1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
|
;;; cl-loaddefs.el --- automatically extracted autoloads
;;
;;; Code:
;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
;;;;;; revappend concatenate subseq cl-float-limits random-state-p
;;;;;; make-random-state random* signum rem* mod* round* truncate*
;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
;;;;;; notevery notany every some mapcon mapcan mapl maplist map
;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "0e52b41c758c56831930100671c58f50")
;;; Generated autoloads from cl-extra.el
(autoload 'coerce "cl-extra" "\
Coerce OBJECT to type TYPE.
TYPE is a Common Lisp type specifier.
\(fn OBJECT TYPE)" nil nil)
(autoload 'equalp "cl-extra" "\
Return t if two Lisp objects have similar structures and contents.
This is like `equal', except that it accepts numerically equal
numbers of different types (float vs. integer), and also compares
strings case-insensitively.
\(fn X Y)" nil nil)
(autoload 'cl-mapcar-many "cl-extra" "\
Not documented
\(fn CL-FUNC CL-SEQS)" nil nil)
(autoload 'map "cl-extra" "\
Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
TYPE is the sequence type to return.
\(fn TYPE FUNCTION SEQUENCE...)" nil nil)
(autoload 'maplist "cl-extra" "\
Map FUNCTION to each sublist of LIST or LISTs.
Like `mapcar', except applies to lists and their cdr's rather than to
the elements themselves.
\(fn FUNCTION LIST...)" nil nil)
(autoload 'mapl "cl-extra" "\
Like `maplist', but does not accumulate values returned by the function.
\(fn FUNCTION LIST...)" nil nil)
(autoload 'mapcan "cl-extra" "\
Like `mapcar', but nconc's together the values returned by the function.
\(fn FUNCTION SEQUENCE...)" nil nil)
(autoload 'mapcon "cl-extra" "\
Like `maplist', but nconc's together the values returned by the function.
\(fn FUNCTION LIST...)" nil nil)
(autoload 'some "cl-extra" "\
Return true if PREDICATE is true of any element of SEQ or SEQs.
If so, return the true (non-nil) value returned by PREDICATE.
\(fn PREDICATE SEQ...)" nil nil)
(autoload 'every "cl-extra" "\
Return true if PREDICATE is true of every element of SEQ or SEQs.
\(fn PREDICATE SEQ...)" nil nil)
(autoload 'notany "cl-extra" "\
Return true if PREDICATE is false of every element of SEQ or SEQs.
\(fn PREDICATE SEQ...)" nil nil)
(autoload 'notevery "cl-extra" "\
Return true if PREDICATE is false of some element of SEQ or SEQs.
\(fn PREDICATE SEQ...)" nil nil)
(defalias 'cl-map-keymap 'map-keymap)
(autoload 'cl-map-keymap-recursively "cl-extra" "\
Not documented
\(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
(autoload 'cl-map-intervals "cl-extra" "\
Not documented
\(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
(autoload 'cl-map-overlays "cl-extra" "\
Not documented
\(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
(autoload 'cl-set-frame-visible-p "cl-extra" "\
Not documented
\(fn FRAME VAL)" nil nil)
(autoload 'cl-progv-before "cl-extra" "\
Not documented
\(fn SYMS VALUES)" nil nil)
(autoload 'gcd "cl-extra" "\
Return the greatest common divisor of the arguments.
\(fn &rest ARGS)" nil nil)
(autoload 'lcm "cl-extra" "\
Return the least common multiple of the arguments.
\(fn &rest ARGS)" nil nil)
(autoload 'isqrt "cl-extra" "\
Return the integer square root of the argument.
\(fn X)" nil nil)
(autoload 'floor* "cl-extra" "\
Return a list of the floor of X and the fractional part of X.
With two arguments, return floor and remainder of their quotient.
\(fn X &optional Y)" nil nil)
(autoload 'ceiling* "cl-extra" "\
Return a list of the ceiling of X and the fractional part of X.
With two arguments, return ceiling and remainder of their quotient.
\(fn X &optional Y)" nil nil)
(autoload 'truncate* "cl-extra" "\
Return a list of the integer part of X and the fractional part of X.
With two arguments, return truncation and remainder of their quotient.
\(fn X &optional Y)" nil nil)
(autoload 'round* "cl-extra" "\
Return a list of X rounded to the nearest integer and the remainder.
With two arguments, return rounding and remainder of their quotient.
\(fn X &optional Y)" nil nil)
(autoload 'mod* "cl-extra" "\
The remainder of X divided by Y, with the same sign as Y.
\(fn X Y)" nil nil)
(autoload 'rem* "cl-extra" "\
The remainder of X divided by Y, with the same sign as X.
\(fn X Y)" nil nil)
(autoload 'signum "cl-extra" "\
Return 1 if X is positive, -1 if negative, 0 if zero.
\(fn X)" nil nil)
(autoload 'random* "cl-extra" "\
Return a random nonnegative number less than LIM, an integer or float.
Optional second arg STATE is a random-state object.
\(fn LIM &optional STATE)" nil nil)
(autoload 'make-random-state "cl-extra" "\
Return a copy of random-state STATE, or of `*random-state*' if omitted.
If STATE is t, return a new state object seeded from the time of day.
\(fn &optional STATE)" nil nil)
(autoload 'random-state-p "cl-extra" "\
Return t if OBJECT is a random-state object.
\(fn OBJECT)" nil nil)
(autoload 'cl-float-limits "cl-extra" "\
Not documented
\(fn)" nil nil)
(autoload 'subseq "cl-extra" "\
Return the subsequence of SEQ from START to END.
If END is omitted, it defaults to the length of the sequence.
If START or END is negative, it counts from the end.
\(fn SEQ START &optional END)" nil nil)
(autoload 'concatenate "cl-extra" "\
Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
\(fn TYPE SEQUENCE...)" nil nil)
(autoload 'revappend "cl-extra" "\
Equivalent to (append (reverse X) Y).
\(fn X Y)" nil nil)
(autoload 'nreconc "cl-extra" "\
Equivalent to (nconc (nreverse X) Y).
\(fn X Y)" nil nil)
(autoload 'list-length "cl-extra" "\
Return the length of list X. Return nil if list is circular.
\(fn X)" nil nil)
(autoload 'tailp "cl-extra" "\
Return true if SUBLIST is a tail of LIST.
\(fn SUBLIST LIST)" nil nil)
(autoload 'get* "cl-extra" "\
Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
\(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
(autoload 'getf "cl-extra" "\
Search PROPLIST for property PROPNAME; return its value or DEFAULT.
PROPLIST is a list of the sort returned by `symbol-plist'.
\(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
(autoload 'cl-set-getf "cl-extra" "\
Not documented
\(fn PLIST TAG VAL)" nil nil)
(autoload 'cl-do-remf "cl-extra" "\
Not documented
\(fn PLIST TAG)" nil nil)
(autoload 'cl-remprop "cl-extra" "\
Remove from SYMBOL's plist the property PROPNAME and its value.
\(fn SYMBOL PROPNAME)" nil nil)
(defalias 'remprop 'cl-remprop)
(defalias 'cl-gethash 'gethash)
(defalias 'cl-puthash 'puthash)
(defalias 'cl-remhash 'remhash)
(defalias 'cl-clrhash 'clrhash)
(defalias 'cl-maphash 'maphash)
(defalias 'cl-make-hash-table 'make-hash-table)
(defalias 'cl-hash-table-p 'hash-table-p)
(defalias 'cl-hash-table-count 'hash-table-count)
(autoload 'cl-macroexpand-all "cl-extra" "\
Expand all macro calls through a Lisp FORM.
This also does some trivial optimizations to make the form prettier.
\(fn FORM &optional ENV)" nil nil)
(autoload 'cl-prettyexpand "cl-extra" "\
Not documented
\(fn FORM &optional FULL)" nil nil)
;;;***
;;;### (autoloads (compiler-macroexpand define-compiler-macro assert
;;;;;; check-type typep cl-struct-setf-expander defstruct define-modify-macro
;;;;;; callf2 callf letf* letf rotatef shiftf remf cl-do-pop psetf
;;;;;; setf get-setf-method defsetf define-setf-method declare the
;;;;;; locally multiple-value-setq multiple-value-bind lexical-let*
;;;;;; lexical-let symbol-macrolet macrolet labels flet progv psetq
;;;;;; do-all-symbols do-symbols dotimes dolist do* do loop return-from
;;;;;; return block etypecase typecase ecase case load-time-value
;;;;;; eval-when destructuring-bind function* defmacro* defun* gentemp
;;;;;; gensym) "cl-macs" "cl-macs.el" "3d364404dcaa3ea3d0ccd79e734c73c4")
;;; Generated autoloads from cl-macs.el
(autoload 'gensym "cl-macs" "\
Generate a new uninterned symbol.
The name is made by appending a number to PREFIX, default \"G\".
\(fn &optional PREFIX)" nil nil)
(autoload 'gentemp "cl-macs" "\
Generate a new interned symbol with a unique name.
The name is made by appending a number to PREFIX, default \"G\".
\(fn &optional PREFIX)" nil nil)
(autoload 'defun* "cl-macs" "\
Define NAME as a function.
Like normal `defun', except ARGLIST allows full Common Lisp conventions,
and BODY is implicitly surrounded by (block NAME ...).
\(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
(autoload 'defmacro* "cl-macs" "\
Define NAME as a macro.
Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
and BODY is implicitly surrounded by (block NAME ...).
\(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
(autoload 'function* "cl-macs" "\
Introduce a function.
Like normal `function', except that if argument is a lambda form,
its argument list allows full Common Lisp conventions.
\(fn FUNC)" nil (quote macro))
(autoload 'destructuring-bind "cl-macs" "\
Not documented
\(fn ARGS EXPR &rest BODY)" nil (quote macro))
(autoload 'eval-when "cl-macs" "\
Control when BODY is evaluated.
If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
\(fn (WHEN...) BODY...)" nil (quote macro))
(autoload 'load-time-value "cl-macs" "\
Like `progn', but evaluates the body at load time.
The result of the body appears to the compiler as a quoted constant.
\(fn FORM &optional READ-ONLY)" nil (quote macro))
(autoload 'case "cl-macs" "\
Eval EXPR and choose among clauses on that value.
Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
against each key in each KEYLIST; the corresponding BODY is evaluated.
If no clause succeeds, case returns nil. A single atom may be used in
place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
allowed only in the final clause, and matches if no other keys match.
Key values are compared by `eql'.
\(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
(autoload 'ecase "cl-macs" "\
Like `case', but error if no case fits.
`otherwise'-clauses are not allowed.
\(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
(autoload 'typecase "cl-macs" "\
Evals EXPR, chooses among clauses on that value.
Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
final clause, and matches if no other keys match.
\(fn EXPR (TYPE BODY...)...)" nil (quote macro))
(autoload 'etypecase "cl-macs" "\
Like `typecase', but error if no case fits.
`otherwise'-clauses are not allowed.
\(fn EXPR (TYPE BODY...)...)" nil (quote macro))
(autoload 'block "cl-macs" "\
Define a lexically-scoped block named NAME.
NAME may be any symbol. Code inside the BODY forms can call `return-from'
to jump prematurely out of the block. This differs from `catch' and `throw'
in two respects: First, the NAME is an unevaluated symbol rather than a
quoted symbol or other form; and second, NAME is lexically rather than
dynamically scoped: Only references to it within BODY will work. These
references may appear inside macro expansions, but not inside functions
called from BODY.
\(fn NAME &rest BODY)" nil (quote macro))
(autoload 'return "cl-macs" "\
Return from the block named nil.
This is equivalent to `(return-from nil RESULT)'.
\(fn &optional RESULT)" nil (quote macro))
(autoload 'return-from "cl-macs" "\
Return from the block named NAME.
This jump out to the innermost enclosing `(block NAME ...)' form,
returning RESULT from that form (or nil if RESULT is omitted).
This is compatible with Common Lisp, but note that `defun' and
`defmacro' do not create implicit blocks as they do in Common Lisp.
\(fn NAME &optional RESULT)" nil (quote macro))
(autoload 'loop "cl-macs" "\
The Common Lisp `loop' macro.
Valid clauses are:
for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
always COND, never COND, thereis COND, collect EXPR into VAR,
append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
finally return EXPR, named NAME.
\(fn CLAUSE...)" nil (quote macro))
(autoload 'do "cl-macs" "\
The Common Lisp `do' loop.
\(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
(autoload 'do* "cl-macs" "\
The Common Lisp `do*' loop.
\(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
(autoload 'dolist "cl-macs" "\
Loop over a list.
Evaluate BODY with VAR bound to each `car' from LIST, in turn.
Then evaluate RESULT to get return value, default nil.
\(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
(autoload 'dotimes "cl-macs" "\
Loop a certain number of times.
Evaluate BODY with VAR bound to successive integers from 0, inclusive,
to COUNT, exclusive. Then evaluate RESULT to get return value, default
nil.
\(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
(autoload 'do-symbols "cl-macs" "\
Loop over all symbols.
Evaluate BODY with VAR bound to each interned symbol, or to each symbol
from OBARRAY.
\(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
(autoload 'do-all-symbols "cl-macs" "\
Not documented
\(fn SPEC &rest BODY)" nil (quote macro))
(autoload 'psetq "cl-macs" "\
Set SYMs to the values VALs in parallel.
This is like `setq', except that all VAL forms are evaluated (in order)
before assigning any symbols SYM to the corresponding values.
\(fn SYM VAL SYM VAL ...)" nil (quote macro))
(autoload 'progv "cl-macs" "\
Bind SYMBOLS to VALUES dynamically in BODY.
The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
Each symbol in the first list is bound to the corresponding value in the
second list (or made unbound if VALUES is shorter than SYMBOLS); then the
BODY forms are executed and their result is returned. This is much like
a `let' form, except that the list of symbols can be computed at run-time.
\(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
(autoload 'flet "cl-macs" "\
Make temporary function definitions.
This is an analogue of `let' that operates on the function cell of FUNC
rather than its value cell. The FORMs are evaluated with the specified
function definitions in place, then the definitions are undone (the FUNCs
go back to their previous definitions, or lack thereof).
\(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
(autoload 'labels "cl-macs" "\
Make temporary function bindings.
This is like `flet', except the bindings are lexical instead of dynamic.
Unlike `flet', this macro is fully compliant with the Common Lisp standard.
\(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
(autoload 'macrolet "cl-macs" "\
Make temporary macro definitions.
This is like `flet', but for macros instead of functions.
\(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
(autoload 'symbol-macrolet "cl-macs" "\
Make symbol macro definitions.
Within the body FORMs, references to the variable NAME will be replaced
by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
\(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
(autoload 'lexical-let "cl-macs" "\
Like `let', but lexically scoped.
The main visible difference is that lambdas inside BODY will create
lexical closures as in Common Lisp.
\(fn VARLIST BODY)" nil (quote macro))
(autoload 'lexical-let* "cl-macs" "\
Like `let*', but lexically scoped.
The main visible difference is that lambdas inside BODY will create
lexical closures as in Common Lisp.
\(fn VARLIST BODY)" nil (quote macro))
(autoload 'multiple-value-bind "cl-macs" "\
Collect multiple return values.
FORM must return a list; the BODY is then executed with the first N elements
of this list bound (`let'-style) to each of the symbols SYM in turn. This
is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
simulate true multiple return values. For compatibility, (values A B C) is
a synonym for (list A B C).
\(fn (SYM...) FORM BODY)" nil (quote macro))
(autoload 'multiple-value-setq "cl-macs" "\
Collect multiple return values.
FORM must return a list; the first N elements of this list are stored in
each of the symbols SYM in turn. This is analogous to the Common Lisp
`multiple-value-setq' macro, using lists to simulate true multiple return
values. For compatibility, (values A B C) is a synonym for (list A B C).
\(fn (SYM...) FORM)" nil (quote macro))
(autoload 'locally "cl-macs" "\
Not documented
\(fn &rest BODY)" nil (quote macro))
(autoload 'the "cl-macs" "\
Not documented
\(fn TYPE FORM)" nil (quote macro))
(autoload 'declare "cl-macs" "\
Not documented
\(fn &rest SPECS)" nil (quote macro))
(autoload 'define-setf-method "cl-macs" "\
Define a `setf' method.
This method shows how to handle `setf's to places of the form (NAME ARGS...).
The argument forms ARGS are bound according to ARGLIST, as if NAME were
going to be expanded as a macro, then the BODY forms are executed and must
return a list of five elements: a temporary-variables list, a value-forms
list, a store-variables list (of length one), a store-form, and an access-
form. See `defsetf' for a simpler way to define most setf-methods.
\(fn NAME ARGLIST BODY...)" nil (quote macro))
(autoload 'defsetf "cl-macs" "\
Define a `setf' method.
This macro is an easy-to-use substitute for `define-setf-method' that works
well for simple place forms. In the simple `defsetf' form, `setf's of
the form (setf (NAME ARGS...) VAL) are transformed to function or macro
calls of the form (FUNC ARGS... VAL). Example:
(defsetf aref aset)
Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
Here, the above `setf' call is expanded by binding the argument forms ARGS
according to ARGLIST, binding the value form VAL to STORE, then executing
BODY, which must return a Lisp form that does the necessary `setf' operation.
Actually, ARGLIST and STORE may be bound to temporary variables which are
introduced automatically to preserve proper execution order of the arguments.
Example:
(defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
\(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
(autoload 'get-setf-method "cl-macs" "\
Return a list of five values describing the setf-method for PLACE.
PLACE may be any Lisp form which can appear as the PLACE argument to
a macro like `setf' or `incf'.
\(fn PLACE &optional ENV)" nil nil)
(autoload 'setf "cl-macs" "\
Set each PLACE to the value of its VAL.
This is a generalized version of `setq'; the PLACEs may be symbolic
references such as (car x) or (aref x i), as well as plain symbols.
For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
The return value is the last VAL in the list.
\(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
(autoload 'psetf "cl-macs" "\
Set PLACEs to the values VALs in parallel.
This is like `setf', except that all VAL forms are evaluated (in order)
before assigning any PLACEs to the corresponding values.
\(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
(autoload 'cl-do-pop "cl-macs" "\
Not documented
\(fn PLACE)" nil nil)
(autoload 'remf "cl-macs" "\
Remove TAG from property list PLACE.
PLACE may be a symbol, or any generalized variable allowed by `setf'.
The form returns true if TAG was found and removed, nil otherwise.
\(fn PLACE TAG)" nil (quote macro))
(autoload 'shiftf "cl-macs" "\
Shift left among PLACEs.
Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
\(fn PLACE... VAL)" nil (quote macro))
(autoload 'rotatef "cl-macs" "\
Rotate left among PLACEs.
Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
\(fn PLACE...)" nil (quote macro))
(autoload 'letf "cl-macs" "\
Temporarily bind to PLACEs.
This is the analogue of `let', but with generalized variables (in the
sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
VALUE, then the BODY forms are executed. On exit, either normally or
because of a `throw' or error, the PLACEs are set back to their original
values. Note that this macro is *not* available in Common Lisp.
As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
the PLACE is not modified before executing BODY.
\(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
(autoload 'letf* "cl-macs" "\
Temporarily bind to PLACEs.
This is the analogue of `let*', but with generalized variables (in the
sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
VALUE, then the BODY forms are executed. On exit, either normally or
because of a `throw' or error, the PLACEs are set back to their original
values. Note that this macro is *not* available in Common Lisp.
As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
the PLACE is not modified before executing BODY.
\(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
(autoload 'callf "cl-macs" "\
Set PLACE to (FUNC PLACE ARGS...).
FUNC should be an unquoted function name. PLACE may be a symbol,
or any generalized variable allowed by `setf'.
\(fn FUNC PLACE ARGS...)" nil (quote macro))
(autoload 'callf2 "cl-macs" "\
Set PLACE to (FUNC ARG1 PLACE ARGS...).
Like `callf', but PLACE is the second argument of FUNC, not the first.
\(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
(autoload 'define-modify-macro "cl-macs" "\
Define a `setf'-like modify macro.
If NAME is called, it combines its PLACE argument with the other arguments
from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
\(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
(autoload 'defstruct "cl-macs" "\
Define a struct type.
This macro defines a new Lisp data type called NAME, which contains data
stored in SLOTs. This defines a `make-NAME' constructor, a `copy-NAME'
copier, a `NAME-p' predicate, and setf-able `NAME-SLOT' accessors.
\(fn (NAME OPTIONS...) (SLOT SLOT-OPTS...)...)" nil (quote macro))
(autoload 'cl-struct-setf-expander "cl-macs" "\
Not documented
\(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
(autoload 'typep "cl-macs" "\
Check that OBJECT is of type TYPE.
TYPE is a Common Lisp-style type specifier.
\(fn OBJECT TYPE)" nil nil)
(autoload 'check-type "cl-macs" "\
Verify that FORM is of type TYPE; signal an error if not.
STRING is an optional description of the desired type.
\(fn FORM TYPE &optional STRING)" nil (quote macro))
(autoload 'assert "cl-macs" "\
Verify that FORM returns non-nil; signal an error if not.
Second arg SHOW-ARGS means to include arguments of FORM in message.
Other args STRING and ARGS... are arguments to be passed to `error'.
They are not evaluated unless the assertion fails. If STRING is
omitted, a default message listing FORM itself is used.
\(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
(autoload 'define-compiler-macro "cl-macs" "\
Define a compiler-only macro.
This is like `defmacro', but macro expansion occurs only if the call to
FUNC is compiled (i.e., not interpreted). Compiler macros should be used
for optimizing the way calls to FUNC are compiled; the form returned by
BODY should do the same thing as a call to the normal function called
FUNC, though possibly more efficiently. Note that, like regular macros,
compiler macros are expanded repeatedly until no further expansions are
possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
original function call alone by declaring an initial `&whole foo' parameter
and then returning foo.
\(fn FUNC ARGS &rest BODY)" nil (quote macro))
(autoload 'compiler-macroexpand "cl-macs" "\
Not documented
\(fn FORM)" nil nil)
;;;***
;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
;;;;;; nset-difference set-difference nintersection intersection
;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
;;;;;; count position-if-not position-if position find-if-not find-if
;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
;;;;;; substitute-if substitute delete-duplicates remove-duplicates
;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "50e97e33d680423c1a09239e41c42e3e")
;;; Generated autoloads from cl-seq.el
(autoload 'reduce "cl-seq" "\
Reduce two-argument FUNCTION across SEQ.
Keywords supported: :start :end :from-end :initial-value :key
\(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'fill "cl-seq" "\
Fill the elements of SEQ with ITEM.
Keywords supported: :start :end
\(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
(autoload 'replace "cl-seq" "\
Replace the elements of SEQ1 with the elements of SEQ2.
SEQ1 is destructively modified, then returned.
Keywords supported: :start1 :end1 :start2 :end2
\(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
(autoload 'remove* "cl-seq" "\
Remove all occurrences of ITEM in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
Keywords supported: :test :test-not :key :count :start :end :from-end
\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'remove-if "cl-seq" "\
Remove all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
Keywords supported: :key :count :start :end :from-end
\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'remove-if-not "cl-seq" "\
Remove all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
Keywords supported: :key :count :start :end :from-end
\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'delete* "cl-seq" "\
Remove all occurrences of ITEM in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
Keywords supported: :test :test-not :key :count :start :end :from-end
\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'delete-if "cl-seq" "\
Remove all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
Keywords supported: :key :count :start :end :from-end
\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'delete-if-not "cl-seq" "\
Remove all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
Keywords supported: :key :count :start :end :from-end
\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'remove-duplicates "cl-seq" "\
Return a copy of SEQ with all duplicate elements removed.
Keywords supported: :test :test-not :key :start :end :from-end
\(fn SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'delete-duplicates "cl-seq" "\
Remove all duplicate elements from SEQ (destructively).
Keywords supported: :test :test-not :key :start :end :from-end
\(fn SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'substitute "cl-seq" "\
Substitute NEW for OLD in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
Keywords supported: :test :test-not :key :count :start :end :from-end
\(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'substitute-if "cl-seq" "\
Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
Keywords supported: :key :count :start :end :from-end
\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'substitute-if-not "cl-seq" "\
Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
Keywords supported: :key :count :start :end :from-end
\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'nsubstitute "cl-seq" "\
Substitute NEW for OLD in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
Keywords supported: :test :test-not :key :count :start :end :from-end
\(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'nsubstitute-if "cl-seq" "\
Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
Keywords supported: :key :count :start :end :from-end
\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'nsubstitute-if-not "cl-seq" "\
Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
Keywords supported: :key :count :start :end :from-end
\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'find "cl-seq" "\
Find the first occurrence of ITEM in SEQ.
Return the matching ITEM, or nil if not found.
Keywords supported: :test :test-not :key :start :end :from-end
\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'find-if "cl-seq" "\
Find the first item satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
Keywords supported: :key :start :end :from-end
\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'find-if-not "cl-seq" "\
Find the first item not satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
Keywords supported: :key :start :end :from-end
\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'position "cl-seq" "\
Find the first occurrence of ITEM in SEQ.
Return the index of the matching item, or nil if not found.
Keywords supported: :test :test-not :key :start :end :from-end
\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'position-if "cl-seq" "\
Find the first item satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
Keywords supported: :key :start :end :from-end
\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'position-if-not "cl-seq" "\
Find the first item not satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
Keywords supported: :key :start :end :from-end
\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'count "cl-seq" "\
Count the number of occurrences of ITEM in SEQ.
Keywords supported: :test :test-not :key :start :end
\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'count-if "cl-seq" "\
Count the number of items satisfying PREDICATE in SEQ.
Keywords supported: :key :start :end
\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'count-if-not "cl-seq" "\
Count the number of items not satisfying PREDICATE in SEQ.
Keywords supported: :key :start :end
\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
(autoload 'mismatch "cl-seq" "\
Compare SEQ1 with SEQ2, return index of first mismatching element.
Return nil if the sequences match. If one sequence is a prefix of the
other, the return value indicates the end of the shorter sequence.
Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
\(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
(autoload 'search "cl-seq" "\
Search for SEQ1 as a subsequence of SEQ2.
Return the index of the leftmost element of the first match found;
return nil if there are no matches.
Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
\(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
(autoload 'sort* "cl-seq" "\
Sort the argument SEQ according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
Keywords supported: :key
\(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
(autoload 'stable-sort "cl-seq" "\
Sort the argument SEQ stably according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
Keywords supported: :key
\(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
(autoload 'merge "cl-seq" "\
Destructively merge the two sequences to produce a new sequence.
TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
sequences, and PREDICATE is a `less-than' predicate on the elements.
Keywords supported: :key
\(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
(autoload 'member* "cl-seq" "\
Find the first occurrence of ITEM in LIST.
Return the sublist of LIST whose car is ITEM.
Keywords supported: :test :test-not :key
\(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
(autoload 'member-if "cl-seq" "\
Find the first item satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
Keywords supported: :key
\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
(autoload 'member-if-not "cl-seq" "\
Find the first item not satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
Keywords supported: :key
\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
(autoload 'cl-adjoin "cl-seq" "\
Not documented
\(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
(autoload 'assoc* "cl-seq" "\
Find the first item whose car matches ITEM in LIST.
Keywords supported: :test :test-not :key
\(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
(autoload 'assoc-if "cl-seq" "\
Find the first item whose car satisfies PREDICATE in LIST.
Keywords supported: :key
\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
(autoload 'assoc-if-not "cl-seq" "\
Find the first item whose car does not satisfy PREDICATE in LIST.
Keywords supported: :key
\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
(autoload 'rassoc* "cl-seq" "\
Find the first item whose cdr matches ITEM in LIST.
Keywords supported: :test :test-not :key
\(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
(autoload 'rassoc-if "cl-seq" "\
Find the first item whose cdr satisfies PREDICATE in LIST.
Keywords supported: :key
\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
(autoload 'rassoc-if-not "cl-seq" "\
Find the first item whose cdr does not satisfy PREDICATE in LIST.
Keywords supported: :key
\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
(autoload 'union "cl-seq" "\
Combine LIST1 and LIST2 using a set-union operation.
The result list contains all items that appear in either LIST1 or LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
Keywords supported: :test :test-not :key
\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
(autoload 'nunion "cl-seq" "\
Combine LIST1 and LIST2 using a set-union operation.
The result list contains all items that appear in either LIST1 or LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
Keywords supported: :test :test-not :key
\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
(autoload 'intersection "cl-seq" "\
Combine LIST1 and LIST2 using a set-intersection operation.
The result list contains all items that appear in both LIST1 and LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
Keywords supported: :test :test-not :key
\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
(autoload 'nintersection "cl-seq" "\
Combine LIST1 and LIST2 using a set-intersection operation.
The result list contains all items that appear in both LIST1 and LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
Keywords supported: :test :test-not :key
\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
(autoload 'set-difference "cl-seq" "\
Combine LIST1 and LIST2 using a set-difference operation.
The result list contains all items that appear in LIST1 but not LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
Keywords supported: :test :test-not :key
\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
(autoload 'nset-difference "cl-seq" "\
Combine LIST1 and LIST2 using a set-difference operation.
The result list contains all items that appear in LIST1 but not LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
Keywords supported: :test :test-not :key
\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
(autoload 'set-exclusive-or "cl-seq" "\
Combine LIST1 and LIST2 using a set-exclusive-or operation.
The result list contains all items that appear in exactly one of LIST1, LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
Keywords supported: :test :test-not :key
\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
(autoload 'nset-exclusive-or "cl-seq" "\
Combine LIST1 and LIST2 using a set-exclusive-or operation.
The result list contains all items that appear in exactly one of LIST1, LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
Keywords supported: :test :test-not :key
\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
(autoload 'subsetp "cl-seq" "\
Return true if LIST1 is a subset of LIST2.
I.e., if every element of LIST1 also appears in LIST2.
Keywords supported: :test :test-not :key
\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
(autoload 'subst-if "cl-seq" "\
Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced by NEW.
Keywords supported: :key
\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
(autoload 'subst-if-not "cl-seq" "\
Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all non-matching elements replaced by NEW.
Keywords supported: :key
\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
(autoload 'nsubst "cl-seq" "\
Substitute NEW for OLD everywhere in TREE (destructively).
Any element of TREE which is `eql' to OLD is changed to NEW (via a call
to `setcar').
Keywords supported: :test :test-not :key
\(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
(autoload 'nsubst-if "cl-seq" "\
Substitute NEW for elements matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
Keywords supported: :key
\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
(autoload 'nsubst-if-not "cl-seq" "\
Substitute NEW for elements not matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
Keywords supported: :key
\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
(autoload 'sublis "cl-seq" "\
Perform substitutions indicated by ALIST in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced.
Keywords supported: :test :test-not :key
\(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
(autoload 'nsublis "cl-seq" "\
Perform substitutions indicated by ALIST in TREE (destructively).
Any matching element of TREE is changed via a call to `setcar'.
Keywords supported: :test :test-not :key
\(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
(autoload 'tree-equal "cl-seq" "\
Return t if trees TREE1 and TREE2 have `eql' leaves.
Atoms are compared by `eql'; cons cells are compared recursively.
Keywords supported: :test :test-not :key
\(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
;;;***
;; Local Variables:
;; version-control: never
;; no-byte-compile: t
;; no-update-autoloads: t
;; End:
;; arch-tag: 08cc5aab-e992-47f6-992e-12a7428c1a0e
;;; cl-loaddefs.el ends here
|