1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
;;; cc-subword.el --- Handling capitalized subwords in a nomenclature
;; Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
;; Author: Masatake YAMATO
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with this program; see the file COPYING. If not, write to
;; the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
;; Boston, MA 02110-1301, USA.
;;; Commentary:
;; This package provides `subword' oriented commands and a minor mode
;; (`c-subword-mode') that substitutes the common word handling
;; functions with them.
;; In spite of GNU Coding Standards, it is popular to name a symbol by
;; mixing uppercase and lowercase letters, e.g. "GtkWidget",
;; "EmacsFrameClass", "NSGraphicsContext", etc. Here we call these
;; mixed case symbols `nomenclatures'. Also, each capitalized (or
;; completely uppercase) part of a nomenclature is called a `subword'.
;; Here are some examples:
;; Nomenclature Subwords
;; ===========================================================
;; GtkWindow => "Gtk" and "Window"
;; EmacsFrameClass => "Emacs", "Frame" and "Class"
;; NSGraphicsContext => "NS", "Graphics" and "Context"
;; The subword oriented commands defined in this package recognize
;; subwords in a nomenclature to move between them and to edit them as
;; words.
;; In the minor mode, all common key bindings for word oriented
;; commands are overridden by the subword oriented commands:
;; Key Word oriented command Subword oriented command
;; ============================================================
;; M-f `forward-word' `c-forward-subword'
;; M-b `backward-word' `c-backward-subword'
;; M-@ `mark-word' `c-mark-subword'
;; M-d `kill-word' `c-kill-subword'
;; M-DEL `backward-kill-word' `c-backward-kill-subword'
;; M-t `transpose-words' `c-transpose-subwords'
;; M-c `capitalize-word' `c-capitalize-subword'
;; M-u `upcase-word' `c-upcase-subword'
;; M-l `downcase-word' `c-downcase-subword'
;;
;; Note: If you have changed the key bindings for the word oriented
;; commands in your .emacs or a similar place, the keys you've changed
;; to are also used for the corresponding subword oriented commands.
;; To make the mode turn on automatically, put the following code in
;; your .emacs:
;;
;; (add-hook 'c-mode-common-hook
;; (lambda () (c-subword-mode 1)))
;;
;; Acknowledgment:
;; The regular expressions to detect subwords are mostly based on
;; the old `c-forward-into-nomenclature' originally contributed by
;; Terry_Glanfield dot Southern at rxuk dot xerox dot com.
;; TODO: ispell-word and subword oriented C-w in isearch.
;;; Code:
(eval-when-compile
(let ((load-path
(if (and (boundp 'byte-compile-dest-file)
(stringp byte-compile-dest-file))
(cons (file-name-directory byte-compile-dest-file) load-path)
load-path)))
(load "cc-bytecomp" nil t)))
(cc-require 'cc-defs)
(cc-require 'cc-cmds)
;; Don't complain about the `define-minor-mode' form if it isn't defined.
(cc-bytecomp-defvar c-subword-mode)
;; Autoload directives must be on the top level, so we construct an
;; autoload form instead.
;;;###autoload (autoload 'c-subword-mode "cc-subword" "Mode enabling subword movement and editing keys." t)
(if (not (fboundp 'define-minor-mode))
(defun c-subword-mode ()
"(Missing) mode enabling subword movement and editing keys.
This mode is not (yet) available in this version of (X)Emacs. Sorry! If
you really want it, please send a request to <bug-gnu-emacs@gnu.org>,
telling us which (X)Emacs version you're using."
(interactive)
(error
"c-subword-mode is not (yet) available in this version of (X)Emacs. Sorry!"))
(defvar c-subword-mode-map
(let ((map (make-sparse-keymap)))
(dolist (cmd '(forward-word backward-word mark-word
kill-word backward-kill-word
transpose-words
capitalize-word upcase-word downcase-word))
(let ((othercmd (let ((name (symbol-name cmd)))
(string-match "\\(.*-\\)\\(word.*\\)" name)
(intern (concat "c-"
(match-string 1 name)
"sub"
(match-string 2 name))))))
(if (fboundp 'command-remapping)
(define-key map (vector 'remap cmd) othercmd)
(substitute-key-definition cmd othercmd map global-map))))
map)
"Keymap used in command `c-subword-mode' minor mode.")
(define-minor-mode c-subword-mode
"Mode enabling subword movement and editing keys.
In spite of GNU Coding Standards, it is popular to name a symbol by
mixing uppercase and lowercase letters, e.g. \"GtkWidget\",
\"EmacsFrameClass\", \"NSGraphicsContext\", etc. Here we call these
mixed case symbols `nomenclatures'. Also, each capitalized (or
completely uppercase) part of a nomenclature is called a `subword'.
Here are some examples:
Nomenclature Subwords
===========================================================
GtkWindow => \"Gtk\" and \"Window\"
EmacsFrameClass => \"Emacs\", \"Frame\" and \"Class\"
NSGraphicsContext => \"NS\", \"Graphics\" and \"Context\"
The subword oriented commands activated in this minor mode recognize
subwords in a nomenclature to move between subwords and to edit them
as words.
\\{c-subword-mode-map}"
nil
nil
c-subword-mode-map
(c-update-modeline))
)
(defun c-forward-subword (&optional arg)
"Do the same as `forward-word' but on subwords.
See the command `c-subword-mode' for a description of subwords.
Optional argument ARG is the same as for `forward-word'."
(interactive "p")
(unless arg (setq arg 1))
(c-keep-region-active)
(cond
((< 0 arg)
(dotimes (i arg (point))
(c-forward-subword-internal)))
((> 0 arg)
(dotimes (i (- arg) (point))
(c-backward-subword-internal)))
(t
(point))))
(put 'c-forward-subword 'CUA 'move)
(defun c-backward-subword (&optional arg)
"Do the same as `backward-word' but on subwords.
See the command `c-subword-mode' for a description of subwords.
Optional argument ARG is the same as for `backward-word'."
(interactive "p")
(c-forward-subword (- (or arg 1))))
(defun c-mark-subword (arg)
"Do the same as `mark-word' but on subwords.
See the command `c-subword-mode' for a description of subwords.
Optional argument ARG is the same as for `mark-word'."
;; This code is almost copied from `mark-word' in GNU Emacs.
(interactive "p")
(cond ((and (eq last-command this-command) (mark t))
(set-mark
(save-excursion
(goto-char (mark))
(c-forward-subword arg)
(point))))
(t
(push-mark
(save-excursion
(c-forward-subword arg)
(point))
nil t))))
(put 'c-backward-subword 'CUA 'move)
(defun c-kill-subword (arg)
"Do the same as `kill-word' but on subwords.
See the command `c-subword-mode' for a description of subwords.
Optional argument ARG is the same as for `kill-word'."
(interactive "p")
(kill-region (point) (c-forward-subword arg)))
(defun c-backward-kill-subword (arg)
"Do the same as `backward-kill-word' but on subwords.
See the command `c-subword-mode' for a description of subwords.
Optional argument ARG is the same as for `backward-kill-word'."
(interactive "p")
(c-kill-subword (- arg)))
(defun c-transpose-subwords (arg)
"Do the same as `transpose-words' but on subwords.
See the command `c-subword-mode' for a description of subwords.
Optional argument ARG is the same as for `transpose-words'."
(interactive "*p")
(transpose-subr 'c-forward-subword arg))
(defun c-downcase-subword (arg)
"Do the same as `downcase-word' but on subwords.
See the command `c-subword-mode' for a description of subwords.
Optional argument ARG is the same as for `downcase-word'."
(interactive "p")
(let ((start (point)))
(downcase-region (point) (c-forward-subword arg))
(when (< arg 0)
(goto-char start))))
(defun c-upcase-subword (arg)
"Do the same as `upcase-word' but on subwords.
See the command `c-subword-mode' for a description of subwords.
Optional argument ARG is the same as for `upcase-word'."
(interactive "p")
(let ((start (point)))
(upcase-region (point) (c-forward-subword arg))
(when (< arg 0)
(goto-char start))))
(defun c-capitalize-subword (arg)
"Do the same as `capitalize-word' but on subwords.
See the command `c-subword-mode' for a description of subwords.
Optional argument ARG is the same as for `capitalize-word'."
(interactive "p")
(let ((count (abs arg))
(start (point))
(advance (if (< arg 0) nil t)))
(dotimes (i count)
(if advance
(progn (re-search-forward
(concat "[" c-alpha "]")
nil t)
(goto-char (match-beginning 0)))
(c-backward-subword))
(let* ((p (point))
(pp (1+ p))
(np (c-forward-subword)))
(upcase-region p pp)
(downcase-region pp np)
(goto-char (if advance np p))))
(unless advance
(goto-char start))))
;;
;; Internal functions
;;
(defun c-forward-subword-internal ()
(if (and
(save-excursion
(let ((case-fold-search nil))
(re-search-forward
(concat "\\W*\\(\\([" c-upper "]*\\W?\\)[" c-lower c-digit "]*\\)")
nil t)))
(> (match-end 0) (point))) ; So we don't get stuck at a
; "word-constituent" which isn't c-upper,
; c-lower or c-digit
(goto-char
(cond
((< 1 (- (match-end 2) (match-beginning 2)))
(1- (match-end 2)))
(t
(match-end 0))))
(forward-word 1)))
(defun c-backward-subword-internal ()
(if (save-excursion
(let ((case-fold-search nil))
(re-search-backward
(concat
"\\(\\(\\W\\|[" c-lower c-digit "]\\)\\([" c-upper "]+\\W*\\)"
"\\|\\W\\w+\\)")
nil t)))
(goto-char
(cond
((and (match-end 3)
(< 1 (- (match-end 3) (match-beginning 3)))
(not (eq (point) (match-end 3))))
(1- (match-end 3)))
(t
(1+ (match-beginning 0)))))
(backward-word 1)))
(cc-provide 'cc-subword)
;; arch-tag: 2be9d294-7f30-4626-95e6-9964bb93c7a3
;;; cc-subword.el ends here
|