1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
|
;;; calc-nlfit.el --- nonlinear curve fitting for Calc -*- lexical-binding:t -*-
;; Copyright (C) 2007-2021 Free Software Foundation, Inc.
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; This code uses the Levenberg-Marquardt method, as described in
;; _Numerical Analysis_ by H. R. Schwarz, to fit data to
;; nonlinear curves. Currently, the only the following curves are
;; supported:
;; The logistic S curve, y=a/(1+exp(b*(t-c)))
;; Here, y is usually interpreted as the population of some
;; quantity at time t. So we will think of the data as consisting
;; of quantities q0, q1, ..., qn and their respective times
;; t0, t1, ..., tn.
;; The logistic bell curve, y=A*exp(B*(t-C))/(1+exp(B*(t-C)))^2
;; Note that this is the derivative of the formula for the S curve.
;; We get A=-a*b, B=b and C=c. Here, y is interpreted as the rate
;; of growth of a population at time t. So we will think of the
;; data as consisting of rates p0, p1, ..., pn and their
;; respective times t0, t1, ..., tn.
;; The Hubbert Linearization, y/x=A*(1-x/B)
;; Here, y is thought of as the rate of growth of a population
;; and x represents the actual population. This is essentially
;; the differential equation describing the actual population.
;; The Levenberg-Marquardt method is an iterative process: it takes
;; an initial guess for the parameters and refines them. To get an
;; initial guess for the parameters, we'll use a method described by
;; Luis de Sousa in "Hubbert's Peak Mathematics". The idea is that
;; given quantities Q and the corresponding rates P, they should
;; satisfy P/Q= mQ+a. We can use the parameter a for an
;; approximation for the parameter a in the S curve, and
;; approximations for b and c are found using least squares on the
;; linearization log((a/y)-1) = log(bb) + cc*t of
;; y=a/(1+bb*exp(cc*t)), which is equivalent to the above s curve
;; formula, and then translating it to b and c. From this, we can
;; also get approximations for the bell curve parameters.
;;; Code:
(require 'calc-arith)
(require 'calcalg3)
;; Declare functions which are defined elsewhere.
(declare-function calc-get-fit-variables "calcalg3" (nv nc &optional defv defc with-y homog))
(declare-function math-map-binop "calcalg3" (binop args1 args2))
(defun math-nlfit-least-squares (xdata ydata &optional sdata sigmas)
"Return the parameters A and B for the best least squares fit y=a+bx."
(let* ((n (length xdata))
(s2data (if sdata
(mapcar 'calcFunc-sqr sdata)
(make-list n 1)))
(S (if sdata 0 n))
(Sx 0)
(Sy 0)
(Sxx 0)
(Sxy 0)
D)
(while xdata
(let ((x (car xdata))
(y (car ydata))
(s (car s2data)))
(setq Sx (math-add Sx (if s (math-div x s) x)))
(setq Sy (math-add Sy (if s (math-div y s) y)))
(setq Sxx (math-add Sxx (if s (math-div (math-mul x x) s)
(math-mul x x))))
(setq Sxy (math-add Sxy (if s (math-div (math-mul x y) s)
(math-mul x y))))
(if sdata
(setq S (math-add S (math-div 1 s)))))
(setq xdata (cdr xdata))
(setq ydata (cdr ydata))
(setq s2data (cdr s2data)))
(setq D (math-sub (math-mul S Sxx) (math-mul Sx Sx)))
(let ((A (math-div (math-sub (math-mul Sxx Sy) (math-mul Sx Sxy)) D))
(B (math-div (math-sub (math-mul S Sxy) (math-mul Sx Sy)) D)))
(if sigmas
(let ((C11 (math-div Sxx D))
(C12 (math-neg (math-div Sx D)))
(C22 (math-div S D)))
(list (list 'sdev A (calcFunc-sqrt C11))
(list 'sdev B (calcFunc-sqrt C22))
(list 'vec
(list 'vec C11 C12)
(list 'vec C12 C22))))
(list A B)))))
;; The methods described by de Sousa require the cumulative data qdata
;; and the rates pdata. We will assume that we are given either
;; qdata and the corresponding times tdata, or pdata and the corresponding
;; tdata. The following two functions will find pdata or qdata,
;; given the other..
;; First, given two lists; one of values q0, q1, ..., qn and one of
;; corresponding times t0, t1, ..., tn; return a list
;; p0, p1, ..., pn of the rates of change of the qi with respect to t.
;; p0 is the right hand derivative (q1 - q0)/(t1 - t0).
;; pn is the left hand derivative (qn - q(n-1))/(tn - t(n-1)).
;; The other pis are the averages of the two:
;; (1/2)((qi - q(i-1))/(ti - t(i-1)) + (q(i+1) - qi)/(t(i+1) - ti)).
(defun math-nlfit-get-rates-from-cumul (tdata qdata)
(let ((pdata (list
(math-div
(math-sub (nth 1 qdata)
(nth 0 qdata))
(math-sub (nth 1 tdata)
(nth 0 tdata))))))
(while (> (length qdata) 2)
(setq pdata
(cons
(math-mul
'(float 5 -1)
(math-add
(math-div
(math-sub (nth 2 qdata)
(nth 1 qdata))
(math-sub (nth 2 tdata)
(nth 1 tdata)))
(math-div
(math-sub (nth 1 qdata)
(nth 0 qdata))
(math-sub (nth 1 tdata)
(nth 0 tdata)))))
pdata))
(setq qdata (cdr qdata)))
(setq pdata
(cons
(math-div
(math-sub (nth 1 qdata)
(nth 0 qdata))
(math-sub (nth 1 tdata)
(nth 0 tdata)))
pdata))
(reverse pdata)))
;; Next, given two lists -- one of rates p0, p1, ..., pn and one of
;; corresponding times t0, t1, ..., tn -- and an initial values q0,
;; return a list q0, q1, ..., qn of the cumulative values.
;; q0 is the initial value given.
;; For i>0, qi is computed using the trapezoid rule:
;; qi = q(i-1) + (1/2)(pi + p(i-1))(ti - t(i-1))
(defun math-nlfit-get-cumul-from-rates (tdata pdata q0)
(let* ((qdata (list q0)))
(while (cdr pdata)
(setq qdata
(cons
(math-add (car qdata)
(math-mul
(math-mul
'(float 5 -1)
(math-add (nth 1 pdata) (nth 0 pdata)))
(math-sub (nth 1 tdata)
(nth 0 tdata))))
qdata))
(setq pdata (cdr pdata))
(setq tdata (cdr tdata)))
(reverse qdata)))
;; Given the qdata, pdata and tdata, find the parameters
;; a, b and c that fit q = a/(1+b*exp(c*t)).
;; a is found using the method described by de Sousa.
;; b and c are found using least squares on the linearization
;; log((a/q)-1) = log(b) + c*t
;; In some cases (where the logistic curve may well be the wrong
;; model), the computed a will be less than or equal to the maximum
;; value of q in qdata; in which case the above linearization won't work.
;; In this case, a will be replaced by a number slightly above
;; the maximum value of q.
(defun math-nlfit-find-qmax (qdata pdata tdata)
(let* ((ratios (math-map-binop 'math-div pdata qdata))
(lsdata (math-nlfit-least-squares ratios tdata))
(qmax (math-max-list (car qdata) (cdr qdata)))
(a (math-neg (math-div (nth 1 lsdata) (nth 0 lsdata)))))
(if (math-lessp a qmax)
(math-add '(float 5 -1) qmax)
a)))
(defun math-nlfit-find-logistic-parameters (qdata pdata tdata)
(let* ((a (math-nlfit-find-qmax qdata pdata tdata))
(newqdata
(mapcar (lambda (q) (calcFunc-ln (math-sub (math-div a q) 1)))
qdata))
(bandc (math-nlfit-least-squares tdata newqdata)))
(list
a
(calcFunc-exp (nth 0 bandc))
(nth 1 bandc))))
;; Next, given the pdata and tdata, we can find the qdata if we know q0.
;; We first try to find q0, using the fact that when p takes on its largest
;; value, q is half of its maximum value. So we'll find the maximum value
;; of q given various q0, and use bisection to approximate the correct q0.
;; First, given pdata and tdata, find what half of qmax would be if q0=0.
(defun math-nlfit-find-qmaxhalf (pdata tdata)
(let ((pmax (math-max-list (car pdata) (cdr pdata)))
(qmh 0))
(while (math-lessp (car pdata) pmax)
(setq qmh
(math-add qmh
(math-mul
(math-mul
'(float 5 -1)
(math-add (nth 1 pdata) (nth 0 pdata)))
(math-sub (nth 1 tdata)
(nth 0 tdata)))))
(setq pdata (cdr pdata))
(setq tdata (cdr tdata)))
qmh))
;; Next, given pdata and tdata, approximate q0.
(defun math-nlfit-find-q0 (pdata tdata)
(let* ((qhalf (math-nlfit-find-qmaxhalf pdata tdata))
(q0 (math-mul 2 qhalf))
(qdata (math-nlfit-get-cumul-from-rates tdata pdata q0)))
(while (math-lessp (math-nlfit-find-qmax
(mapcar
(lambda (q) (math-add q0 q))
qdata)
pdata tdata)
(math-mul
'(float 5 -1)
(math-add
q0
qhalf)))
(setq q0 (math-add q0 qhalf)))
(let* ((qmin (math-sub q0 qhalf))
(qmax q0)
(_qt (math-nlfit-find-qmax
(mapcar
(lambda (q) (math-add q0 q))
qdata)
pdata tdata))
(i 0))
(while (< i 10)
(setq q0 (math-mul '(float 5 -1) (math-add qmin qmax)))
(if (math-lessp
(math-nlfit-find-qmax
(mapcar
(lambda (q) (math-add q0 q))
qdata)
pdata tdata)
(math-mul '(float 5 -1) (math-add qhalf q0)))
(setq qmin q0)
(setq qmax q0))
(setq i (1+ i)))
(math-mul '(float 5 -1) (math-add qmin qmax)))))
;; To improve the approximations to the parameters, we can use
;; Marquardt method as described in Schwarz's book.
;; Small numbers used in the Givens algorithm
(defvar math-nlfit-delta '(float 1 -8))
(defvar math-nlfit-epsilon '(float 1 -5))
;; Maximum number of iterations
(defvar math-nlfit-max-its 100)
;; Next, we need some functions for dealing with vectors and
;; matrices. For convenience, we'll work with Emacs lists
;; as vectors, rather than Calc's vectors.
(defun math-nlfit-set-elt (vec i x)
(setcar (nthcdr (1- i) vec) x))
(defun math-nlfit-get-elt (vec i)
(nth (1- i) vec))
(defun math-nlfit-make-matrix (i j)
(let ((row (make-list j 0))
(mat nil)
(k 0))
(while (< k i)
(setq mat (cons (copy-sequence row) mat))
(setq k (1+ k)))
mat))
(defun math-nlfit-set-matx-elt (mat i j x)
(setcar (nthcdr (1- j) (nth (1- i) mat)) x))
(defun math-nlfit-get-matx-elt (mat i j)
(nth (1- j) (nth (1- i) mat)))
;;; For solving the linearized system.
;;; (The Givens method, from Schwarz.)
(defun math-nlfit-givens (C d)
(let* ((C (copy-tree C))
(d (copy-tree d))
(n (length (car C)))
(N (length C))
(j 1)
(r (make-list N 0))
(x (make-list N 0))
w
gamma
sigma
rho)
(while (<= j n)
(let ((i (1+ j)))
(while (<= i N)
(let ((cij (math-nlfit-get-matx-elt C i j))
(cjj (math-nlfit-get-matx-elt C j j)))
(when (not (math-equal 0 cij))
(if (math-lessp (calcFunc-abs cjj)
(math-mul math-nlfit-delta (calcFunc-abs cij)))
(setq w (math-neg cij)
gamma 0
sigma 1
rho 1)
(setq w (math-mul
(calcFunc-sign cjj)
(calcFunc-sqrt
(math-add
(math-mul cjj cjj)
(math-mul cij cij))))
gamma (math-div cjj w)
sigma (math-neg (math-div cij w)))
(if (math-lessp (calcFunc-abs sigma) gamma)
(setq rho sigma)
(setq rho (math-div (calcFunc-sign sigma) gamma))))
(setq cjj w
cij rho)
(math-nlfit-set-matx-elt C j j w)
(math-nlfit-set-matx-elt C i j rho)
(let ((k (1+ j)))
(while (<= k n)
(let* ((cjk (math-nlfit-get-matx-elt C j k))
(cik (math-nlfit-get-matx-elt C i k))
(h (math-sub
(math-mul gamma cjk) (math-mul sigma cik))))
(setq cik (math-add
(math-mul sigma cjk)
(math-mul gamma cik)))
(setq cjk h)
(math-nlfit-set-matx-elt C i k cik)
(math-nlfit-set-matx-elt C j k cjk)
(setq k (1+ k)))))
(let* ((di (math-nlfit-get-elt d i))
(dj (math-nlfit-get-elt d j))
(h (math-sub
(math-mul gamma dj)
(math-mul sigma di))))
(setq di (math-add
(math-mul sigma dj)
(math-mul gamma di)))
(setq dj h)
(math-nlfit-set-elt d i di)
(math-nlfit-set-elt d j dj))))
(setq i (1+ i))))
(setq j (1+ j)))
(let ((i n)
s)
(while (>= i 1)
(math-nlfit-set-elt r i 0)
(setq s (math-nlfit-get-elt d i))
(let ((k (1+ i)))
(while (<= k n)
(setq s (math-add s (math-mul (math-nlfit-get-matx-elt C i k)
(math-nlfit-get-elt x k))))
(setq k (1+ k))))
(math-nlfit-set-elt x i
(math-neg
(math-div s
(math-nlfit-get-matx-elt C i i))))
(setq i (1- i))))
(let ((i (1+ n)))
(while (<= i N)
(math-nlfit-set-elt r i (math-nlfit-get-elt d i))
(setq i (1+ i))))
(let ((j n))
(while (>= j 1)
(let ((i N))
(while (>= i (1+ j))
(setq rho (math-nlfit-get-matx-elt C i j))
(if (math-equal rho 1)
(setq gamma 0
sigma 1)
(if (math-lessp (calcFunc-abs rho) 1)
(setq sigma rho
gamma (calcFunc-sqrt
(math-sub 1 (math-mul sigma sigma))))
(setq gamma (math-div 1 (calcFunc-abs rho))
sigma (math-mul (calcFunc-sign rho)
(calcFunc-sqrt
(math-sub 1 (math-mul gamma gamma)))))))
(let ((ri (math-nlfit-get-elt r i))
(rj (math-nlfit-get-elt r j))
h)
(setq h (math-add (math-mul gamma rj)
(math-mul sigma ri)))
(setq ri (math-sub
(math-mul gamma ri)
(math-mul sigma rj)))
(setq rj h)
(math-nlfit-set-elt r i ri)
(math-nlfit-set-elt r j rj))
(setq i (1- i))))
(setq j (1- j))))
x))
(defun math-nlfit-jacobian (grad xlist parms &optional slist)
(let ((j nil))
(while xlist
(let ((row (apply grad (car xlist) parms)))
(setq j
(cons
(if slist
(mapcar (lambda (x) (math-div x (car slist))) row)
row)
j)))
(setq slist (cdr slist))
(setq xlist (cdr xlist)))
(reverse j)))
(defun math-nlfit-make-ident (l n)
(let ((m (math-nlfit-make-matrix n n))
(i 1))
(while (<= i n)
(math-nlfit-set-matx-elt m i i l)
(setq i (1+ i)))
m))
(defun math-nlfit-chi-sq (xlist ylist parms fn &optional slist)
(let ((cs 0))
(while xlist
(let ((c
(math-sub
(apply fn (car xlist) parms)
(car ylist))))
(if slist
(setq c (math-div c (car slist))))
(setq cs
(math-add cs
(math-mul c c))))
(setq xlist (cdr xlist))
(setq ylist (cdr ylist))
(setq slist (cdr slist)))
cs))
(defun math-nlfit-init-lambda (C)
(let ((l 0)
(n (length (car C)))
(N (length C)))
(while C
(let ((row (car C)))
(while row
(setq l (math-add l (math-mul (car row) (car row))))
(setq row (cdr row))))
(setq C (cdr C)))
(calcFunc-sqrt (math-div l (math-mul n N)))))
(defun math-nlfit-make-Ctilda (C l)
(let* ((n (length (car C)))
(bot (math-nlfit-make-ident l n)))
(append C bot)))
(defun math-nlfit-make-d (fn xdata ydata parms &optional sdata)
(let ((d nil))
(while xdata
(setq d (cons
(let ((dd (math-sub (apply fn (car xdata) parms)
(car ydata))))
(if sdata (math-div dd (car sdata)) dd))
d))
(setq xdata (cdr xdata))
(setq ydata (cdr ydata))
(setq sdata (cdr sdata)))
(reverse d)))
(defun math-nlfit-make-dtilda (d n)
(append d (make-list n 0)))
(defun math-nlfit-fit (xlist ylist parms fn grad &optional slist)
(let*
((C (math-nlfit-jacobian grad xlist parms slist))
(d (math-nlfit-make-d fn xlist ylist parms slist))
(chisq (math-nlfit-chi-sq xlist ylist parms fn slist))
(lambda (math-nlfit-init-lambda C))
(really-done nil)
(iters 0))
(while (and
(not really-done)
(< iters math-nlfit-max-its))
(setq iters (1+ iters))
(let ((done nil))
(while (not done)
(let* ((Ctilda (math-nlfit-make-Ctilda C lambda))
(dtilda (math-nlfit-make-dtilda d (length (car C))))
(zeta (math-nlfit-givens Ctilda dtilda))
(newparms (math-map-binop 'math-add (copy-tree parms) zeta))
(newchisq (math-nlfit-chi-sq xlist ylist newparms fn slist)))
(if (math-lessp newchisq chisq)
(progn
(if (math-lessp
(math-div
(math-sub chisq newchisq) newchisq) math-nlfit-epsilon)
(setq really-done t))
(setq lambda (math-div lambda 10))
(setq chisq newchisq)
(setq parms newparms)
(setq done t))
(setq lambda (math-mul lambda 10)))))
(setq C (math-nlfit-jacobian grad xlist parms slist))
(setq d (math-nlfit-make-d fn xlist ylist parms slist))))
(list chisq parms)))
;;; The functions that describe our models, and their gradients.
(defun math-nlfit-s-logistic-fn (x a b c)
(math-div a (math-add 1 (math-mul b (calcFunc-exp (math-mul c x))))))
(defun math-nlfit-s-logistic-grad (x a b c)
(let* ((ep (calcFunc-exp (math-mul c x)))
(d (math-add 1 (math-mul b ep)))
(d2 (math-mul d d)))
(list
(math-div 1 d)
(math-neg (math-div (math-mul a ep) d2))
(math-neg (math-div (math-mul a (math-mul b (math-mul x ep))) d2)))))
(defun math-nlfit-b-logistic-fn (x a c d)
(let ((ex (calcFunc-exp (math-mul c (math-sub x d)))))
(math-div
(math-mul a ex)
(math-sqr
(math-add
1 ex)))))
(defun math-nlfit-b-logistic-grad (x a c d)
(let* ((ex (calcFunc-exp (math-mul c (math-sub x d))))
(ex1 (math-add 1 ex))
(xd (math-sub x d)))
(list
(math-div
ex
(math-sqr ex1))
(math-sub
(math-div
(math-mul a (math-mul xd ex))
(math-sqr ex1))
(math-div
(math-mul 2 (math-mul a (math-mul xd (math-sqr ex))))
(math-pow ex1 3)))
(math-sub
(math-div
(math-mul 2 (math-mul a (math-mul c (math-sqr ex))))
(math-pow ex1 3))
(math-div
(math-mul a (math-mul c ex))
(math-sqr ex1))))))
;;; Functions to get the final covariance matrix and the sdevs
(defun math-nlfit-find-covar (grad xlist pparms)
(let ((j nil))
(while xlist
(setq j (cons (cons 'vec (apply grad (car xlist) pparms)) j))
(setq xlist (cdr xlist)))
(setq j (cons 'vec (reverse j)))
(setq j
(math-mul
(calcFunc-trn j) j))
(calcFunc-inv j)))
(defun math-nlfit-get-sigmas (grad xlist pparms _chisq)
(let* ((sgs nil)
(covar (math-nlfit-find-covar grad xlist pparms))
(n (1- (length covar)))
(N (length xlist))
(i 1))
(when (> N n)
(while (<= i n)
(setq sgs (cons (calcFunc-sqrt (nth i (nth i covar))) sgs))
(setq i (1+ i)))
(setq sgs (reverse sgs)))
(list sgs covar)))
;;; Now the Calc functions
(defun math-nlfit-s-logistic-params (xdata ydata)
(let ((pdata (math-nlfit-get-rates-from-cumul xdata ydata)))
(math-nlfit-find-logistic-parameters ydata pdata xdata)))
(defun math-nlfit-b-logistic-params (xdata ydata)
(let* ((q0 (math-nlfit-find-q0 ydata xdata))
(qdata (math-nlfit-get-cumul-from-rates xdata ydata q0))
(abc (math-nlfit-find-logistic-parameters qdata ydata xdata))
(B (nth 1 abc))
(C (nth 2 abc))
(A (math-neg
(math-mul
(nth 0 abc)
(math-mul B C))))
(D (math-neg (math-div (calcFunc-ln B) C)))
(A (math-div A B)))
(list A C D)))
;;; Some functions to turn the parameter lists and variables
;;; into the appropriate functions.
(defun math-nlfit-s-logistic-solnexpr (pms var)
(let ((a (nth 0 pms))
(b (nth 1 pms))
(c (nth 2 pms)))
(list '/ a
(list '+
1
(list '*
b
(calcFunc-exp
(list '*
c
var)))))))
(defun math-nlfit-b-logistic-solnexpr (pms var)
(let ((a (nth 0 pms))
(c (nth 1 pms))
(d (nth 2 pms)))
(list '/
(list '*
a
(calcFunc-exp
(list '*
c
(list '- var d))))
(list '^
(list '+
1
(calcFunc-exp
(list '*
c
(list '- var d))))
2))))
(defun math-nlfit-enter-result (n prefix vals)
(setq calc-aborted-prefix prefix)
(calc-pop-push-record-list n prefix vals)
(calc-handle-whys))
(defvar calc-curve-nvars)
(defvar calc-curve-varnames)
(defvar calc-curve-coefnames)
(defun math-nlfit-fit-curve (fn grad solnexpr initparms &optional sdv)
(calc-slow-wrapper
(let* ((sdevv (or (eq sdv 'calcFunc-efit) (eq sdv 'calcFunc-xfit)))
(calc-display-working-message nil)
(data (calc-top 1))
(xdata (cdr (car (cdr data))))
(ydata (cdr (car (cdr (cdr data)))))
(sdata (if (math-contains-sdev-p ydata)
(mapcar (lambda (x) (math-get-sdev x t)) ydata)
nil))
(ydata (mapcar (lambda (x) (math-get-value x)) ydata))
(calc-curve-varnames nil)
(calc-curve-coefnames nil)
(calc-curve-nvars 1)
(_fitvars (calc-get-fit-variables 1 3))
(var (nth 1 calc-curve-varnames))
(parms (cdr calc-curve-coefnames))
(parmguess
(funcall initparms xdata ydata))
(fit (math-nlfit-fit xdata ydata parmguess fn grad sdata))
(finalparms (nth 1 fit))
(sigmacovar
(if sdevv
(math-nlfit-get-sigmas grad xdata finalparms (nth 0 fit))))
(sigmas
(if sdevv
(nth 0 sigmacovar)))
(finalparms
(if sigmas
(math-map-binop
(lambda (x y) (list 'sdev x y)) finalparms sigmas)
finalparms))
(soln (funcall solnexpr finalparms var)))
(let ((calc-fit-to-trail t)
(traillist nil))
(while parms
(setq traillist (cons (list 'calcFunc-eq (car parms) (car finalparms))
traillist))
(setq finalparms (cdr finalparms))
(setq parms (cdr parms)))
(setq traillist (calc-normalize (cons 'vec (nreverse traillist))))
(cond ((eq sdv 'calcFunc-efit)
(math-nlfit-enter-result 1 "efit" soln))
((eq sdv 'calcFunc-xfit)
(let (sln)
(setq sln
(list 'vec
soln
traillist
(nth 1 sigmacovar)
'(vec)
(nth 0 fit)
(let ((n (length xdata))
(m (length finalparms)))
(if (and sdata (> n m))
(calcFunc-utpc (nth 0 fit)
(- n m))
'(var nan var-nan)))))
(math-nlfit-enter-result 1 "xfit" sln)))
(t
(math-nlfit-enter-result 1 "fit" soln)))
(calc-record traillist "parm")))))
(defun calc-fit-s-shaped-logistic-curve (arg)
(interactive "P")
(math-nlfit-fit-curve 'math-nlfit-s-logistic-fn
'math-nlfit-s-logistic-grad
'math-nlfit-s-logistic-solnexpr
'math-nlfit-s-logistic-params
arg))
(defun calc-fit-bell-shaped-logistic-curve (arg)
(interactive "P")
(math-nlfit-fit-curve 'math-nlfit-b-logistic-fn
'math-nlfit-b-logistic-grad
'math-nlfit-b-logistic-solnexpr
'math-nlfit-b-logistic-params
arg))
(defun calc-fit-hubbert-linear-curve (&optional sdv)
(calc-slow-wrapper
(let* ((sdevv (or (eq sdv 'calcFunc-efit) (eq sdv 'calcFunc-xfit)))
(calc-display-working-message nil)
(data (calc-top 1))
(qdata (cdr (car (cdr data))))
(pdata (cdr (car (cdr (cdr data)))))
(sdata (if (math-contains-sdev-p pdata)
(mapcar (lambda (x) (math-get-sdev x t)) pdata)
nil))
(pdata (mapcar (lambda (x) (math-get-value x)) pdata))
(poverqdata (math-map-binop 'math-div pdata qdata))
(parmvals (math-nlfit-least-squares qdata poverqdata sdata sdevv))
(finalparms (list (nth 0 parmvals)
(math-neg
(math-div (nth 0 parmvals)
(nth 1 parmvals)))))
(calc-curve-varnames nil)
(calc-curve-coefnames nil)
(calc-curve-nvars 1)
(_fitvars (calc-get-fit-variables 1 2))
(var (nth 1 calc-curve-varnames))
(parms (cdr calc-curve-coefnames))
(soln (list '* (nth 0 finalparms)
(list '- 1
(list '/ var (nth 1 finalparms))))))
(let ((calc-fit-to-trail t)
(traillist nil))
(setq traillist
(list 'vec
(list 'calcFunc-eq (nth 0 parms) (nth 0 finalparms))
(list 'calcFunc-eq (nth 1 parms) (nth 1 finalparms))))
(cond ((eq sdv 'calcFunc-efit)
(math-nlfit-enter-result 1 "efit" soln))
((eq sdv 'calcFunc-xfit)
(let (sln
(chisq
(math-nlfit-chi-sq
qdata poverqdata
(list (nth 1 (nth 0 finalparms))
(nth 1 (nth 1 finalparms)))
(lambda (x a b)
(math-mul a
(math-sub
1
(math-div x b))))
sdata)))
(setq sln
(list 'vec
soln
traillist
(nth 2 parmvals)
(list
'vec
'(calcFunc-fitdummy 1)
(list 'calcFunc-neg
(list '/
'(calcFunc-fitdummy 1)
'(calcFunc-fitdummy 2))))
chisq
(let ((n (length qdata)))
(if (and sdata (> n 2))
(calcFunc-utpc
chisq
(- n 2))
'(var nan var-nan)))))
(math-nlfit-enter-result 1 "xfit" sln)))
(t
(math-nlfit-enter-result 1 "fit" soln)))
(calc-record traillist "parm")))))
(provide 'calc-nlfit)
|