1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
|
;;; xsd-regexp.el --- translate W3C XML Schema regexps to Emacs regexps
;; Copyright (C) 2003, 2007-2017 Free Software Foundation, Inc.
;; Author: James Clark
;; Keywords: wp, hypermedia, languages, XML, regexp
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
;;; Commentary:
;; This handles the regular expressions in the syntax defined by:
;; W3C XML Schema Part 2: Datatypes
;; <http://www.w3.org/TR/xmlschema-2/#regexs>
;;
;; The main entry point is `xsdre-translate'.
;;
;; The features of XSD regexps that make this non-trivial are:
;;
;; - \p{PROP} escape for matching characters that have various
;; Unicode-defined properties
;; - character class subtraction:, e.g. [\p{L}-[abc]] matches
;; any character in the L category other than a, b and c.
;;
;; We compute the set of Unicode characters denoted by each XSD
;; char-class as a list of ranges. The regexp generated for a
;; single escape can be large (several thousand characters).
;;
;; XSD has non-traditional rules about when characters must be
;; and can be quoted with \. These are quite different from
;; the Emacs rules.
;;
;; The semantics of XSD regexps are defined in terms of Unicode.
;; Non-Unicode characters are not allowed in regular expressions and
;; will not match against the generated regular expressions. A
;; Unicode character means a character in one of the Mule charsets
;; ascii, latin-iso8859-1, mule-unicode-0100-24ff,
;; mule-unicode-2500-33ff, mule-unicode-e000-ffff, eight-bit-control
;; or a character translatable to such a character (i.e a character
;; for which `encode-char' will return non-nil).
;;
;; Using unify-8859-on-decoding-mode is probably a good idea here
;; (and generally with XML and other Unicode-oriented formats).
;;
;; Unfortunately, this means that this package is currently useless
;; for CJK characters, since there's no mule-unicode charset for the
;; CJK ranges of Unicode. We should devise a workaround for this
;; until the fabled Unicode version of Emacs makes an appearance.
;;; Code:
(defun xsdre-translate (regexp)
"Translate a W3C XML Schema Datatypes regexp to an Emacs regexp.
Returns a string. REGEXP is a string. If REGEXP is not a valid XSD
regexp, signal an `xsdre-invalid-regexp' condition."
(xsdre-from-symbolic
(xsdre-to-symbolic regexp)))
(defvar xsdre-test-history nil)
(defun xsdre-test-regexp ()
(interactive)
(while
(let* ((str (read-from-minibuffer "Regexp: "
nil
nil
nil
'xsdre-test-history))
(symbolic
(xsdre-to-symbolic str)))
(with-output-to-temp-buffer "*XSD Regexp Test*"
(princ "XSD regexp: ")
(princ str)
(princ "\n")
(princ "Symbolic: ")
(princ "\n")
(pp symbolic)
(princ "\n")
(princ "Emacs regexp: ")
(princ (xsdre-from-symbolic symbolic)))
t)))
;;; Range lists
(defsubst xsdre-make-range (first last)
"Return a representation of a range of integers.
If the range contains a single integer, it is represented by that integer.
Otherwise, it is represented by a (FIRST . LAST) pair."
(if (= first last)
first
(cons first last)))
(defsubst xsdre-range-first (r)
"Return the first integer in a range."
(if (consp r) (car r) r))
(defsubst xsdre-range-last (r)
"Return the last integer in a range."
(if (consp r) (cdr r) r))
(defun xsdre-make-range-list (list)
"Make a range-list from a list of ranges.
A range-list represents a set of integers by a list of ranges in a
canonical form, in which ranges are in increasing order, and adjacent
ranges are merged wherever possible."
(when list
(setq list
(sort list 'xsdre-range-less-than))
(let* ((next (cdr list))
(tail list)
(head (car list))
(first (xsdre-range-first head))
(last (xsdre-range-last head)))
(while next
(setq head (car next))
(when (> (xsdre-range-last head) last)
(if (<= (xsdre-range-first head) (1+ last))
(setq last (xsdre-range-last head))
(setcar tail (xsdre-make-range first last))
(setcdr tail next)
(setq tail next)
(setq first (xsdre-range-first head))
(setq last (xsdre-range-last head))))
(setq next (cdr next)))
(setcar tail (xsdre-make-range first last))
(setcdr tail nil)
list)))
(defun xsdre-range-list-union (range-lists)
"Return a range-list, the union of a list of range-lists."
(xsdre-make-range-list (apply 'append range-lists)))
(defun xsdre-range-list-difference (orig subtract)
"Return a range-list for the difference of two range-lists."
(when orig
(let (new head next first last)
(while orig
(setq head (car orig))
(setq first (xsdre-range-first head))
(setq last (xsdre-range-last head))
(while (and subtract
(< (xsdre-range-last (car subtract)) first))
(setq subtract (cdr subtract)))
(while (and subtract
(<= first last)
(<= (xsdre-range-first (car subtract)) last))
(when (< first (xsdre-range-first (car subtract)))
(setq new
(cons (xsdre-make-range
first
(1- (xsdre-range-first (car subtract))))
new)))
(if (< (xsdre-range-last (car subtract)) last)
(progn
(setq first (1+ (xsdre-range-last (car subtract))))
(setq subtract (cdr subtract)))
(setq first (1+ last))))
(when (<= first last)
(setq new (cons (xsdre-make-range first last) new)))
(setq orig (cdr orig)))
(nreverse new))))
(defun xsdre-range-less-than (r1 r2)
"Return non-nil if range R1 is less than range R2."
(or (< (xsdre-range-first r1) (xsdre-range-first r2))
(and (= (xsdre-range-first r1) (xsdre-range-first r2))
(< (xsdre-range-last r1) (xsdre-range-last r2)))))
(defun xsdre-check-range-list (range-list)
"Check that RANGE-LIST is a range-list.
Signal an error if it is not."
(let ((last nil))
(while range-list
(unless (consp range-list)
(error "Range list not a list"))
(let ((head (car range-list)))
(unless (or (integerp head)
(and (consp head)
(integerp (car head))
(integerp (cdr head))))
(error "Bad range %s" head))
(when (and last
(not (< (1+ last) (xsdre-range-first head))))
(error "Ranges not strictly increasing"))
(setq last (xsdre-range-last head)))
(setq range-list (cdr range-list))))
t)
;;; Compiling symbolic regexps to Emacs regexps
(defun xsdre-from-symbolic (re)
"Return an Emacs regexp for the symbolic regexp RE."
(apply 'concat
(nreverse (xsdre-compile-regexp re nil))))
(defun xsdre-compile-regexp (re accum)
"Return a Emacs regular expression for the symbolic regexp RE.
Returns a list of strings whose head is the regexp for RE
and whose tail is ACCUM."
(cond ((not (consp re))
(xsdre-compile-char-class re accum))
((eq (car re) 'choice)
(setq accum (cons "\\(?:" accum))
(let ((choices (cdr re)))
(while choices
(setq accum
(xsdre-compile-regexp (car choices)
accum))
(setq choices (cdr choices))
(when choices
(setq accum
(cons "\\|" accum)))))
(cons "\\)" accum))
((eq (car re) 'sequence)
(let ((members (cdr re)))
(while members
(setq accum (xsdre-compile-regexp (car members)
accum))
(setq members (cdr members))))
accum)
((eq (car re) 'repeat)
(let* ((sub (nth 1 re))
(lower (nth 2 re))
(upper (nth 3 re))
(need-paren (and (consp sub)
(eq (car sub) 'sequence))))
(when need-paren
(setq accum (cons "\\(?:" accum)))
(setq accum
(xsdre-compile-regexp sub accum))
(when need-paren
(setq accum (cons "\\)" accum)))
(cond ((not upper)
(cond ((eq lower 0)
(cons "*" accum))
((eq lower 1)
(cons "+" accum))
(t
(cons (concat "\\{"
(number-to-string lower)
",\\}")
accum))))
((eq lower upper)
(cons (concat "\\{"
(number-to-string lower)
"\\}")
accum))
((and (eq lower 0) (eq upper 1))
(cons "?" accum))
(t
(cons (concat "\\{"
(number-to-string lower)
","
(number-to-string upper)
"\\}")
accum)))))
(t (xsdre-compile-char-class re accum))))
(defun xsdre-compile-char-class (cc accum)
"Return a Emacs regular expression for the symbolic character class CC.
Returns a list of strings whose head is the regexp for CC
and whose tail is ACCUM."
(cons (if (integerp cc)
(xsdre-compile-single-char cc)
(let ((ranges (xsdre-range-list-mule-intersection
(xsdre-char-class-to-range-list cc))))
(cond ((null ranges) "\001-\000")
((and (null (cdr ranges))
(= (xsdre-range-first (car ranges))
(xsdre-range-last (car ranges))))
(xsdre-compile-single-char
(xsdre-range-first (car ranges))))
(t (xsdre-range-list-to-char-alternative ranges)))))
accum))
(defun xsdre-compile-single-char (ch)
(if (memq ch '(?. ?* ?+ ?? ?\[ ?\] ?^ ?$ ?\\))
(string ?\\ ch)
(string (decode-char 'ucs ch))))
(defun xsdre-char-class-to-range-list (cc)
"Return a range-list for a symbolic char-class CC."
(cond ((integerp cc) (list cc))
((symbolp cc)
(or (get cc 'xsdre-ranges)
(xsdre-char-class-to-range-list (get cc 'xsdre-char-class))))
((integerp (car cc))
(if (= (car cc) (cdr cc))
(car cc)
cc))
((eq (car cc) 'union)
(xsdre-range-list-union (mapcar 'xsdre-char-class-to-range-list
(cdr cc))))
((eq (car cc) 'difference)
(xsdre-range-list-difference
(xsdre-char-class-to-range-list (nth 1 cc))
(xsdre-char-class-to-range-list (nth 2 cc))))
((eq (car cc) 'range)
(list (xsdre-make-range (nth 1 cc) (nth 2 cc))))
(t (error "Internal error in XSD regexp compilation: \
unknown char-class %s" cc))))
(defconst xsdre-mule-char-set-ranges
'((0 . 127)
(128 . 159)
(160 . 255)
(#x0100 . #x24ff)
(#x2500 . #x33ff)
(#xe000 . #xffff))
"List of ranges for the Mule character sets containing Unicode characters.")
(defun xsdre-range-list-mule-intersection (range-list)
"Return the intersection of RANGE-LIST with the mule-supported ranges.
Also split ranges so that no range spans more that one mule charset."
(when range-list
(let* ((char-set-ranges (cdr xsdre-mule-char-set-ranges))
(mule-ranges nil)
(char-set-first (caar xsdre-mule-char-set-ranges))
(char-set-last (cdar xsdre-mule-char-set-ranges))
(range (car range-list))
(first (xsdre-range-first range))
(last (xsdre-range-last range)))
(setq range-list (cdr range-list))
(while (progn
(cond ((> first last)
(if (null range-list)
nil
(setq range (car range-list))
(setq first (xsdre-range-first range))
(setq last (xsdre-range-last range))
(setq range-list (cdr range-list))
t))
((< char-set-last first)
(if (null char-set-ranges)
nil
(setq char-set-first (caar char-set-ranges))
(setq char-set-last (cdar char-set-ranges))
(setq char-set-ranges (cdr char-set-ranges))
t))
((< first char-set-first)
(setq first char-set-first))
;; Now we know that
;; first <= last
;; first <= char-set-last
;; first >= char-set-first
((<= last char-set-last)
(setq mule-ranges
(cons (xsdre-make-range first last)
mule-ranges))
(setq first (1+ last))
t)
(t
(setq mule-ranges
(cons (xsdre-make-range first char-set-last)
mule-ranges))
(setq first (1+ char-set-last))
t))))
(nreverse mule-ranges))))
(defun xsdre-range-list-to-char-alternative (range-list)
"Return a char alternative for a range-list.
RANGE-LIST must contain more than integer.
The char alternative is a string containing an Emacs regexp
consisting of a single char alternative delimited with []."
(let (range caret close-bracket hyphen chars first last)
(while range-list
(setq range (car range-list))
(setq first (xsdre-range-first range))
(setq last (xsdre-range-last range))
(while (and (cond ((eq first ?^)
(setq caret t)
(setq first (1+ first)))
((eq first ?-)
(setq hyphen t)
(setq first (1+ first)))
((eq first ?\])
(setq close-bracket t)
(setq first (1+ first))))
(<= first last)))
(when (<= first last)
(setq chars
(cons first chars))
(when (< first last)
(setq chars
(if (and (eq last (1+ first))
(not (eq last ?-)))
(cons last chars)
(cons last (cons ?- chars))))))
(setq range-list (cdr range-list)))
(setq chars
(mapcar (lambda (c)
(decode-char 'ucs c))
chars))
(when caret
(setq chars (cons ?^ chars)))
(when hyphen
(setq chars (cons ?- chars)))
(setq chars (cons ?\] chars))
(setq chars (nreverse chars))
(when close-bracket
(setq chars (cons ?\] chars)))
(when (equal chars '(?^ ?- ?\]))
(setq chars '(?- ?^ ?\])))
(setq chars (cons ?\[ chars))
(apply 'string chars)))
;;; Parsing
(defvar xsdre-current-regexp nil
"List of characters remaining to be parsed. Dynamically bound.")
(defun xsdre-to-symbolic (str)
"Convert a W3C XML Schema datatypes regexp to a symbolic form.
The symbolic form has the following structure:
REGEXP ::=
(sequence REGEXP ...)
| (choice REGEXP ...)
| (repeat REGEXP MIN MAX)
| CHAR-CLASS
CHAR-CLASS ::=
CHAR
| SYMBOLIC-CHAR-CLASS
| RANGE
| (union CHAR-CLASS ...)
| (difference CHAR-CLASS CHAR-CLASS)
RANGE ::= (range LOWER UPPER)
MIN ::= INTEGER
MAX ::= INTEGER | nil
CHAR ::= UNICODE
LOWER ::= UNICODE
UPPER ::= UNICODE
SYMBOLIC-CHAR-CLASS ::= SYMBOL
where UNICODE is a integer specifying a Unicode code-point and
SYMBOLIC-CHAR-CLASS is a symbol which has either a `xsdre-char-class'
property whose value is a CHAR-CLASS, or a `xsdre-ranges' property
whose value is a range-list."
(let ((xsdre-current-regexp (string-to-list str)))
(condition-case err
(let ((symbolic (xsdre-parse-regexp)))
(if xsdre-current-regexp
(xsdre-parse-error "Unexpected %c" (car xsdre-current-regexp))
symbolic))
(xsdre-parse-error
(signal 'xsdre-invalid-regexp
(list (apply 'format (cdr err))
(- (length str)
(length xsdre-current-regexp))))))))
(define-error 'xsdre-invalid-regexp
"Invalid W3C XML Schema Datatypes regular expression")
(defun xsdre-parse-regexp ()
(let ((branches nil))
(while (progn
(setq branches (cons (xsdre-parse-branch) branches))
(when (eq (car xsdre-current-regexp) ?|)
(xsdre-advance)
t)))
(if (null (cdr branches))
(car branches)
(cons 'choice (nreverse branches)))))
(defun xsdre-parse-branch ()
(let (items)
(while (let ((item (xsdre-try-parse-atom)))
(when item
(let ((quantifier (xsdre-try-parse-quantifier)))
(when quantifier
(setq item
(list 'repeat
item
(car quantifier)
(cdr quantifier)))))
(setq items (cons item items)))))
(cond ((null items) '(sequence))
((null (cdr items)) (car items))
(t (cons 'sequence (nreverse items))))))
(defun xsdre-try-parse-quantifier ()
(let ((ch (car xsdre-current-regexp)))
(cond ((eq ch ?*) (xsdre-advance) '(0 . nil))
((eq ch ?+) (xsdre-advance) '(1 . nil))
((eq ch ??) (xsdre-advance) '(0 . 1))
((eq ch ?{)
(xsdre-advance)
(let ((lower (xsdre-parse-bound)))
(setq ch (car xsdre-current-regexp))
(cond ((eq ch ?})
(xsdre-advance)
(cons lower lower))
((eq ch ?,)
(xsdre-advance)
(cond ((eq (car xsdre-current-regexp) ?})
(xsdre-advance)
(cons lower nil))
(t
(let ((upper (xsdre-parse-bound)))
(xsdre-expect ?})
(cons lower upper)))))
(t (xsdre-parse-error "Expected , or }")))))
(t nil))))
(defun xsdre-parse-bound ()
(let ((n 0))
(while (progn
(let* ((ch (car xsdre-current-regexp))
(digit (memq ch '(?9 ?8 ?7 ?6 ?5 ?4 ?3 ?2 ?1 ?0))))
(unless digit
(xsdre-parse-error "Expected a digit"))
(setq n (+ (* n 10)
(length (cdr digit)))))
(xsdre-advance)
(not (memq (car xsdre-current-regexp) '(?} ?,)))))
n))
(defun xsdre-try-parse-atom ()
(let ((ch (car xsdre-current-regexp)))
(cond ((memq ch '(nil ?? ?* ?+ ?\) ?\{ ?\} ?| ?\])) nil)
((eq ch ?\\)
(xsdre-advance)
(xsdre-parse-escape))
((eq ch ?\()
(xsdre-advance)
(let ((ret (xsdre-parse-regexp)))
(xsdre-expect ?\))
ret))
((eq ch ?\[)
(xsdre-parse-char-class))
((eq ch ?.)
(xsdre-advance)
'dot)
(t
(let ((uc (encode-char ch 'ucs)))
(unless uc
(xsdre-parse-error "%c is not a Unicode character" ch))
(xsdre-advance) uc)))))
(defun xsdre-parse-char-class ()
(xsdre-advance)
(let (compl members ret)
(when (eq (car xsdre-current-regexp) ?^)
(setq compl t)
(xsdre-advance))
(while (let ((member (xsdre-parse-char-class-member))
uc1 uc2)
(cond ((eq (car xsdre-current-regexp) ?\-)
(xsdre-advance)
(cond ((eq (car xsdre-current-regexp) ?\[)
(setq members (cons member members))
nil)
((not (integerp member))
(xsdre-parse-error "Lower bound is not a single character"))
((not (setq uc1
(encode-char member 'ucs)))
(xsdre-parse-error "Lower bound %c is not a Unicode character"
member))
(t
(let ((upper (xsdre-parse-char-class-member)))
(unless (integerp upper)
(xsdre-parse-error "Upper bound is not a single character"))
(unless (setq uc2
(encode-char upper 'ucs))
(xsdre-parse-error "Upper bound %c is not a Unicode character" upper))
(setq members
(cons (list 'range uc1 uc2)
members)))
(not (eq (car xsdre-current-regexp) ?\])))))
(t (setq members (cons member members))
(not (eq (car xsdre-current-regexp) ?\]))))))
(setq members (nreverse members))
(if (null (cdr members))
(setq ret (car members))
(setq ret (cons 'union members)))
(when compl
(setq ret (list 'difference 'any ret)))
(when (eq (car xsdre-current-regexp) ?\[)
(setq ret
(list 'difference ret (xsdre-parse-char-class))))
(xsdre-expect ?\])
ret))
(defun xsdre-parse-char-class-member ()
(let ((ch (car xsdre-current-regexp)))
(cond ((null ch)
(xsdre-parse-error "Expected ]"))
((eq ch ?\\)
(xsdre-advance)
(xsdre-parse-escape))
((memq ch '(?\[ ?\] ?-))
(xsdre-parse-error "%c must be quoted in a character class" ch))
(t (xsdre-advance) ch))))
(defconst xsdre-single-escape
'((?s . space)
(?i . name-initial)
(?c . name-continue)
(?d . digit)
(?w . word)))
(defun xsdre-parse-escape ()
(let ((ch (car xsdre-current-regexp)))
(xsdre-advance)
(cond ((memq ch '(?\\ ?| ?. ?- ?^ ?* ?+ ?( ?) ?{ ?} ?[ ?])) ch)
((eq ch ?r) ?\r)
((eq ch ?n) ?\n)
((eq ch ?t) ?\t)
((cdr (assq ch xsdre-single-escape)))
((let ((positive
(cdr (assq (downcase ch) xsdre-single-escape))))
(and positive
(list 'difference 'any positive))))
((eq ch ?p) (xsdre-parse-prop))
((eq ch ?P) (list 'difference 'any (xsdre-parse-prop)))
(t (if ch
(xsdre-parse-error "Missing char after \\")
(xsdre-parse-error "Bad escape %c" ch))))))
(defun xsdre-parse-prop ()
(xsdre-expect ?{)
(let ((name nil))
(while (not (eq (car xsdre-current-regexp) ?\}))
(unless xsdre-current-regexp
(xsdre-parse-error "Expected ?"))
(setq name (cons (car xsdre-current-regexp)
name))
(xsdre-advance))
(xsdre-advance)
(setq name (nreverse name))
(cond ((null name) (xsdre-parse-error "Empty property name"))
((null (cdr name))
(let ((category (intern (string (car name)))))
(unless (get category 'xsdre-unicode-category)
(xsdre-parse-error "%s is not a category" category))
category))
((null (cddr name))
(let ((category (intern (string (car name) (cadr name)))))
(unless (get category 'xsdre-unicode-category)
(xsdre-parse-error "%s is not a category" category))
category))
((not (and (eq (car name) ?I)
(eq (cadr name) ?s)))
(xsdre-parse-error "Block name does not start with Is"))
(t
(let ((block (intern (apply 'string (cddr name)))))
(unless (get block 'xsdre-unicode-block)
(xsdre-parse-error "%s is not a block name" block))
block)))))
(defun xsdre-expect (ch)
(if (eq (car xsdre-current-regexp) ch)
(xsdre-advance)
(xsdre-parse-error "Expected %c" ch)))
(defun xsdre-advance ()
(setq xsdre-current-regexp
(cdr xsdre-current-regexp)))
(defun xsdre-parse-error (&rest args)
(signal 'xsdre-parse-error args))
;; This error condition is used only internally.
(define-error 'xsdre-parse-error "Internal error in parsing XSD regexp")
;;; Character class data
(put 'dot 'xsdre-char-class '(difference any (union #xA #xD)))
(put 'digit 'xsdre-char-class 'Nd)
(put 'word 'xsdre-char-class '(difference any (union P Z C)))
(put 'space 'xsdre-char-class '(union #x9 #xA #xD #x20))
(put 'any 'xsdre-ranges '((#x0 . #x10FFFF)))
(defconst xsdre-gen-categories
'(Lu Ll Lt Lm Lo Mn Mc Me Nd Nl No Pc Pd
Ps Pe Pi Pf Po Zs Zl Zp Sm Sc Sk So Cc Cf Co))
(defun xsdre-gen-categories (file)
"Use a UnicodeData file to generate code to initialize Unicode categories.
Code is inserted into the current buffer."
(interactive "fUnicodeData file: ")
(with-current-buffer (find-file-noselect file)
(goto-char (point-min))
(mapc (lambda (x) (put x 'xsdre-ranges nil)) xsdre-gen-categories)
(while (re-search-forward "^\\([0-9A-Fa-f]*\\);[^;]*;\\([A-Z][a-z]\\);"
nil
t)
(let* ((sym (intern (match-string-no-properties 2)))
(code (string-to-number (match-string-no-properties 1)
16))
(ranges (get sym 'xsdre-ranges))
(last-range (car ranges))
(forced-range (string= (buffer-substring-no-properties
(- (match-beginning 2) 6)
(1- (match-beginning 2)))
"Last>")))
(cond ((and (integerp last-range)
(or forced-range
(eq code (1+ last-range))))
(put sym
'xsdre-ranges
(cons (cons last-range code)
(cdr ranges))))
((and (consp last-range)
(or forced-range
(eq code (1+ (cdr last-range)))))
(put sym
'xsdre-ranges
(cons (cons (car last-range) code)
(cdr ranges))))
(t
(put sym 'xsdre-ranges (cons code ranges))))))
(mapc (lambda (x)
(put x
'xsdre-ranges
(nreverse (get x 'xsdre-ranges)))
nil)
xsdre-gen-categories))
(mapc (lambda (x)
(let ((start (point)))
(pp (list 'xsdre-def-primitive-category
(list 'quote x)
(list 'quote (get x 'xsdre-ranges)))
(current-buffer))
(save-excursion
(goto-char start)
(down-list 2)
(while (condition-case err
(progn
(forward-sexp)
t)
(error nil))
(when (and (< 70 (current-column))
(not (looking-at ")")))
(insert "\n")
(lisp-indent-line))))))
xsdre-gen-categories))
(defun xsdre-def-primitive-category (sym ranges)
(put sym 'xsdre-ranges ranges)
(put sym 'xsdre-unicode-category t))
;;; Blocks
(defun xsdre-def-block (sym ranges)
(put sym 'xsdre-ranges ranges)
(put sym 'xsdre-unicode-block t))
(xsdre-def-block 'BasicLatin '((#x0000 . #x007F)))
(xsdre-def-block 'Latin-1Supplement '((#x0080 . #x00FF)))
(xsdre-def-block 'LatinExtended-A '((#x0100 . #x017F)))
(xsdre-def-block 'LatinExtended-B '((#x0180 . #x024F)))
(xsdre-def-block 'IPAExtensions '((#x0250 . #x02AF)))
(xsdre-def-block 'SpacingModifierLetters '((#x02B0 . #x02FF)))
(xsdre-def-block 'CombiningDiacriticalMarks '((#x0300 . #x036F)))
(xsdre-def-block 'Greek '((#x0370 . #x03FF)))
(xsdre-def-block 'Cyrillic '((#x0400 . #x04FF)))
(xsdre-def-block 'Armenian '((#x0530 . #x058F)))
(xsdre-def-block 'Hebrew '((#x0590 . #x05FF)))
(xsdre-def-block 'Arabic '((#x0600 . #x06FF)))
(xsdre-def-block 'Syriac '((#x0700 . #x074F)))
(xsdre-def-block 'Thaana '((#x0780 . #x07BF)))
(xsdre-def-block 'Devanagari '((#x0900 . #x097F)))
(xsdre-def-block 'Bengali '((#x0980 . #x09FF)))
(xsdre-def-block 'Gurmukhi '((#x0A00 . #x0A7F)))
(xsdre-def-block 'Gujarati '((#x0A80 . #x0AFF)))
(xsdre-def-block 'Oriya '((#x0B00 . #x0B7F)))
(xsdre-def-block 'Tamil '((#x0B80 . #x0BFF)))
(xsdre-def-block 'Telugu '((#x0C00 . #x0C7F)))
(xsdre-def-block 'Kannada '((#x0C80 . #x0CFF)))
(xsdre-def-block 'Malayalam '((#x0D00 . #x0D7F)))
(xsdre-def-block 'Sinhala '((#x0D80 . #x0DFF)))
(xsdre-def-block 'Thai '((#x0E00 . #x0E7F)))
(xsdre-def-block 'Lao '((#x0E80 . #x0EFF)))
(xsdre-def-block 'Tibetan '((#x0F00 . #x0FFF)))
(xsdre-def-block 'Myanmar '((#x1000 . #x109F)))
(xsdre-def-block 'Georgian '((#x10A0 . #x10FF)))
(xsdre-def-block 'HangulJamo '((#x1100 . #x11FF)))
(xsdre-def-block 'Ethiopic '((#x1200 . #x137F)))
(xsdre-def-block 'Cherokee '((#x13A0 . #x13FF)))
(xsdre-def-block 'UnifiedCanadianAboriginalSyllabics '((#x1400 . #x167F)))
(xsdre-def-block 'Ogham '((#x1680 . #x169F)))
(xsdre-def-block 'Runic '((#x16A0 . #x16FF)))
(xsdre-def-block 'Khmer '((#x1780 . #x17FF)))
(xsdre-def-block 'Mongolian '((#x1800 . #x18AF)))
(xsdre-def-block 'LatinExtendedAdditional '((#x1E00 . #x1EFF)))
(xsdre-def-block 'GreekExtended '((#x1F00 . #x1FFF)))
(xsdre-def-block 'GeneralPunctuation '((#x2000 . #x206F)))
(xsdre-def-block 'SuperscriptsandSubscripts '((#x2070 . #x209F)))
(xsdre-def-block 'CurrencySymbols '((#x20A0 . #x20CF)))
(xsdre-def-block 'CombiningMarksforSymbols '((#x20D0 . #x20FF)))
(xsdre-def-block 'LetterlikeSymbols '((#x2100 . #x214F)))
(xsdre-def-block 'NumberForms '((#x2150 . #x218F)))
(xsdre-def-block 'Arrows '((#x2190 . #x21FF)))
(xsdre-def-block 'MathematicalOperators '((#x2200 . #x22FF)))
(xsdre-def-block 'MiscellaneousTechnical '((#x2300 . #x23FF)))
(xsdre-def-block 'ControlPictures '((#x2400 . #x243F)))
(xsdre-def-block 'OpticalCharacterRecognition '((#x2440 . #x245F)))
(xsdre-def-block 'EnclosedAlphanumerics '((#x2460 . #x24FF)))
(xsdre-def-block 'BoxDrawing '((#x2500 . #x257F)))
(xsdre-def-block 'BlockElements '((#x2580 . #x259F)))
(xsdre-def-block 'GeometricShapes '((#x25A0 . #x25FF)))
(xsdre-def-block 'MiscellaneousSymbols '((#x2600 . #x26FF)))
(xsdre-def-block 'Dingbats '((#x2700 . #x27BF)))
(xsdre-def-block 'BraillePatterns '((#x2800 . #x28FF)))
(xsdre-def-block 'CJKRadicalsSupplement '((#x2E80 . #x2EFF)))
(xsdre-def-block 'KangxiRadicals '((#x2F00 . #x2FDF)))
(xsdre-def-block 'IdeographicDescriptionCharacters '((#x2FF0 . #x2FFF)))
(xsdre-def-block 'CJKSymbolsandPunctuation '((#x3000 . #x303F)))
(xsdre-def-block 'Hiragana '((#x3040 . #x309F)))
(xsdre-def-block 'Katakana '((#x30A0 . #x30FF)))
(xsdre-def-block 'Bopomofo '((#x3100 . #x312F)))
(xsdre-def-block 'HangulCompatibilityJamo '((#x3130 . #x318F)))
(xsdre-def-block 'Kanbun '((#x3190 . #x319F)))
(xsdre-def-block 'BopomofoExtended '((#x31A0 . #x31BF)))
(xsdre-def-block 'EnclosedCJKLettersandMonths '((#x3200 . #x32FF)))
(xsdre-def-block 'CJKCompatibility '((#x3300 . #x33FF)))
(xsdre-def-block 'CJKUnifiedIdeographsExtensionA '((#x3400 . #x4DB5)))
(xsdre-def-block 'CJKUnifiedIdeographs '((#x4E00 . #x9FFF)))
(xsdre-def-block 'YiSyllables '((#xA000 . #xA48F)))
(xsdre-def-block 'YiRadicals '((#xA490 . #xA4CF)))
(xsdre-def-block 'HangulSyllables '((#xAC00 . #xD7A3)))
;;(xsdre-def-block 'HighSurrogates '((#xD800 . #xDB7F)))
;;(xsdre-def-block 'HighPrivateUseSurrogates '((#xDB80 . #xDBFF)))
;;(xsdre-def-block 'LowSurrogates '((#xDC00 . #xDFFF)))
(xsdre-def-block 'CJKCompatibilityIdeographs '((#xF900 . #xFAFF)))
(xsdre-def-block 'AlphabeticPresentationForms '((#xFB00 . #xFB4F)))
(xsdre-def-block 'ArabicPresentationForms-A '((#xFB50 . #xFDFF)))
(xsdre-def-block 'CombiningHalfMarks '((#xFE20 . #xFE2F)))
(xsdre-def-block 'CJKCompatibilityForms '((#xFE30 . #xFE4F)))
(xsdre-def-block 'SmallFormVariants '((#xFE50 . #xFE6F)))
(xsdre-def-block 'ArabicPresentationForms-B '((#xFE70 . #xFEFE)))
(xsdre-def-block 'Specials '((#xFEFF . #xFEFF)))
(xsdre-def-block 'HalfwidthandFullwidthForms '((#xFF00 . #xFFEF)))
(xsdre-def-block 'Specials '((#xFFF0 . #xFFFD)))
(xsdre-def-block 'OldItalic '((#x10300 . #x1032F)))
(xsdre-def-block 'Gothic '((#x10330 . #x1034F)))
(xsdre-def-block 'Deseret '((#x10400 . #x1044F)))
(xsdre-def-block 'ByzantineMusicalSymbols '((#x1D000 . #x1D0FF)))
(xsdre-def-block 'MusicalSymbols '((#x1D100 . #x1D1FF)))
(xsdre-def-block 'MathematicalAlphanumericSymbols '((#x1D400 . #x1D7FF)))
(xsdre-def-block 'CJKUnifiedIdeographsExtensionB '((#x20000 . #x2A6D6)))
(xsdre-def-block 'CJKCompatibilityIdeographsSupplement '((#x2F800 . #x2FA1F)))
(xsdre-def-block 'Tags '((#xE0000 . #xE007F)))
(xsdre-def-block 'PrivateUse '((#xE000 . #xF8FF)
(#xF0000 . #xFFFFD)
(#x100000 . #x10FFFD)))
;;; Categories
;;; Derived categories
(defun xsdre-def-derived-category (sym char-class)
(put sym 'xsdre-char-class char-class)
(put sym 'xsdre-unicode-category t))
(xsdre-def-derived-category 'L '(union Lu Ll Lt Lm Lo))
(xsdre-def-derived-category 'M '(union Mn Mc Me))
(xsdre-def-derived-category 'N '(union Nd Nl No))
(xsdre-def-derived-category 'P '(union Pc Pd Ps Pe Pi Pf Po))
(xsdre-def-derived-category 'Z '(union Zs Zl Zp))
(xsdre-def-derived-category 'S '(union Sm Sc Sk So))
(xsdre-def-derived-category 'C '(union Cc Cf Co Cn))
(xsdre-def-derived-category 'Cn '(difference any
(union L M N P Z S Cc Cf Co)))
(xsdre-def-primitive-category
'name-initial
'(#x003a
(#x0041 . #x005a)
#x005f
(#x0061 . #x007a)
(#x00c0 . #x00d6)
(#x00d8 . #x00f6)
(#x00f8 . #x0131)
(#x0134 . #x013e)
(#x0141 . #x0148)
(#x014a . #x017e)
(#x0180 . #x01c3)
(#x01cd . #x01f0)
(#x01f4 . #x01f5)
(#x01fa . #x0217)
(#x0250 . #x02a8)
(#x02bb . #x02c1)
#x0386
(#x0388 . #x038a)
#x038c
(#x038e . #x03a1)
(#x03a3 . #x03ce)
(#x03d0 . #x03d6)
#x03da
#x03dc
#x03de
#x03e0
(#x03e2 . #x03f3)
(#x0401 . #x040c)
(#x040e . #x044f)
(#x0451 . #x045c)
(#x045e . #x0481)
(#x0490 . #x04c4)
(#x04c7 . #x04c8)
(#x04cb . #x04cc)
(#x04d0 . #x04eb)
(#x04ee . #x04f5)
(#x04f8 . #x04f9)
(#x0531 . #x0556)
#x0559
(#x0561 . #x0586)
(#x05d0 . #x05ea)
(#x05f0 . #x05f2)
(#x0621 . #x063a)
(#x0641 . #x064a)
(#x0671 . #x06b7)
(#x06ba . #x06be)
(#x06c0 . #x06ce)
(#x06d0 . #x06d3)
#x06d5
(#x06e5 . #x06e6)
(#x0905 . #x0939)
#x093d
(#x0958 . #x0961)
(#x0985 . #x098c)
(#x098f . #x0990)
(#x0993 . #x09a8)
(#x09aa . #x09b0)
#x09b2
(#x09b6 . #x09b9)
(#x09dc . #x09dd)
(#x09df . #x09e1)
(#x09f0 . #x09f1)
(#x0a05 . #x0a0a)
(#x0a0f . #x0a10)
(#x0a13 . #x0a28)
(#x0a2a . #x0a30)
(#x0a32 . #x0a33)
(#x0a35 . #x0a36)
(#x0a38 . #x0a39)
(#x0a59 . #x0a5c)
#x0a5e
(#x0a72 . #x0a74)
(#x0a85 . #x0a8b)
#x0a8d
(#x0a8f . #x0a91)
(#x0a93 . #x0aa8)
(#x0aaa . #x0ab0)
(#x0ab2 . #x0ab3)
(#x0ab5 . #x0ab9)
#x0abd
#x0ae0
(#x0b05 . #x0b0c)
(#x0b0f . #x0b10)
(#x0b13 . #x0b28)
(#x0b2a . #x0b30)
(#x0b32 . #x0b33)
(#x0b36 . #x0b39)
#x0b3d
(#x0b5c . #x0b5d)
(#x0b5f . #x0b61)
(#x0b85 . #x0b8a)
(#x0b8e . #x0b90)
(#x0b92 . #x0b95)
(#x0b99 . #x0b9a)
#x0b9c
(#x0b9e . #x0b9f)
(#x0ba3 . #x0ba4)
(#x0ba8 . #x0baa)
(#x0bae . #x0bb5)
(#x0bb7 . #x0bb9)
(#x0c05 . #x0c0c)
(#x0c0e . #x0c10)
(#x0c12 . #x0c28)
(#x0c2a . #x0c33)
(#x0c35 . #x0c39)
(#x0c60 . #x0c61)
(#x0c85 . #x0c8c)
(#x0c8e . #x0c90)
(#x0c92 . #x0ca8)
(#x0caa . #x0cb3)
(#x0cb5 . #x0cb9)
#x0cde
(#x0ce0 . #x0ce1)
(#x0d05 . #x0d0c)
(#x0d0e . #x0d10)
(#x0d12 . #x0d28)
(#x0d2a . #x0d39)
(#x0d60 . #x0d61)
(#x0e01 . #x0e2e)
#x0e30
(#x0e32 . #x0e33)
(#x0e40 . #x0e45)
(#x0e81 . #x0e82)
#x0e84
(#x0e87 . #x0e88)
#x0e8a
#x0e8d
(#x0e94 . #x0e97)
(#x0e99 . #x0e9f)
(#x0ea1 . #x0ea3)
#x0ea5
#x0ea7
(#x0eaa . #x0eab)
(#x0ead . #x0eae)
#x0eb0
(#x0eb2 . #x0eb3)
#x0ebd
(#x0ec0 . #x0ec4)
(#x0f40 . #x0f47)
(#x0f49 . #x0f69)
(#x10a0 . #x10c5)
(#x10d0 . #x10f6)
#x1100
(#x1102 . #x1103)
(#x1105 . #x1107)
#x1109
(#x110b . #x110c)
(#x110e . #x1112)
#x113c
#x113e
#x1140
#x114c
#x114e
#x1150
(#x1154 . #x1155)
#x1159
(#x115f . #x1161)
#x1163
#x1165
#x1167
#x1169
(#x116d . #x116e)
(#x1172 . #x1173)
#x1175
#x119e
#x11a8
#x11ab
(#x11ae . #x11af)
(#x11b7 . #x11b8)
#x11ba
(#x11bc . #x11c2)
#x11eb
#x11f0
#x11f9
(#x1e00 . #x1e9b)
(#x1ea0 . #x1ef9)
(#x1f00 . #x1f15)
(#x1f18 . #x1f1d)
(#x1f20 . #x1f45)
(#x1f48 . #x1f4d)
(#x1f50 . #x1f57)
#x1f59
#x1f5b
#x1f5d
(#x1f5f . #x1f7d)
(#x1f80 . #x1fb4)
(#x1fb6 . #x1fbc)
#x1fbe
(#x1fc2 . #x1fc4)
(#x1fc6 . #x1fcc)
(#x1fd0 . #x1fd3)
(#x1fd6 . #x1fdb)
(#x1fe0 . #x1fec)
(#x1ff2 . #x1ff4)
(#x1ff6 . #x1ffc)
#x2126
(#x212a . #x212b)
#x212e
(#x2180 . #x2182)
#x3007
(#x3021 . #x3029)
(#x3041 . #x3094)
(#x30a1 . #x30fa)
(#x3105 . #x312c)
(#x4e00 . #x9fa5)
(#xac00 . #xd7a3)))
(xsdre-def-derived-category 'name-continue '(union name-initial
name-continue-not-initial))
(xsdre-def-primitive-category
'name-continue-not-initial
'((#x002d . #x002e)
(#x0030 . #x0039)
#x00b7
(#x02d0 . #x02d1)
(#x0300 . #x0345)
(#x0360 . #x0361)
#x0387
(#x0483 . #x0486)
(#x0591 . #x05a1)
(#x05a3 . #x05b9)
(#x05bb . #x05bd)
#x05bf
(#x05c1 . #x05c2)
#x05c4
#x0640
(#x064b . #x0652)
(#x0660 . #x0669)
#x0670
(#x06d6 . #x06dc)
(#x06dd . #x06df)
(#x06e0 . #x06e4)
(#x06e7 . #x06e8)
(#x06ea . #x06ed)
(#x06f0 . #x06f9)
(#x0901 . #x0903)
#x093c
(#x093e . #x094c)
#x094d
(#x0951 . #x0954)
(#x0962 . #x0963)
(#x0966 . #x096f)
(#x0981 . #x0983)
#x09bc
(#x09be . #x09bf)
(#x09c0 . #x09c4)
(#x09c7 . #x09c8)
(#x09cb . #x09cd)
#x09d7
(#x09e2 . #x09e3)
(#x09e6 . #x09ef)
#x0a02
#x0a3c
(#x0a3e . #x0a42)
(#x0a47 . #x0a48)
(#x0a4b . #x0a4d)
(#x0a66 . #x0a6f)
(#x0a70 . #x0a71)
(#x0a81 . #x0a83)
#x0abc
(#x0abe . #x0ac5)
(#x0ac7 . #x0ac9)
(#x0acb . #x0acd)
(#x0ae6 . #x0aef)
(#x0b01 . #x0b03)
#x0b3c
(#x0b3e . #x0b43)
(#x0b47 . #x0b48)
(#x0b4b . #x0b4d)
(#x0b56 . #x0b57)
(#x0b66 . #x0b6f)
(#x0b82 . #x0b83)
(#x0bbe . #x0bc2)
(#x0bc6 . #x0bc8)
(#x0bca . #x0bcd)
#x0bd7
(#x0be7 . #x0bef)
(#x0c01 . #x0c03)
(#x0c3e . #x0c44)
(#x0c46 . #x0c48)
(#x0c4a . #x0c4d)
(#x0c55 . #x0c56)
(#x0c66 . #x0c6f)
(#x0c82 . #x0c83)
(#x0cbe . #x0cc4)
(#x0cc6 . #x0cc8)
(#x0cca . #x0ccd)
(#x0cd5 . #x0cd6)
(#x0ce6 . #x0cef)
(#x0d02 . #x0d03)
(#x0d3e . #x0d43)
(#x0d46 . #x0d48)
(#x0d4a . #x0d4d)
#x0d57
(#x0d66 . #x0d6f)
#x0e31
(#x0e34 . #x0e3a)
(#x0e46 . #x0e4e)
(#x0e50 . #x0e59)
#x0eb1
(#x0eb4 . #x0eb9)
(#x0ebb . #x0ebc)
#x0ec6
(#x0ec8 . #x0ecd)
(#x0ed0 . #x0ed9)
(#x0f18 . #x0f19)
(#x0f20 . #x0f29)
#x0f35
#x0f37
#x0f39
(#x0f3e . #x0f3f)
(#x0f71 . #x0f84)
(#x0f86 . #x0f8b)
(#x0f90 . #x0f95)
#x0f97
(#x0f99 . #x0fad)
(#x0fb1 . #x0fb7)
#x0fb9
(#x20d0 . #x20dc)
#x20e1
#x3005
(#x302a . #x302f)
(#x3031 . #x3035)
#x3099
#x309a
(#x309d . #x309e)
(#x30fc . #x30fe)))
;;; Auto-generated section.
;; The rest of the file was auto-generated by doing M-x xsdre-gen-categories
;; on UnicodeData-3.1.0.txt available from
;; http://www.unicode.org/Public/3.1-Update/UnicodeData-3.1.0.txt
(xsdre-def-primitive-category 'Lu
'((65 . 90)
(192 . 214)
(216 . 222)
256 258 260 262 264 266 268 270 272 274 276
278 280 282 284 286 288 290 292 294 296 298
300 302 304 306 308 310 313 315 317 319 321
323 325 327 330 332 334 336 338 340 342 344
346 348 350 352 354 356 358 360 362 364 366
368 370 372 374
(376 . 377)
379 381
(385 . 386)
388
(390 . 391)
(393 . 395)
(398 . 401)
(403 . 404)
(406 . 408)
(412 . 413)
(415 . 416)
418 420
(422 . 423)
425 428
(430 . 431)
(433 . 435)
437
(439 . 440)
444 452 455 458 461 463 465 467 469 471 473
475 478 480 482 484 486 488 490 492 494 497
500
(502 . 504)
506 508 510 512 514 516 518 520 522 524 526
528 530 532 534 536 538 540 542 546 548 550
552 554 556 558 560 562 902
(904 . 906)
908
(910 . 911)
(913 . 929)
(931 . 939)
(978 . 980)
986 988 990 992 994 996 998 1000 1002 1004
1006 1012
(1024 . 1071)
1120 1122 1124 1126 1128 1130 1132 1134 1136
1138 1140 1142 1144 1146 1148 1150 1152 1164
1166 1168 1170 1172 1174 1176 1178 1180 1182
1184 1186 1188 1190 1192 1194 1196 1198 1200
1202 1204 1206 1208 1210 1212 1214
(1216 . 1217)
1219 1223 1227 1232 1234 1236 1238 1240 1242
1244 1246 1248 1250 1252 1254 1256 1258 1260
1262 1264 1266 1268 1272
(1329 . 1366)
(4256 . 4293)
7680 7682 7684 7686 7688 7690 7692 7694 7696
7698 7700 7702 7704 7706 7708 7710 7712 7714
7716 7718 7720 7722 7724 7726 7728 7730 7732
7734 7736 7738 7740 7742 7744 7746 7748 7750
7752 7754 7756 7758 7760 7762 7764 7766 7768
7770 7772 7774 7776 7778 7780 7782 7784 7786
7788 7790 7792 7794 7796 7798 7800 7802 7804
7806 7808 7810 7812 7814 7816 7818 7820 7822
7824 7826 7828 7840 7842 7844 7846 7848 7850
7852 7854 7856 7858 7860 7862 7864 7866 7868
7870 7872 7874 7876 7878 7880 7882 7884 7886
7888 7890 7892 7894 7896 7898 7900 7902 7904
7906 7908 7910 7912 7914 7916 7918 7920 7922
7924 7926 7928
(7944 . 7951)
(7960 . 7965)
(7976 . 7983)
(7992 . 7999)
(8008 . 8013)
8025 8027 8029 8031
(8040 . 8047)
(8120 . 8123)
(8136 . 8139)
(8152 . 8155)
(8168 . 8172)
(8184 . 8187)
8450 8455
(8459 . 8461)
(8464 . 8466)
8469
(8473 . 8477)
8484 8486 8488
(8490 . 8493)
(8496 . 8497)
8499
(65313 . 65338)
(66560 . 66597)
(119808 . 119833)
(119860 . 119885)
(119912 . 119937)
119964
(119966 . 119967)
119970
(119973 . 119974)
(119977 . 119980)
(119982 . 119989)
(120016 . 120041)
(120068 . 120069)
(120071 . 120074)
(120077 . 120084)
(120086 . 120092)
(120120 . 120121)
(120123 . 120126)
(120128 . 120132)
120134
(120138 . 120144)
(120172 . 120197)
(120224 . 120249)
(120276 . 120301)
(120328 . 120353)
(120380 . 120405)
(120432 . 120457)
(120488 . 120512)
(120546 . 120570)
(120604 . 120628)
(120662 . 120686)
(120720 . 120744)))
(xsdre-def-primitive-category 'Ll
'((97 . 122)
170 181 186
(223 . 246)
(248 . 255)
257 259 261 263 265 267 269 271 273 275 277
279 281 283 285 287 289 291 293 295 297 299
301 303 305 307 309
(311 . 312)
314 316 318 320 322 324 326
(328 . 329)
331 333 335 337 339 341 343 345 347 349 351
353 355 357 359 361 363 365 367 369 371 373
375 378 380
(382 . 384)
387 389 392
(396 . 397)
402 405
(409 . 411)
414 417 419 421 424
(426 . 427)
429 432 436 438
(441 . 442)
(445 . 447)
454 457 460 462 464 466 468 470 472 474
(476 . 477)
479 481 483 485 487 489 491 493
(495 . 496)
499 501 505 507 509 511 513 515 517 519 521
523 525 527 529 531 533 535 537 539 541 543
547 549 551 553 555 557 559 561 563
(592 . 685)
912
(940 . 974)
(976 . 977)
(981 . 983)
987 989 991 993 995 997 999 1001 1003 1005
(1007 . 1011)
1013
(1072 . 1119)
1121 1123 1125 1127 1129 1131 1133 1135 1137
1139 1141 1143 1145 1147 1149 1151 1153 1165
1167 1169 1171 1173 1175 1177 1179 1181 1183
1185 1187 1189 1191 1193 1195 1197 1199 1201
1203 1205 1207 1209 1211 1213 1215 1218 1220
1224 1228 1233 1235 1237 1239 1241 1243 1245
1247 1249 1251 1253 1255 1257 1259 1261 1263
1265 1267 1269 1273
(1377 . 1415)
7681 7683 7685 7687 7689 7691 7693 7695 7697
7699 7701 7703 7705 7707 7709 7711 7713 7715
7717 7719 7721 7723 7725 7727 7729 7731 7733
7735 7737 7739 7741 7743 7745 7747 7749 7751
7753 7755 7757 7759 7761 7763 7765 7767 7769
7771 7773 7775 7777 7779 7781 7783 7785 7787
7789 7791 7793 7795 7797 7799 7801 7803 7805
7807 7809 7811 7813 7815 7817 7819 7821 7823
7825 7827
(7829 . 7835)
7841 7843 7845 7847 7849 7851 7853 7855 7857
7859 7861 7863 7865 7867 7869 7871 7873 7875
7877 7879 7881 7883 7885 7887 7889 7891 7893
7895 7897 7899 7901 7903 7905 7907 7909 7911
7913 7915 7917 7919 7921 7923 7925 7927 7929
(7936 . 7943)
(7952 . 7957)
(7968 . 7975)
(7984 . 7991)
(8000 . 8005)
(8016 . 8023)
(8032 . 8039)
(8048 . 8061)
(8064 . 8071)
(8080 . 8087)
(8096 . 8103)
(8112 . 8116)
(8118 . 8119)
8126
(8130 . 8132)
(8134 . 8135)
(8144 . 8147)
(8150 . 8151)
(8160 . 8167)
(8178 . 8180)
(8182 . 8183)
8319 8458
(8462 . 8463)
8467 8495 8500 8505
(64256 . 64262)
(64275 . 64279)
(65345 . 65370)
(66600 . 66637)
(119834 . 119859)
(119886 . 119892)
(119894 . 119911)
(119938 . 119963)
(119990 . 119993)
119995
(119997 . 120000)
(120002 . 120003)
(120005 . 120015)
(120042 . 120067)
(120094 . 120119)
(120146 . 120171)
(120198 . 120223)
(120250 . 120275)
(120302 . 120327)
(120354 . 120379)
(120406 . 120431)
(120458 . 120483)
(120514 . 120538)
(120540 . 120545)
(120572 . 120596)
(120598 . 120603)
(120630 . 120654)
(120656 . 120661)
(120688 . 120712)
(120714 . 120719)
(120746 . 120770)
(120772 . 120777)))
(xsdre-def-primitive-category 'Lt
'(453 456 459 498
(8072 . 8079)
(8088 . 8095)
(8104 . 8111)
8124 8140 8188))
(xsdre-def-primitive-category 'Lm
'((688 . 696)
(699 . 705)
(720 . 721)
(736 . 740)
750 890 1369 1600
(1765 . 1766)
3654 3782 6211 12293
(12337 . 12341)
(12445 . 12446)
(12540 . 12542)
65392
(65438 . 65439)))
(xsdre-def-primitive-category 'Lo
'(443
(448 . 451)
(1488 . 1514)
(1520 . 1522)
(1569 . 1594)
(1601 . 1610)
(1649 . 1747)
1749
(1786 . 1788)
1808
(1810 . 1836)
(1920 . 1957)
(2309 . 2361)
2365 2384
(2392 . 2401)
(2437 . 2444)
(2447 . 2448)
(2451 . 2472)
(2474 . 2480)
2482
(2486 . 2489)
(2524 . 2525)
(2527 . 2529)
(2544 . 2545)
(2565 . 2570)
(2575 . 2576)
(2579 . 2600)
(2602 . 2608)
(2610 . 2611)
(2613 . 2614)
(2616 . 2617)
(2649 . 2652)
2654
(2674 . 2676)
(2693 . 2699)
2701
(2703 . 2705)
(2707 . 2728)
(2730 . 2736)
(2738 . 2739)
(2741 . 2745)
2749 2768 2784
(2821 . 2828)
(2831 . 2832)
(2835 . 2856)
(2858 . 2864)
(2866 . 2867)
(2870 . 2873)
2877
(2908 . 2909)
(2911 . 2913)
(2949 . 2954)
(2958 . 2960)
(2962 . 2965)
(2969 . 2970)
2972
(2974 . 2975)
(2979 . 2980)
(2984 . 2986)
(2990 . 2997)
(2999 . 3001)
(3077 . 3084)
(3086 . 3088)
(3090 . 3112)
(3114 . 3123)
(3125 . 3129)
(3168 . 3169)
(3205 . 3212)
(3214 . 3216)
(3218 . 3240)
(3242 . 3251)
(3253 . 3257)
3294
(3296 . 3297)
(3333 . 3340)
(3342 . 3344)
(3346 . 3368)
(3370 . 3385)
(3424 . 3425)
(3461 . 3478)
(3482 . 3505)
(3507 . 3515)
3517
(3520 . 3526)
(3585 . 3632)
(3634 . 3635)
(3648 . 3653)
(3713 . 3714)
3716
(3719 . 3720)
3722 3725
(3732 . 3735)
(3737 . 3743)
(3745 . 3747)
3749 3751
(3754 . 3755)
(3757 . 3760)
(3762 . 3763)
3773
(3776 . 3780)
(3804 . 3805)
3840
(3904 . 3911)
(3913 . 3946)
(3976 . 3979)
(4096 . 4129)
(4131 . 4135)
(4137 . 4138)
(4176 . 4181)
(4304 . 4342)
(4352 . 4441)
(4447 . 4514)
(4520 . 4601)
(4608 . 4614)
(4616 . 4678)
4680
(4682 . 4685)
(4688 . 4694)
4696
(4698 . 4701)
(4704 . 4742)
4744
(4746 . 4749)
(4752 . 4782)
4784
(4786 . 4789)
(4792 . 4798)
4800
(4802 . 4805)
(4808 . 4814)
(4816 . 4822)
(4824 . 4846)
(4848 . 4878)
4880
(4882 . 4885)
(4888 . 4894)
(4896 . 4934)
(4936 . 4954)
(5024 . 5108)
(5121 . 5740)
(5743 . 5750)
(5761 . 5786)
(5792 . 5866)
(6016 . 6067)
(6176 . 6210)
(6212 . 6263)
(6272 . 6312)
(8501 . 8504)
12294
(12353 . 12436)
(12449 . 12538)
(12549 . 12588)
(12593 . 12686)
(12704 . 12727)
(13312 . 19893)
(19968 . 40869)
(40960 . 42124)
(44032 . 55203)
(63744 . 64045)
64285
(64287 . 64296)
(64298 . 64310)
(64312 . 64316)
64318
(64320 . 64321)
(64323 . 64324)
(64326 . 64433)
(64467 . 64829)
(64848 . 64911)
(64914 . 64967)
(65008 . 65019)
(65136 . 65138)
65140
(65142 . 65276)
(65382 . 65391)
(65393 . 65437)
(65440 . 65470)
(65474 . 65479)
(65482 . 65487)
(65490 . 65495)
(65498 . 65500)
(66304 . 66334)
(66352 . 66377)
(131072 . 173782)
(194560 . 195101)))
(xsdre-def-primitive-category 'Mn
'((768 . 846)
(864 . 866)
(1155 . 1158)
(1425 . 1441)
(1443 . 1465)
(1467 . 1469)
1471
(1473 . 1474)
1476
(1611 . 1621)
1648
(1750 . 1756)
(1759 . 1764)
(1767 . 1768)
(1770 . 1773)
1809
(1840 . 1866)
(1958 . 1968)
(2305 . 2306)
2364
(2369 . 2376)
2381
(2385 . 2388)
(2402 . 2403)
2433 2492
(2497 . 2500)
2509
(2530 . 2531)
2562 2620
(2625 . 2626)
(2631 . 2632)
(2635 . 2637)
(2672 . 2673)
(2689 . 2690)
2748
(2753 . 2757)
(2759 . 2760)
2765 2817 2876 2879
(2881 . 2883)
2893 2902 2946 3008 3021
(3134 . 3136)
(3142 . 3144)
(3146 . 3149)
(3157 . 3158)
3263 3270
(3276 . 3277)
(3393 . 3395)
3405 3530
(3538 . 3540)
3542 3633
(3636 . 3642)
(3655 . 3662)
3761
(3764 . 3769)
(3771 . 3772)
(3784 . 3789)
(3864 . 3865)
3893 3895 3897
(3953 . 3966)
(3968 . 3972)
(3974 . 3975)
(3984 . 3991)
(3993 . 4028)
4038
(4141 . 4144)
4146
(4150 . 4151)
4153
(4184 . 4185)
(6071 . 6077)
6086
(6089 . 6099)
6313
(8400 . 8412)
8417
(12330 . 12335)
(12441 . 12442)
64286
(65056 . 65059)
(119143 . 119145)
(119163 . 119170)
(119173 . 119179)
(119210 . 119213)))
(xsdre-def-primitive-category 'Mc
'(2307
(2366 . 2368)
(2377 . 2380)
(2434 . 2435)
(2494 . 2496)
(2503 . 2504)
(2507 . 2508)
2519
(2622 . 2624)
2691
(2750 . 2752)
2761
(2763 . 2764)
(2818 . 2819)
2878 2880
(2887 . 2888)
(2891 . 2892)
2903 2947
(3006 . 3007)
(3009 . 3010)
(3014 . 3016)
(3018 . 3020)
3031
(3073 . 3075)
(3137 . 3140)
(3202 . 3203)
3262
(3264 . 3268)
(3271 . 3272)
(3274 . 3275)
(3285 . 3286)
(3330 . 3331)
(3390 . 3392)
(3398 . 3400)
(3402 . 3404)
3415
(3458 . 3459)
(3535 . 3537)
(3544 . 3551)
(3570 . 3571)
(3902 . 3903)
3967 4140 4145 4152
(4182 . 4183)
(6068 . 6070)
(6078 . 6085)
(6087 . 6088)
(119141 . 119142)
(119149 . 119154)))
(xsdre-def-primitive-category 'Me
'((1160 . 1161)
(1757 . 1758)
(8413 . 8416)
(8418 . 8419)))
(xsdre-def-primitive-category 'Nd
'((48 . 57)
(1632 . 1641)
(1776 . 1785)
(2406 . 2415)
(2534 . 2543)
(2662 . 2671)
(2790 . 2799)
(2918 . 2927)
(3047 . 3055)
(3174 . 3183)
(3302 . 3311)
(3430 . 3439)
(3664 . 3673)
(3792 . 3801)
(3872 . 3881)
(4160 . 4169)
(4969 . 4977)
(6112 . 6121)
(6160 . 6169)
(65296 . 65305)
(120782 . 120831)))
(xsdre-def-primitive-category 'Nl
'((5870 . 5872)
(8544 . 8579)
12295
(12321 . 12329)
(12344 . 12346)
66378))
(xsdre-def-primitive-category 'No
'((178 . 179)
185
(188 . 190)
(2548 . 2553)
(3056 . 3058)
(3882 . 3891)
(4978 . 4988)
8304
(8308 . 8313)
(8320 . 8329)
(8531 . 8543)
(9312 . 9371)
9450
(10102 . 10131)
(12690 . 12693)
(12832 . 12841)
(12928 . 12937)
(66336 . 66339)))
(xsdre-def-primitive-category 'Pc
'(95
(8255 . 8256)
12539
(65075 . 65076)
(65101 . 65103)
65343 65381))
(xsdre-def-primitive-category 'Pd
'(45 173 1418 6150
(8208 . 8213)
12316 12336
(65073 . 65074)
65112 65123 65293))
(xsdre-def-primitive-category 'Ps
'(40 91 123 3898 3900 5787 8218 8222 8261 8317
8333 9001 12296 12298 12300 12302 12304
12308 12310 12312 12314 12317 64830 65077
65079 65081 65083 65085 65087 65089 65091
65113 65115 65117 65288 65339 65371 65378))
(xsdre-def-primitive-category 'Pe
'(41 93 125 3899 3901 5788 8262 8318 8334 9002
12297 12299 12301 12303 12305 12309 12311
12313 12315
(12318 . 12319)
64831 65078 65080 65082 65084 65086 65088
65090 65092 65114 65116 65118 65289 65341
65373 65379))
(xsdre-def-primitive-category 'Pi
'(171 8216
(8219 . 8220)
8223 8249))
(xsdre-def-primitive-category 'Pf
'(187 8217 8221 8250))
(xsdre-def-primitive-category 'Po
'((33 . 35)
(37 . 39)
42 44
(46 . 47)
(58 . 59)
(63 . 64)
92 161 183 191 894 903
(1370 . 1375)
1417 1470 1472 1475
(1523 . 1524)
1548 1563 1567
(1642 . 1645)
1748
(1792 . 1805)
(2404 . 2405)
2416 3572 3663
(3674 . 3675)
(3844 . 3858)
3973
(4170 . 4175)
4347
(4961 . 4968)
(5741 . 5742)
(5867 . 5869)
(6100 . 6106)
6108
(6144 . 6149)
(6151 . 6154)
(8214 . 8215)
(8224 . 8231)
(8240 . 8248)
(8251 . 8254)
(8257 . 8259)
(8264 . 8269)
(12289 . 12291)
65072
(65097 . 65100)
(65104 . 65106)
(65108 . 65111)
(65119 . 65121)
65128
(65130 . 65131)
(65281 . 65283)
(65285 . 65287)
65290 65292
(65294 . 65295)
(65306 . 65307)
(65311 . 65312)
65340 65377 65380))
(xsdre-def-primitive-category 'Zs
'(32 160 5760
(8192 . 8203)
8239 12288))
(xsdre-def-primitive-category 'Zl
'(8232))
(xsdre-def-primitive-category 'Zp
'(8233))
(xsdre-def-primitive-category 'Sm
'(43
(60 . 62)
124 126 172 177 215 247 8260
(8314 . 8316)
(8330 . 8332)
(8592 . 8596)
(8602 . 8603)
8608 8611 8614 8622
(8654 . 8655)
8658 8660
(8704 . 8945)
(8968 . 8971)
(8992 . 8993)
9655 9665 9839 64297 65122
(65124 . 65126)
65291
(65308 . 65310)
65372 65374 65506
(65513 . 65516)
120513 120539 120571 120597 120629 120655
120687 120713 120745 120771))
(xsdre-def-primitive-category 'Sc
'(36
(162 . 165)
(2546 . 2547)
3647 6107
(8352 . 8367)
65129 65284
(65504 . 65505)
(65509 . 65510)))
(xsdre-def-primitive-category 'Sk
'(94 96 168 175 180 184
(697 . 698)
(706 . 719)
(722 . 735)
(741 . 749)
(884 . 885)
(900 . 901)
8125
(8127 . 8129)
(8141 . 8143)
(8157 . 8159)
(8173 . 8175)
(8189 . 8190)
(12443 . 12444)
65342 65344 65507))
(xsdre-def-primitive-category 'So
'((166 . 167)
169 174 176 182 1154 1769
(1789 . 1790)
2554 2928
(3841 . 3843)
(3859 . 3863)
(3866 . 3871)
3892 3894 3896
(4030 . 4037)
(4039 . 4044)
4047
(8448 . 8449)
(8451 . 8454)
(8456 . 8457)
8468
(8470 . 8472)
(8478 . 8483)
8485 8487 8489 8494 8498 8506
(8597 . 8601)
(8604 . 8607)
(8609 . 8610)
(8612 . 8613)
(8615 . 8621)
(8623 . 8653)
(8656 . 8657)
8659
(8661 . 8691)
(8960 . 8967)
(8972 . 8991)
(8994 . 9000)
(9003 . 9083)
(9085 . 9114)
(9216 . 9254)
(9280 . 9290)
(9372 . 9449)
(9472 . 9621)
(9632 . 9654)
(9656 . 9664)
(9666 . 9719)
(9728 . 9747)
(9753 . 9838)
(9840 . 9841)
(9985 . 9988)
(9990 . 9993)
(9996 . 10023)
(10025 . 10059)
10061
(10063 . 10066)
10070
(10072 . 10078)
(10081 . 10087)
10132
(10136 . 10159)
(10161 . 10174)
(10240 . 10495)
(11904 . 11929)
(11931 . 12019)
(12032 . 12245)
(12272 . 12283)
12292
(12306 . 12307)
12320
(12342 . 12343)
(12350 . 12351)
(12688 . 12689)
(12694 . 12703)
(12800 . 12828)
(12842 . 12867)
(12896 . 12923)
12927
(12938 . 12976)
(12992 . 13003)
(13008 . 13054)
(13056 . 13174)
(13179 . 13277)
(13280 . 13310)
(42128 . 42145)
(42148 . 42163)
(42165 . 42176)
(42178 . 42180)
42182 65508 65512
(65517 . 65518)
(65532 . 65533)
(118784 . 119029)
(119040 . 119078)
(119082 . 119140)
(119146 . 119148)
(119171 . 119172)
(119180 . 119209)
(119214 . 119261)))
(xsdre-def-primitive-category 'Cc
'((0 . 31)
(127 . 159)))
(xsdre-def-primitive-category 'Cf
'(1807
(6155 . 6158)
(8204 . 8207)
(8234 . 8238)
(8298 . 8303)
65279
(65529 . 65531)
(119155 . 119162)
917505
(917536 . 917631)))
(xsdre-def-primitive-category 'Co
'((57344 . 63743)
(983040 . 1048573)
(1048576 . 1114109)))
(provide 'xsd-regexp)
;;; xsd-regexp.el ends here
|