1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|
;;; disass.el --- disassembler for compiled Emacs Lisp code
;; Copyright (C) 1986, 1991, 2003 Free Software Foundation, Inc.
;; Author: Doug Cutting <doug@csli.stanford.edu>
;; Jamie Zawinski <jwz@lucid.com>
;; Maintainer: Jamie Zawinski <jwz@lucid.com>
;; Keywords: internal
;; This file is part of GNU Emacs.
;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING. If not, write to the
;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
;; Boston, MA 02111-1307, USA.
;;; Commentary:
;; The single entry point, `disassemble', disassembles a code object generated
;; by the Emacs Lisp byte-compiler. This doesn't invert the compilation
;; operation, not by a long shot, but it's useful for debugging.
;;
;; Original version by Doug Cutting (doug@csli.stanford.edu)
;; Substantially modified by Jamie Zawinski <jwz@lucid.com> for
;; the new lapcode-based byte compiler.
;;; Code:
;;; The variable byte-code-vector is defined by the new bytecomp.el.
;;; The function byte-decompile-lapcode is defined in byte-opt.el.
;;; Since we don't use byte-decompile-lapcode, let's try not loading byte-opt.
(require 'byte-compile "bytecomp")
(defvar disassemble-column-1-indent 8 "*")
(defvar disassemble-column-2-indent 10 "*")
(defvar disassemble-recursive-indent 3 "*")
;;;###autoload
(defun disassemble (object &optional buffer indent interactive-p)
"Print disassembled code for OBJECT in (optional) BUFFER.
OBJECT can be a symbol defined as a function, or a function itself
\(a lambda expression or a compiled-function object).
If OBJECT is not already compiled, we compile it, but do not
redefine OBJECT if it is a symbol."
(interactive (list (intern (completing-read "Disassemble function: "
obarray 'fboundp t))
nil 0 t))
(if (consp object)
(setq object (list 'lambda () object)))
(or indent (setq indent 0)) ;Default indent to zero
(save-excursion
(if (or interactive-p (null buffer))
(with-output-to-temp-buffer "*Disassemble*"
(set-buffer "*Disassemble*")
(disassemble-internal object indent (not interactive-p)))
(set-buffer buffer)
(disassemble-internal object indent nil)))
nil)
(defun disassemble-internal (obj indent interactive-p)
(let ((macro 'nil)
(name 'nil)
(doc 'nil)
args)
(while (symbolp obj)
(setq name obj
obj (symbol-function obj)))
(if (subrp obj)
(error "Can't disassemble #<subr %s>" name))
(if (and (listp obj) (eq (car obj) 'autoload))
(progn
(load (nth 1 obj))
(setq obj (symbol-function name))))
(if (eq (car-safe obj) 'macro) ;handle macros
(setq macro t
obj (cdr obj)))
(if (and (listp obj) (eq (car obj) 'byte-code))
(setq obj (list 'lambda nil obj)))
(if (and (listp obj) (not (eq (car obj) 'lambda)))
(error "not a function"))
(if (consp obj)
(if (assq 'byte-code obj)
nil
(if interactive-p (message (if name
"Compiling %s's definition..."
"Compiling definition...")
name))
(setq obj (byte-compile obj))
(if interactive-p (message "Done compiling. Disassembling..."))))
(cond ((consp obj)
(setq obj (cdr obj)) ;throw lambda away
(setq args (car obj)) ;save arg list
(setq obj (cdr obj)))
((byte-code-function-p obj)
(setq args (aref obj 0)))
(t (error "Compilation failed")))
(if (zerop indent) ; not a nested function
(progn
(indent-to indent)
(insert (format "byte code%s%s%s:\n"
(if (or macro name) " for" "")
(if macro " macro" "")
(if name (format " %s" name) "")))))
(let ((doc (if (consp obj)
(and (stringp (car obj)) (car obj))
;; Use documentation to get lazy-loaded doc string
(documentation obj t))))
(if (and doc (stringp doc))
(progn (and (consp obj) (setq obj (cdr obj)))
(indent-to indent)
(princ " doc: " (current-buffer))
(if (string-match "\n" doc)
(setq doc (concat (substring doc 0 (match-beginning 0))
" ...")))
(insert doc "\n"))))
(indent-to indent)
(insert " args: ")
(prin1 args (current-buffer))
(insert "\n")
(let ((interactive (cond ((consp obj)
(assq 'interactive obj))
((> (length obj) 5)
(list 'interactive (aref obj 5))))))
(if interactive
(progn
(setq interactive (nth 1 interactive))
(if (eq (car-safe (car-safe obj)) 'interactive)
(setq obj (cdr obj)))
(indent-to indent)
(insert " interactive: ")
(if (eq (car-safe interactive) 'byte-code)
(progn
(insert "\n")
(disassemble-1 interactive
(+ indent disassemble-recursive-indent)))
(let ((print-escape-newlines t))
(prin1 interactive (current-buffer))))
(insert "\n"))))
(cond ((and (consp obj) (assq 'byte-code obj))
(disassemble-1 (assq 'byte-code obj) indent))
((byte-code-function-p obj)
(disassemble-1 obj indent))
(t
(insert "Uncompiled body: ")
(let ((print-escape-newlines t))
(prin1 (if (cdr obj) (cons 'progn obj) (car obj))
(current-buffer))))))
(if interactive-p
(message "")))
(defun disassemble-1 (obj indent)
"Prints the byte-code call OBJ in the current buffer.
OBJ should be a call to BYTE-CODE generated by the byte compiler."
(let (bytes constvec)
(if (consp obj)
(setq bytes (car (cdr obj)) ;the byte code
constvec (car (cdr (cdr obj)))) ;constant vector
;; If it is lazy-loaded, load it now
(fetch-bytecode obj)
(setq bytes (aref obj 1)
constvec (aref obj 2)))
(let ((lap (byte-decompile-bytecode (string-as-unibyte bytes) constvec))
op arg opname pc-value)
(let ((tagno 0)
tmp
(lap lap))
(while (setq tmp (assq 'TAG lap))
(setcar (cdr tmp) (setq tagno (1+ tagno)))
(setq lap (cdr (memq tmp lap)))))
(while lap
;; Take off the pc value of the next thing
;; and put it in pc-value.
(setq pc-value nil)
(if (numberp (car lap))
(setq pc-value (car lap)
lap (cdr lap)))
;; Fetch the next op and its arg.
(setq op (car (car lap))
arg (cdr (car lap)))
(setq lap (cdr lap))
(indent-to indent)
(if (eq 'TAG op)
(progn
;; We have a label. Display it, but first its pc value.
(if pc-value
(insert (format "%d:" pc-value)))
(insert (int-to-string (car arg))))
;; We have an instruction. Display its pc value first.
(if pc-value
(insert (format "%d" pc-value)))
(indent-to (+ indent disassemble-column-1-indent))
(if (and op
(string-match "^byte-" (setq opname (symbol-name op))))
(setq opname (substring opname 5))
(setq opname "<not-an-opcode>"))
(if (eq op 'byte-constant2)
(insert " #### shouldn't have seen constant2 here!\n "))
(insert opname)
(indent-to (+ indent disassemble-column-1-indent
disassemble-column-2-indent
-1))
(insert " ")
(cond ((memq op byte-goto-ops)
(insert (int-to-string (nth 1 arg))))
((memq op '(byte-call byte-unbind
byte-listN byte-concatN byte-insertN))
(insert (int-to-string arg)))
((memq op '(byte-varref byte-varset byte-varbind))
(prin1 (car arg) (current-buffer)))
((memq op '(byte-constant byte-constant2))
;; it's a constant
(setq arg (car arg))
;; but if the value of the constant is compiled code, then
;; recursively disassemble it.
(cond ((or (byte-code-function-p arg)
(and (eq (car-safe arg) 'lambda)
(assq 'byte-code arg))
(and (eq (car-safe arg) 'macro)
(or (byte-code-function-p (cdr arg))
(and (eq (car-safe (cdr arg)) 'lambda)
(assq 'byte-code (cdr arg))))))
(cond ((byte-code-function-p arg)
(insert "<compiled-function>\n"))
((eq (car-safe arg) 'lambda)
(insert "<compiled lambda>"))
(t (insert "<compiled macro>\n")))
(disassemble-internal
arg
(+ indent disassemble-recursive-indent 1)
nil))
((eq (car-safe arg) 'byte-code)
(insert "<byte code>\n")
(disassemble-1 ;recurse on byte-code object
arg
(+ indent disassemble-recursive-indent)))
((eq (car-safe (car-safe arg)) 'byte-code)
(insert "(<byte code>...)\n")
(mapcar ;recurse on list of byte-code objects
'(lambda (obj)
(disassemble-1
obj
(+ indent disassemble-recursive-indent)))
arg))
(t
;; really just a constant
(let ((print-escape-newlines t))
(prin1 arg (current-buffer))))))
)
(insert "\n")))))
nil)
(provide 'disass)
;;; disass.el ends here
|