1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
|
;;; ccl.el --- CCL (Code Conversion Language) compiler
;; Copyright (C) 1997, 1998, 2001, 2002, 2003, 2004, 2005,
;; 2006 Free Software Foundation, Inc.
;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
;; 2005, 2006
;; National Institute of Advanced Industrial Science and Technology (AIST)
;; Registration Number H14PRO021
;; Keywords: CCL, mule, multilingual, character set, coding-system
;; This file is part of GNU Emacs.
;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING. If not, write to the
;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
;; Boston, MA 02110-1301, USA.
;;; Commentary:
;; CCL (Code Conversion Language) is a simple programming language to
;; be used for various kind of code conversion. A CCL program is
;; compiled to CCL code (vector of integers) and executed by the CCL
;; interpreter in Emacs.
;;
;; CCL is used for code conversion at process I/O and file I/O for
;; non-standard coding-systems. In addition, it is used for
;; calculating code points of X fonts from character codes.
;; However, since CCL is designed as a powerful programming language,
;; it can be used for more generic calculation. For instance,
;; combination of three or more arithmetic operations can be
;; calculated faster than in Emacs Lisp.
;;
;; The syntax and semantics of CCL programs are described in the
;; documentation of `define-ccl-program'.
;;; Code:
(defgroup ccl nil
"CCL (Code Conversion Language) compiler."
:prefix "ccl-"
:group 'i18n)
(defconst ccl-command-table
[if branch loop break repeat write-repeat write-read-repeat
read read-if read-branch write call end
read-multibyte-character write-multibyte-character
translate-character
iterate-multiple-map map-multiple map-single lookup-integer
lookup-character]
"Vector of CCL commands (symbols).")
;; Put a property to each symbol of CCL commands for the compiler.
(let (op (i 0) (len (length ccl-command-table)))
(while (< i len)
(setq op (aref ccl-command-table i))
(put op 'ccl-compile-function (intern (format "ccl-compile-%s" op)))
(setq i (1+ i))))
(defconst ccl-code-table
[set-register
set-short-const
set-const
set-array
jump
jump-cond
write-register-jump
write-register-read-jump
write-const-jump
write-const-read-jump
write-string-jump
write-array-read-jump
read-jump
branch
read-register
write-expr-const
read-branch
write-register
write-expr-register
call
write-const-string
write-array
end
set-assign-expr-const
set-assign-expr-register
set-expr-const
set-expr-register
jump-cond-expr-const
jump-cond-expr-register
read-jump-cond-expr-const
read-jump-cond-expr-register
ex-cmd
]
"Vector of CCL compiled codes (symbols).")
(defconst ccl-extended-code-table
[read-multibyte-character
write-multibyte-character
translate-character
translate-character-const-tbl
nil nil nil nil nil nil nil nil nil nil nil nil ; 0x04-0x0f
iterate-multiple-map
map-multiple
map-single
lookup-int-const-tbl
lookup-char-const-tbl
]
"Vector of CCL extended compiled codes (symbols).")
;; Put a property to each symbol of CCL codes for the disassembler.
(let (code (i 0) (len (length ccl-code-table)))
(while (< i len)
(setq code (aref ccl-code-table i))
(put code 'ccl-code i)
(put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))
(setq i (1+ i))))
(let (code (i 0) (len (length ccl-extended-code-table)))
(while (< i len)
(setq code (aref ccl-extended-code-table i))
(if code
(progn
(put code 'ccl-ex-code i)
(put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))))
(setq i (1+ i))))
(defconst ccl-jump-code-list
'(jump jump-cond write-register-jump write-register-read-jump
write-const-jump write-const-read-jump write-string-jump
write-array-read-jump read-jump))
;; Put a property `jump-flag' to each CCL code which execute jump in
;; some way.
(let ((l ccl-jump-code-list))
(while l
(put (car l) 'jump-flag t)
(setq l (cdr l))))
(defconst ccl-register-table
[r0 r1 r2 r3 r4 r5 r6 r7]
"Vector of CCL registers (symbols).")
;; Put a property to indicate register number to each symbol of CCL.
;; registers.
(let (reg (i 0) (len (length ccl-register-table)))
(while (< i len)
(setq reg (aref ccl-register-table i))
(put reg 'ccl-register-number i)
(setq i (1+ i))))
(defconst ccl-arith-table
[+ - * / % & | ^ << >> <8 >8 // nil nil nil
< > == <= >= != de-sjis en-sjis]
"Vector of CCL arithmetic/logical operators (symbols).")
;; Put a property to each symbol of CCL operators for the compiler.
(let (arith (i 0) (len (length ccl-arith-table)))
(while (< i len)
(setq arith (aref ccl-arith-table i))
(if arith (put arith 'ccl-arith-code i))
(setq i (1+ i))))
(defconst ccl-assign-arith-table
[+= -= *= /= %= &= |= ^= <<= >>= <8= >8= //=]
"Vector of CCL assignment operators (symbols).")
;; Put a property to each symbol of CCL assignment operators for the compiler.
(let (arith (i 0) (len (length ccl-assign-arith-table)))
(while (< i len)
(setq arith (aref ccl-assign-arith-table i))
(put arith 'ccl-self-arith-code i)
(setq i (1+ i))))
(defvar ccl-program-vector nil
"Working vector of CCL codes produced by CCL compiler.")
(defvar ccl-current-ic 0
"The current index for `ccl-program-vector'.")
;; Embed integer DATA in `ccl-program-vector' at `ccl-current-ic' and
;; increment it. If IC is specified, embed DATA at IC.
(defun ccl-embed-data (data &optional ic)
(if ic
(aset ccl-program-vector ic data)
(let ((len (length ccl-program-vector)))
(if (>= ccl-current-ic len)
(let ((new (make-vector (* len 2) nil)))
(while (> len 0)
(setq len (1- len))
(aset new len (aref ccl-program-vector len)))
(setq ccl-program-vector new))))
(aset ccl-program-vector ccl-current-ic data)
(setq ccl-current-ic (1+ ccl-current-ic))))
;; Embed pair of SYMBOL and PROP where (get SYMBOL PROP) should give
;; proper index number for SYMBOL. PROP should be
;; `translation-table-id', `translation-hash-table-id'
;; `code-conversion-map-id', or `ccl-program-idx'.
(defun ccl-embed-symbol (symbol prop)
(ccl-embed-data (cons symbol prop)))
;; Embed string STR of length LEN in `ccl-program-vector' at
;; `ccl-current-ic'.
(defun ccl-embed-string (len str)
(let ((i 0))
(while (< i len)
(ccl-embed-data (logior (ash (aref str i) 16)
(if (< (1+ i) len)
(ash (aref str (1+ i)) 8)
0)
(if (< (+ i 2) len)
(aref str (+ i 2))
0)))
(setq i (+ i 3)))))
;; Embed a relative jump address to `ccl-current-ic' in
;; `ccl-program-vector' at IC without altering the other bit field.
(defun ccl-embed-current-address (ic)
(let ((relative (- ccl-current-ic (1+ ic))))
(aset ccl-program-vector ic
(logior (aref ccl-program-vector ic) (ash relative 8)))))
;; Embed CCL code for the operation OP and arguments REG and DATA in
;; `ccl-program-vector' at `ccl-current-ic' in the following format.
;; |----------------- integer (28-bit) ------------------|
;; |------------ 20-bit ------------|- 3-bit --|- 5-bit -|
;; |------------- DATA -------------|-- REG ---|-- OP ---|
;; If REG2 is specified, embed a code in the following format.
;; |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
;; |-------- DATA -------|-- REG2 --|-- REG ---|-- OP ---|
;; If REG is a CCL register symbol (e.g. r0, r1...), the register
;; number is embedded. If OP is one of unconditional jumps, DATA is
;; changed to a relative jump address.
(defun ccl-embed-code (op reg data &optional reg2)
(if (and (> data 0) (get op 'jump-flag))
;; DATA is an absolute jump address. Make it relative to the
;; next of jump code.
(setq data (- data (1+ ccl-current-ic))))
(let ((code (logior (get op 'ccl-code)
(ash
(if (symbolp reg) (get reg 'ccl-register-number) reg) 5)
(if reg2
(logior (ash (get reg2 'ccl-register-number) 8)
(ash data 11))
(ash data 8)))))
(ccl-embed-data code)))
;; extended ccl command format
;; |- 14-bit -|- 3-bit --|- 3-bit --|- 3-bit --|- 5-bit -|
;; |- EX-OP --|-- REG3 --|-- REG2 --|-- REG ---|-- OP ---|
(defun ccl-embed-extended-command (ex-op reg reg2 reg3)
(let ((data (logior (ash (get ex-op 'ccl-ex-code) 3)
(if (symbolp reg3)
(get reg3 'ccl-register-number)
0))))
(ccl-embed-code 'ex-cmd reg data reg2)))
;; Just advance `ccl-current-ic' by INC.
(defun ccl-increment-ic (inc)
(setq ccl-current-ic (+ ccl-current-ic inc)))
;; If non-nil, index of the start of the current loop.
(defvar ccl-loop-head nil)
;; If non-nil, list of absolute addresses of the breaking points of
;; the current loop.
(defvar ccl-breaks nil)
;;;###autoload
(defun ccl-compile (ccl-program)
"Return the compiled code of CCL-PROGRAM as a vector of integers."
(if (or (null (consp ccl-program))
(null (integerp (car ccl-program)))
(null (listp (car (cdr ccl-program)))))
(error "CCL: Invalid CCL program: %s" ccl-program))
(if (null (vectorp ccl-program-vector))
(setq ccl-program-vector (make-vector 8192 0)))
(setq ccl-loop-head nil ccl-breaks nil)
(setq ccl-current-ic 0)
;; The first element is the buffer magnification.
(ccl-embed-data (car ccl-program))
;; The second element is the address of the start CCL code for
;; processing end of input buffer (we call it eof-processor). We
;; set it later.
(ccl-increment-ic 1)
;; Compile the main body of the CCL program.
(ccl-compile-1 (car (cdr ccl-program)))
;; Embed the address of eof-processor.
(ccl-embed-data ccl-current-ic 1)
;; Then compile eof-processor.
(if (nth 2 ccl-program)
(ccl-compile-1 (nth 2 ccl-program)))
;; At last, embed termination code.
(ccl-embed-code 'end 0 0)
(let ((vec (make-vector ccl-current-ic 0))
(i 0))
(while (< i ccl-current-ic)
(aset vec i (aref ccl-program-vector i))
(setq i (1+ i)))
vec))
;; Signal syntax error.
(defun ccl-syntax-error (cmd)
(error "CCL: Syntax error: %s" cmd))
;; Check if ARG is a valid CCL register.
(defun ccl-check-register (arg cmd)
(if (get arg 'ccl-register-number)
arg
(error "CCL: Invalid register %s in %s" arg cmd)))
;; Check if ARG is a valid CCL command.
(defun ccl-check-compile-function (arg cmd)
(or (get arg 'ccl-compile-function)
(error "CCL: Invalid command: %s" cmd)))
;; In the following code, most ccl-compile-XXXX functions return t if
;; they end with unconditional jump, else return nil.
;; Compile CCL-BLOCK (see the syntax above).
(defun ccl-compile-1 (ccl-block)
(let (unconditional-jump
cmd)
(if (or (integerp ccl-block)
(stringp ccl-block)
(and ccl-block (symbolp (car ccl-block))))
;; This block consists of single statement.
(setq ccl-block (list ccl-block)))
;; Now CCL-BLOCK is a list of statements. Compile them one by
;; one.
(while ccl-block
(setq cmd (car ccl-block))
(setq unconditional-jump
(cond ((integerp cmd)
;; SET statement for the register 0.
(ccl-compile-set (list 'r0 '= cmd)))
((stringp cmd)
;; WRITE statement of string argument.
(ccl-compile-write-string cmd))
((listp cmd)
;; The other statements.
(cond ((eq (nth 1 cmd) '=)
;; SET statement of the form `(REG = EXPRESSION)'.
(ccl-compile-set cmd))
((and (symbolp (nth 1 cmd))
(get (nth 1 cmd) 'ccl-self-arith-code))
;; SET statement with an assignment operation.
(ccl-compile-self-set cmd))
(t
(funcall (ccl-check-compile-function (car cmd) cmd)
cmd))))
(t
(ccl-syntax-error cmd))))
(setq ccl-block (cdr ccl-block)))
unconditional-jump))
(defconst ccl-max-short-const (ash 1 19))
(defconst ccl-min-short-const (ash -1 19))
;; Compile SET statement.
(defun ccl-compile-set (cmd)
(let ((rrr (ccl-check-register (car cmd) cmd))
(right (nth 2 cmd)))
(cond ((listp right)
;; CMD has the form `(RRR = (XXX OP YYY))'.
(ccl-compile-expression rrr right))
((integerp right)
;; CMD has the form `(RRR = integer)'.
(if (and (<= right ccl-max-short-const)
(>= right ccl-min-short-const))
(ccl-embed-code 'set-short-const rrr right)
(ccl-embed-code 'set-const rrr 0)
(ccl-embed-data right)))
(t
;; CMD has the form `(RRR = rrr [ array ])'.
(ccl-check-register right cmd)
(let ((ary (nth 3 cmd)))
(if (vectorp ary)
(let ((i 0) (len (length ary)))
(ccl-embed-code 'set-array rrr len right)
(while (< i len)
(ccl-embed-data (aref ary i))
(setq i (1+ i))))
(ccl-embed-code 'set-register rrr 0 right))))))
nil)
;; Compile SET statement with ASSIGNMENT_OPERATOR.
(defun ccl-compile-self-set (cmd)
(let ((rrr (ccl-check-register (car cmd) cmd))
(right (nth 2 cmd)))
(if (listp right)
;; CMD has the form `(RRR ASSIGN_OP (XXX OP YYY))', compile
;; the right hand part as `(r7 = (XXX OP YYY))' (note: the
;; register 7 can be used for storing temporary value).
(progn
(ccl-compile-expression 'r7 right)
(setq right 'r7)))
;; Now CMD has the form `(RRR ASSIGN_OP ARG)'. Compile it as
;; `(RRR = (RRR OP ARG))'.
(ccl-compile-expression
rrr
(list rrr (intern (substring (symbol-name (nth 1 cmd)) 0 -1)) right)))
nil)
;; Compile SET statement of the form `(RRR = EXPR)'.
(defun ccl-compile-expression (rrr expr)
(let ((left (car expr))
(op (get (nth 1 expr) 'ccl-arith-code))
(right (nth 2 expr)))
(if (listp left)
(progn
;; EXPR has the form `((EXPR2 OP2 ARG) OP RIGHT)'. Compile
;; the first term as `(r7 = (EXPR2 OP2 ARG)).'
(ccl-compile-expression 'r7 left)
(setq left 'r7)))
;; Now EXPR has the form (LEFT OP RIGHT).
(if (and (eq rrr left)
(< op (length ccl-assign-arith-table)))
;; Compile this SET statement as `(RRR OP= RIGHT)'.
(if (integerp right)
(progn
(ccl-embed-code 'set-assign-expr-const rrr (ash op 3) 'r0)
(ccl-embed-data right))
(ccl-check-register right expr)
(ccl-embed-code 'set-assign-expr-register rrr (ash op 3) right))
;; Compile this SET statement as `(RRR = (LEFT OP RIGHT))'.
(if (integerp right)
(progn
(ccl-embed-code 'set-expr-const rrr (ash op 3) left)
(ccl-embed-data right))
(ccl-check-register right expr)
(ccl-embed-code 'set-expr-register
rrr
(logior (ash op 3) (get right 'ccl-register-number))
left)))))
;; Compile WRITE statement with string argument.
(defun ccl-compile-write-string (str)
(setq str (string-as-unibyte str))
(let ((len (length str)))
(ccl-embed-code 'write-const-string 1 len)
(ccl-embed-string len str))
nil)
;; Compile IF statement of the form `(if CONDITION TRUE-PART FALSE-PART)'.
;; If READ-FLAG is non-nil, this statement has the form
;; `(read-if (REG OPERATOR ARG) TRUE-PART FALSE-PART)'.
(defun ccl-compile-if (cmd &optional read-flag)
(if (and (/= (length cmd) 3) (/= (length cmd) 4))
(error "CCL: Invalid number of arguments: %s" cmd))
(let ((condition (nth 1 cmd))
(true-cmds (nth 2 cmd))
(false-cmds (nth 3 cmd))
jump-cond-address
false-ic)
(if (and (listp condition)
(listp (car condition)))
;; If CONDITION is a nested expression, the inner expression
;; should be compiled at first as SET statement, i.e.:
;; `(if ((X OP2 Y) OP Z) ...)' is compiled into two statements:
;; `(r7 = (X OP2 Y)) (if (r7 OP Z) ...)'.
(progn
(ccl-compile-expression 'r7 (car condition))
(setq condition (cons 'r7 (cdr condition)))
(setq cmd (cons (car cmd)
(cons condition (cdr (cdr cmd)))))))
(setq jump-cond-address ccl-current-ic)
;; Compile CONDITION.
(if (symbolp condition)
;; CONDITION is a register.
(progn
(ccl-check-register condition cmd)
(ccl-embed-code 'jump-cond condition 0))
;; CONDITION is a simple expression of the form (RRR OP ARG).
(let ((rrr (car condition))
(op (get (nth 1 condition) 'ccl-arith-code))
(arg (nth 2 condition)))
(ccl-check-register rrr cmd)
(if (integerp arg)
(progn
(ccl-embed-code (if read-flag 'read-jump-cond-expr-const
'jump-cond-expr-const)
rrr 0)
(ccl-embed-data op)
(ccl-embed-data arg))
(ccl-check-register arg cmd)
(ccl-embed-code (if read-flag 'read-jump-cond-expr-register
'jump-cond-expr-register)
rrr 0)
(ccl-embed-data op)
(ccl-embed-data (get arg 'ccl-register-number)))))
;; Compile TRUE-PART.
(let ((unconditional-jump (ccl-compile-1 true-cmds)))
(if (null false-cmds)
;; This is the place to jump to if condition is false.
(progn
(ccl-embed-current-address jump-cond-address)
(setq unconditional-jump nil))
(let (end-true-part-address)
(if (not unconditional-jump)
(progn
;; If TRUE-PART does not end with unconditional jump, we
;; have to jump to the end of FALSE-PART from here.
(setq end-true-part-address ccl-current-ic)
(ccl-embed-code 'jump 0 0)))
;; This is the place to jump to if CONDITION is false.
(ccl-embed-current-address jump-cond-address)
;; Compile FALSE-PART.
(setq unconditional-jump
(and (ccl-compile-1 false-cmds) unconditional-jump))
(if end-true-part-address
;; This is the place to jump to after the end of TRUE-PART.
(ccl-embed-current-address end-true-part-address))))
unconditional-jump)))
;; Compile BRANCH statement.
(defun ccl-compile-branch (cmd)
(if (< (length cmd) 3)
(error "CCL: Invalid number of arguments: %s" cmd))
(ccl-compile-branch-blocks 'branch
(ccl-compile-branch-expression (nth 1 cmd) cmd)
(cdr (cdr cmd))))
;; Compile READ statement of the form `(read-branch EXPR BLOCK0 BLOCK1 ...)'.
(defun ccl-compile-read-branch (cmd)
(if (< (length cmd) 3)
(error "CCL: Invalid number of arguments: %s" cmd))
(ccl-compile-branch-blocks 'read-branch
(ccl-compile-branch-expression (nth 1 cmd) cmd)
(cdr (cdr cmd))))
;; Compile EXPRESSION part of BRANCH statement and return register
;; which holds a value of the expression.
(defun ccl-compile-branch-expression (expr cmd)
(if (listp expr)
;; EXPR has the form `(EXPR2 OP ARG)'. Compile it as SET
;; statement of the form `(r7 = (EXPR2 OP ARG))'.
(progn
(ccl-compile-expression 'r7 expr)
'r7)
(ccl-check-register expr cmd)))
;; Compile BLOCKs of BRANCH statement. CODE is 'branch or 'read-branch.
;; REG is a register which holds a value of EXPRESSION part. BLOCKs
;; is a list of CCL-BLOCKs.
(defun ccl-compile-branch-blocks (code rrr blocks)
(let ((branches (length blocks))
branch-idx
jump-table-head-address
empty-block-indexes
block-tail-addresses
block-unconditional-jump)
(ccl-embed-code code rrr branches)
(setq jump-table-head-address ccl-current-ic)
;; The size of jump table is the number of blocks plus 1 (for the
;; case RRR is out of range).
(ccl-increment-ic (1+ branches))
(setq empty-block-indexes (list branches))
;; Compile each block.
(setq branch-idx 0)
(while blocks
(if (null (car blocks))
;; This block is empty.
(setq empty-block-indexes (cons branch-idx empty-block-indexes)
block-unconditional-jump t)
;; This block is not empty.
(ccl-embed-data (- ccl-current-ic jump-table-head-address)
(+ jump-table-head-address branch-idx))
(setq block-unconditional-jump (ccl-compile-1 (car blocks)))
(if (not block-unconditional-jump)
(progn
;; Jump address of the end of branches are embedded later.
;; For the moment, just remember where to embed them.
(setq block-tail-addresses
(cons ccl-current-ic block-tail-addresses))
(ccl-embed-code 'jump 0 0))))
(setq branch-idx (1+ branch-idx))
(setq blocks (cdr blocks)))
(if (not block-unconditional-jump)
;; We don't need jump code at the end of the last block.
(setq block-tail-addresses (cdr block-tail-addresses)
ccl-current-ic (1- ccl-current-ic)))
;; Embed jump address at the tailing jump commands of blocks.
(while block-tail-addresses
(ccl-embed-current-address (car block-tail-addresses))
(setq block-tail-addresses (cdr block-tail-addresses)))
;; For empty blocks, make entries in the jump table point directly here.
(while empty-block-indexes
(ccl-embed-data (- ccl-current-ic jump-table-head-address)
(+ jump-table-head-address (car empty-block-indexes)))
(setq empty-block-indexes (cdr empty-block-indexes))))
;; Branch command ends by unconditional jump if RRR is out of range.
nil)
;; Compile LOOP statement.
(defun ccl-compile-loop (cmd)
(if (< (length cmd) 2)
(error "CCL: Invalid number of arguments: %s" cmd))
(let* ((ccl-loop-head ccl-current-ic)
(ccl-breaks nil)
unconditional-jump)
(setq cmd (cdr cmd))
(if cmd
(progn
(setq unconditional-jump t)
(while cmd
(setq unconditional-jump
(and (ccl-compile-1 (car cmd)) unconditional-jump))
(setq cmd (cdr cmd)))
(if (not ccl-breaks)
unconditional-jump
;; Embed jump address for break statements encountered in
;; this loop.
(while ccl-breaks
(ccl-embed-current-address (car ccl-breaks))
(setq ccl-breaks (cdr ccl-breaks))))
nil))))
;; Compile BREAK statement.
(defun ccl-compile-break (cmd)
(if (/= (length cmd) 1)
(error "CCL: Invalid number of arguments: %s" cmd))
(if (null ccl-loop-head)
(error "CCL: No outer loop: %s" cmd))
(setq ccl-breaks (cons ccl-current-ic ccl-breaks))
(ccl-embed-code 'jump 0 0)
t)
;; Compile REPEAT statement.
(defun ccl-compile-repeat (cmd)
(if (/= (length cmd) 1)
(error "CCL: Invalid number of arguments: %s" cmd))
(if (null ccl-loop-head)
(error "CCL: No outer loop: %s" cmd))
(ccl-embed-code 'jump 0 ccl-loop-head)
t)
;; Compile WRITE-REPEAT statement.
(defun ccl-compile-write-repeat (cmd)
(if (/= (length cmd) 2)
(error "CCL: Invalid number of arguments: %s" cmd))
(if (null ccl-loop-head)
(error "CCL: No outer loop: %s" cmd))
(let ((arg (nth 1 cmd)))
(cond ((integerp arg)
(ccl-embed-code 'write-const-jump 0 ccl-loop-head)
(ccl-embed-data arg))
((stringp arg)
(setq arg (string-as-unibyte arg))
(let ((len (length arg))
(i 0))
(ccl-embed-code 'write-string-jump 0 ccl-loop-head)
(ccl-embed-data len)
(ccl-embed-string len arg)))
(t
(ccl-check-register arg cmd)
(ccl-embed-code 'write-register-jump arg ccl-loop-head))))
t)
;; Compile WRITE-READ-REPEAT statement.
(defun ccl-compile-write-read-repeat (cmd)
(if (or (< (length cmd) 2) (> (length cmd) 3))
(error "CCL: Invalid number of arguments: %s" cmd))
(if (null ccl-loop-head)
(error "CCL: No outer loop: %s" cmd))
(let ((rrr (ccl-check-register (nth 1 cmd) cmd))
(arg (nth 2 cmd)))
(cond ((null arg)
(ccl-embed-code 'write-register-read-jump rrr ccl-loop-head))
((integerp arg)
(ccl-embed-code 'write-const-read-jump rrr arg ccl-loop-head))
((vectorp arg)
(let ((len (length arg))
(i 0))
(ccl-embed-code 'write-array-read-jump rrr ccl-loop-head)
(ccl-embed-data len)
(while (< i len)
(ccl-embed-data (aref arg i))
(setq i (1+ i)))))
(t
(error "CCL: Invalid argument %s: %s" arg cmd)))
(ccl-embed-code 'read-jump rrr ccl-loop-head))
t)
;; Compile READ statement.
(defun ccl-compile-read (cmd)
(if (< (length cmd) 2)
(error "CCL: Invalid number of arguments: %s" cmd))
(let* ((args (cdr cmd))
(i (1- (length args))))
(while args
(let ((rrr (ccl-check-register (car args) cmd)))
(ccl-embed-code 'read-register rrr i)
(setq args (cdr args) i (1- i)))))
nil)
;; Compile READ-IF statement.
(defun ccl-compile-read-if (cmd)
(ccl-compile-if cmd 'read))
;; Compile WRITE statement.
(defun ccl-compile-write (cmd)
(if (< (length cmd) 2)
(error "CCL: Invalid number of arguments: %s" cmd))
(let ((rrr (nth 1 cmd)))
(cond ((integerp rrr)
(ccl-embed-code 'write-const-string 0 rrr))
((stringp rrr)
(ccl-compile-write-string rrr))
((and (symbolp rrr) (vectorp (nth 2 cmd)))
(ccl-check-register rrr cmd)
;; CMD has the form `(write REG ARRAY)'.
(let* ((arg (nth 2 cmd))
(len (length arg))
(i 0))
(ccl-embed-code 'write-array rrr len)
(while (< i len)
(if (not (integerp (aref arg i)))
(error "CCL: Invalid argument %s: %s" arg cmd))
(ccl-embed-data (aref arg i))
(setq i (1+ i)))))
((symbolp rrr)
;; CMD has the form `(write REG ...)'.
(let* ((args (cdr cmd))
(i (1- (length args))))
(while args
(setq rrr (ccl-check-register (car args) cmd))
(ccl-embed-code 'write-register rrr i)
(setq args (cdr args) i (1- i)))))
((listp rrr)
;; CMD has the form `(write (LEFT OP RIGHT))'.
(let ((left (car rrr))
(op (get (nth 1 rrr) 'ccl-arith-code))
(right (nth 2 rrr)))
(if (listp left)
(progn
;; RRR has the form `((EXPR OP2 ARG) OP RIGHT)'.
;; Compile the first term as `(r7 = (EXPR OP2 ARG))'.
(ccl-compile-expression 'r7 left)
(setq left 'r7)))
;; Now RRR has the form `(ARG OP RIGHT)'.
(if (integerp right)
(progn
(ccl-embed-code 'write-expr-const 0 (ash op 3) left)
(ccl-embed-data right))
(ccl-check-register right rrr)
(ccl-embed-code 'write-expr-register 0
(logior (ash op 3)
(get right 'ccl-register-number))
left))))
(t
(error "CCL: Invalid argument: %s" cmd))))
nil)
;; Compile CALL statement.
(defun ccl-compile-call (cmd)
(if (/= (length cmd) 2)
(error "CCL: Invalid number of arguments: %s" cmd))
(if (not (symbolp (nth 1 cmd)))
(error "CCL: Subroutine should be a symbol: %s" cmd))
(ccl-embed-code 'call 1 0)
(ccl-embed-symbol (nth 1 cmd) 'ccl-program-idx)
nil)
;; Compile END statement.
(defun ccl-compile-end (cmd)
(if (/= (length cmd) 1)
(error "CCL: Invalid number of arguments: %s" cmd))
(ccl-embed-code 'end 0 0)
t)
;; Compile read-multibyte-character
(defun ccl-compile-read-multibyte-character (cmd)
(if (/= (length cmd) 3)
(error "CCL: Invalid number of arguments: %s" cmd))
(let ((RRR (nth 1 cmd))
(rrr (nth 2 cmd)))
(ccl-check-register rrr cmd)
(ccl-check-register RRR cmd)
(ccl-embed-extended-command 'read-multibyte-character rrr RRR 0))
nil)
;; Compile write-multibyte-character
(defun ccl-compile-write-multibyte-character (cmd)
(if (/= (length cmd) 3)
(error "CCL: Invalid number of arguments: %s" cmd))
(let ((RRR (nth 1 cmd))
(rrr (nth 2 cmd)))
(ccl-check-register rrr cmd)
(ccl-check-register RRR cmd)
(ccl-embed-extended-command 'write-multibyte-character rrr RRR 0))
nil)
;; Compile translate-character
(defun ccl-compile-translate-character (cmd)
(if (/= (length cmd) 4)
(error "CCL: Invalid number of arguments: %s" cmd))
(let ((Rrr (nth 1 cmd))
(RRR (nth 2 cmd))
(rrr (nth 3 cmd)))
(ccl-check-register rrr cmd)
(ccl-check-register RRR cmd)
(cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
(ccl-embed-extended-command 'translate-character-const-tbl
rrr RRR 0)
(ccl-embed-symbol Rrr 'translation-table-id))
(t
(ccl-check-register Rrr cmd)
(ccl-embed-extended-command 'translate-character rrr RRR Rrr))))
nil)
;; Compile lookup-integer
(defun ccl-compile-lookup-integer (cmd)
(if (/= (length cmd) 4)
(error "CCL: Invalid number of arguments: %s" cmd))
(let ((Rrr (nth 1 cmd))
(RRR (nth 2 cmd))
(rrr (nth 3 cmd)))
(ccl-check-register RRR cmd)
(ccl-check-register rrr cmd)
(cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
(ccl-embed-extended-command 'lookup-int-const-tbl
rrr RRR 0)
(ccl-embed-symbol Rrr 'translation-hash-table-id))
(t
(error "CCL: non-constant table: %s" cmd)
;; not implemented:
(ccl-check-register Rrr cmd)
(ccl-embed-extended-command 'lookup-int rrr RRR 0))))
nil)
;; Compile lookup-character
(defun ccl-compile-lookup-character (cmd)
(if (/= (length cmd) 4)
(error "CCL: Invalid number of arguments: %s" cmd))
(let ((Rrr (nth 1 cmd))
(RRR (nth 2 cmd))
(rrr (nth 3 cmd)))
(ccl-check-register RRR cmd)
(ccl-check-register rrr cmd)
(cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
(ccl-embed-extended-command 'lookup-char-const-tbl
rrr RRR 0)
(ccl-embed-symbol Rrr 'translation-hash-table-id))
(t
(error "CCL: non-constant table: %s" cmd)
;; not implemented:
(ccl-check-register Rrr cmd)
(ccl-embed-extended-command 'lookup-char rrr RRR 0))))
nil)
(defun ccl-compile-iterate-multiple-map (cmd)
(ccl-compile-multiple-map-function 'iterate-multiple-map cmd)
nil)
(defun ccl-compile-map-multiple (cmd)
(if (/= (length cmd) 4)
(error "CCL: Invalid number of arguments: %s" cmd))
(let (func arg)
(setq func
(lambda (arg mp)
(let ((len 0) result add)
(while arg
(if (consp (car arg))
(setq add (funcall func (car arg) t)
result (append result add)
add (+ (- (car add)) 1))
(setq result
(append result
(list (car arg)))
add 1))
(setq arg (cdr arg)
len (+ len add)))
(if mp
(cons (- len) result)
result))))
(setq arg (append (list (nth 0 cmd) (nth 1 cmd) (nth 2 cmd))
(funcall func (nth 3 cmd) nil)))
(ccl-compile-multiple-map-function 'map-multiple arg))
nil)
(defun ccl-compile-map-single (cmd)
(if (/= (length cmd) 4)
(error "CCL: Invalid number of arguments: %s" cmd))
(let ((RRR (nth 1 cmd))
(rrr (nth 2 cmd))
(map (nth 3 cmd))
id)
(ccl-check-register rrr cmd)
(ccl-check-register RRR cmd)
(ccl-embed-extended-command 'map-single rrr RRR 0)
(cond ((symbolp map)
(if (get map 'code-conversion-map)
(ccl-embed-symbol map 'code-conversion-map-id)
(error "CCL: Invalid map: %s" map)))
(t
(error "CCL: Invalid type of arguments: %s" cmd))))
nil)
(defun ccl-compile-multiple-map-function (command cmd)
(if (< (length cmd) 4)
(error "CCL: Invalid number of arguments: %s" cmd))
(let ((RRR (nth 1 cmd))
(rrr (nth 2 cmd))
(args (nthcdr 3 cmd))
map)
(ccl-check-register rrr cmd)
(ccl-check-register RRR cmd)
(ccl-embed-extended-command command rrr RRR 0)
(ccl-embed-data (length args))
(while args
(setq map (car args))
(cond ((symbolp map)
(if (get map 'code-conversion-map)
(ccl-embed-symbol map 'code-conversion-map-id)
(error "CCL: Invalid map: %s" map)))
((numberp map)
(ccl-embed-data map))
(t
(error "CCL: Invalid type of arguments: %s" cmd)))
(setq args (cdr args)))))
;;; CCL dump stuff
;; To avoid byte-compiler warning.
(defvar ccl-code)
;;;###autoload
(defun ccl-dump (ccl-code)
"Disassemble compiled CCL-CODE."
(let ((len (length ccl-code))
(buffer-mag (aref ccl-code 0)))
(cond ((= buffer-mag 0)
(insert "Don't output anything.\n"))
((= buffer-mag 1)
(insert "Out-buffer must be as large as in-buffer.\n"))
(t
(insert
(format "Out-buffer must be %d times bigger than in-buffer.\n"
buffer-mag))))
(insert "Main-body:\n")
(setq ccl-current-ic 2)
(if (> (aref ccl-code 1) 0)
(progn
(while (< ccl-current-ic (aref ccl-code 1))
(ccl-dump-1))
(insert "At EOF:\n")))
(while (< ccl-current-ic len)
(ccl-dump-1))
))
;; Return a CCL code in `ccl-code' at `ccl-current-ic'.
(defun ccl-get-next-code ()
(prog1
(aref ccl-code ccl-current-ic)
(setq ccl-current-ic (1+ ccl-current-ic))))
(defun ccl-dump-1 ()
(let* ((code (ccl-get-next-code))
(cmd (aref ccl-code-table (logand code 31)))
(rrr (ash (logand code 255) -5))
(cc (ash code -8)))
(insert (format "%5d:[%s] " (1- ccl-current-ic) cmd))
(funcall (get cmd 'ccl-dump-function) rrr cc)))
(defun ccl-dump-set-register (rrr cc)
(insert (format "r%d = r%d\n" rrr cc)))
(defun ccl-dump-set-short-const (rrr cc)
(insert (format "r%d = %d\n" rrr cc)))
(defun ccl-dump-set-const (rrr ignore)
(insert (format "r%d = %d\n" rrr (ccl-get-next-code))))
(defun ccl-dump-set-array (rrr cc)
(let ((rrr2 (logand cc 7))
(len (ash cc -3))
(i 0))
(insert (format "r%d = array[r%d] of length %d\n\t"
rrr rrr2 len))
(while (< i len)
(insert (format "%d " (ccl-get-next-code)))
(setq i (1+ i)))
(insert "\n")))
(defun ccl-dump-jump (ignore cc &optional address)
(insert (format "jump to %d(" (+ (or address ccl-current-ic) cc)))
(if (>= cc 0)
(insert "+"))
(insert (format "%d)\n" (1+ cc))))
(defun ccl-dump-jump-cond (rrr cc)
(insert (format "if (r%d == 0), " rrr))
(ccl-dump-jump nil cc))
(defun ccl-dump-write-register-jump (rrr cc)
(insert (format "write r%d, " rrr))
(ccl-dump-jump nil cc))
(defun ccl-dump-write-register-read-jump (rrr cc)
(insert (format "write r%d, read r%d, " rrr rrr))
(ccl-dump-jump nil cc)
(ccl-get-next-code) ; Skip dummy READ-JUMP
)
(defun ccl-extract-arith-op (cc)
(aref ccl-arith-table (ash cc -6)))
(defun ccl-dump-write-expr-const (ignore cc)
(insert (format "write (r%d %s %d)\n"
(logand cc 7)
(ccl-extract-arith-op cc)
(ccl-get-next-code))))
(defun ccl-dump-write-expr-register (ignore cc)
(insert (format "write (r%d %s r%d)\n"
(logand cc 7)
(ccl-extract-arith-op cc)
(logand (ash cc -3) 7))))
(defun ccl-dump-insert-char (cc)
(cond ((= cc ?\t) (insert " \"^I\""))
((= cc ?\n) (insert " \"^J\""))
(t (insert (format " \"%c\"" cc)))))
(defun ccl-dump-write-const-jump (ignore cc)
(let ((address ccl-current-ic))
(insert "write char")
(ccl-dump-insert-char (ccl-get-next-code))
(insert ", ")
(ccl-dump-jump nil cc address)))
(defun ccl-dump-write-const-read-jump (rrr cc)
(let ((address ccl-current-ic))
(insert "write char")
(ccl-dump-insert-char (ccl-get-next-code))
(insert (format ", read r%d, " rrr))
(ccl-dump-jump cc address)
(ccl-get-next-code) ; Skip dummy READ-JUMP
))
(defun ccl-dump-write-string-jump (ignore cc)
(let ((address ccl-current-ic)
(len (ccl-get-next-code))
(i 0))
(insert "write \"")
(while (< i len)
(let ((code (ccl-get-next-code)))
(insert (ash code -16))
(if (< (1+ i) len) (insert (logand (ash code -8) 255)))
(if (< (+ i 2) len) (insert (logand code 255))))
(setq i (+ i 3)))
(insert "\", ")
(ccl-dump-jump nil cc address)))
(defun ccl-dump-write-array-read-jump (rrr cc)
(let ((address ccl-current-ic)
(len (ccl-get-next-code))
(i 0))
(insert (format "write array[r%d] of length %d,\n\t" rrr len))
(while (< i len)
(ccl-dump-insert-char (ccl-get-next-code))
(setq i (1+ i)))
(insert (format "\n\tthen read r%d, " rrr))
(ccl-dump-jump nil cc address)
(ccl-get-next-code) ; Skip dummy READ-JUMP.
))
(defun ccl-dump-read-jump (rrr cc)
(insert (format "read r%d, " rrr))
(ccl-dump-jump nil cc))
(defun ccl-dump-branch (rrr len)
(let ((jump-table-head ccl-current-ic)
(i 0))
(insert (format "jump to array[r%d] of length %d\n\t" rrr len))
(while (<= i len)
(insert (format "%d " (+ jump-table-head (ccl-get-next-code))))
(setq i (1+ i)))
(insert "\n")))
(defun ccl-dump-read-register (rrr cc)
(insert (format "read r%d (%d remaining)\n" rrr cc)))
(defun ccl-dump-read-branch (rrr len)
(insert (format "read r%d, " rrr))
(ccl-dump-branch rrr len))
(defun ccl-dump-write-register (rrr cc)
(insert (format "write r%d (%d remaining)\n" rrr cc)))
(defun ccl-dump-call (ignore cc)
(let ((subroutine (car (ccl-get-next-code))))
(insert (format "call subroutine `%s'\n" subroutine))))
(defun ccl-dump-write-const-string (rrr cc)
(if (= rrr 0)
(progn
(insert "write char")
(ccl-dump-insert-char cc)
(newline))
(let ((len cc)
(i 0))
(insert "write \"")
(while (< i len)
(let ((code (ccl-get-next-code)))
(insert (format "%c" (lsh code -16)))
(if (< (1+ i) len)
(insert (format "%c" (logand (lsh code -8) 255))))
(if (< (+ i 2) len)
(insert (format "%c" (logand code 255))))
(setq i (+ i 3))))
(insert "\"\n"))))
(defun ccl-dump-write-array (rrr cc)
(let ((i 0))
(insert (format "write array[r%d] of length %d\n\t" rrr cc))
(while (< i cc)
(ccl-dump-insert-char (ccl-get-next-code))
(setq i (1+ i)))
(insert "\n")))
(defun ccl-dump-end (&rest ignore)
(insert "end\n"))
(defun ccl-dump-set-assign-expr-const (rrr cc)
(insert (format "r%d %s= %d\n"
rrr
(ccl-extract-arith-op cc)
(ccl-get-next-code))))
(defun ccl-dump-set-assign-expr-register (rrr cc)
(insert (format "r%d %s= r%d\n"
rrr
(ccl-extract-arith-op cc)
(logand cc 7))))
(defun ccl-dump-set-expr-const (rrr cc)
(insert (format "r%d = r%d %s %d\n"
rrr
(logand cc 7)
(ccl-extract-arith-op cc)
(ccl-get-next-code))))
(defun ccl-dump-set-expr-register (rrr cc)
(insert (format "r%d = r%d %s r%d\n"
rrr
(logand cc 7)
(ccl-extract-arith-op cc)
(logand (ash cc -3) 7))))
(defun ccl-dump-jump-cond-expr-const (rrr cc)
(let ((address ccl-current-ic))
(insert (format "if !(r%d %s %d), "
rrr
(aref ccl-arith-table (ccl-get-next-code))
(ccl-get-next-code)))
(ccl-dump-jump nil cc address)))
(defun ccl-dump-jump-cond-expr-register (rrr cc)
(let ((address ccl-current-ic))
(insert (format "if !(r%d %s r%d), "
rrr
(aref ccl-arith-table (ccl-get-next-code))
(ccl-get-next-code)))
(ccl-dump-jump nil cc address)))
(defun ccl-dump-read-jump-cond-expr-const (rrr cc)
(insert (format "read r%d, " rrr))
(ccl-dump-jump-cond-expr-const rrr cc))
(defun ccl-dump-read-jump-cond-expr-register (rrr cc)
(insert (format "read r%d, " rrr))
(ccl-dump-jump-cond-expr-register rrr cc))
(defun ccl-dump-binary (ccl-code)
(let ((len (length ccl-code))
(i 2))
(while (< i len)
(let ((code (aref ccl-code i))
(j 27))
(while (>= j 0)
(insert (if (= (logand code (ash 1 j)) 0) ?0 ?1))
(setq j (1- j)))
(setq code (logand code 31))
(if (< code (length ccl-code-table))
(insert (format ":%s" (aref ccl-code-table code))))
(insert "\n"))
(setq i (1+ i)))))
(defun ccl-dump-ex-cmd (rrr cc)
(let* ((RRR (logand cc ?\x7))
(Rrr (logand (ash cc -3) ?\x7))
(ex-op (aref ccl-extended-code-table (logand (ash cc -6) ?\x3fff))))
(insert (format "<%s> " ex-op))
(funcall (get ex-op 'ccl-dump-function) rrr RRR Rrr)))
(defun ccl-dump-read-multibyte-character (rrr RRR Rrr)
(insert (format "read-multibyte-character r%d r%d\n" RRR rrr)))
(defun ccl-dump-write-multibyte-character (rrr RRR Rrr)
(insert (format "write-multibyte-character r%d r%d\n" RRR rrr)))
(defun ccl-dump-translate-character (rrr RRR Rrr)
(insert (format "translation table(r%d) r%d r%d\n" Rrr RRR rrr)))
(defun ccl-dump-translate-character-const-tbl (rrr RRR Rrr)
(let ((tbl (ccl-get-next-code)))
(insert (format "translation table(%S) r%d r%d\n" tbl RRR rrr))))
(defun ccl-dump-lookup-int-const-tbl (rrr RRR Rrr)
(let ((tbl (ccl-get-next-code)))
(insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
(defun ccl-dump-lookup-char-const-tbl (rrr RRR Rrr)
(let ((tbl (ccl-get-next-code)))
(insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
(defun ccl-dump-iterate-multiple-map (rrr RRR Rrr)
(let ((notbl (ccl-get-next-code))
(i 0) id)
(insert (format "iterate-multiple-map r%d r%d\n" RRR rrr))
(insert (format "\tnumber of maps is %d .\n\t [" notbl))
(while (< i notbl)
(setq id (ccl-get-next-code))
(insert (format "%S" id))
(setq i (1+ i)))
(insert "]\n")))
(defun ccl-dump-map-multiple (rrr RRR Rrr)
(let ((notbl (ccl-get-next-code))
(i 0) id)
(insert (format "map-multiple r%d r%d\n" RRR rrr))
(insert (format "\tnumber of maps and separators is %d\n\t [" notbl))
(while (< i notbl)
(setq id (ccl-get-next-code))
(if (= id -1)
(insert "]\n\t [")
(insert (format "%S " id)))
(setq i (1+ i)))
(insert "]\n")))
(defun ccl-dump-map-single (rrr RRR Rrr)
(let ((id (ccl-get-next-code)))
(insert (format "map-single r%d r%d map(%S)\n" RRR rrr id))))
;; CCL emulation staffs
;; Not yet implemented.
;; Auto-loaded functions.
;;;###autoload
(defmacro declare-ccl-program (name &optional vector)
"Declare NAME as a name of CCL program.
This macro exists for backward compatibility. In the old version of
Emacs, to compile a CCL program which calls another CCL program not
yet defined, it must be declared as a CCL program in advance. But,
now CCL program names are resolved not at compile time but before
execution.
Optional arg VECTOR is a compiled CCL code of the CCL program."
`(put ',name 'ccl-program-idx (register-ccl-program ',name ,vector)))
;;;###autoload
(defmacro define-ccl-program (name ccl-program &optional doc)
"Set NAME the compiled code of CCL-PROGRAM.
CCL-PROGRAM has this form:
(BUFFER_MAGNIFICATION
CCL_MAIN_CODE
[ CCL_EOF_CODE ])
BUFFER_MAGNIFICATION is an integer value specifying the approximate
output buffer magnification size compared with the bytes of input data
text. It is assured that the actual output buffer has 256 bytes
more than the size calculated by BUFFER_MAGNIFICATION.
If the value is zero, the CCL program can't execute `read' and
`write' commands.
CCL_MAIN_CODE and CCL_EOF_CODE are CCL program codes. CCL_MAIN_CODE
executed at first. If there's no more input data when `read' command
is executed in CCL_MAIN_CODE, CCL_EOF_CODE is executed. If
CCL_MAIN_CODE is terminated, CCL_EOF_CODE is not executed.
Here's the syntax of CCL program code in BNF notation. The lines
starting by two semicolons (and optional leading spaces) describe the
semantics.
CCL_MAIN_CODE := CCL_BLOCK
CCL_EOF_CODE := CCL_BLOCK
CCL_BLOCK := STATEMENT | (STATEMENT [STATEMENT ...])
STATEMENT :=
SET | IF | BRANCH | LOOP | REPEAT | BREAK | READ | WRITE | CALL
| TRANSLATE | MAP | LOOKUP | END
SET := (REG = EXPRESSION)
| (REG ASSIGNMENT_OPERATOR EXPRESSION)
;; The following form is the same as (r0 = integer).
| integer
EXPRESSION := ARG | (EXPRESSION OPERATOR ARG)
;; Evaluate EXPRESSION. If the result is nonzero, execute
;; CCL_BLOCK_0. Otherwise, execute CCL_BLOCK_1.
IF := (if EXPRESSION CCL_BLOCK_0 CCL_BLOCK_1)
;; Evaluate EXPRESSION. Provided that the result is N, execute
;; CCL_BLOCK_N.
BRANCH := (branch EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1 ...])
;; Execute STATEMENTs until (break) or (end) is executed.
LOOP := (loop STATEMENT [STATEMENT ...])
;; Terminate the most inner loop.
BREAK := (break)
REPEAT :=
;; Jump to the head of the most inner loop.
(repeat)
;; Same as: ((write [REG | integer | string])
;; (repeat))
| (write-repeat [REG | integer | string])
;; Same as: ((write REG [ARRAY])
;; (read REG)
;; (repeat))
| (write-read-repeat REG [ARRAY])
;; Same as: ((write integer)
;; (read REG)
;; (repeat))
| (write-read-repeat REG integer)
READ := ;; Set REG_0 to a byte read from the input text, set REG_1
;; to the next byte read, and so on.
(read REG_0 [REG_1 ...])
;; Same as: ((read REG)
;; (if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1))
| (read-if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1)
;; Same as: ((read REG)
;; (branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...]))
| (read-branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...])
;; Read a character from the input text while parsing
;; multibyte representation, set REG_0 to the charset ID of
;; the character, set REG_1 to the code point of the
;; character. If the dimension of charset is two, set REG_1
;; to ((CODE0 << 7) | CODE1), where CODE0 is the first code
;; point and CODE1 is the second code point.
| (read-multibyte-character REG_0 REG_1)
WRITE :=
;; Write REG_0, REG_1, ... to the output buffer. If REG_N is
;; a multibyte character, write the corresponding multibyte
;; representation.
(write REG_0 [REG_1 ...])
;; Same as: ((r7 = EXPRESSION)
;; (write r7))
| (write EXPRESSION)
;; Write the value of `integer' to the output buffer. If it
;; is a multibyte character, write the corresponding multibyte
;; representation.
| (write integer)
;; Write the byte sequence of `string' as is to the output
;; buffer.
| (write string)
;; Same as: (write string)
| string
;; Provided that the value of REG is N, write Nth element of
;; ARRAY to the output buffer. If it is a multibyte
;; character, write the corresponding multibyte
;; representation.
| (write REG ARRAY)
;; Write a multibyte representation of a character whose
;; charset ID is REG_0 and code point is REG_1. If the
;; dimension of the charset is two, REG_1 should be ((CODE0 <<
;; 7) | CODE1), where CODE0 is the first code point and CODE1
;; is the second code point of the character.
| (write-multibyte-character REG_0 REG_1)
;; Call CCL program whose name is ccl-program-name.
CALL := (call ccl-program-name)
;; Terminate the CCL program.
END := (end)
;; CCL registers that can contain any integer value. As r7 is also
;; used by CCL interpreter, its value is changed unexpectedly.
REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
ARG := REG | integer
OPERATOR :=
;; Normal arithmethic operators (same meaning as C code).
+ | - | * | / | %
;; Bitwize operators (same meaning as C code)
| & | `|' | ^
;; Shifting operators (same meaning as C code)
| << | >>
;; (REG = ARG_0 <8 ARG_1) means:
;; (REG = ((ARG_0 << 8) | ARG_1))
| <8
;; (REG = ARG_0 >8 ARG_1) means:
;; ((REG = (ARG_0 >> 8))
;; (r7 = (ARG_0 & 255)))
| >8
;; (REG = ARG_0 // ARG_1) means:
;; ((REG = (ARG_0 / ARG_1))
;; (r7 = (ARG_0 % ARG_1)))
| //
;; Normal comparing operators (same meaning as C code)
| < | > | == | <= | >= | !=
;; If ARG_0 and ARG_1 are higher and lower byte of Shift-JIS
;; code, and CHAR is the corresponding JISX0208 character,
;; (REG = ARG_0 de-sjis ARG_1) means:
;; ((REG = CODE0)
;; (r7 = CODE1))
;; where CODE0 is the first code point of CHAR, CODE1 is the
;; second code point of CHAR.
| de-sjis
;; If ARG_0 and ARG_1 are the first and second code point of
;; JISX0208 character CHAR, and SJIS is the correponding
;; Shift-JIS code,
;; (REG = ARG_0 en-sjis ARG_1) means:
;; ((REG = HIGH)
;; (r7 = LOW))
;; where HIGH is the higher byte of SJIS, LOW is the lower
;; byte of SJIS.
| en-sjis
ASSIGNMENT_OPERATOR :=
;; Same meaning as C code
+= | -= | *= | /= | %= | &= | `|=' | ^= | <<= | >>=
;; (REG <8= ARG) is the same as:
;; ((REG <<= 8)
;; (REG |= ARG))
| <8=
;; (REG >8= ARG) is the same as:
;; ((r7 = (REG & 255))
;; (REG >>= 8))
;; (REG //= ARG) is the same as:
;; ((r7 = (REG % ARG))
;; (REG /= ARG))
| //=
ARRAY := `[' integer ... `]'
TRANSLATE :=
(translate-character REG(table) REG(charset) REG(codepoint))
| (translate-character SYMBOL REG(charset) REG(codepoint))
;; SYMBOL must refer to a table defined by `define-translation-table'.
LOOKUP :=
(lookup-character SYMBOL REG(charset) REG(codepoint))
| (lookup-integer SYMBOL REG(integer))
;; SYMBOL refers to a table defined by `define-translation-hash-table'.
MAP :=
(iterate-multiple-map REG REG MAP-IDs)
| (map-multiple REG REG (MAP-SET))
| (map-single REG REG MAP-ID)
MAP-IDs := MAP-ID ...
MAP-SET := MAP-IDs | (MAP-IDs) MAP-SET
MAP-ID := integer
"
`(let ((prog ,(ccl-compile (eval ccl-program))))
(defconst ,name prog ,doc)
(put ',name 'ccl-program-idx (register-ccl-program ',name prog))
nil))
;;;###autoload
(defmacro check-ccl-program (ccl-program &optional name)
"Check validity of CCL-PROGRAM.
If CCL-PROGRAM is a symbol denoting a CCL program, return
CCL-PROGRAM, else return nil.
If CCL-PROGRAM is a vector and optional arg NAME (symbol) is supplied,
register CCL-PROGRAM by name NAME, and return NAME."
`(if (ccl-program-p ,ccl-program)
(if (vectorp ,ccl-program)
(progn
(register-ccl-program ,name ,ccl-program)
,name)
,ccl-program)))
;;;###autoload
(defun ccl-execute-with-args (ccl-prog &rest args)
"Execute CCL-PROGRAM with registers initialized by the remaining args.
The return value is a vector of resulting CCL registers.
See the documentation of `define-ccl-program' for the detail of CCL program."
(let ((reg (make-vector 8 0))
(i 0))
(while (and args (< i 8))
(if (not (integerp (car args)))
(error "Arguments should be integer"))
(aset reg i (car args))
(setq args (cdr args) i (1+ i)))
(ccl-execute ccl-prog reg)
reg))
(provide 'ccl)
;;; arch-tag: 836bcd27-63a1-4a56-b232-1145ecf823fb
;;; ccl.el ends here
|