1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
|
;;; ebnf-otz.el --- syntactic chart OpTimiZer
;; Copyright (C) 1999-2019 Free Software Foundation, Inc.
;; Author: Vinicius Jose Latorre <viniciusjl.gnu@gmail.com>
;; Maintainer: Vinicius Jose Latorre <viniciusjl.gnu@gmail.com>
;; Keywords: wp, ebnf, PostScript
;; Old-Version: 1.0
;; Package: ebnf2ps
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;;
;; This is part of ebnf2ps package.
;;
;; This package defines an optimizer for ebnf2ps.
;;
;; See ebnf2ps.el for documentation.
;;
;;
;; Optimizations
;; -------------
;;
;;
;; *To be implemented*:
;; left recursion:
;; A = B | A C B | A C D. ==> A = B {C (B | D)}*.
;;
;; right recursion:
;; A = B | C A. ==> A = {C}* B.
;; A = B | D | C A | E A. ==> A = { C | E }* ( B | D ).
;;
;; optional:
;; A = B | C B. ==> A = [C] B.
;; A = B | B C. ==> A = B [C].
;; A = D | B D | B C D. ==> A = [B [C]] D.
;;
;;
;; *Already implemented*:
;; left recursion:
;; A = B | A C. ==> A = B {C}*.
;; A = B | A B. ==> A = {B}+.
;; A = | A B. ==> A = {B}*.
;; A = B | A C B. ==> A = {B || C}+.
;; A = B | D | A C | A E. ==> A = ( B | D ) { C | E }*.
;;
;; optional:
;; A = B | . ==> A = [B].
;; A = | B . ==> A = [B].
;;
;; factorization:
;; A = B C | B D. ==> A = B (C | D).
;; A = C B | D B. ==> A = (C | D) B.
;; A = B C E | B D E. ==> A = B (C | D) E.
;;
;; none:
;; A = B | C | . ==> A = B | C | .
;; A = B | C A D. ==> A = B | C A D.
;;
;;
;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Code:
(require 'ebnf2ps)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defvar ebnf-empty-rule-list nil
"List of empty rule name.")
(defun ebnf-add-empty-rule-list (rule)
"Add empty RULE in `ebnf-empty-rule-list'."
(and ebnf-ignore-empty-rule
(eq (ebnf-node-kind (ebnf-node-production rule))
'ebnf-generate-empty)
(setq ebnf-empty-rule-list (cons (ebnf-node-name rule)
ebnf-empty-rule-list))))
(defun ebnf-otz-initialize ()
"Initialize optimizer."
(setq ebnf-empty-rule-list nil))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Eliminate empty rules
(defun ebnf-eliminate-empty-rules (syntax-list)
"Eliminate empty rules."
(while ebnf-empty-rule-list
(let ((ebnf-total (length syntax-list))
(ebnf-nprod 0)
(prod-list syntax-list)
new-list before)
(while prod-list
(ebnf-message-info "Eliminating empty rules")
(let ((rule (car prod-list)))
;; if any non-terminal pertains to ebnf-empty-rule-list
;; then eliminate non-terminal from rule
(if (ebnf-eliminate-empty rule)
(setq before prod-list)
;; eliminate empty rule from syntax-list
(setq new-list (cons (ebnf-node-name rule) new-list))
(if before
(setcdr before (cdr prod-list))
(setq syntax-list (cdr syntax-list)))))
(setq prod-list (cdr prod-list)))
(setq ebnf-empty-rule-list new-list)))
syntax-list)
;; [production width-func entry height width name production action]
;; [sequence width-func entry height width list]
;; [alternative width-func entry height width list]
;; [non-terminal width-func entry height width name default]
;; [empty width-func entry height width]
;; [terminal width-func entry height width name default]
;; [special width-func entry height width name default]
(defun ebnf-eliminate-empty (rule)
(let ((kind (ebnf-node-kind rule)))
(cond
;; non-terminal
((eq kind 'ebnf-generate-non-terminal)
(if (member (ebnf-node-name rule) ebnf-empty-rule-list)
nil
rule))
;; sequence
((eq kind 'ebnf-generate-sequence)
(let ((seq (ebnf-node-list rule))
(header (ebnf-node-list rule))
before elt)
(while seq
(setq elt (car seq))
(if (ebnf-eliminate-empty elt)
(setq before seq)
(if before
(setcdr before (cdr seq))
(setq header (cdr header))))
(setq seq (cdr seq)))
(when header
(ebnf-node-list rule header)
rule)))
;; alternative
((eq kind 'ebnf-generate-alternative)
(let ((seq (ebnf-node-list rule))
(header (ebnf-node-list rule))
before elt)
(while seq
(setq elt (car seq))
(if (ebnf-eliminate-empty elt)
(setq before seq)
(if before
(setcdr before (cdr seq))
(setq header (cdr header))))
(setq seq (cdr seq)))
(when header
(if (= (length header) 1)
(car header)
(ebnf-node-list rule header)
rule))))
;; production
((eq kind 'ebnf-generate-production)
(let ((prod (ebnf-eliminate-empty (ebnf-node-production rule))))
(when prod
(ebnf-node-production rule prod)
rule)))
;; terminal, special and empty
(t
rule)
)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Optimizations
;; *To be implemented*:
;; left recursion:
;; A = B | A C B | A C D. ==> A = B {C (B | D)}*.
;; right recursion:
;; A = B | C A. ==> A = {C}* B.
;; A = B | D | C A | E A. ==> A = { C | E }* ( B | D ).
;; optional:
;; A = B | C B. ==> A = [C] B.
;; A = B | B C. ==> A = B [C].
;; A = D | B D | B C D. ==> A = [B [C]] D.
;; *Already implemented*:
;; left recursion:
;; A = B | A C. ==> A = B {C}*.
;; A = B | A B. ==> A = {B}+.
;; A = | A B. ==> A = {B}*.
;; A = B | A C B. ==> A = {B || C}+.
;; A = B | D | A C | A E. ==> A = ( B | D ) { C | E }*.
;; optional:
;; A = B | . ==> A = [B].
;; A = | B . ==> A = [B].
;; factorization:
;; A = B C | B D. ==> A = B (C | D).
;; A = C B | D B. ==> A = (C | D) B.
;; A = B C E | B D E. ==> A = B (C | D) E.
;; none:
;; A = B | C | . ==> A = B | C | .
;; A = B | C A D. ==> A = B | C A D.
(defun ebnf-optimize (syntax-list)
"Syntactic chart optimizer."
(if (not ebnf-optimize)
syntax-list
(let ((ebnf-total (length syntax-list))
(ebnf-nprod 0)
new)
(while syntax-list
(setq new (cons (ebnf-optimize1 (car syntax-list)) new)
syntax-list (cdr syntax-list)))
(nreverse new))))
;; left recursion:
;; 1. A = B | A C. ==> A = B {C}*.
;; 2. A = B | A B. ==> A = {B}+.
;; 3. A = | A B. ==> A = {B}*.
;; 4. A = B | A C B. ==> A = {B || C}+.
;; 5. A = B | D | A C | A E. ==> A = ( B | D ) { C | E }*.
;; optional:
;; 6. A = B | . ==> A = [B].
;; 7. A = | B . ==> A = [B].
;; factorization:
;; 8. A = B C | B D. ==> A = B (C | D).
;; 9. A = C B | D B. ==> A = (C | D) B.
;; 10. A = B C E | B D E. ==> A = B (C | D) E.
(defun ebnf-optimize1 (prod)
(ebnf-message-info "Optimizing syntactic chart")
(let ((production (ebnf-node-production prod)))
(and (eq (ebnf-node-kind production) 'ebnf-generate-alternative)
(let* ((hlist (ebnf-split-header-prefix
(ebnf-node-list production)
(ebnf-node-name prod)))
(nlist (car hlist))
(zlist (cdr hlist))
(elist (ebnf-split-header-suffix nlist zlist)))
(ebnf-node-production
prod
(cond
;; cases 2., 4.
(elist
(and (eq elist t)
(setq elist nil))
(setq elist (or (ebnf-prefix-suffix elist)
elist))
(let* ((nl (ebnf-extract-empty nlist))
(el (or (ebnf-prefix-suffix (cdr nl))
(ebnf-create-alternative (cdr nl)))))
(if (car nl)
(ebnf-make-zero-or-more el elist)
(ebnf-make-one-or-more el elist))))
;; cases 1., 3., 5.
(zlist
(let* ((xlist (cdr (ebnf-extract-empty zlist)))
(znode (ebnf-make-zero-or-more
(or (ebnf-prefix-suffix xlist)
(ebnf-create-alternative xlist))))
(nnode (ebnf-map-list-to-optional nlist)))
(and nnode
(setq nlist (list nnode)))
(if (or (null nlist)
(and (= (length nlist) 1)
(eq (ebnf-node-kind (car nlist))
'ebnf-generate-empty)))
znode
(ebnf-make-sequence
(list (or (ebnf-prefix-suffix nlist)
(ebnf-create-alternative nlist))
znode)))))
;; cases 6., 7.
((ebnf-map-node-to-optional production)
)
;; cases 8., 9., 10.
((ebnf-prefix-suffix nlist)
)
;; none
(t
production)
))))
prod))
(defun ebnf-split-header-prefix (node-list header)
(let* ((hlist (ebnf-split-header-prefix1 node-list header))
(nlist (car hlist))
zlist empty-p)
(while (setq hlist (cdr hlist))
(let ((elt (car hlist)))
(if (eq (ebnf-node-kind elt) 'ebnf-generate-sequence)
(setq zlist (cons
(let ((seq (cdr (ebnf-node-list elt))))
(if (= (length seq) 1)
(car seq)
(ebnf-node-list elt seq)
elt))
zlist))
(setq empty-p t))))
(and empty-p
(setq zlist (cons (ebnf-make-empty)
zlist)))
(cons nlist (nreverse zlist))))
(defun ebnf-split-header-prefix1 (node-list header)
(let (hlist nlist)
(while node-list
(if (ebnf-node-equal-header (car node-list) header)
(setq hlist (cons (car node-list) hlist))
(setq nlist (cons (car node-list) nlist)))
(setq node-list (cdr node-list)))
(cons (nreverse nlist) (nreverse hlist))))
(defun ebnf-node-equal-header (node header)
(let ((kind (ebnf-node-kind node)))
(cond
((eq kind 'ebnf-generate-sequence)
(ebnf-node-equal-header (car (ebnf-node-list node)) header))
((eq kind 'ebnf-generate-non-terminal)
(string= (ebnf-node-name node) header))
(t
nil)
)))
(defun ebnf-map-node-to-optional (node)
(and (eq (ebnf-node-kind node) 'ebnf-generate-alternative)
(ebnf-map-list-to-optional (ebnf-node-list node))))
(defun ebnf-map-list-to-optional (nlist)
(and (= (length nlist) 2)
(let ((first (nth 0 nlist))
(second (nth 1 nlist)))
(cond
;; empty second
((eq (ebnf-node-kind first) 'ebnf-generate-empty)
(ebnf-make-optional second))
;; first empty
((eq (ebnf-node-kind second) 'ebnf-generate-empty)
(ebnf-make-optional first))
;; first second
(t
nil)
))))
(defun ebnf-extract-empty (elist)
(let ((now elist)
before empty-p)
(while now
(if (not (eq (ebnf-node-kind (car now)) 'ebnf-generate-empty))
(setq before now)
(setq empty-p t)
(if before
(setcdr before (cdr now))
(setq elist (cdr elist))))
(setq now (cdr now)))
(cons empty-p elist)))
(defun ebnf-split-header-suffix (nlist zlist)
(let (new empty-p)
(and (cond
((= (length nlist) 1)
(let ((ok t)
(elt (car nlist)))
(while (and ok zlist)
(setq ok (ebnf-split-header-suffix1 elt (car zlist))
zlist (cdr zlist))
(if (eq ok t)
(setq empty-p t)
(setq new (cons ok new))))
ok))
((= (length nlist) (length zlist))
(let ((ok t))
(while (and ok zlist)
(setq ok (ebnf-split-header-suffix1 (car nlist) (car zlist))
nlist (cdr nlist)
zlist (cdr zlist))
(if (eq ok t)
(setq empty-p t)
(setq new (cons ok new))))
ok))
(t
nil)
)
(let* ((lis (ebnf-unique-list new))
(len (length lis)))
(cond
((zerop len)
t)
((= len 1)
(setq lis (car lis))
(if empty-p
(ebnf-make-optional lis)
lis))
(t
(and empty-p
(setq lis (cons (ebnf-make-empty) lis)))
(ebnf-create-alternative (nreverse lis)))
)))))
(defun ebnf-split-header-suffix1 (ne ze)
(cond
((eq (ebnf-node-kind ne) 'ebnf-generate-sequence)
(and (eq (ebnf-node-kind ze) 'ebnf-generate-sequence)
(let ((nl (ebnf-node-list ne))
(zl (ebnf-node-list ze))
len z)
(and (>= (length zl) (length nl))
(let ((ok t))
(setq len (- (length zl) (length nl))
z (nthcdr len zl))
(while (and ok z)
(setq ok (ebnf-node-equal (car z) (car nl))
z (cdr z)
nl (cdr nl)))
ok)
(if (zerop len)
t
(setcdr (nthcdr (1- len) zl) nil)
ze)))))
((eq (ebnf-node-kind ze) 'ebnf-generate-sequence)
(let* ((zl (ebnf-node-list ze))
(len (length zl)))
(and (ebnf-node-equal ne (car (nthcdr (1- len) zl)))
(cond
((= len 1)
t)
((= len 2)
(car zl))
(t
(setcdr (nthcdr (- len 2) zl) nil)
ze)
))))
(t
(ebnf-node-equal ne ze))
))
(defun ebnf-prefix-suffix (lis)
(and lis (listp lis)
(let* ((prefix (ebnf-split-prefix lis))
(suffix (ebnf-split-suffix (cdr prefix)))
(middle (cdr suffix)))
(setq prefix (car prefix)
suffix (car suffix))
(and (or prefix suffix)
(ebnf-make-sequence
(nconc prefix
(and middle
(list (or (ebnf-map-list-to-optional middle)
(ebnf-create-alternative middle))))
suffix))))))
(defun ebnf-split-prefix (lis)
(let* ((len (length lis))
(tail lis)
(head (if (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence)
(ebnf-node-list (car lis))
(list (car lis))))
(ipre (1+ len)))
;; determine prefix length
(while (and (> ipre 0) (setq tail (cdr tail)))
(let ((cur head)
(this (if (eq (ebnf-node-kind (car tail)) 'ebnf-generate-sequence)
(ebnf-node-list (car tail))
(list (car tail))))
(i 0))
(while (and cur this
(ebnf-node-equal (car cur) (car this)))
(setq cur (cdr cur)
this (cdr this)
i (1+ i)))
(setq ipre (min ipre i))))
(if (or (zerop ipre) (> ipre len))
;; no prefix at all
(cons nil lis)
(let* ((tail (nthcdr ipre head))
;; get prefix
(prefix (progn
(and tail
(setcdr (nthcdr (1- ipre) head) nil))
head))
empty-p before)
;; adjust first element
(if (or (not (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence))
(null tail))
(setq lis (cdr lis)
tail lis
empty-p t)
(if (= (length tail) 1)
(setcar lis (car tail))
(ebnf-node-list (car lis) tail))
(setq tail (cdr lis)))
;; eliminate prefix from lis based on ipre
(while tail
(let ((elt (car tail))
rest)
(if (and (eq (ebnf-node-kind elt) 'ebnf-generate-sequence)
(setq rest (nthcdr ipre (ebnf-node-list elt))))
(progn
(if (= (length rest) 1)
(setcar tail (car rest))
(ebnf-node-list elt rest))
(setq before tail))
(setq empty-p t)
(if before
(setcdr before (cdr tail))
(setq lis (cdr lis))))
(setq tail (cdr tail))))
(cons prefix (ebnf-unique-list
(if empty-p
(nconc lis (list (ebnf-make-empty)))
lis)))))))
(defun ebnf-split-suffix (lis)
(let* ((len (length lis))
(tail lis)
(head (nreverse
(if (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence)
(ebnf-node-list (car lis))
(list (car lis)))))
(isuf (1+ len)))
;; determine suffix length
(while (and (> isuf 0) (setq tail (cdr tail)))
(let* ((cur head)
(tlis (nreverse
(if (eq (ebnf-node-kind (car tail)) 'ebnf-generate-sequence)
(ebnf-node-list (car tail))
(list (car tail)))))
(this tlis)
(i 0))
(while (and cur this
(ebnf-node-equal (car cur) (car this)))
(setq cur (cdr cur)
this (cdr this)
i (1+ i)))
(nreverse tlis)
(setq isuf (min isuf i))))
(setq head (nreverse head))
(if (or (zerop isuf) (> isuf len))
;; no suffix at all
(cons nil lis)
(let* ((n (- (length head) isuf))
;; get suffix
(suffix (nthcdr n head))
(tail (and (> n 0)
(progn
(setcdr (nthcdr (1- n) head) nil)
head)))
before empty-p)
;; adjust first element
(if (or (not (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence))
(null tail))
(setq lis (cdr lis)
tail lis
empty-p t)
(if (= (length tail) 1)
(setcar lis (car tail))
(ebnf-node-list (car lis) tail))
(setq tail (cdr lis)))
;; eliminate suffix from lis based on isuf
(while tail
(let ((elt (car tail))
rest)
(if (and (eq (ebnf-node-kind elt) 'ebnf-generate-sequence)
(setq rest (ebnf-node-list elt)
n (- (length rest) isuf))
(> n 0))
(progn
(if (= n 1)
(setcar tail (car rest))
(setcdr (nthcdr (1- n) rest) nil)
(ebnf-node-list elt rest))
(setq before tail))
(setq empty-p t)
(if before
(setcdr before (cdr tail))
(setq lis (cdr lis))))
(setq tail (cdr tail))))
(cons suffix (ebnf-unique-list
(if empty-p
(nconc lis (list (ebnf-make-empty)))
lis)))))))
(defun ebnf-unique-list (nlist)
(let ((current nlist)
before)
(while current
(let ((tail (cdr current))
(head (car current))
remove-p)
(while tail
(if (not (ebnf-node-equal head (car tail)))
(setq tail (cdr tail))
(setq remove-p t
tail nil)
(if before
(setcdr before (cdr current))
(setq nlist (cdr nlist)))))
(or remove-p
(setq before current))
(setq current (cdr current))))
nlist))
(defun ebnf-node-equal (A B)
(let ((kindA (ebnf-node-kind A))
(kindB (ebnf-node-kind B)))
(and (eq kindA kindB)
(cond
;; empty
((eq kindA 'ebnf-generate-empty)
t)
;; non-terminal, terminal, special
((memq kindA '(ebnf-generate-non-terminal
ebnf-generate-terminal
ebnf-generate-special))
(string= (ebnf-node-name A) (ebnf-node-name B)))
;; alternative, sequence
((memq kindA '(ebnf-generate-alternative ; any order
ebnf-generate-sequence)) ; order is important
(let ((listA (ebnf-node-list A))
(listB (ebnf-node-list B)))
(and (= (length listA) (length listB))
(let ((ok t))
(while (and ok listA)
(setq ok (ebnf-node-equal (car listA) (car listB))
listA (cdr listA)
listB (cdr listB)))
ok))))
;; production
((eq kindA 'ebnf-generate-production)
(and (string= (ebnf-node-name A) (ebnf-node-name B))
(ebnf-node-equal (ebnf-node-production A)
(ebnf-node-production B))))
;; otherwise
(t
nil)
))))
(defun ebnf-create-alternative (alt)
(if (> (length alt) 1)
(ebnf-make-alternative alt)
(car alt)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(provide 'ebnf-otz)
;;; ebnf-otz.el ends here
|