1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
|
;;; cl-seq.el --- Common Lisp extensions for GNU Emacs Lisp (part three)
;; Copyright (C) 1993 Free Software Foundation, Inc.
;; Author: Dave Gillespie <daveg@synaptics.com>
;; Version: 2.02
;; Keywords: extensions
;; This file is part of GNU Emacs.
;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING. If not, write to
;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
;;; Commentary:
;; These are extensions to Emacs Lisp that provide a degree of
;; Common Lisp compatibility, beyond what is already built-in
;; in Emacs Lisp.
;;
;; This package was written by Dave Gillespie; it is a complete
;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
;;
;; This package works with Emacs 18, Emacs 19, and Lucid Emacs 19.
;;
;; Bug reports, comments, and suggestions are welcome!
;; This file contains the Common Lisp sequence and list functions
;; which take keyword arguments.
;; See cl.el for Change Log.
;;; Code:
(or (memq 'cl-19 features)
(error "Tried to load `cl-seq' before `cl'!"))
;;; We define these here so that this file can compile without having
;;; loaded the cl.el file already.
(defmacro cl-push (x place) (list 'setq place (list 'cons x place)))
(defmacro cl-pop (place)
(list 'car (list 'prog1 place (list 'setq place (list 'cdr place)))))
;;; Keyword parsing. This is special-cased here so that we can compile
;;; this file independent from cl-macs.
(defmacro cl-parsing-keywords (kwords other-keys &rest body)
(cons
'let*
(cons (mapcar
(function
(lambda (x)
(let* ((var (if (consp x) (car x) x))
(mem (list 'car (list 'cdr (list 'memq (list 'quote var)
'cl-keys)))))
(if (eq var ':test-not)
(setq mem (list 'and mem (list 'setq 'cl-test mem) t)))
(if (eq var ':if-not)
(setq mem (list 'and mem (list 'setq 'cl-if mem) t)))
(list (intern
(format "cl-%s" (substring (symbol-name var) 1)))
(if (consp x) (list 'or mem (car (cdr x))) mem)))))
kwords)
(append
(and (not (eq other-keys t))
(list
(list 'let '((cl-keys-temp cl-keys))
(list 'while 'cl-keys-temp
(list 'or (list 'memq '(car cl-keys-temp)
(list 'quote
(mapcar
(function
(lambda (x)
(if (consp x)
(car x) x)))
(append kwords
other-keys))))
'(car (cdr (memq (quote :allow-other-keys)
cl-keys)))
'(error "Bad keyword argument %s"
(car cl-keys-temp)))
'(setq cl-keys-temp (cdr (cdr cl-keys-temp)))))))
body))))
(put 'cl-parsing-keywords 'lisp-indent-function 2)
(put 'cl-parsing-keywords 'edebug-form-spec '(sexp sexp &rest form))
(defmacro cl-check-key (x)
(list 'if 'cl-key (list 'funcall 'cl-key x) x))
(defmacro cl-check-test-nokey (item x)
(list 'cond
(list 'cl-test
(list 'eq (list 'not (list 'funcall 'cl-test item x))
'cl-test-not))
(list 'cl-if
(list 'eq (list 'not (list 'funcall 'cl-if x)) 'cl-if-not))
(list 't (list 'if (list 'numberp item)
(list 'equal item x) (list 'eq item x)))))
(defmacro cl-check-test (item x)
(list 'cl-check-test-nokey item (list 'cl-check-key x)))
(defmacro cl-check-match (x y)
(setq x (list 'cl-check-key x) y (list 'cl-check-key y))
(list 'if 'cl-test
(list 'eq (list 'not (list 'funcall 'cl-test x y)) 'cl-test-not)
(list 'if (list 'numberp x)
(list 'equal x y) (list 'eq x y))))
(put 'cl-check-key 'edebug-form-spec 'edebug-forms)
(put 'cl-check-test 'edebug-form-spec 'edebug-forms)
(put 'cl-check-test-nokey 'edebug-form-spec 'edebug-forms)
(put 'cl-check-match 'edebug-form-spec 'edebug-forms)
(defvar cl-test) (defvar cl-test-not)
(defvar cl-if) (defvar cl-if-not)
(defvar cl-key)
(defun reduce (cl-func cl-seq &rest cl-keys)
"Reduce two-argument FUNCTION across SEQUENCE.
Keywords supported: :start :end :from-end :initial-value :key"
(cl-parsing-keywords (:from-end (:start 0) :end :initial-value :key) ()
(or (listp cl-seq) (setq cl-seq (append cl-seq nil)))
(setq cl-seq (subseq cl-seq cl-start cl-end))
(if cl-from-end (setq cl-seq (nreverse cl-seq)))
(let ((cl-accum (cond ((memq ':initial-value cl-keys) cl-initial-value)
(cl-seq (cl-check-key (cl-pop cl-seq)))
(t (funcall cl-func)))))
(if cl-from-end
(while cl-seq
(setq cl-accum (funcall cl-func (cl-check-key (cl-pop cl-seq))
cl-accum)))
(while cl-seq
(setq cl-accum (funcall cl-func cl-accum
(cl-check-key (cl-pop cl-seq))))))
cl-accum)))
(defun fill (seq item &rest cl-keys)
"Fill the elements of SEQ with ITEM.
Keywords supported: :start :end"
(cl-parsing-keywords ((:start 0) :end) ()
(if (listp seq)
(let ((p (nthcdr cl-start seq))
(n (if cl-end (- cl-end cl-start) 8000000)))
(while (and p (>= (setq n (1- n)) 0))
(setcar p item)
(setq p (cdr p))))
(or cl-end (setq cl-end (length seq)))
(if (and (= cl-start 0) (= cl-end (length seq)))
(fillarray seq item)
(while (< cl-start cl-end)
(aset seq cl-start item)
(setq cl-start (1+ cl-start)))))
seq))
(defun replace (cl-seq1 cl-seq2 &rest cl-keys)
"Replace the elements of SEQ1 with the elements of SEQ2.
SEQ1 is destructively modified, then returned.
Keywords supported: :start1 :end1 :start2 :end2"
(cl-parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) ()
(if (and (eq cl-seq1 cl-seq2) (<= cl-start2 cl-start1))
(or (= cl-start1 cl-start2)
(let* ((cl-len (length cl-seq1))
(cl-n (min (- (or cl-end1 cl-len) cl-start1)
(- (or cl-end2 cl-len) cl-start2))))
(while (>= (setq cl-n (1- cl-n)) 0)
(cl-set-elt cl-seq1 (+ cl-start1 cl-n)
(elt cl-seq2 (+ cl-start2 cl-n))))))
(if (listp cl-seq1)
(let ((cl-p1 (nthcdr cl-start1 cl-seq1))
(cl-n1 (if cl-end1 (- cl-end1 cl-start1) 4000000)))
(if (listp cl-seq2)
(let ((cl-p2 (nthcdr cl-start2 cl-seq2))
(cl-n (min cl-n1
(if cl-end2 (- cl-end2 cl-start2) 4000000))))
(while (and cl-p1 cl-p2 (>= (setq cl-n (1- cl-n)) 0))
(setcar cl-p1 (car cl-p2))
(setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2))))
(setq cl-end2 (min (or cl-end2 (length cl-seq2))
(+ cl-start2 cl-n1)))
(while (and cl-p1 (< cl-start2 cl-end2))
(setcar cl-p1 (aref cl-seq2 cl-start2))
(setq cl-p1 (cdr cl-p1) cl-start2 (1+ cl-start2)))))
(setq cl-end1 (min (or cl-end1 (length cl-seq1))
(+ cl-start1 (- (or cl-end2 (length cl-seq2))
cl-start2))))
(if (listp cl-seq2)
(let ((cl-p2 (nthcdr cl-start2 cl-seq2)))
(while (< cl-start1 cl-end1)
(aset cl-seq1 cl-start1 (car cl-p2))
(setq cl-p2 (cdr cl-p2) cl-start1 (1+ cl-start1))))
(while (< cl-start1 cl-end1)
(aset cl-seq1 cl-start1 (aref cl-seq2 cl-start2))
(setq cl-start2 (1+ cl-start2) cl-start1 (1+ cl-start1))))))
cl-seq1))
(defun remove* (cl-item cl-seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
Keywords supported: :test :test-not :key :count :start :end :from-end"
(cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end
(:start 0) :end) ()
(if (<= (or cl-count (setq cl-count 8000000)) 0)
cl-seq
(if (or (nlistp cl-seq) (and cl-from-end (< cl-count 4000000)))
(let ((cl-i (cl-position cl-item cl-seq cl-start cl-end
cl-from-end)))
(if cl-i
(let ((cl-res (apply 'delete* cl-item (append cl-seq nil)
(append (if cl-from-end
(list ':end (1+ cl-i))
(list ':start cl-i))
cl-keys))))
(if (listp cl-seq) cl-res
(if (stringp cl-seq) (concat cl-res) (vconcat cl-res))))
cl-seq))
(setq cl-end (- (or cl-end 8000000) cl-start))
(if (= cl-start 0)
(while (and cl-seq (> cl-end 0)
(cl-check-test cl-item (car cl-seq))
(setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
(> (setq cl-count (1- cl-count)) 0))))
(if (and (> cl-count 0) (> cl-end 0))
(let ((cl-p (if (> cl-start 0) (nthcdr cl-start cl-seq)
(setq cl-end (1- cl-end)) (cdr cl-seq))))
(while (and cl-p (> cl-end 0)
(not (cl-check-test cl-item (car cl-p))))
(setq cl-p (cdr cl-p) cl-end (1- cl-end)))
(if (and cl-p (> cl-end 0))
(nconc (ldiff cl-seq cl-p)
(if (= cl-count 1) (cdr cl-p)
(and (cdr cl-p)
(apply 'delete* cl-item
(copy-sequence (cdr cl-p))
':start 0 ':end (1- cl-end)
':count (1- cl-count) cl-keys))))
cl-seq))
cl-seq)))))
(defun remove-if (cl-pred cl-list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
Keywords supported: :key :count :start :end :from-end"
(apply 'remove* nil cl-list ':if cl-pred cl-keys))
(defun remove-if-not (cl-pred cl-list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
Keywords supported: :key :count :start :end :from-end"
(apply 'remove* nil cl-list ':if-not cl-pred cl-keys))
(defun delete* (cl-item cl-seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
Keywords supported: :test :test-not :key :count :start :end :from-end"
(cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end
(:start 0) :end) ()
(if (<= (or cl-count (setq cl-count 8000000)) 0)
cl-seq
(if (listp cl-seq)
(if (and cl-from-end (< cl-count 4000000))
(let (cl-i)
(while (and (>= (setq cl-count (1- cl-count)) 0)
(setq cl-i (cl-position cl-item cl-seq cl-start
cl-end cl-from-end)))
(if (= cl-i 0) (setq cl-seq (cdr cl-seq))
(let ((cl-tail (nthcdr (1- cl-i) cl-seq)))
(setcdr cl-tail (cdr (cdr cl-tail)))))
(setq cl-end cl-i))
cl-seq)
(setq cl-end (- (or cl-end 8000000) cl-start))
(if (= cl-start 0)
(progn
(while (and cl-seq
(> cl-end 0)
(cl-check-test cl-item (car cl-seq))
(setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
(> (setq cl-count (1- cl-count)) 0)))
(setq cl-end (1- cl-end)))
(setq cl-start (1- cl-start)))
(if (and (> cl-count 0) (> cl-end 0))
(let ((cl-p (nthcdr cl-start cl-seq)))
(while (and (cdr cl-p) (> cl-end 0))
(if (cl-check-test cl-item (car (cdr cl-p)))
(progn
(setcdr cl-p (cdr (cdr cl-p)))
(if (= (setq cl-count (1- cl-count)) 0)
(setq cl-end 1)))
(setq cl-p (cdr cl-p)))
(setq cl-end (1- cl-end)))))
cl-seq)
(apply 'remove* cl-item cl-seq cl-keys)))))
(defun delete-if (cl-pred cl-list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
Keywords supported: :key :count :start :end :from-end"
(apply 'delete* nil cl-list ':if cl-pred cl-keys))
(defun delete-if-not (cl-pred cl-list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
Keywords supported: :key :count :start :end :from-end"
(apply 'delete* nil cl-list ':if-not cl-pred cl-keys))
(or (and (fboundp 'delete) (subrp (symbol-function 'delete)))
(defalias 'delete (function (lambda (x y) (delete* x y ':test 'equal)))))
(defun remove (x y) (remove* x y ':test 'equal))
(defun remq (x y) (if (memq x y) (delq x (copy-list y)) y))
(defun remove-duplicates (cl-seq &rest cl-keys)
"Return a copy of SEQ with all duplicate elements removed.
Keywords supported: :test :test-not :key :start :end :from-end"
(cl-delete-duplicates cl-seq cl-keys t))
(defun delete-duplicates (cl-seq &rest cl-keys)
"Remove all duplicate elements from SEQ (destructively).
Keywords supported: :test :test-not :key :start :end :from-end"
(cl-delete-duplicates cl-seq cl-keys nil))
(defun cl-delete-duplicates (cl-seq cl-keys cl-copy)
(if (listp cl-seq)
(cl-parsing-keywords (:test :test-not :key (:start 0) :end :from-end :if)
()
(if cl-from-end
(let ((cl-p (nthcdr cl-start cl-seq)) cl-i)
(setq cl-end (- (or cl-end (length cl-seq)) cl-start))
(while (> cl-end 1)
(setq cl-i 0)
(while (setq cl-i (cl-position (cl-check-key (car cl-p))
(cdr cl-p) cl-i (1- cl-end)))
(if cl-copy (setq cl-seq (copy-sequence cl-seq)
cl-p (nthcdr cl-start cl-seq) cl-copy nil))
(let ((cl-tail (nthcdr cl-i cl-p)))
(setcdr cl-tail (cdr (cdr cl-tail))))
(setq cl-end (1- cl-end)))
(setq cl-p (cdr cl-p) cl-end (1- cl-end)
cl-start (1+ cl-start)))
cl-seq)
(setq cl-end (- (or cl-end (length cl-seq)) cl-start))
(while (and (cdr cl-seq) (= cl-start 0) (> cl-end 1)
(cl-position (cl-check-key (car cl-seq))
(cdr cl-seq) 0 (1- cl-end)))
(setq cl-seq (cdr cl-seq) cl-end (1- cl-end)))
(let ((cl-p (if (> cl-start 0) (nthcdr (1- cl-start) cl-seq)
(setq cl-end (1- cl-end) cl-start 1) cl-seq)))
(while (and (cdr (cdr cl-p)) (> cl-end 1))
(if (cl-position (cl-check-key (car (cdr cl-p)))
(cdr (cdr cl-p)) 0 (1- cl-end))
(progn
(if cl-copy (setq cl-seq (copy-sequence cl-seq)
cl-p (nthcdr (1- cl-start) cl-seq)
cl-copy nil))
(setcdr cl-p (cdr (cdr cl-p))))
(setq cl-p (cdr cl-p)))
(setq cl-end (1- cl-end) cl-start (1+ cl-start)))
cl-seq)))
(let ((cl-res (cl-delete-duplicates (append cl-seq nil) cl-keys nil)))
(if (stringp cl-seq) (concat cl-res) (vconcat cl-res)))))
(defun substitute (cl-new cl-old cl-seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
Keywords supported: :test :test-not :key :count :start :end :from-end"
(cl-parsing-keywords (:test :test-not :key :if :if-not :count
(:start 0) :end :from-end) ()
(if (or (eq cl-old cl-new)
(<= (or cl-count (setq cl-from-end nil cl-count 8000000)) 0))
cl-seq
(let ((cl-i (cl-position cl-old cl-seq cl-start cl-end)))
(if (not cl-i)
cl-seq
(setq cl-seq (copy-sequence cl-seq))
(or cl-from-end
(progn (cl-set-elt cl-seq cl-i cl-new)
(setq cl-i (1+ cl-i) cl-count (1- cl-count))))
(apply 'nsubstitute cl-new cl-old cl-seq ':count cl-count
':start cl-i cl-keys))))))
(defun substitute-if (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
Keywords supported: :key :count :start :end :from-end"
(apply 'substitute cl-new nil cl-list ':if cl-pred cl-keys))
(defun substitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
Keywords supported: :key :count :start :end :from-end"
(apply 'substitute cl-new nil cl-list ':if-not cl-pred cl-keys))
(defun nsubstitute (cl-new cl-old cl-seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
Keywords supported: :test :test-not :key :count :start :end :from-end"
(cl-parsing-keywords (:test :test-not :key :if :if-not :count
(:start 0) :end :from-end) ()
(or (eq cl-old cl-new) (<= (or cl-count (setq cl-count 8000000)) 0)
(if (and (listp cl-seq) (or (not cl-from-end) (> cl-count 4000000)))
(let ((cl-p (nthcdr cl-start cl-seq)))
(setq cl-end (- (or cl-end 8000000) cl-start))
(while (and cl-p (> cl-end 0) (> cl-count 0))
(if (cl-check-test cl-old (car cl-p))
(progn
(setcar cl-p cl-new)
(setq cl-count (1- cl-count))))
(setq cl-p (cdr cl-p) cl-end (1- cl-end))))
(or cl-end (setq cl-end (length cl-seq)))
(if cl-from-end
(while (and (< cl-start cl-end) (> cl-count 0))
(setq cl-end (1- cl-end))
(if (cl-check-test cl-old (elt cl-seq cl-end))
(progn
(cl-set-elt cl-seq cl-end cl-new)
(setq cl-count (1- cl-count)))))
(while (and (< cl-start cl-end) (> cl-count 0))
(if (cl-check-test cl-old (aref cl-seq cl-start))
(progn
(aset cl-seq cl-start cl-new)
(setq cl-count (1- cl-count))))
(setq cl-start (1+ cl-start))))))
cl-seq))
(defun nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
Keywords supported: :key :count :start :end :from-end"
(apply 'nsubstitute cl-new nil cl-list ':if cl-pred cl-keys))
(defun nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
Keywords supported: :key :count :start :end :from-end"
(apply 'nsubstitute cl-new nil cl-list ':if-not cl-pred cl-keys))
(defun find (cl-item cl-seq &rest cl-keys)
"Find the first occurrence of ITEM in LIST.
Return the matching ITEM, or nil if not found.
Keywords supported: :test :test-not :key :start :end :from-end"
(let ((cl-pos (apply 'position cl-item cl-seq cl-keys)))
(and cl-pos (elt cl-seq cl-pos))))
(defun find-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in LIST.
Return the matching ITEM, or nil if not found.
Keywords supported: :key :start :end :from-end"
(apply 'find nil cl-list ':if cl-pred cl-keys))
(defun find-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in LIST.
Return the matching ITEM, or nil if not found.
Keywords supported: :key :start :end :from-end"
(apply 'find nil cl-list ':if-not cl-pred cl-keys))
(defun position (cl-item cl-seq &rest cl-keys)
"Find the first occurrence of ITEM in LIST.
Return the index of the matching item, or nil if not found.
Keywords supported: :test :test-not :key :start :end :from-end"
(cl-parsing-keywords (:test :test-not :key :if :if-not
(:start 0) :end :from-end) ()
(cl-position cl-item cl-seq cl-start cl-end cl-from-end)))
(defun cl-position (cl-item cl-seq cl-start &optional cl-end cl-from-end)
(if (listp cl-seq)
(let ((cl-p (nthcdr cl-start cl-seq)))
(or cl-end (setq cl-end 8000000))
(let ((cl-res nil))
(while (and cl-p (< cl-start cl-end) (or (not cl-res) cl-from-end))
(if (cl-check-test cl-item (car cl-p))
(setq cl-res cl-start))
(setq cl-p (cdr cl-p) cl-start (1+ cl-start)))
cl-res))
(or cl-end (setq cl-end (length cl-seq)))
(if cl-from-end
(progn
(while (and (>= (setq cl-end (1- cl-end)) cl-start)
(not (cl-check-test cl-item (aref cl-seq cl-end)))))
(and (>= cl-end cl-start) cl-end))
(while (and (< cl-start cl-end)
(not (cl-check-test cl-item (aref cl-seq cl-start))))
(setq cl-start (1+ cl-start)))
(and (< cl-start cl-end) cl-start))))
(defun position-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in LIST.
Return the index of the matching item, or nil if not found.
Keywords supported: :key :start :end :from-end"
(apply 'position nil cl-list ':if cl-pred cl-keys))
(defun position-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in LIST.
Return the index of the matching item, or nil if not found.
Keywords supported: :key :start :end :from-end"
(apply 'position nil cl-list ':if-not cl-pred cl-keys))
(defun count (cl-item cl-seq &rest cl-keys)
"Count the number of occurrences of ITEM in LIST.
Keywords supported: :test :test-not :key :start :end"
(cl-parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) ()
(let ((cl-count 0) cl-x)
(or cl-end (setq cl-end (length cl-seq)))
(if (consp cl-seq) (setq cl-seq (nthcdr cl-start cl-seq)))
(while (< cl-start cl-end)
(setq cl-x (if (consp cl-seq) (cl-pop cl-seq) (aref cl-seq cl-start)))
(if (cl-check-test cl-item cl-x) (setq cl-count (1+ cl-count)))
(setq cl-start (1+ cl-start)))
cl-count)))
(defun count-if (cl-pred cl-list &rest cl-keys)
"Count the number of items satisfying PREDICATE in LIST.
Keywords supported: :key :start :end"
(apply 'count nil cl-list ':if cl-pred cl-keys))
(defun count-if-not (cl-pred cl-list &rest cl-keys)
"Count the number of items not satisfying PREDICATE in LIST.
Keywords supported: :key :start :end"
(apply 'count nil cl-list ':if-not cl-pred cl-keys))
(defun mismatch (cl-seq1 cl-seq2 &rest cl-keys)
"Compare SEQ1 with SEQ2, return index of first mismatching element.
Return nil if the sequences match. If one sequence is a prefix of the
other, the return value indicates the end of the shorted sequence.
Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end"
(cl-parsing-keywords (:test :test-not :key :from-end
(:start1 0) :end1 (:start2 0) :end2) ()
(or cl-end1 (setq cl-end1 (length cl-seq1)))
(or cl-end2 (setq cl-end2 (length cl-seq2)))
(if cl-from-end
(progn
(while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
(cl-check-match (elt cl-seq1 (1- cl-end1))
(elt cl-seq2 (1- cl-end2))))
(setq cl-end1 (1- cl-end1) cl-end2 (1- cl-end2)))
(and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
(1- cl-end1)))
(let ((cl-p1 (and (listp cl-seq1) (nthcdr cl-start1 cl-seq1)))
(cl-p2 (and (listp cl-seq2) (nthcdr cl-start2 cl-seq2))))
(while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
(cl-check-match (if cl-p1 (car cl-p1)
(aref cl-seq1 cl-start1))
(if cl-p2 (car cl-p2)
(aref cl-seq2 cl-start2))))
(setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)
cl-start1 (1+ cl-start1) cl-start2 (1+ cl-start2)))
(and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
cl-start1)))))
(defun search (cl-seq1 cl-seq2 &rest cl-keys)
"Search for SEQ1 as a subsequence of SEQ2.
Return the index of the leftmost element of the first match found;
return nil if there are no matches.
Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end"
(cl-parsing-keywords (:test :test-not :key :from-end
(:start1 0) :end1 (:start2 0) :end2) ()
(or cl-end1 (setq cl-end1 (length cl-seq1)))
(or cl-end2 (setq cl-end2 (length cl-seq2)))
(if (>= cl-start1 cl-end1)
(if cl-from-end cl-end2 cl-start2)
(let* ((cl-len (- cl-end1 cl-start1))
(cl-first (cl-check-key (elt cl-seq1 cl-start1)))
(cl-if nil) cl-pos)
(setq cl-end2 (- cl-end2 (1- cl-len)))
(while (and (< cl-start2 cl-end2)
(setq cl-pos (cl-position cl-first cl-seq2
cl-start2 cl-end2 cl-from-end))
(apply 'mismatch cl-seq1 cl-seq2
':start1 (1+ cl-start1) ':end1 cl-end1
':start2 (1+ cl-pos) ':end2 (+ cl-pos cl-len)
':from-end nil cl-keys))
(if cl-from-end (setq cl-end2 cl-pos) (setq cl-start2 (1+ cl-pos))))
(and (< cl-start2 cl-end2) cl-pos)))))
(defun sort* (cl-seq cl-pred &rest cl-keys)
"Sort the argument SEQUENCE according to PREDICATE.
This is a destructive function; it reuses the storage of SEQUENCE if possible.
Keywords supported: :key"
(if (nlistp cl-seq)
(replace cl-seq (apply 'sort* (append cl-seq nil) cl-pred cl-keys))
(cl-parsing-keywords (:key) ()
(if (memq cl-key '(nil identity))
(sort cl-seq cl-pred)
(sort cl-seq (function (lambda (cl-x cl-y)
(funcall cl-pred (funcall cl-key cl-x)
(funcall cl-key cl-y)))))))))
(defun stable-sort (cl-seq cl-pred &rest cl-keys)
"Sort the argument SEQUENCE stably according to PREDICATE.
This is a destructive function; it reuses the storage of SEQUENCE if possible.
Keywords supported: :key"
(apply 'sort* cl-seq cl-pred cl-keys))
(defun merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys)
"Destructively merge the two sequences to produce a new sequence.
TYPE is the sequence type to return, SEQ1 and SEQ2 are the two
argument sequences, and PRED is a `less-than' predicate on the elements.
Keywords supported: :key"
(or (listp cl-seq1) (setq cl-seq1 (append cl-seq1 nil)))
(or (listp cl-seq2) (setq cl-seq2 (append cl-seq2 nil)))
(cl-parsing-keywords (:key) ()
(let ((cl-res nil))
(while (and cl-seq1 cl-seq2)
(if (funcall cl-pred (cl-check-key (car cl-seq2))
(cl-check-key (car cl-seq1)))
(cl-push (cl-pop cl-seq2) cl-res)
(cl-push (cl-pop cl-seq1) cl-res)))
(coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type))))
;;; See compiler macro in cl-macs.el
(defun member* (cl-item cl-list &rest cl-keys)
"Find the first occurrence of ITEM in LIST.
Return the sublist of LIST whose car is ITEM.
Keywords supported: :test :test-not :key"
(if cl-keys
(cl-parsing-keywords (:test :test-not :key :if :if-not) ()
(while (and cl-list (not (cl-check-test cl-item (car cl-list))))
(setq cl-list (cdr cl-list)))
cl-list)
(if (and (numberp cl-item) (not (integerp cl-item)))
(member cl-item cl-list)
(memq cl-item cl-list))))
(defun member-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
Keywords supported: :key"
(apply 'member* nil cl-list ':if cl-pred cl-keys))
(defun member-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
Keywords supported: :key"
(apply 'member* nil cl-list ':if-not cl-pred cl-keys))
(defun cl-adjoin (cl-item cl-list &rest cl-keys)
(if (cl-parsing-keywords (:key) t
(apply 'member* (cl-check-key cl-item) cl-list cl-keys))
cl-list
(cons cl-item cl-list)))
;;; See compiler macro in cl-macs.el
(defun assoc* (cl-item cl-alist &rest cl-keys)
"Find the first item whose car matches ITEM in LIST.
Keywords supported: :test :test-not :key"
(if cl-keys
(cl-parsing-keywords (:test :test-not :key :if :if-not) ()
(while (and cl-alist
(or (not (consp (car cl-alist)))
(not (cl-check-test cl-item (car (car cl-alist))))))
(setq cl-alist (cdr cl-alist)))
(and cl-alist (car cl-alist)))
(if (and (numberp cl-item) (not (integerp cl-item)))
(assoc cl-item cl-alist)
(assq cl-item cl-alist))))
(defun assoc-if (cl-pred cl-list &rest cl-keys)
"Find the first item whose car satisfies PREDICATE in LIST.
Keywords supported: :key"
(apply 'assoc* nil cl-list ':if cl-pred cl-keys))
(defun assoc-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item whose car does not satisfy PREDICATE in LIST.
Keywords supported: :key"
(apply 'assoc* nil cl-list ':if-not cl-pred cl-keys))
(defun rassoc* (cl-item cl-alist &rest cl-keys)
"Find the first item whose cdr matches ITEM in LIST.
Keywords supported: :test :test-not :key"
(if (or cl-keys (numberp cl-item))
(cl-parsing-keywords (:test :test-not :key :if :if-not) ()
(while (and cl-alist
(or (not (consp (car cl-alist)))
(not (cl-check-test cl-item (cdr (car cl-alist))))))
(setq cl-alist (cdr cl-alist)))
(and cl-alist (car cl-alist)))
(rassq cl-item cl-alist)))
(defun rassoc-if (cl-pred cl-list &rest cl-keys)
"Find the first item whose cdr satisfies PREDICATE in LIST.
Keywords supported: :key"
(apply 'rassoc* nil cl-list ':if cl-pred cl-keys))
(defun rassoc-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item whose cdr does not satisfy PREDICATE in LIST.
Keywords supported: :key"
(apply 'rassoc* nil cl-list ':if-not cl-pred cl-keys))
(defun union (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The result list contains all items that appear in either LIST1 or LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
Keywords supported: :test :test-not :key"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
((equal cl-list1 cl-list2) cl-list1)
(t
(or (>= (length cl-list1) (length cl-list2))
(setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
(while cl-list2
(if (or cl-keys (numberp (car cl-list2)))
(setq cl-list1 (apply 'adjoin (car cl-list2) cl-list1 cl-keys))
(or (memq (car cl-list2) cl-list1)
(cl-push (car cl-list2) cl-list1)))
(cl-pop cl-list2))
cl-list1)))
(defun nunion (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The result list contains all items that appear in either LIST1 or LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
Keywords supported: :test :test-not :key"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
(t (apply 'union cl-list1 cl-list2 cl-keys))))
(defun intersection (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The result list contains all items that appear in both LIST1 and LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
Keywords supported: :test :test-not :key"
(and cl-list1 cl-list2
(if (equal cl-list1 cl-list2) cl-list1
(cl-parsing-keywords (:key) (:test :test-not)
(let ((cl-res nil))
(or (>= (length cl-list1) (length cl-list2))
(setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
(while cl-list2
(if (if (or cl-keys (numberp (car cl-list2)))
(apply 'member* (cl-check-key (car cl-list2))
cl-list1 cl-keys)
(memq (car cl-list2) cl-list1))
(cl-push (car cl-list2) cl-res))
(cl-pop cl-list2))
cl-res)))))
(defun nintersection (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The result list contains all items that appear in both LIST1 and LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
Keywords supported: :test :test-not :key"
(and cl-list1 cl-list2 (apply 'intersection cl-list1 cl-list2 cl-keys)))
(defun set-difference (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The result list contains all items that appear in LIST1 but not LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
Keywords supported: :test :test-not :key"
(if (or (null cl-list1) (null cl-list2)) cl-list1
(cl-parsing-keywords (:key) (:test :test-not)
(let ((cl-res nil))
(while cl-list1
(or (if (or cl-keys (numberp (car cl-list1)))
(apply 'member* (cl-check-key (car cl-list1))
cl-list2 cl-keys)
(memq (car cl-list1) cl-list2))
(cl-push (car cl-list1) cl-res))
(cl-pop cl-list1))
cl-res))))
(defun nset-difference (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The result list contains all items that appear in LIST1 but not LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
Keywords supported: :test :test-not :key"
(if (or (null cl-list1) (null cl-list2)) cl-list1
(apply 'set-difference cl-list1 cl-list2 cl-keys)))
(defun set-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The result list contains all items that appear in exactly one of LIST1, LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
Keywords supported: :test :test-not :key"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
((equal cl-list1 cl-list2) nil)
(t (append (apply 'set-difference cl-list1 cl-list2 cl-keys)
(apply 'set-difference cl-list2 cl-list1 cl-keys)))))
(defun nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The result list contains all items that appear in exactly one of LIST1, LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
Keywords supported: :test :test-not :key"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
((equal cl-list1 cl-list2) nil)
(t (nconc (apply 'nset-difference cl-list1 cl-list2 cl-keys)
(apply 'nset-difference cl-list2 cl-list1 cl-keys)))))
(defun subsetp (cl-list1 cl-list2 &rest cl-keys)
"True if LIST1 is a subset of LIST2.
I.e., if every element of LIST1 also appears in LIST2.
Keywords supported: :test :test-not :key"
(cond ((null cl-list1) t) ((null cl-list2) nil)
((equal cl-list1 cl-list2) t)
(t (cl-parsing-keywords (:key) (:test :test-not)
(while (and cl-list1
(apply 'member* (cl-check-key (car cl-list1))
cl-list2 cl-keys))
(cl-pop cl-list1))
(null cl-list1)))))
(defun subst-if (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced by NEW.
Keywords supported: :key"
(apply 'sublis (list (cons nil cl-new)) cl-tree ':if cl-pred cl-keys))
(defun subst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all non-matching elements replaced by NEW.
Keywords supported: :key"
(apply 'sublis (list (cons nil cl-new)) cl-tree ':if-not cl-pred cl-keys))
(defun nsubst (cl-new cl-old cl-tree &rest cl-keys)
"Substitute NEW for OLD everywhere in TREE (destructively).
Any element of TREE which is `eql' to OLD is changed to NEW (via a call
to `setcar').
Keywords supported: :test :test-not :key"
(apply 'nsublis (list (cons cl-old cl-new)) cl-tree cl-keys))
(defun nsubst-if (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
Keywords supported: :key"
(apply 'nsublis (list (cons nil cl-new)) cl-tree ':if cl-pred cl-keys))
(defun nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements not matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
Keywords supported: :key"
(apply 'nsublis (list (cons nil cl-new)) cl-tree ':if-not cl-pred cl-keys))
(defun sublis (cl-alist cl-tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced.
Keywords supported: :test :test-not :key"
(cl-parsing-keywords (:test :test-not :key :if :if-not) ()
(cl-sublis-rec cl-tree)))
(defvar cl-alist)
(defun cl-sublis-rec (cl-tree) ; uses cl-alist/key/test*/if*
(let ((cl-temp (cl-check-key cl-tree)) (cl-p cl-alist))
(while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
(setq cl-p (cdr cl-p)))
(if cl-p (cdr (car cl-p))
(if (consp cl-tree)
(let ((cl-a (cl-sublis-rec (car cl-tree)))
(cl-d (cl-sublis-rec (cdr cl-tree))))
(if (and (eq cl-a (car cl-tree)) (eq cl-d (cdr cl-tree)))
cl-tree
(cons cl-a cl-d)))
cl-tree))))
(defun nsublis (cl-alist cl-tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (destructively).
Any matching element of TREE is changed via a call to `setcar'.
Keywords supported: :test :test-not :key"
(cl-parsing-keywords (:test :test-not :key :if :if-not) ()
(let ((cl-hold (list cl-tree)))
(cl-nsublis-rec cl-hold)
(car cl-hold))))
(defun cl-nsublis-rec (cl-tree) ; uses cl-alist/temp/p/key/test*/if*
(while (consp cl-tree)
(let ((cl-temp (cl-check-key (car cl-tree))) (cl-p cl-alist))
(while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
(setq cl-p (cdr cl-p)))
(if cl-p (setcar cl-tree (cdr (car cl-p)))
(if (consp (car cl-tree)) (cl-nsublis-rec (car cl-tree))))
(setq cl-temp (cl-check-key (cdr cl-tree)) cl-p cl-alist)
(while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
(setq cl-p (cdr cl-p)))
(if cl-p
(progn (setcdr cl-tree (cdr (car cl-p))) (setq cl-tree nil))
(setq cl-tree (cdr cl-tree))))))
(defun tree-equal (cl-x cl-y &rest cl-keys)
"T if trees X and Y have `eql' leaves.
Atoms are compared by `eql'; cons cells are compared recursively.
Keywords supported: :test :test-not :key"
(cl-parsing-keywords (:test :test-not :key) ()
(cl-tree-equal-rec cl-x cl-y)))
(defun cl-tree-equal-rec (cl-x cl-y)
(while (and (consp cl-x) (consp cl-y)
(cl-tree-equal-rec (car cl-x) (car cl-y)))
(setq cl-x (cdr cl-x) cl-y (cdr cl-y)))
(and (not (consp cl-x)) (not (consp cl-y)) (cl-check-match cl-x cl-y)))
(run-hooks 'cl-seq-load-hook)
;;; cl-seq.el ends here
|