1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
|
;;; pcase.el --- ML-style pattern-matching macro for Elisp -*- lexical-binding: t; coding: utf-8 -*-
;; Copyright (C) 2010-2012 Free Software Foundation, Inc.
;; Author: Stefan Monnier <monnier@iro.umontreal.ca>
;; Keywords:
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
;;; Commentary:
;; ML-style pattern matching.
;; The entry points are autoloaded.
;; Todo:
;; - (pcase e (`(,x . ,x) foo)) signals an "x unused" warning if `foo' doesn't
;; use x, because x is bound separately for the equality constraint
;; (as well as any pred/guard) and for the body, so uses at one place don't
;; count for the other.
;; - provide ways to extend the set of primitives, with some kind of
;; define-pcase-matcher. We could easily make it so that (guard BOOLEXP)
;; could be defined this way, as a shorthand for (pred (lambda (_) BOOLEXP)).
;; But better would be if we could define new ways to match by having the
;; extension provide its own `pcase--split-<foo>' thingy.
;; - along these lines, provide patterns to match CL structs.
;; - provide something like (setq VAR) so a var can be set rather than
;; let-bound.
;; - provide a way to fallthrough to subsequent cases (not sure what I meant by
;; this :-()
;; - try and be more clever to reduce the size of the decision tree, and
;; to reduce the number of leaves that need to be turned into function:
;; - first, do the tests shared by all remaining branches (it will have
;; to be performed anyway, so better do it first so it's shared).
;; - then choose the test that discriminates more (?).
;; - provide Agda's `with' (along with its `...' companion).
;; - implement (not UPAT). This might require a significant redesign.
;; - ideally we'd want (pcase s ((re RE1) E1) ((re RE2) E2)) to be able to
;; generate a lex-style DFA to decide whether to run E1 or E2.
;;; Code:
(require 'macroexp)
;; Macro-expansion of pcase is reasonably fast, so it's not a problem
;; when byte-compiling a file, but when interpreting the code, if the pcase
;; is in a loop, the repeated macro-expansion becomes terribly costly, so we
;; memoize previous macro expansions to try and avoid recomputing them
;; over and over again.
;; FIXME: Now that macroexpansion is also performed when loading an interpreted
;; file, this is not a real problem any more.
(defconst pcase--memoize (make-hash-table :weakness 'key :test 'eq))
;; (defconst pcase--memoize-1 (make-hash-table :test 'eq))
;; (defconst pcase--memoize-2 (make-hash-table :weakness 'key :test 'equal))
(defconst pcase--dontcare-upats '(t _ pcase--dontcare))
(def-edebug-spec
pcase-UPAT
(&or symbolp
("or" &rest pcase-UPAT)
("and" &rest pcase-UPAT)
("`" pcase-QPAT)
("guard" form)
("let" pcase-UPAT form)
("pred"
&or lambda-expr
;; Punt on macros/special forms.
(functionp &rest form)
sexp)
sexp))
(def-edebug-spec
pcase-QPAT
(&or ("," pcase-UPAT)
(pcase-QPAT . pcase-QPAT)
sexp))
;;;###autoload
(defmacro pcase (exp &rest cases)
"Perform ML-style pattern matching on EXP.
CASES is a list of elements of the form (UPATTERN CODE...).
UPatterns can take the following forms:
_ matches anything.
SELFQUOTING matches itself. This includes keywords, numbers, and strings.
SYMBOL matches anything and binds it to SYMBOL.
(or UPAT...) matches if any of the patterns matches.
(and UPAT...) matches if all the patterns match.
`QPAT matches if the QPattern QPAT matches.
(pred PRED) matches if PRED applied to the object returns non-nil.
(guard BOOLEXP) matches if BOOLEXP evaluates to non-nil.
(let UPAT EXP) matches if EXP matches UPAT.
If a SYMBOL is used twice in the same pattern (i.e. the pattern is
\"non-linear\"), then the second occurrence is turned into an `eq'uality test.
QPatterns can take the following forms:
(QPAT1 . QPAT2) matches if QPAT1 matches the car and QPAT2 the cdr.
,UPAT matches if the UPattern UPAT matches.
STRING matches if the object is `equal' to STRING.
ATOM matches if the object is `eq' to ATOM.
QPatterns for vectors are not implemented yet.
PRED can take the form
FUNCTION in which case it gets called with one argument.
(FUN ARG1 .. ARGN) in which case it gets called with an N+1'th argument
which is the value being matched.
A PRED of the form FUNCTION is equivalent to one of the form (FUNCTION).
PRED patterns can refer to variables bound earlier in the pattern.
E.g. you can match pairs where the cdr is larger than the car with a pattern
like `(,a . ,(pred (< a))) or, with more checks:
`(,(and a (pred numberp)) . ,(and (pred numberp) (pred (< a))))"
(declare (indent 1) (debug (form &rest (pcase-UPAT body))))
;; We want to use a weak hash table as a cache, but the key will unavoidably
;; be based on `exp' and `cases', yet `cases' is a fresh new list each time
;; we're called so it'll be immediately GC'd. So we use (car cases) as key
;; which does come straight from the source code and should hence not be GC'd
;; so easily.
(let ((data (gethash (car cases) pcase--memoize)))
;; data = (EXP CASES . EXPANSION)
(if (and (equal exp (car data)) (equal cases (cadr data)))
;; We have the right expansion.
(cddr data)
;; (when (gethash (car cases) pcase--memoize-1)
;; (message "pcase-memoize failed because of weak key!!"))
;; (when (gethash (car cases) pcase--memoize-2)
;; (message "pcase-memoize failed because of eq test on %S"
;; (car cases)))
(when data
(message "pcase-memoize: equal first branch, yet different"))
(let ((expansion (pcase--expand exp cases)))
(puthash (car cases) `(,exp ,cases ,@expansion) pcase--memoize)
;; (puthash (car cases) `(,exp ,cases ,@expansion) pcase--memoize-1)
;; (puthash (car cases) `(,exp ,cases ,@expansion) pcase--memoize-2)
expansion))))
(defun pcase--let* (bindings body)
(cond
((null bindings) (macroexp-progn body))
((pcase--trivial-upat-p (caar bindings))
(macroexp-let* `(,(car bindings)) (pcase--let* (cdr bindings) body)))
(t
(let ((binding (pop bindings)))
(pcase--expand
(cadr binding)
`((,(car binding) ,(pcase--let* bindings body))
;; We can either signal an error here, or just use `pcase--dontcare'
;; which generates more efficient code. In practice, if we use
;; `pcase--dontcare' we will still often get an error and the few
;; cases where we don't do not matter that much, so
;; it's a better choice.
(pcase--dontcare nil)))))))
;;;###autoload
(defmacro pcase-let* (bindings &rest body)
"Like `let*' but where you can use `pcase' patterns for bindings.
BODY should be an expression, and BINDINGS should be a list of bindings
of the form (UPAT EXP)."
(declare (indent 1)
(debug ((&rest (pcase-UPAT &optional form)) body)))
(let ((cached (gethash bindings pcase--memoize)))
;; cached = (BODY . EXPANSION)
(if (equal (car cached) body)
(cdr cached)
(let ((expansion (pcase--let* bindings body)))
(puthash bindings (cons body expansion) pcase--memoize)
expansion))))
;;;###autoload
(defmacro pcase-let (bindings &rest body)
"Like `let' but where you can use `pcase' patterns for bindings.
BODY should be a list of expressions, and BINDINGS should be a list of bindings
of the form (UPAT EXP)."
(declare (indent 1) (debug pcase-let*))
(if (null (cdr bindings))
`(pcase-let* ,bindings ,@body)
(let ((matches '()))
(dolist (binding (prog1 bindings (setq bindings nil)))
(cond
((memq (car binding) pcase--dontcare-upats)
(push (cons (make-symbol "_") (cdr binding)) bindings))
((pcase--trivial-upat-p (car binding)) (push binding bindings))
(t
(let ((tmpvar (make-symbol (format "x%d" (length bindings)))))
(push (cons tmpvar (cdr binding)) bindings)
(push (list (car binding) tmpvar) matches)))))
`(let ,(nreverse bindings) (pcase-let* ,matches ,@body)))))
(defmacro pcase-dolist (spec &rest body)
(declare (indent 1) (debug ((pcase-UPAT form) body)))
(if (pcase--trivial-upat-p (car spec))
`(dolist ,spec ,@body)
(let ((tmpvar (make-symbol "x")))
`(dolist (,tmpvar ,@(cdr spec))
(pcase-let* ((,(car spec) ,tmpvar))
,@body)))))
(defun pcase--trivial-upat-p (upat)
(and (symbolp upat) (not (memq upat pcase--dontcare-upats))))
(defun pcase--expand (exp cases)
;; (message "pid=%S (pcase--expand %S ...hash=%S)"
;; (emacs-pid) exp (sxhash cases))
(macroexp-let2 macroexp-copyable-p val exp
(let* ((defs ())
(seen '())
(codegen
(lambda (code vars)
(let ((prev (assq code seen)))
(if (not prev)
(let ((res (pcase-codegen code vars)))
(push (list code vars res) seen)
res)
;; Since we use a tree-based pattern matching
;; technique, the leaves (the places that contain the
;; code to run once a pattern is matched) can get
;; copied a very large number of times, so to avoid
;; code explosion, we need to keep track of how many
;; times we've used each leaf and move it
;; to a separate function if that number is too high.
;;
;; We've already used this branch. So it is shared.
(let* ((code (car prev)) (cdrprev (cdr prev))
(prevvars (car cdrprev)) (cddrprev (cdr cdrprev))
(res (car cddrprev)))
(unless (symbolp res)
;; This is the first repeat, so we have to move
;; the branch to a separate function.
(let ((bsym
(make-symbol (format "pcase-%d" (length defs)))))
(push `(,bsym (lambda ,(mapcar #'car prevvars) ,@code))
defs)
(setcar res 'funcall)
(setcdr res (cons bsym (mapcar #'cdr prevvars)))
(setcar (cddr prev) bsym)
(setq res bsym)))
(setq vars (copy-sequence vars))
(let ((args (mapcar (lambda (pa)
(let ((v (assq (car pa) vars)))
(setq vars (delq v vars))
(cdr v)))
prevvars)))
;; If some of `vars' were not found in `prevvars', that's
;; OK it just means those vars aren't present in all
;; branches, so they can be used within the pattern
;; (e.g. by a `guard/let/pred') but not in the branch.
;; FIXME: But if some of `prevvars' are not in `vars' we
;; should remove them from `prevvars'!
`(funcall ,res ,@args)))))))
(used-cases ())
(main
(pcase--u
(mapcar (lambda (case)
`((match ,val . ,(car case))
,(lambda (vars)
(unless (memq case used-cases)
;; Keep track of the cases that are used.
(push case used-cases))
(funcall
(if (pcase--small-branch-p (cdr case))
;; Don't bother sharing multiple
;; occurrences of this leaf since it's small.
#'pcase-codegen codegen)
(cdr case)
vars))))
cases))))
(dolist (case cases)
(unless (or (memq case used-cases) (eq (car case) 'pcase--dontcare))
(message "Redundant pcase pattern: %S" (car case))))
(macroexp-let* defs main))))
(defun pcase-codegen (code vars)
;; Don't use let*, otherwise macroexp-let* may merge it with some surrounding
;; let* which might prevent the setcar/setcdr in pcase--expand's fancy
;; codegen from later metamorphosing this let into a funcall.
`(let ,(mapcar (lambda (b) (list (car b) (cdr b))) vars)
,@code))
(defun pcase--small-branch-p (code)
(and (= 1 (length code))
(or (not (consp (car code)))
(let ((small t))
(dolist (e (car code))
(if (consp e) (setq small nil)))
small))))
;; Try to use `cond' rather than a sequence of `if's, so as to reduce
;; the depth of the generated tree.
(defun pcase--if (test then else)
(cond
((eq else :pcase--dontcare) then)
((eq then :pcase--dontcare) (debug) else) ;Can/should this ever happen?
(t (macroexp-if test then else))))
(defun pcase--upat (qpattern)
(cond
((eq (car-safe qpattern) '\,) (cadr qpattern))
(t (list '\` qpattern))))
;; Note about MATCH:
;; When we have patterns like `(PAT1 . PAT2), after performing the `consp'
;; check, we want to turn all the similar patterns into ones of the form
;; (and (match car PAT1) (match cdr PAT2)), so you naturally need conjunction.
;; Earlier code hence used branches of the form (MATCHES . CODE) where
;; MATCHES was a list (implicitly a conjunction) of (SYM . PAT).
;; But if we have a pattern of the form (or `(PAT1 . PAT2) PAT3), there is
;; no easy way to eliminate the `consp' check in such a representation.
;; So we replaced the MATCHES by the MATCH below which can be made up
;; of conjunctions and disjunctions, so if we know `foo' is a cons, we can
;; turn (match foo . (or `(PAT1 . PAT2) PAT3)) into
;; (or (and (match car . `PAT1) (match cdr . `PAT2)) (match foo . PAT3)).
;; The downside is that we now have `or' and `and' both in MATCH and
;; in PAT, so there are different equivalent representations and we
;; need to handle them all. We do not try to systematically
;; canonicalize them to one form over another, but we do occasionally
;; turn one into the other.
(defun pcase--u (branches)
"Expand matcher for rules BRANCHES.
Each BRANCH has the form (MATCH CODE . VARS) where
CODE is the code generator for that branch.
VARS is the set of vars already bound by earlier matches.
MATCH is the pattern that needs to be matched, of the form:
(match VAR . UPAT)
(and MATCH ...)
(or MATCH ...)"
(when (setq branches (delq nil branches))
(let* ((carbranch (car branches))
(match (car carbranch)) (cdarbranch (cdr carbranch))
(code (car cdarbranch))
(vars (cdr cdarbranch)))
(pcase--u1 (list match) code vars (cdr branches)))))
(defun pcase--and (match matches)
(if matches `(and ,match ,@matches) match))
(defconst pcase-mutually-exclusive-predicates
'((symbolp . integerp)
(symbolp . numberp)
(symbolp . consp)
(symbolp . arrayp)
(symbolp . stringp)
(symbolp . byte-code-function-p)
(integerp . consp)
(integerp . arrayp)
(integerp . stringp)
(integerp . byte-code-function-p)
(numberp . consp)
(numberp . arrayp)
(numberp . stringp)
(numberp . byte-code-function-p)
(consp . arrayp)
(consp . stringp)
(consp . byte-code-function-p)
(arrayp . stringp)
(arrayp . byte-code-function-p)
(stringp . byte-code-function-p)))
(defun pcase--split-match (sym splitter match)
(cond
((eq (car match) 'match)
(if (not (eq sym (cadr match)))
(cons match match)
(let ((pat (cddr match)))
(cond
;; Hoist `or' and `and' patterns to `or' and `and' matches.
((memq (car-safe pat) '(or and))
(pcase--split-match sym splitter
(cons (car pat)
(mapcar (lambda (alt)
`(match ,sym . ,alt))
(cdr pat)))))
(t (let ((res (funcall splitter (cddr match))))
(cons (or (car res) match) (or (cdr res) match))))))))
((memq (car match) '(or and))
(let ((then-alts '())
(else-alts '())
(neutral-elem (if (eq 'or (car match))
:pcase--fail :pcase--succeed))
(zero-elem (if (eq 'or (car match)) :pcase--succeed :pcase--fail)))
(dolist (alt (cdr match))
(let ((split (pcase--split-match sym splitter alt)))
(unless (eq (car split) neutral-elem)
(push (car split) then-alts))
(unless (eq (cdr split) neutral-elem)
(push (cdr split) else-alts))))
(cons (cond ((memq zero-elem then-alts) zero-elem)
((null then-alts) neutral-elem)
((null (cdr then-alts)) (car then-alts))
(t (cons (car match) (nreverse then-alts))))
(cond ((memq zero-elem else-alts) zero-elem)
((null else-alts) neutral-elem)
((null (cdr else-alts)) (car else-alts))
(t (cons (car match) (nreverse else-alts)))))))
(t (error "Uknown MATCH %s" match))))
(defun pcase--split-rest (sym splitter rest)
(let ((then-rest '())
(else-rest '()))
(dolist (branch rest)
(let* ((match (car branch))
(code&vars (cdr branch))
(split
(pcase--split-match sym splitter match)))
(unless (eq (car split) :pcase--fail)
(push (cons (car split) code&vars) then-rest))
(unless (eq (cdr split) :pcase--fail)
(push (cons (cdr split) code&vars) else-rest))))
(cons (nreverse then-rest) (nreverse else-rest))))
(defun pcase--split-consp (syma symd pat)
(cond
;; A QPattern for a cons, can only go the `then' side.
((and (eq (car-safe pat) '\`) (consp (cadr pat)))
(let ((qpat (cadr pat)))
(cons `(and (match ,syma . ,(pcase--upat (car qpat)))
(match ,symd . ,(pcase--upat (cdr qpat))))
:pcase--fail)))
;; A QPattern but not for a cons, can only go to the `else' side.
((eq (car-safe pat) '\`) (cons :pcase--fail nil))
((and (eq (car-safe pat) 'pred)
(or (member (cons 'consp (cadr pat))
pcase-mutually-exclusive-predicates)
(member (cons (cadr pat) 'consp)
pcase-mutually-exclusive-predicates)))
(cons :pcase--fail nil))))
(defun pcase--split-equal (elem pat)
(cond
;; The same match will give the same result.
((and (eq (car-safe pat) '\`) (equal (cadr pat) elem))
(cons :pcase--succeed :pcase--fail))
;; A different match will fail if this one succeeds.
((and (eq (car-safe pat) '\`)
;; (or (integerp (cadr pat)) (symbolp (cadr pat))
;; (consp (cadr pat)))
)
(cons :pcase--fail nil))
((and (eq (car-safe pat) 'pred)
(symbolp (cadr pat))
(get (cadr pat) 'side-effect-free)
(funcall (cadr pat) elem))
(cons :pcase--succeed nil))))
(defun pcase--split-member (elems pat)
;; Based on pcase--split-equal.
(cond
;; The same match (or a match of membership in a superset) will
;; give the same result, but we don't know how to check it.
;; (???
;; (cons :pcase--succeed nil))
;; A match for one of the elements may succeed or fail.
((and (eq (car-safe pat) '\`) (member (cadr pat) elems))
nil)
;; A different match will fail if this one succeeds.
((and (eq (car-safe pat) '\`)
;; (or (integerp (cadr pat)) (symbolp (cadr pat))
;; (consp (cadr pat)))
)
(cons :pcase--fail nil))
((and (eq (car-safe pat) 'pred)
(symbolp (cadr pat))
(get (cadr pat) 'side-effect-free)
(let ((p (cadr pat)) (all t))
(dolist (elem elems)
(unless (funcall p elem) (setq all nil)))
all))
(cons :pcase--succeed nil))))
(defun pcase--split-pred (upat pat)
;; FIXME: For predicates like (pred (> a)), two such predicates may
;; actually refer to different variables `a'.
(let (test)
(cond
((equal upat pat) (cons :pcase--succeed :pcase--fail))
((and (eq 'pred (car upat))
(eq 'pred (car-safe pat))
(or (member (cons (cadr upat) (cadr pat))
pcase-mutually-exclusive-predicates)
(member (cons (cadr pat) (cadr upat))
pcase-mutually-exclusive-predicates)))
(cons :pcase--fail nil))
((and (eq 'pred (car upat))
(eq '\` (car-safe pat))
(symbolp (cadr upat))
(or (symbolp (cadr pat)) (stringp (cadr pat)) (numberp (cadr pat)))
(get (cadr upat) 'side-effect-free)
(ignore-errors
(setq test (list (funcall (cadr upat) (cadr pat))))))
(if (car test)
(cons nil :pcase--fail)
(cons :pcase--fail nil))))))
(defun pcase--fgrep (vars sexp)
"Check which of the symbols VARS appear in SEXP."
(let ((res '()))
(while (consp sexp)
(dolist (var (pcase--fgrep vars (pop sexp)))
(unless (memq var res) (push var res))))
(and (memq sexp vars) (not (memq sexp res)) (push sexp res))
res))
(defun pcase--self-quoting-p (upat)
(or (keywordp upat) (numberp upat) (stringp upat)))
(defsubst pcase--mark-used (sym)
;; Exceptionally, `sym' may be a constant expression rather than a symbol.
(if (symbolp sym) (put sym 'pcase-used t)))
;; It's very tempting to use `pcase' below, tho obviously, it'd create
;; bootstrapping problems.
(defun pcase--u1 (matches code vars rest)
"Return code that runs CODE (with VARS) if MATCHES match.
Otherwise, it defers to REST which is a list of branches of the form
\(ELSE-MATCH ELSE-CODE . ELSE-VARS)."
;; Depending on the order in which we choose to check each of the MATCHES,
;; the resulting tree may be smaller or bigger. So in general, we'd want
;; to be careful to chose the "optimal" order. But predicate
;; patterns make this harder because they create dependencies
;; between matches. So we don't bother trying to reorder anything.
(cond
((null matches) (funcall code vars))
((eq :pcase--fail (car matches)) (pcase--u rest))
((eq :pcase--succeed (car matches))
(pcase--u1 (cdr matches) code vars rest))
((eq 'and (caar matches))
(pcase--u1 (append (cdar matches) (cdr matches)) code vars rest))
((eq 'or (caar matches))
(let* ((alts (cdar matches))
(var (if (eq (caar alts) 'match) (cadr (car alts))))
(simples '()) (others '()))
(when var
(dolist (alt alts)
(if (and (eq (car alt) 'match) (eq var (cadr alt))
(let ((upat (cddr alt)))
(and (eq (car-safe upat) '\`)
(or (integerp (cadr upat)) (symbolp (cadr upat))
(stringp (cadr upat))))))
(push (cddr alt) simples)
(push alt others))))
(cond
((null alts) (error "Please avoid it") (pcase--u rest))
((> (length simples) 1)
;; De-hoist the `or' MATCH into an `or' pattern that will be
;; turned into a `memq' below.
(pcase--u1 (cons `(match ,var or . ,(nreverse simples)) (cdr matches))
code vars
(if (null others) rest
(cons (cons
(pcase--and (if (cdr others)
(cons 'or (nreverse others))
(car others))
(cdr matches))
(cons code vars))
rest))))
(t
(pcase--u1 (cons (pop alts) (cdr matches)) code vars
(if (null alts) (progn (error "Please avoid it") rest)
(cons (cons
(pcase--and (if (cdr alts)
(cons 'or alts) (car alts))
(cdr matches))
(cons code vars))
rest)))))))
((eq 'match (caar matches))
(let* ((popmatches (pop matches))
(_op (car popmatches)) (cdrpopmatches (cdr popmatches))
(sym (car cdrpopmatches))
(upat (cdr cdrpopmatches)))
(cond
((memq upat '(t _)) (pcase--u1 matches code vars rest))
((eq upat 'pcase--dontcare) :pcase--dontcare)
((memq (car-safe upat) '(guard pred))
(if (eq (car upat) 'pred) (pcase--mark-used sym))
(let* ((splitrest
(pcase--split-rest
sym (lambda (pat) (pcase--split-pred upat pat)) rest))
(then-rest (car splitrest))
(else-rest (cdr splitrest)))
(pcase--if (if (and (eq (car upat) 'pred) (symbolp (cadr upat)))
`(,(cadr upat) ,sym)
(let* ((exp (cadr upat))
;; `vs' is an upper bound on the vars we need.
(vs (pcase--fgrep (mapcar #'car vars) exp))
(env (mapcar (lambda (var)
(list var (cdr (assq var vars))))
vs))
(call (if (eq 'guard (car upat))
exp
(when (memq sym vs)
;; `sym' is shadowed by `env'.
(let ((newsym (make-symbol "x")))
(push (list newsym sym) env)
(setq sym newsym)))
(if (functionp exp)
`(funcall #',exp ,sym)
`(,@exp ,sym)))))
(if (null vs)
call
;; Let's not replace `vars' in `exp' since it's
;; too difficult to do it right, instead just
;; let-bind `vars' around `exp'.
`(let* ,env ,call))))
(pcase--u1 matches code vars then-rest)
(pcase--u else-rest))))
((pcase--self-quoting-p upat)
(pcase--mark-used sym)
(pcase--q1 sym upat matches code vars rest))
((symbolp upat)
(pcase--mark-used sym)
(if (not (assq upat vars))
(pcase--u1 matches code (cons (cons upat sym) vars) rest)
;; Non-linear pattern. Turn it into an `eq' test.
(pcase--u1 (cons `(match ,sym . (pred (eq ,(cdr (assq upat vars)))))
matches)
code vars rest)))
((eq (car-safe upat) 'let)
;; A upat of the form (let VAR EXP).
;; (pcase--u1 matches code
;; (cons (cons (nth 1 upat) (nth 2 upat)) vars) rest)
(macroexp-let2
macroexp-copyable-p sym
(let* ((exp (nth 2 upat))
(found (assq exp vars)))
(if found (cdr found)
(let* ((vs (pcase--fgrep (mapcar #'car vars) exp))
(env (mapcar (lambda (v) (list v (cdr (assq v vars))))
vs)))
(if env (macroexp-let* env exp) exp))))
(pcase--u1 (cons `(match ,sym . ,(nth 1 upat)) matches)
code vars rest)))
((eq (car-safe upat) '\`)
(pcase--mark-used sym)
(pcase--q1 sym (cadr upat) matches code vars rest))
((eq (car-safe upat) 'or)
(let ((all (> (length (cdr upat)) 1))
(memq-fine t))
(when all
(dolist (alt (cdr upat))
(unless (or (pcase--self-quoting-p alt)
(and (eq (car-safe alt) '\`)
(or (symbolp (cadr alt)) (integerp (cadr alt))
(setq memq-fine nil)
(stringp (cadr alt)))))
(setq all nil))))
(if all
;; Use memq for (or `a `b `c `d) rather than a big tree.
(let* ((elems (mapcar (lambda (x) (if (consp x) (cadr x) x))
(cdr upat)))
(splitrest
(pcase--split-rest
sym (lambda (pat) (pcase--split-member elems pat)) rest))
(then-rest (car splitrest))
(else-rest (cdr splitrest)))
(pcase--mark-used sym)
(pcase--if `(,(if memq-fine #'memq #'member) ,sym ',elems)
(pcase--u1 matches code vars then-rest)
(pcase--u else-rest)))
(pcase--u1 (cons `(match ,sym ,@(cadr upat)) matches) code vars
(append (mapcar (lambda (upat)
`((and (match ,sym . ,upat) ,@matches)
,code ,@vars))
(cddr upat))
rest)))))
((eq (car-safe upat) 'and)
(pcase--u1 (append (mapcar (lambda (upat) `(match ,sym ,@upat))
(cdr upat))
matches)
code vars rest))
((eq (car-safe upat) 'not)
;; FIXME: The implementation below is naive and results in
;; inefficient code.
;; To make it work right, we would need to turn pcase--u1's
;; `code' and `vars' into a single argument of the same form as
;; `rest'. We would also need to split this new `then-rest' argument
;; for every test (currently we don't bother to do it since
;; it's only useful for odd patterns like (and `(PAT1 . PAT2)
;; `(PAT3 . PAT4)) which the programmer can easily rewrite
;; to the more efficient `(,(and PAT1 PAT3) . ,(and PAT2 PAT4))).
(pcase--u1 `((match ,sym . ,(cadr upat)))
;; FIXME: This codegen is not careful to share its
;; code if used several times: code blow up is likely.
(lambda (_vars)
;; `vars' will likely contain bindings which are
;; not always available in other paths to
;; `rest', so there' no point trying to pass
;; them down.
(pcase--u rest))
vars
(list `((and . ,matches) ,code . ,vars))))
(t (error "Unknown upattern `%s'" upat)))))
(t (error "Incorrect MATCH %s" (car matches)))))
(defun pcase--q1 (sym qpat matches code vars rest)
"Return code that runs CODE if SYM matches QPAT and if MATCHES match.
Otherwise, it defers to REST which is a list of branches of the form
\(OTHER_MATCH OTHER-CODE . OTHER-VARS)."
(cond
((eq (car-safe qpat) '\,) (error "Can't use `,UPATTERN"))
((floatp qpat) (error "Floating point patterns not supported"))
((vectorp qpat)
;; FIXME.
(error "Vector QPatterns not implemented yet"))
((consp qpat)
(let* ((syma (make-symbol "xcar"))
(symd (make-symbol "xcdr"))
(splitrest (pcase--split-rest
sym
(lambda (pat) (pcase--split-consp syma symd pat))
rest))
(then-rest (car splitrest))
(else-rest (cdr splitrest))
(then-body (pcase--u1 `((match ,syma . ,(pcase--upat (car qpat)))
(match ,symd . ,(pcase--upat (cdr qpat)))
,@matches)
code vars then-rest)))
(pcase--if
`(consp ,sym)
;; We want to be careful to only add bindings that are used.
;; The byte-compiler could do that for us, but it would have to pay
;; attention to the `consp' test in order to figure out that car/cdr
;; can't signal errors and our byte-compiler is not that clever.
;; FIXME: Some of those let bindings occur too early (they are used in
;; `then-body', but only within some sub-branch).
(macroexp-let*
`(,@(if (get syma 'pcase-used) `((,syma (car ,sym))))
,@(if (get symd 'pcase-used) `((,symd (cdr ,sym)))))
then-body)
(pcase--u else-rest))))
((or (integerp qpat) (symbolp qpat) (stringp qpat))
(let* ((splitrest (pcase--split-rest
sym (lambda (pat) (pcase--split-equal qpat pat)) rest))
(then-rest (car splitrest))
(else-rest (cdr splitrest)))
(pcase--if (cond
((stringp qpat) `(equal ,sym ,qpat))
((null qpat) `(null ,sym))
(t `(eq ,sym ',qpat)))
(pcase--u1 matches code vars then-rest)
(pcase--u else-rest))))
(t (error "Unknown QPattern %s" qpat))))
(provide 'pcase)
;;; pcase.el ends here
|