1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
|
;;; cconv.el --- Closure conversion for statically scoped Emacs lisp. -*- lexical-binding: nil -*-
;; Copyright (C) 2011 Free Software Foundation, Inc.
;; Author: Igor Kuzmin <kzuminig@iro.umontreal.ca>
;; Maintainer: FSF
;; Keywords: lisp
;; Package: emacs
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
;;; Commentary:
;; This takes a piece of Elisp code, and eliminates all free variables from
;; lambda expressions. The user entry points are cconv-closure-convert and
;; cconv-closure-convert-toplevel(for toplevel forms).
;; All macros should be expanded beforehand.
;;
;; Here is a brief explanation how this code works.
;; Firstly, we analyse the tree by calling cconv-analyse-form.
;; This function finds all mutated variables, all functions that are suitable
;; for lambda lifting and all variables captured by closure. It passes the tree
;; once, returning a list of three lists.
;;
;; Then we calculate the intersection of first and third lists returned by
;; cconv-analyse form to find all mutated variables that are captured by
;; closure.
;; Armed with this data, we call cconv-closure-convert-rec, that rewrites the
;; tree recursivly, lifting lambdas where possible, building closures where it
;; is needed and eliminating mutable variables used in closure.
;;
;; We do following replacements :
;; (lambda (v1 ...) ... fv1 fv2 ...) => (lambda (v1 ... fv1 fv2 ) ... fv1 fv2 .)
;; if the function is suitable for lambda lifting (if all calls are known)
;;
;; (lambda (v1 ...) ... fv ...) =>
;; (curry (lambda (env v1 ...) ... env ...) env)
;; if the function has only 1 free variable
;;
;; and finally
;; (lambda (v1 ...) ... fv1 fv2 ...) =>
;; (curry (lambda (env v1 ..) .. (aref env 0) (aref env 1) ..) (vector fv1 fv2))
;; if the function has 2 or more free variables.
;;
;; If the function has no free variables, we don't do anything.
;;
;; If a variable is mutated (updated by setq), and it is used in a closure
;; we wrap it's definition with list: (list val) and we also replace
;; var => (car var) wherever this variable is used, and also
;; (setq var value) => (setcar var value) where it is updated.
;;
;; If defun argument is closure mutable, we letbind it and wrap it's
;; definition with list.
;; (defun foo (... mutable-arg ...) ...) =>
;; (defun foo (... m-arg ...) (let ((m-arg (list m-arg))) ...))
;;
;;; Code:
;;; TODO:
;; - Use abstract `make-closure' and `closure-ref' expressions, which bytecomp
;; should turn into building corresponding byte-code function.
;; - don't use `curry', instead build a new compiled-byte-code object
;; (merge the closure env into the static constants pool).
;; - use relative addresses for byte-code-stack-ref.
;; - warn about unused lexical vars.
;; - clean up cconv-closure-convert-rec, especially the `let' binding part.
(eval-when-compile (require 'cl))
(defconst cconv-liftwhen 3
"Try to do lambda lifting if the number of arguments + free variables
is less than this number.")
(defvar cconv-mutated nil
"List of mutated variables in current form")
(defvar cconv-captured nil
"List of closure captured variables in current form")
(defvar cconv-captured+mutated nil
"An intersection between cconv-mutated and cconv-captured lists.")
(defvar cconv-lambda-candidates nil
"List of candidates for lambda lifting.
Each candidate has the form (VAR INCLOSURE BINDER PARENTFORM).")
(defun cconv-freevars (form &optional fvrs)
"Find all free variables of given form.
Arguments:
-- FORM is a piece of Elisp code after macroexpansion.
-- FVRS(optional) is a list of variables already found. Used for recursive tree
traversal
Returns a list of free variables."
;; If a leaf in the tree is a symbol, but it is not a global variable, not a
;; keyword, not 'nil or 't we consider this leaf as a variable.
;; Free variables are the variables that are not declared above in this tree.
;; For example free variables of (lambda (a1 a2 ..) body-forms) are
;; free variables of body-forms excluding a1, a2 ..
;; Free variables of (let ((v1 ..) (v2) ..)) body-forms) are
;; free variables of body-forms excluding v1, v2 ...
;; and so on.
;; A list of free variables already found(FVRS) is passed in parameter
;; to try to use cons or push where possible, and to minimize the usage
;; of append.
;; This function can return duplicates (because we use 'append instead
;; of union of two sets - for performance reasons).
(pcase form
(`(let ,varsvalues . ,body-forms) ; let special form
(let ((fvrs-1 '()))
(dolist (exp body-forms)
(setq fvrs-1 (cconv-freevars exp fvrs-1)))
(dolist (elm varsvalues)
(setq fvrs-1 (delq (if (consp elm) (car elm) elm) fvrs-1)))
(setq fvrs (nconc fvrs-1 fvrs))
(dolist (exp varsvalues)
(when (consp exp) (setq fvrs (cconv-freevars (cadr exp) fvrs))))
fvrs))
(`(let* ,varsvalues . ,body-forms) ; let* special form
(let ((vrs '())
(fvrs-1 '()))
(dolist (exp varsvalues)
(if (consp exp)
(progn
(setq fvrs-1 (cconv-freevars (cadr exp) fvrs-1))
(dolist (elm vrs) (setq fvrs-1 (delq elm fvrs-1)))
(push (car exp) vrs))
(progn
(dolist (elm vrs) (setq fvrs-1 (delq elm fvrs-1)))
(push exp vrs))))
(dolist (exp body-forms)
(setq fvrs-1 (cconv-freevars exp fvrs-1)))
(dolist (elm vrs) (setq fvrs-1 (delq elm fvrs-1)))
(append fvrs fvrs-1)))
(`((lambda . ,_) . ,_) ; first element is lambda expression
(dolist (exp `((function ,(car form)) . ,(cdr form)))
(setq fvrs (cconv-freevars exp fvrs))) fvrs)
(`(cond . ,cond-forms) ; cond special form
(dolist (exp1 cond-forms)
(dolist (exp2 exp1)
(setq fvrs (cconv-freevars exp2 fvrs)))) fvrs)
(`(quote . ,_) fvrs) ; quote form
(`(function . ((lambda ,vars . ,body-forms)))
(let ((functionform (cadr form)) (fvrs-1 '()))
(dolist (exp body-forms)
(setq fvrs-1 (cconv-freevars exp fvrs-1)))
(dolist (elm vars) (setq fvrs-1 (delq elm fvrs-1)))
(append fvrs fvrs-1))) ; function form
(`(function . ,_) fvrs) ; same as quote
;condition-case
(`(condition-case ,var ,protected-form . ,conditions-bodies)
(let ((fvrs-1 '()))
(dolist (exp conditions-bodies)
(setq fvrs-1 (cconv-freevars (cadr exp) fvrs-1)))
(setq fvrs-1 (delq var fvrs-1))
(setq fvrs-1 (cconv-freevars protected-form fvrs-1))
(append fvrs fvrs-1)))
(`(,(and sym (or `defun `defconst `defvar)) . ,_)
;; We call cconv-freevars only for functions(lambdas)
;; defun, defconst, defvar are not allowed to be inside
;; a function (lambda).
;; FIXME: should be a byte-compile-report-error!
(error "Invalid form: %s inside a function" sym))
(`(,_ . ,body-forms) ; First element is (like) a function.
(dolist (exp body-forms)
(setq fvrs (cconv-freevars exp fvrs))) fvrs)
(_ (if (byte-compile-not-lexical-var-p form)
fvrs
(cons form fvrs)))))
;;;###autoload
(defun cconv-closure-convert (form)
"Main entry point for closure conversion.
-- FORM is a piece of Elisp code after macroexpansion.
-- TOPLEVEL(optional) is a boolean variable, true if we are at the root of AST
Returns a form where all lambdas don't have any free variables."
;; (message "Entering cconv-closure-convert...")
(let ((cconv-mutated '())
(cconv-lambda-candidates '())
(cconv-captured '())
(cconv-captured+mutated '()))
;; Analyse form - fill these variables with new information.
(cconv-analyse-form form '() 0)
;; Calculate an intersection of cconv-mutated and cconv-captured.
(dolist (mvr cconv-mutated)
(when (memq mvr cconv-captured) ;
(push mvr cconv-captured+mutated)))
(cconv-closure-convert-rec
form ; the tree
'() ;
'() ; fvrs initially empty
'() ; envs initially empty
'()
)))
(defun cconv-lookup-let (table var binder form)
(let ((res nil))
(dolist (elem table)
(when (and (eq (nth 2 elem) binder)
(eq (nth 3 elem) form))
(assert (eq (car elem) var))
(setq res elem)))
res))
(defconst cconv--dummy-var (make-symbol "ignored"))
(defconst cconv--env-var (make-symbol "env"))
(defun cconv--set-diff (s1 s2)
"Return elements of set S1 that are not in set S2."
(let ((res '()))
(dolist (x s1)
(unless (memq x s2) (push x res)))
(nreverse res)))
(defun cconv--set-diff-map (s m)
"Return elements of set S that are not in Dom(M)."
(let ((res '()))
(dolist (x s)
(unless (assq x m) (push x res)))
(nreverse res)))
(defun cconv--map-diff (m1 m2)
"Return the submap of map M1 that has Dom(M2) removed."
(let ((res '()))
(dolist (x m1)
(unless (assq (car x) m2) (push x res)))
(nreverse res)))
(defun cconv--map-diff-elem (m x)
"Return the map M minus any mapping for X."
;; Here we assume that X appears at most once in M.
(let* ((b (assq x m))
(res (if b (remq b m) m)))
(assert (null (assq x res))) ;; Check the assumption was warranted.
res))
(defun cconv--map-diff-set (m s)
"Return the map M minus any mapping for elements of S."
;; Here we assume that X appears at most once in M.
(let ((res '()))
(dolist (b m)
(unless (memq (car b) s) (push b res)))
(nreverse res)))
(defun cconv-closure-convert-rec (form emvrs fvrs envs lmenvs)
;; This function actually rewrites the tree.
"Eliminates all free variables of all lambdas in given forms.
Arguments:
-- FORM is a piece of Elisp code after macroexpansion.
-- LMENVS is a list of environments used for lambda-lifting. Initially empty.
-- EMVRS is a list that contains mutated variables that are visible
within current environment.
-- ENVS is an environment(list of free variables) of current closure.
Initially empty.
-- FVRS is a list of variables to substitute in each context.
Initially empty.
Returns a form where all lambdas don't have any free variables."
;; What's the difference between fvrs and envs?
;; Suppose that we have the code
;; (lambda (..) fvr (let ((fvr 1)) (+ fvr 1)))
;; only the first occurrence of fvr should be replaced by
;; (aref env ...).
;; So initially envs and fvrs are the same thing, but when we descend to
;; the 'let, we delete fvr from fvrs. Why we don't delete fvr from envs?
;; Because in envs the order of variables is important. We use this list
;; to find the number of a specific variable in the environment vector,
;; so we never touch it(unless we enter to the other closure).
;;(if (listp form) (print (car form)) form)
(pcase form
(`(,(and letsym (or `let* `let)) ,binders . ,body-forms)
; let and let* special forms
(let ((body-forms-new '())
(binders-new '())
;; next for variables needed for delayed push
;; because we should process <value(s)>
;; before we change any arguments
(lmenvs-new '()) ;needed only in case of let
(emvrs-new '()) ;needed only in case of let
(emvr-push) ;needed only in case of let*
(lmenv-push)) ;needed only in case of let*
(dolist (binder binders)
(let* ((value nil)
(var (if (not (consp binder))
binder
(setq value (cadr binder))
(car binder)))
(new-val
(cond
;; Check if var is a candidate for lambda lifting.
((cconv-lookup-let cconv-lambda-candidates var binder form)
(let* ((fv (delete-dups (cconv-freevars value '())))
(funargs (cadr (cadr value)))
(funcvars (append fv funargs))
(funcbodies (cddadr value)) ; function bodies
(funcbodies-new '()))
; lambda lifting condition
(if (or (not fv) (< cconv-liftwhen (length funcvars)))
; do not lift
(cconv-closure-convert-rec
value emvrs fvrs envs lmenvs)
; lift
(progn
(dolist (elm2 funcbodies)
(push ; convert function bodies
(cconv-closure-convert-rec
elm2 emvrs nil envs lmenvs)
funcbodies-new))
(if (eq letsym 'let*)
(setq lmenv-push (cons var fv))
(push (cons var fv) lmenvs-new))
; push lifted function
`(function .
((lambda ,funcvars .
,(reverse funcbodies-new))))))))
;; Check if it needs to be turned into a "ref-cell".
((cconv-lookup-let cconv-captured+mutated var binder form)
;; Declared variable is mutated and captured.
(prog1
`(list ,(cconv-closure-convert-rec
value emvrs
fvrs envs lmenvs))
(if (eq letsym 'let*)
(setq emvr-push var)
(push var emvrs-new))))
;; Normal default case.
(t
(cconv-closure-convert-rec
value emvrs fvrs envs lmenvs)))))
;; this piece of code below letbinds free
;; variables of a lambda lifted function
;; if they are redefined in this let
;; example:
;; (let* ((fun (lambda (x) (+ x y))) (y 1)) (funcall fun 1))
;; Here we can not pass y as parameter because it is
;; redefined. We add a (closed-y y) declaration.
;; We do that even if the function is not used inside
;; this let(*). The reason why we ignore this case is
;; that we can't "look forward" to see if the function
;; is called there or not. To treat well this case we
;; need to traverse the tree one more time to collect this
;; data, and I think that it's not worth it.
(when (eq letsym 'let*)
(let ((closedsym '())
(new-lmenv '())
(old-lmenv '()))
(dolist (lmenv lmenvs)
(when (memq var (cdr lmenv))
(setq closedsym
(make-symbol
(concat "closed-" (symbol-name var))))
(setq new-lmenv (list (car lmenv)))
(dolist (frv (cdr lmenv)) (if (eq frv var)
(push closedsym new-lmenv)
(push frv new-lmenv)))
(setq new-lmenv (reverse new-lmenv))
(setq old-lmenv lmenv)))
(when new-lmenv
(setq lmenvs (remq old-lmenv lmenvs))
(push new-lmenv lmenvs)
(push `(,closedsym ,var) binders-new))))
;; We push the element after redefined free variables are
;; processed. This is important to avoid the bug when free
;; variable and the function have the same name.
(push (list var new-val) binders-new)
(when (eq letsym 'let*) ; update fvrs
(setq fvrs (remq var fvrs))
(setq emvrs (remq var emvrs)) ; remove if redefined
(when emvr-push
(push emvr-push emvrs)
(setq emvr-push nil))
(setq lmenvs (cconv--map-diff-elem lmenvs var))
(when lmenv-push
(push lmenv-push lmenvs)
(setq lmenv-push nil)))
)) ; end of dolist over binders
(when (eq letsym 'let)
(let (var fvrs-1 emvrs-1 lmenvs-1)
;; Here we update emvrs, fvrs and lmenvs lists
(setq fvrs (cconv--set-diff-map fvrs binders-new))
(setq emvrs (cconv--set-diff-map emvrs binders-new))
(setq emvrs (append emvrs emvrs-new))
(setq lmenvs (cconv--set-diff-map lmenvs binders-new))
(setq lmenvs (append lmenvs lmenvs-new)))
;; Here we do the same letbinding as for let* above
;; to avoid situation when a free variable of a lambda lifted
;; function got redefined.
(let ((new-lmenv)
(var nil)
(closedsym nil)
(letbinds '()))
(dolist (binder binders)
(setq var (if (consp binder) (car binder) binder))
(let ((lmenvs-1 lmenvs)) ; just to avoid manipulating
(dolist (lmenv lmenvs-1) ; the counter inside the loop
(when (memq var (cdr lmenv))
(setq closedsym (make-symbol
(concat "closed-"
(symbol-name var))))
(setq new-lmenv (list (car lmenv)))
(dolist (frv (cdr lmenv))
(push (if (eq frv var) closedsym frv)
new-lmenv))
(setq new-lmenv (reverse new-lmenv))
(setq lmenvs (remq lmenv lmenvs))
(push new-lmenv lmenvs)
(push `(,closedsym ,var) letbinds)
))))
(setq binders-new (append binders-new letbinds))))
(dolist (elm body-forms) ; convert body forms
(push (cconv-closure-convert-rec
elm emvrs fvrs envs lmenvs)
body-forms-new))
`(,letsym ,(reverse binders-new) . ,(reverse body-forms-new))))
;end of let let* forms
; first element is lambda expression
(`(,(and `(lambda . ,_) fun) . ,other-body-forms)
(let ((other-body-forms-new '()))
(dolist (elm other-body-forms)
(push (cconv-closure-convert-rec
elm emvrs fvrs envs lmenvs)
other-body-forms-new))
`(funcall
,(cconv-closure-convert-rec
(list 'function fun) emvrs fvrs envs lmenvs)
,@(nreverse other-body-forms-new))))
(`(cond . ,cond-forms) ; cond special form
(let ((cond-forms-new '()))
(dolist (elm cond-forms)
(push (let ((elm-new '()))
(dolist (elm-2 elm)
(push
(cconv-closure-convert-rec
elm-2 emvrs fvrs envs lmenvs)
elm-new))
(reverse elm-new))
cond-forms-new))
(cons 'cond
(reverse cond-forms-new))))
(`(quote . ,_) form) ; quote form
(`(function . ((lambda ,vars . ,body-forms))) ; function form
(let* ((fvrs-new (cconv--set-diff fvrs vars)) ; Remove vars from fvrs.
(fv (delete-dups (cconv-freevars form '())))
(leave fvrs-new) ; leave=non-nil if we should leave env unchanged.
(body-forms-new '())
(letbind '())
(mv nil)
(envector nil))
(when fv
;; Here we form our environment vector.
;; If outer closure contains all
;; free variables of this function(and nothing else)
;; then we use the same environment vector as for outer closure,
;; i.e. we leave the environment vector unchanged
;; otherwise we build a new environmet vector
(if (eq (length envs) (length fv))
(let ((fv-temp fv))
(while (and fv-temp leave)
(when (not (memq (car fv-temp) fvrs-new)) (setq leave nil))
(setq fv-temp (cdr fv-temp))))
(setq leave nil))
(if (not leave)
(progn
(dolist (elm fv)
(push
(cconv-closure-convert-rec
;; Remove `elm' from `emvrs' for this call because in case
;; `elm' is a variable that's wrapped in a cons-cell, we
;; want to put the cons-cell itself in the closure, rather
;; than just a copy of its current content.
elm (remq elm emvrs) fvrs envs lmenvs)
envector)) ; Process vars for closure vector.
(setq envector (reverse envector))
(setq envs fv))
(setq envector `(,cconv--env-var))) ; Leave unchanged.
(setq fvrs-new fv)) ; Update substitution list.
(setq emvrs (cconv--set-diff emvrs vars))
(setq lmenvs (cconv--map-diff-set lmenvs vars))
;; The difference between envs and fvrs is explained
;; in comment in the beginning of the function.
(dolist (elm cconv-captured+mutated) ; Find mutated arguments
(setq mv (car elm)) ; used in inner closures.
(when (and (memq mv vars) (eq form (caddr elm)))
(progn (push mv emvrs)
(push `(,mv (list ,mv)) letbind))))
(dolist (elm body-forms) ; convert function body
(push (cconv-closure-convert-rec
elm emvrs fvrs-new envs lmenvs)
body-forms-new))
(setq body-forms-new
(if letbind `((let ,letbind . ,(reverse body-forms-new)))
(reverse body-forms-new)))
(cond
;if no freevars - do nothing
((null envector)
`(function (lambda ,vars . ,body-forms-new)))
; 1 free variable - do not build vector
((null (cdr envector))
`(curry
(function (lambda (,cconv--env-var . ,vars) . ,body-forms-new))
,(car envector)))
; >=2 free variables - build vector
(t
`(curry
(function (lambda (,cconv--env-var . ,vars) . ,body-forms-new))
(vector . ,envector))))))
(`(function . ,_) form) ; same as quote
;defconst, defvar
(`(,(and sym (or `defconst `defvar)) ,definedsymbol . ,body-forms)
(let ((body-forms-new '()))
(dolist (elm body-forms)
(push (cconv-closure-convert-rec
elm emvrs fvrs envs lmenvs)
body-forms-new))
(setq body-forms-new (reverse body-forms-new))
`(,sym ,definedsymbol . ,body-forms-new)))
;defun, defmacro
(`(,(and sym (or `defun `defmacro))
,func ,vars . ,body-forms)
(let ((body-new '()) ; the whole body
(body-forms-new '()) ; body w\o docstring and interactive
(letbind '()))
; find mutable arguments
(let ((lmutated cconv-captured+mutated) ismutated)
(dolist (elm vars)
(setq ismutated nil)
(while (and lmutated (not ismutated))
(when (and (eq (caar lmutated) elm)
(eq (cadar lmutated) form))
(setq ismutated t))
(setq lmutated (cdr lmutated)))
(when ismutated
(push elm letbind)
(push elm emvrs))))
;transform body-forms
(when (stringp (car body-forms)) ; treat docstring well
(push (car body-forms) body-new)
(setq body-forms (cdr body-forms)))
(when (eq (car-safe (car body-forms)) 'interactive)
(push (cconv-closure-convert-rec
(car body-forms)
emvrs fvrs envs lmenvs)
body-new)
(setq body-forms (cdr body-forms)))
(dolist (elm body-forms)
(push (cconv-closure-convert-rec
elm emvrs fvrs envs lmenvs)
body-forms-new))
(setq body-forms-new (reverse body-forms-new))
(if letbind
; letbind mutable arguments
(let ((binders-new '()))
(dolist (elm letbind) (push `(,elm (list ,elm))
binders-new))
(push `(let ,(reverse binders-new) .
,body-forms-new) body-new)
(setq body-new (reverse body-new)))
(setq body-new (append (reverse body-new) body-forms-new)))
`(,sym ,func ,vars . ,body-new)))
;condition-case
(`(condition-case ,var ,protected-form . ,handlers)
(let ((handlers-new '())
(newform (cconv-closure-convert-rec
`(function (lambda () ,protected-form))
emvrs fvrs envs lmenvs)))
(setq fvrs (remq var fvrs))
(dolist (handler handlers)
(push (list (car handler)
(cconv-closure-convert-rec
`(function (lambda (,(or var cconv--dummy-var))
,@(cdr handler)))
emvrs fvrs envs lmenvs))
handlers-new))
`(condition-case :fun-body ,newform
,@(nreverse handlers-new))))
(`(,(and head (or `catch `unwind-protect)) ,form . ,body)
`(,head ,(cconv-closure-convert-rec form emvrs fvrs envs lmenvs)
:fun-body
,(cconv-closure-convert-rec `(function (lambda () ,@body))
emvrs fvrs envs lmenvs)))
(`(track-mouse . ,body)
`(track-mouse
:fun-body
,(cconv-closure-convert-rec `(function (lambda () ,@body))
emvrs fvrs envs lmenvs)))
(`(setq . ,forms) ; setq special form
(let (prognlist sym sym-new value)
(while forms
(setq sym (car forms))
(setq sym-new (cconv-closure-convert-rec
sym
(remq sym emvrs) fvrs envs lmenvs))
(setq value
(cconv-closure-convert-rec
(cadr forms) emvrs fvrs envs lmenvs))
(if (memq sym emvrs)
(push `(setcar ,sym-new ,value) prognlist)
(if (symbolp sym-new)
(push `(setq ,sym-new ,value) prognlist)
(push `(set ,sym-new ,value) prognlist)))
(setq forms (cddr forms)))
(if (cdr prognlist)
`(progn . ,(reverse prognlist))
(car prognlist))))
(`(,(and (or `funcall `apply) callsym) ,fun . ,args)
; funcall is not a special form
; but we treat it separately
; for the needs of lambda lifting
(let ((fv (cdr (assq fun lmenvs))))
(if fv
(let ((args-new '())
(processed-fv '()))
;; All args (free variables and actual arguments)
;; should be processed, because they can be fvrs
;; (free variables of another closure)
(dolist (fvr fv)
(push (cconv-closure-convert-rec
fvr (remq fvr emvrs)
fvrs envs lmenvs)
processed-fv))
(setq processed-fv (reverse processed-fv))
(dolist (elm args)
(push (cconv-closure-convert-rec
elm emvrs fvrs envs lmenvs)
args-new))
(setq args-new (append processed-fv (reverse args-new)))
(setq fun (cconv-closure-convert-rec
fun emvrs fvrs envs lmenvs))
`(,callsym ,fun . ,args-new))
(let ((cdr-new '()))
(dolist (elm (cdr form))
(push (cconv-closure-convert-rec
elm emvrs fvrs envs lmenvs)
cdr-new))
`(,callsym . ,(reverse cdr-new))))))
(`(,func . ,body-forms) ; first element is function or whatever
; function-like forms are:
; or, and, if, progn, prog1, prog2,
; while, until
(let ((body-forms-new '()))
(dolist (elm body-forms)
(push (cconv-closure-convert-rec
elm emvrs fvrs envs lmenvs)
body-forms-new))
(setq body-forms-new (reverse body-forms-new))
`(,func . ,body-forms-new)))
(_
(let ((free (memq form fvrs)))
(if free ;form is a free variable
(let* ((numero (- (length fvrs) (length free)))
(var (if (null (cdr envs))
cconv--env-var
;; Replace form => (aref env #)
`(aref ,cconv--env-var ,numero))))
(if (memq form emvrs) ; form => (car (aref env #)) if mutable
`(car ,var)
var))
(if (memq form emvrs) ; if form is a mutable variable
`(car ,form) ; replace form => (car form)
form))))))
(defun cconv-analyse-function (args body env parentform inclosure)
(dolist (arg args)
(cond
((byte-compile-not-lexical-var-p arg)
(byte-compile-report-error
(format "Argument %S is not a lexical variable" arg)))
((eq ?& (aref (symbol-name arg) 0)) nil) ;Ignore &rest, &optional, ...
(t (push (list arg inclosure parentform) env)))) ;Push vrs to vars.
(dolist (form body) ;Analyse body forms.
(cconv-analyse-form form env inclosure)))
(defun cconv-analyse-form (form env inclosure)
"Find mutated variables and variables captured by closure. Analyse
lambdas if they are suitable for lambda lifting.
-- FORM is a piece of Elisp code after macroexpansion.
-- ENV is a list of variables visible in current lexical environment.
Each entry has the form (VAR INCLOSURE BINDER PARENTFORM)
for let-bound vars and (VAR INCLOSURE PARENTFORM) for function arguments.
-- INCLOSURE is the nesting level within lambdas."
(pcase form
; let special form
(`(,(and (or `let* `let) letsym) ,binders . ,body-forms)
(let ((orig-env env)
(var nil)
(value nil))
(dolist (binder binders)
(if (not (consp binder))
(progn
(setq var binder) ; treat the form (let (x) ...) well
(setq value nil))
(setq var (car binder))
(setq value (cadr binder))
(cconv-analyse-form value (if (eq letsym 'let*) env orig-env)
inclosure))
(unless (byte-compile-not-lexical-var-p var)
(let ((varstruct (list var inclosure binder form)))
(push varstruct env) ; Push a new one.
(pcase value
(`(function (lambda . ,_))
;; If var is a function push it to lambda list.
(push varstruct cconv-lambda-candidates)))))))
(dolist (form body-forms) ; Analyse body forms.
(cconv-analyse-form form env inclosure)))
; defun special form
(`(,(or `defun `defmacro) ,func ,vrs . ,body-forms)
(when env
(byte-compile-log-warning
(format "Function %S will ignore its context %S"
func (mapcar #'car env))
t :warning))
(cconv-analyse-function vrs body-forms nil form 0))
(`(function (lambda ,vrs . ,body-forms))
(cconv-analyse-function vrs body-forms env form (1+ inclosure)))
(`(setq . ,forms)
;; If a local variable (member of env) is modified by setq then
;; it is a mutated variable.
(while forms
(let ((v (assq (car forms) env))) ; v = non nil if visible
(when v
(push v cconv-mutated)
;; Delete from candidate list for lambda lifting.
(setq cconv-lambda-candidates (delq v cconv-lambda-candidates))
(unless (eq inclosure (cadr v)) ;Bound in a different closure level.
(push v cconv-captured))))
(cconv-analyse-form (cadr forms) env inclosure)
(setq forms (cddr forms))))
(`((lambda . ,_) . ,_) ; first element is lambda expression
(dolist (exp `((function ,(car form)) . ,(cdr form)))
(cconv-analyse-form exp env inclosure)))
(`(cond . ,cond-forms) ; cond special form
(dolist (forms cond-forms)
(dolist (form forms)
(cconv-analyse-form form env inclosure))))
(`(quote . ,_) nil) ; quote form
(`(function . ,_) nil) ; same as quote
(`(condition-case ,var ,protected-form . ,handlers)
;; FIXME: The bytecode for condition-case forces us to wrap the
;; form and handlers in closures (for handlers, it's probably
;; unavoidable, but not for the protected form).
(setq inclosure (1+ inclosure))
(cconv-analyse-form protected-form env inclosure)
(push (list var inclosure form) env)
(dolist (handler handlers)
(dolist (form (cdr handler))
(cconv-analyse-form form env inclosure))))
;; FIXME: The bytecode for catch forces us to wrap the body.
(`(,(or `catch `unwind-protect) ,form . ,body)
(cconv-analyse-form form env inclosure)
(setq inclosure (1+ inclosure))
(dolist (form body)
(cconv-analyse-form form env inclosure)))
;; FIXME: The bytecode for save-window-excursion and the lack of
;; bytecode for track-mouse forces us to wrap the body.
(`(track-mouse . ,body)
(setq inclosure (1+ inclosure))
(dolist (form body)
(cconv-analyse-form form env inclosure)))
(`(,(or `defconst `defvar) ,var ,value . ,_)
(push var byte-compile-bound-variables)
(cconv-analyse-form value env inclosure))
(`(,(or `funcall `apply) ,fun . ,args)
;; Here we ignore fun because funcall and apply are the only two
;; functions where we can pass a candidate for lambda lifting as
;; argument. So, if we see fun elsewhere, we'll delete it from
;; lambda candidate list.
(if (symbolp fun)
(let ((lv (assq fun cconv-lambda-candidates)))
(when lv
(unless (eq (cadr lv) inclosure)
(push lv cconv-captured)
;; If this funcall and the definition of fun are in
;; different closures - we delete fun from candidate
;; list, because it is too complicated to manage free
;; variables in this case.
(setq cconv-lambda-candidates
(delq lv cconv-lambda-candidates)))))
(cconv-analyse-form fun env inclosure))
(dolist (form args)
(cconv-analyse-form form env inclosure)))
(`(,_ . ,body-forms) ; First element is a function or whatever.
(dolist (form body-forms)
(cconv-analyse-form form env inclosure)))
((pred symbolp)
(let ((dv (assq form env))) ; dv = declared and visible
(when dv
(unless (eq inclosure (cadr dv)) ; capturing condition
(push dv cconv-captured))
;; Delete lambda if it is found here, since it escapes.
(setq cconv-lambda-candidates
(delq dv cconv-lambda-candidates)))))))
(provide 'cconv)
;;; cconv.el ends here
|