the file to find out what input was used.
@xref{Terminal Input}.
For debugging problems in terminal descriptions, the
@code{open-termscript} function can be useful. @xref{Terminal Output}.
@node Debugger
@section The Lisp Debugger
@cindex debugger
@cindex Lisp debugger
@cindex break
The @dfn{Lisp debugger} provides the ability to suspend evaluation of
a form. While evaluation is suspended (a state that is commonly known
as a @dfn{break}), you may examine the run time stack, examine the
values of local or global variables, or change those values. Since a
break is a recursive edit, all the usual editing facilities of Emacs are
available; you can even run programs that will enter the debugger
recursively. @xref{Recursive Editing}.
@menu
* Error Debugging:: Entering the debugger when an error happens.
* Infinite Loops:: Stopping and debugging a program that doesn't exit.
* Function Debugging:: Entering it when a certain function is called.
* Explicit Debug:: Entering it at a certain point in the program.
* Using Debugger:: What the debugger does; what you see while in it.
* Debugger Commands:: Commands used while in the debugger.
* Invoking the Debugger:: How to call the function @code{debug}.
* Internals of Debugger:: Subroutines of the debugger, and global variables.
@end menu
@node Error Debugging
@subsection Entering the Debugger on an Error
@cindex error debugging
@cindex debugging errors
The most important time to enter the debugger is when a Lisp error
happens. This allows you to investigate the immediate causes of the
error.
However, entry to the debugger is not a normal consequence of an
error. Many commands frequently get Lisp errors when invoked in
inappropriate contexts (such as @kbd{C-f} at the end of the buffer) and
during ordinary editing it would be very unpleasant to enter the
debugger each time this happens. If you want errors to enter the
debugger, set the variable @code{debug-on-error} to non-@code{nil}.
@defopt debug-on-error
This variable determines whether the debugger is called when an error is
signaled and not handled. If @code{debug-on-error} is @code{t}, all
errors call the debugger. If it is @code{nil}, none call the debugger.
The value can also be a list of error conditions that should call the
debugger. For example, if you set it to the list
@code{(void-variable)}, then only errors about a variable that has no
value invoke the debugger.
When this variable is non-@code{nil}, Emacs does not catch errors that
happen in process filter functions and sentinels. Therefore, these
errors also can invoke the debugger. @xref{Processes}.
@end defopt
@defopt debug-ignored-errors
This variable specifies certain kinds of errors that should not enter
the debugger. Its value is a list of error condition symbols and/or
regular expressions. If the error has any of those condition symbols,
or if the error message matches any of the regular expressions, then
that error does not enter the debugger, regardless of the value of
@code{debug-on-error}.
The normal value of this variable lists several errors that happen often
during editing but rarely result from bugs in Lisp programs. However,
``rarely'' is not ``never''; if your program fails with an error that
matches this list, you will need to change this list in order to debug
the error. The easiest way is usually to set
@code{debug-ignored-errors} to @code{nil}.
@end defopt
@defopt debug-on-signal
Normally, errors that are caught by @code{condition-case} never run the
debugger, even if @code{debug-on-error} is non-@code{nil}. In other
words, @code{condition-case} gets a chance to handle the error before
the debugger gets a chance.
If you set @code{debug-on-signal} non-@code{nil}, then the debugger gets
first chance at every error; an error will invoke the debugger
regardless of any @code{condition-case}, if the fits the criterion
specified by the values of @code{debug-on-error} and
@code{debug-ignored-errors}.
@strong{Warning:} This variable is strong medicine! Various parts of
Emacs handle errors in the normal course of affairs, and you may not
even realize that errors happen there. If you set
@code{debug-on-signal} to a non-@code{nil} value, those errors will
enter the debugger.
@strong{Warning:} @code{debug-on-signal} has no effect when
@code{debug-on-error} is @code{nil}.
@end defopt
To debug an error that happens during loading of the @file{.emacs}
file, use the option @samp{-debug-init}, which binds
@code{debug-on-error} to @code{t} while @file{.emacs} is loaded and
inhibits use of @code{condition-case} to catch init-file errors.
If your @file{.emacs} file sets @code{debug-on-error}, the effect may
not last past the end of loading @file{.emacs}. (This is an undesirable
byproduct of the code that implements the @samp{-debug-init} command
line option.) The best way to make @file{.emacs} set
@code{debug-on-error} permanently is with @code{after-init-hook}, like
this:
@example
(add-hook 'after-init-hook
'(lambda () (setq debug-on-error t)))
@end example
@node Infinite Loops
@subsection Debugging Infinite Loops
@cindex infinite loops
@cindex loops, infinite
@cindex quitting from infinite loop
@cindex stopping an infinite loop
When a program loops infinitely and fails to return, your first
problem is to stop the loop. On most operating systems, you can do this
with @kbd{C-g}, which causes quit.
Ordinary quitting gives no information about why the program was
looping. To get more information, you can set the variable
@code{debug-on-quit} to non-@code{nil}. Quitting with @kbd{C-g} is not
considered an error, and @code{debug-on-error} has no effect on the
handling of @kbd{C-g}. Likewise, @code{debug-on-quit} has no effect on
errors.
Once you have the debugger running in the middle of the infinite loop,
you can proceed from the debugger using the stepping commands. If you
step through the entire loop, you will probably get enough information
to solve the problem.
@defopt debug-on-quit
This variable determines whether the debugger is called when @code{quit}
is signaled and not handled. If @code{debug-on-quit} is non-@code{nil},
then the debugger is called whenever you quit (that is, type @kbd{C-g}).
If @code{debug-on-quit} is @code{nil}, then the debugger is not called
when you quit. @xref{Quitting}.
@end defopt
@node Function Debugging
@subsection Entering the Debugger on a Function Call
@cindex function call debugging
@cindex debugging specific functions
To investigate a problem that happens in the middle of a program, one
useful technique is to enter the debugger whenever a certain function is
called. You can do this to the function in which the problem occurs,
and then step through the function, or you can do this to a function
called shortly before the problem, step quickly over the call to that
function, and then step through its caller.
@deffn Command debug-on-entry function-name
This function requests @var{function-name} to invoke the debugger each time
it is called. It works by inserting the form @code{(debug 'debug)} into
the function definition as the first form.
Any function defined as Lisp code may be set to break on entry,
regardless of whether it is interpreted code or compiled code. If the
function is a command, it will enter the debugger when called from Lisp
and when called interactively (after the reading of the arguments). You
can't debug primitive functions (i.e., those written in C) this way.
When @code{debug-on-entry} is called interactively, it prompts for
@var{function-name} in the minibuffer. If the function is already set
up to invoke the debugger on entry, @code{debug-on-entry} does nothing.
@code{debug-on-entry} always returns @var{function-name}.
@strong{Note:} if you redefine a function after using
@code{debug-on-entry} on it, the code to enter the debugger is discarded
by the redefinition. In effect, redefining the function cancels
the break-on-entry feature for that function.
@example
@group
(defun fact (n)
(if (zerop n) 1
(* n (fact (1- n)))))
@result{} fact
@end group
@group
(debug-on-entry 'fact)
@result{} fact
@end group
@group
(fact 3)
@end group
@group
------ Buffer: *Backtrace* ------
Entering:
* fact(3)
eval-region(4870 4878 t)
byte-code("...")
eval-last-sexp(nil)
(let ...)
eval-insert-last-sexp(nil)
* call-interactively(eval-insert-last-sexp)
------ Buffer: *Backtrace* ------
@end group
@group
(symbol-function 'fact)
@result{} (lambda (n)
(debug (quote debug))
(if (zerop n) 1 (* n (fact (1- n)))))
@end group
@end example
@end deffn
@deffn Command cancel-debug-on-entry function-name
This function undoes the effect of @code{debug-on-entry} on
@var{function-name}. When called interactively, it prompts for
@var{function-name} in the minibuffer. If @var{function-name} is
@code{nil} or the empty string, it cancels break-on-entry for all
functions.
Calling @code{cancel-debug-on-entry} does nothing to a function which is
not currently set up to break on entry. It always returns
@var{function-name}.
@end deffn
@node Explicit Debug
@subsection Explicit Entry to the Debugger
You can cause the debugger to be called at a certain point in your
program by writing the expression @code{(debug)} at that point. To do
this, visit the source file, insert the text @samp{(debug)} at the
proper place, and type @kbd{C-M-x}. Be sure to undo this insertion
before you save the file!
The place where you insert @samp{(debug)} must be a place where an
additional form can be evaluated and its value ignored. (If the value
of @code{(debug)} isn't ignored, it will alter the execution of the
program!) The most common suitable places are inside a @code{progn} or
an implicit @code{progn} (@pxref{Sequencing}).
@node Using Debugger
@subsection Using the Debugger
When the debugger is entered, it displays the previously selected
buffer in one window and a buffer named @samp{*Backtrace*} in another
window. The backtrace buffer contains one line for each level of Lisp
function execution currently going on. At the beginning of this buffer
is a message describing the reason that the debugger was invoked (such
as the error message and associated data, if it was invoked due to an
error).
The backtrace buffer is read-only and uses a special major mode,
Debugger mode, in which letters are defined as debugger commands. The
usual Emacs editing commands are available; thus, you can switch windows
to examine the buffer that was being edited at the time of the error,
switch buffers, visit files, or do any other sort of editing. However,
the debugger is a recursive editing level (@pxref{Recursive Editing})
and it is wise to go back to the backtrace buffer and exit the debugger
(with the @kbd{q} command) when you are finished with it. Exiting
the debugger gets out of the recursive edit and kills the backtrace
buffer.
@cindex current stack frame
The backtrace buffer shows you the functions that are executing and
their argument values. It also allows you to specify a stack frame by
moving point to the line describing that frame. (A stack frame is the
place where the Lisp interpreter records information about a particular
invocation of a function.) The frame whose line point is on is
considered the @dfn{current frame}. Some of the debugger commands
operate on the current frame.
The debugger itself must be run byte-compiled, since it makes
assumptions about how many stack frames are used for the debugger
itself. These assumptions are false if the debugger is running
interpreted.
@need 3000
@node Debugger Commands
@subsection Debugger Commands
@cindex debugger command list
Inside the debugger (in Debugger mode), these special commands are
available in addition to the usual cursor motion commands. (Keep in
mind that all the usual facilities of Emacs, such as switching windows
or buffers, are still available.)
The most important use of debugger commands is for stepping through
code, so that you can see how control flows. The debugger can step
through the control structures of an interpreted function, but cannot do
so in a byte-compiled function. If you would like to step through a
byte-compiled function, replace it with an interpreted definition of the
same function. (To do this, visit the source for the function and type
@kbd{C-M-x} on its definition.)
Here is a list of Debugger mode commands:
@table @kbd
@item c
Exit the debugger and continue execution. When continuing is possible,
it resumes execution of the program as if the debugger had never been
entered (aside from the effect of any variables or data structures you
may have changed while inside the debugger).
Continuing is possible after entry to the debugger due to function entry
or exit, explicit invocation, or quitting. You cannot continue if the
debugger was entered because of an error.
@item d
Continue execution, but enter the debugger the next time any Lisp
function is called. This allows you to step through the
subexpressions of an expression, seeing what values the subexpressions
compute, and what else they do.
The stack frame made for the function call which enters the debugger in
this way will be flagged automatically so that the debugger will be
called again when the frame is exited. You can use the @kbd{u} command
to cancel this flag.
@item b
Flag the current frame so that the debugger will be entered when the
frame is exited. Frames flagged in this way are marked with stars
in the backtrace buffer.
@item u
Don't enter the debugger when the current frame is exited. This
cancels a @kbd{b} command on that frame. The visible effect is to
remove the star from the line in the backtrace buffer.
@item e
Read a Lisp expression in the minibuffer, evaluate it, and print the
value in the echo area. The debugger alters certain important
variables, and the current buffer, as part of its operation; @kbd{e}
temporarily restores their outside-the-debugger values so you can
examine them. This makes the debugger more transparent. By contrast,
@kbd{M-:} does nothing special in the debugger; it shows you the
variable values within the debugger.
@item R
Like @kbd{e}, but also save the result of evaluation in the
buffer @samp{*Debugger-record*}.
@item q
Terminate the program being debugged; return to top-level Emacs
command execution.
If the debugger was entered due to a @kbd{C-g} but you really want
to quit, and not debug, use the @kbd{q} command.
@item r
Return a value from the debugger. The value is computed by reading an
expression with the minibuffer and evaluating it.
The @kbd{r} command is useful when the debugger was invoked due to exit
from a Lisp call frame (as requested with @kbd{b} or by entering the
frame with @kbd{d}); then the value specified in the @kbd{r} command is
used as the value of that frame. It is also useful if you call
@code{debug} and use its return value. Otherwise, @kbd{r} has the same
effect as @kbd{c}, and the specified return value does not matter.
You can't use @kbd{r} when the debugger was entered due to an error.
@end table
@node Invoking the Debugger
@subsection Invoking the Debugger
Here we describe fully the function used to invoke the debugger.
@defun debug &rest debugger-args
This function enters the debugger. It switches buffers to a buffer
named @samp{*Backtrace*} (or @samp{*Backtrace*<2>} if it is the second
recursive entry to the debugger, etc.), and fills it with information
about the stack of Lisp function calls. It then enters a recursive
edit, showing the backtrace buffer in Debugger mode.
The Debugger mode @kbd{c} and @kbd{r} commands exit the recursive edit;
then @code{debug} switches back to the previous buffer and returns to
whatever called @code{debug}. This is the only way the function
@code{debug} can return to its caller.
If the first of the @var{debugger-args} passed to @code{debug} is
@code{nil} (or if it is not one of the special values in the table
below), then @code{debug} displays the rest of its arguments at the
top of the @samp{*Backtrace*} buffer. This mechanism is used to display
a message to the user.
However, if the first argument passed to @code{debug} is one of the
following special values, then it has special significance. Normally,
these values are passed to @code{debug} only by the internals of Emacs
and the debugger, and not by programmers calling @code{debug}.
The special values are:
@table @code
@item lambda
@cindex @code{lambda} in debug
A first argument of @code{lambda} means @code{debug} was called because
of entry to a function when @code{debug-on-next-call} was
non-@code{nil}. The debugger displays @samp{Entering:} as a line of
text at the top of the buffer.
@item debug
@code{debug} as first argument indicates a call to @code{debug} because
of entry to a function that was set to debug on entry. The debugger
displays @samp{Entering:}, just as in the @code{lambda} case. It also
marks the stack frame for that function so that it will invoke the
debugger when exited.
@item t
When the first argument is @code{t}, this indicates a call to
@code{debug} due to evaluation of a list form when
@code{debug-on-next-call} is non-@code{nil}. The debugger displays the
following as the top line in the buffer:
@smallexample
Beginning evaluation of function call form:
@end smallexample
@item exit
When the first argument is @code{exit}, it indicates the exit of a stack
frame previously marked to invoke the debugger on exit. The second
argument given to @code{debug} in this case is the value being returned
from the frame. The debugger displays @samp{Return value:} in the top
line of the buffer, followed by the value being returned.
@item error
@cindex @code{error} in debug
When the first argument is @code{error}, the debugger indicates that
it is being entered because an error or @code{quit} was signaled and not
handled, by displaying @samp{Signaling:} followed by the error signaled
and any arguments to @code{signal}. For example,
@example
@group
(let ((debug-on-error t))
(/ 1 0))
@end group
@group
------ Buffer: *Backtrace* ------
Signaling: (arith-error)
/(1 0)
...
------ Buffer: *Backtrace* ------
@end group
@end example
If an error was signaled, presumably the variable
@code{debug-on-error} is non-@code{nil}. If @code{quit} was signaled,
then presumably the variable @code{debug-on-quit} is non-@code{nil}.
@item nil
Use @code{nil} as the first of the @var{debugger-args} when you want
to enter the debugger explicitly. The rest of the @var{debugger-args}
are printed on the top line of the buffer. You can use this feature to
display messages---for example, to remind yourself of the conditions
under which @code{debug} is called.
@end table
@end defun
@node Internals of Debugger
@subsection Internals of the Debugger
This section describes functions and variables used internally by the
debugger.
@defvar debugger
The value of this variable is the function to call to invoke the
debugger. Its value must be a function of any number of arguments (or,
more typically, the name of a function). Presumably this function will
enter some kind of debugger. The default value of the variable is
@code{debug}.
The first argument that Lisp hands to the function indicates why it
was called. The convention for arguments is detailed in the description
of @code{debug}.
@end defvar
@deffn Command backtrace
@cindex run time stack
@cindex call stack
This function prints a trace of Lisp function calls currently active.
This is the function used by @code{debug} to fill up the
@samp{*Backtrace*} buffer. It is written in C, since it must have access
to the stack to determine which function calls are active. The return
value is always @code{nil}.
In the following example, a Lisp expression calls @code{backtrace}
explicitly. This prints the backtrace to the stream
@code{standard-output}: in this case, to the buffer
@samp{backtrace-output}. Each line of the backtrace represents one
function call. The line shows the values of the function's arguments if
they are all known. If they are still being computed, the line says so.
The arguments of special forms are elided.
@smallexample
@group
(with-output-to-temp-buffer "backtrace-output"
(let ((var 1))
(save-excursion
(setq var (eval '(progn
(1+ var)
(list 'testing (backtrace))))))))
@result{} nil
@end group
@group
----------- Buffer: backtrace-output ------------
backtrace()
(list ...computing arguments...)
(progn ...)
eval((progn (1+ var) (list (quote testing) (backtrace))))
(setq ...)
(save-excursion ...)
(let ...)
(with-output-to-temp-buffer ...)
eval-region(1973 2142 #<buffer *scratch*>)
byte-code("... for eval-print-last-sexp ...")
eval-print-last-sexp(nil)
* call-interactively(eval-print-last-sexp)
----------- Buffer: backtrace-output ------------
@end group
@end smallexample
The character @samp{*} indicates a frame whose debug-on-exit flag is
set.
@end deffn
@ignore @c Not worth mentioning
@defopt stack-trace-on-error
@cindex stack trace
This variable controls whether Lisp automatically displays a
backtrace buffer after every error that is not handled. A quit signal
counts as an error for this variable. If it is non-@code{nil} then a
backtrace is shown in a pop-up buffer named @samp{*Backtrace*} on every
error. If it is @code{nil}, then a backtrace is not shown.
When a backtrace is shown, that buffer is not selected. If either
@code{debug-on-quit} or @code{debug-on-error} is also non-@code{nil}, then
a backtrace is shown in one buffer, and the debugger is popped up in
another buffer with its own backtrace.
We consider this feature to be obsolete and superseded by the debugger
itself.
@end defopt
@end ignore
@defvar debug-on-next-call
@cindex @code{eval}, and debugging
@cindex @code{apply}, and debugging
@cindex @code{funcall}, and debugging
If this variable is non-@code{nil}, it says to call the debugger before
the next @code{eval}, @code{apply} or @code{funcall}. Entering the
debugger sets @code{debug-on-next-call} to @code{nil}.
The @kbd{d} command in the debugger works by setting this variable.
@end defvar
@defun backtrace-debug level flag
This function sets the debug-on-exit flag of the stack frame @var{level}
levels down the stack, giving it the value @var{flag}. If @var{flag} is
non-@code{nil}, this will cause the debugger to be entered when that
frame later exits. Even a nonlocal exit through that frame will enter
the debugger.
This function is used only by the debugger.
@end defun
@defvar command-debug-status
This variable records the debugging status of the current interactive
command. Each time a command is called interactively, this variable is
bound to @code{nil}. The debugger can set this variable to leave
information for future debugger invocations during the same command
invocation.
The advantage, for the debugger, of using this variable rather than an
ordinary global variable is that the data will never carry over to a
subsequent command invocation.
@end defvar
@defun backtrace-frame frame-number
The function @code{backtrace-frame} is intended for use in Lisp
debuggers. It returns information about what computation is happening
in the stack frame @var{frame-number} levels down.
If that frame has not evaluated the arguments yet (or is a special
form), the value is @code{(nil @var{function} @var{arg-forms}@dots{})}.
If that frame has evaluated its arguments and called its function
already, the value is @code{(t @var{function}
@var{arg-values}@dots{})}.
In the return value, @var{function} is whatever was supplied as the
@sc{car} of the evaluated list, or a @code{lambda} expression in the
case of a macro call. If the function has a @code{&rest} argument, that
is represented as the tail of the list @var{arg-values}.
If @var{frame-number} is out of range, @code{backtrace-frame} returns
@code{nil}.
@end defun
@node Syntax Errors
@section Debugging Invalid Lisp Syntax
The Lisp reader reports invalid syntax, but cannot say where the real
problem is. For example, the error ``End of file during parsing'' in
evaluating an expression indicates an excess of open parentheses (or
square brackets). The reader detects this imbalance at the end of the
file, but it cannot figure out where the close parenthesis should have
been. Likewise, ``Invalid read syntax: ")"'' indicates an excess close
parenthesis or missing open parenthesis, but does not say where the
missing parenthesis belongs. How, then, to find what to change?
If the problem is not simply an imbalance of parentheses, a useful
technique is to try @kbd{C-M-e} at the beginning of each defun, and see
if it goes to the place where that defun appears to end. If it does
not, there is a problem in that defun.
However, unmatched parentheses are the most common syntax errors in
Lisp, and we can give further advice for those cases.
@menu
* Excess Open:: How to find a spurious open paren or missing close.
* Excess Close:: How to find a spurious close paren or missing open.
@end menu
@node Excess Open
@subsection Excess Open Parentheses
The first step is to find the defun that is unbalanced. If there is
an excess open parenthesis, the way to do this is to insert a
close parenthesis at the end of the file and type @kbd{C-M-b}
(@code{backward-sexp}). This will move you to the beginning of the
defun that is unbalanced. (Then type @kbd{C-@key{SPC} C-_ C-u
C-@key{SPC}} to set the mark there, undo the insertion of the
close parenthesis, and finally return to the mark.)
The next step is to determine precisely what is wrong. There is no
way to be sure of this except by studying the program, but often the
existing indentation is a clue to where the parentheses should have
been. The easiest way to use this clue is to reindent with @kbd{C-M-q}
and see what moves. @strong{But don't do this yet!} Keep reading,
first.
Before you do this, make sure the defun has enough close parentheses.
Otherwise, @kbd{C-M-q} will get an error, or will reindent all the rest
of the file until the end. So move to the end of the defun and insert a
close parenthesis there. Don't use @kbd{C-M-e} to move there, since
that too will fail to work until the defun is balanced.
Now you can go to the beginning of the defun and type @kbd{C-M-q}.
Usually all the lines from a certain point to the end of the function
will shift to the right. There is probably a missing close parenthesis,
or a superfluous open parenthesis, near that point. (However, don't
assume this is true; study the code to make sure.) Once you have found
the discrepancy, undo the @kbd{C-M-q} with @kbd{C-_}, since the old
indentation is probably appropriate to the intended parentheses.
After you think you have fixed the problem, use @kbd{C-M-q} again. If
the old indentation actually fit the intended nesting of parentheses,
and you have put back those parentheses, @kbd{C-M-q} should not change
anything.
@node Excess Close
@subsection Excess Close Parentheses
To deal with an excess close parenthesis, first insert an open
parenthesis at the beginning of the file, back up over it, and type
@kbd{C-M-f} to find the end of the unbalanced defun. (Then type
@kbd{C-@key{SPC} C-_ C-u C-@key{SPC}} to set the mark there, undo the
insertion of the open parenthesis, and finally return to the mark.)
Then find the actual matching close parenthesis by typing @kbd{C-M-f}
at the beginning of that defun. This will leave you somewhere short of
the place where the defun ought to end. It is possible that you will
find a spurious close parenthesis in that vicinity.
If you don't see a problem at that point, the next thing to do is to
type @kbd{C-M-q} at the beginning of the defun. A range of lines will
probably shift left; if so, the missing open parenthesis or spurious
close parenthesis is probably near the first of those lines. (However,
don't assume this is true; study the code to make sure.) Once you have
found the discrepancy, undo the @kbd{C-M-q} with @kbd{C-_}, since the
old indentation is probably appropriate to the intended parentheses.
After you think you have fixed the problem, use @kbd{C-M-q} again. If
the old indentation actually fit the intended nesting of parentheses,
and you have put back those parentheses, @kbd{C-M-q} should not change
anything.
@node Compilation Errors, Edebug, Syntax Errors, Debugging
@section Debugging Problems in Compilation
When an error happens during byte compilation, it is normally due to
invalid syntax in the program you are compiling. The compiler prints a
suitable error message in the @samp{*Compile-Log*} buffer, and then
stops. The message may state a function name in which the error was
found, or it may not. Either way, here is how to find out where in the
file the error occurred.
What you should do is switch to the buffer @w{@samp{ *Compiler Input*}}.
(Note that the buffer name starts with a space, so it does not show
up in @kbd{M-x list-buffers}.) This buffer contains the program being
compiled, and point shows how far the byte compiler was able to read.
If the error was due to invalid Lisp syntax, point shows exactly where
the invalid syntax was @emph{detected}. The cause of the error is not
necessarily near by! Use the techniques in the previous section to find
the error.
If the error was detected while compiling a form that had been read
successfully, then point is located at the end of the form. In this
case, this technique can't localize the error precisely, but can still
show you which function to check.
@include edebug.texi
|