summaryrefslogtreecommitdiff
path: root/src/search.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/search.c')
-rw-r--r--src/search.c1551
1 files changed, 0 insertions, 1551 deletions
diff --git a/src/search.c b/src/search.c
deleted file mode 100644
index d9cbbf0b645..00000000000
--- a/src/search.c
+++ /dev/null
@@ -1,1551 +0,0 @@
-/* String search routines for GNU Emacs.
- Copyright (C) 1985, 1986, 1987, 1993 Free Software Foundation, Inc.
-
-This file is part of GNU Emacs.
-
-GNU Emacs is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 1, or (at your option)
-any later version.
-
-GNU Emacs is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU Emacs; see the file COPYING. If not, write to
-the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
-#include <config.h>
-#include "lisp.h"
-#include "syntax.h"
-#include "buffer.h"
-#include "commands.h"
-#include "blockinput.h"
-
-#include <sys/types.h>
-#include "regex.h"
-
-#define max(a, b) ((a) > (b) ? (a) : (b))
-#define min(a, b) ((a) < (b) ? (a) : (b))
-
-/* We compile regexps into this buffer and then use it for searching. */
-
-struct re_pattern_buffer searchbuf;
-
-char search_fastmap[0400];
-
-/* Last regexp we compiled */
-
-Lisp_Object last_regexp;
-
-/* Every call to re_match, etc., must pass &search_regs as the regs
- argument unless you can show it is unnecessary (i.e., if re_match
- is certainly going to be called again before region-around-match
- can be called).
-
- Since the registers are now dynamically allocated, we need to make
- sure not to refer to the Nth register before checking that it has
- been allocated by checking search_regs.num_regs.
-
- The regex code keeps track of whether it has allocated the search
- buffer using bits in searchbuf. This means that whenever you
- compile a new pattern, it completely forgets whether it has
- allocated any registers, and will allocate new registers the next
- time you call a searching or matching function. Therefore, we need
- to call re_set_registers after compiling a new pattern or after
- setting the match registers, so that the regex functions will be
- able to free or re-allocate it properly. */
-static struct re_registers search_regs;
-
-/* The buffer in which the last search was performed, or
- Qt if the last search was done in a string;
- Qnil if no searching has been done yet. */
-static Lisp_Object last_thing_searched;
-
-/* error condition signalled when regexp compile_pattern fails */
-
-Lisp_Object Qinvalid_regexp;
-
-static void set_search_regs ();
-
-static void
-matcher_overflow ()
-{
- error ("Stack overflow in regexp matcher");
-}
-
-#ifdef __STDC__
-#define CONST const
-#else
-#define CONST
-#endif
-
-/* Compile a regexp and signal a Lisp error if anything goes wrong. */
-
-compile_pattern (pattern, bufp, regp, translate)
- Lisp_Object pattern;
- struct re_pattern_buffer *bufp;
- struct re_registers *regp;
- char *translate;
-{
- CONST char *val;
- Lisp_Object dummy;
-
- if (EQ (pattern, last_regexp)
- && translate == bufp->translate)
- return;
-
- last_regexp = Qnil;
- bufp->translate = translate;
- BLOCK_INPUT;
- val = (CONST char *) re_compile_pattern ((char *) XSTRING (pattern)->data,
- XSTRING (pattern)->size, bufp);
- UNBLOCK_INPUT;
- if (val)
- {
- dummy = build_string (val);
- while (1)
- Fsignal (Qinvalid_regexp, Fcons (dummy, Qnil));
- }
-
- last_regexp = pattern;
-
- /* Advise the searching functions about the space we have allocated
- for register data. */
- BLOCK_INPUT;
- if (regp)
- re_set_registers (bufp, regp, regp->num_regs, regp->start, regp->end);
- UNBLOCK_INPUT;
-
- return;
-}
-
-/* Error condition used for failing searches */
-Lisp_Object Qsearch_failed;
-
-Lisp_Object
-signal_failure (arg)
- Lisp_Object arg;
-{
- Fsignal (Qsearch_failed, Fcons (arg, Qnil));
- return Qnil;
-}
-
-DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
- "Return t if text after point matches regular expression PAT.\n\
-This function modifies the match data that `match-beginning',\n\
-`match-end' and `match-data' access; save and restore the match\n\
-data if you want to preserve them.")
- (string)
- Lisp_Object string;
-{
- Lisp_Object val;
- unsigned char *p1, *p2;
- int s1, s2;
- register int i;
-
- CHECK_STRING (string, 0);
- compile_pattern (string, &searchbuf, &search_regs,
- !NILP (current_buffer->case_fold_search) ? DOWNCASE_TABLE : 0);
-
- immediate_quit = 1;
- QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
-
- /* Get pointers and sizes of the two strings
- that make up the visible portion of the buffer. */
-
- p1 = BEGV_ADDR;
- s1 = GPT - BEGV;
- p2 = GAP_END_ADDR;
- s2 = ZV - GPT;
- if (s1 < 0)
- {
- p2 = p1;
- s2 = ZV - BEGV;
- s1 = 0;
- }
- if (s2 < 0)
- {
- s1 = ZV - BEGV;
- s2 = 0;
- }
-
- i = re_match_2 (&searchbuf, (char *) p1, s1, (char *) p2, s2,
- point - BEGV, &search_regs,
- ZV - BEGV);
- if (i == -2)
- matcher_overflow ();
-
- val = (0 <= i ? Qt : Qnil);
- for (i = 0; i < search_regs.num_regs; i++)
- if (search_regs.start[i] >= 0)
- {
- search_regs.start[i] += BEGV;
- search_regs.end[i] += BEGV;
- }
- XSET (last_thing_searched, Lisp_Buffer, current_buffer);
- immediate_quit = 0;
- return val;
-}
-
-DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
- "Return index of start of first match for REGEXP in STRING, or nil.\n\
-If third arg START is non-nil, start search at that index in STRING.\n\
-For index of first char beyond the match, do (match-end 0).\n\
-`match-end' and `match-beginning' also give indices of substrings\n\
-matched by parenthesis constructs in the pattern.")
- (regexp, string, start)
- Lisp_Object regexp, string, start;
-{
- int val;
- int s;
-
- CHECK_STRING (regexp, 0);
- CHECK_STRING (string, 1);
-
- if (NILP (start))
- s = 0;
- else
- {
- int len = XSTRING (string)->size;
-
- CHECK_NUMBER (start, 2);
- s = XINT (start);
- if (s < 0 && -s <= len)
- s = len - s;
- else if (0 > s || s > len)
- args_out_of_range (string, start);
- }
-
- compile_pattern (regexp, &searchbuf, &search_regs,
- !NILP (current_buffer->case_fold_search) ? DOWNCASE_TABLE : 0);
- immediate_quit = 1;
- val = re_search (&searchbuf, (char *) XSTRING (string)->data,
- XSTRING (string)->size, s, XSTRING (string)->size - s,
- &search_regs);
- immediate_quit = 0;
- last_thing_searched = Qt;
- if (val == -2)
- matcher_overflow ();
- if (val < 0) return Qnil;
- return make_number (val);
-}
-
-/* Match REGEXP against STRING, searching all of STRING,
- and return the index of the match, or negative on failure.
- This does not clobber the match data. */
-
-int
-fast_string_match (regexp, string)
- Lisp_Object regexp, string;
-{
- int val;
-
- compile_pattern (regexp, &searchbuf, 0, 0);
- immediate_quit = 1;
- val = re_search (&searchbuf, (char *) XSTRING (string)->data,
- XSTRING (string)->size, 0, XSTRING (string)->size,
- 0);
- immediate_quit = 0;
- return val;
-}
-
-/* Search for COUNT instances of the character TARGET, starting at START.
- If COUNT is negative, search backwards.
-
- If we find COUNT instances, set *SHORTAGE to zero, and return the
- position after the COUNTth match. Note that for reverse motion
- this is not the same as the usual convention for Emacs motion commands.
-
- If we don't find COUNT instances before reaching the end of the
- buffer (or the beginning, if scanning backwards), set *SHORTAGE to
- the number of TARGETs left unfound, and return the end of the
- buffer we bumped up against.
-
- If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
- except when inside redisplay. */
-
-scan_buffer (target, start, count, shortage, allow_quit)
- int *shortage, start;
- register int count, target;
- int allow_quit;
-{
- int limit = ((count > 0) ? ZV - 1 : BEGV);
- int direction = ((count > 0) ? 1 : -1);
-
- register unsigned char *cursor;
- unsigned char *base;
-
- register int ceiling;
- register unsigned char *ceiling_addr;
-
- if (shortage != 0)
- *shortage = 0;
-
- immediate_quit = allow_quit;
-
- if (count > 0)
- while (start != limit + 1)
- {
- ceiling = BUFFER_CEILING_OF (start);
- ceiling = min (limit, ceiling);
- ceiling_addr = &FETCH_CHAR (ceiling) + 1;
- base = (cursor = &FETCH_CHAR (start));
- while (1)
- {
- while (*cursor != target && ++cursor != ceiling_addr)
- ;
- if (cursor != ceiling_addr)
- {
- if (--count == 0)
- {
- immediate_quit = 0;
- return (start + cursor - base + 1);
- }
- else
- if (++cursor == ceiling_addr)
- break;
- }
- else
- break;
- }
- start += cursor - base;
- }
- else
- {
- start--; /* first character we scan */
- while (start > limit - 1)
- { /* we WILL scan under start */
- ceiling = BUFFER_FLOOR_OF (start);
- ceiling = max (limit, ceiling);
- ceiling_addr = &FETCH_CHAR (ceiling) - 1;
- base = (cursor = &FETCH_CHAR (start));
- cursor++;
- while (1)
- {
- while (--cursor != ceiling_addr && *cursor != target)
- ;
- if (cursor != ceiling_addr)
- {
- if (++count == 0)
- {
- immediate_quit = 0;
- return (start + cursor - base + 1);
- }
- }
- else
- break;
- }
- start += cursor - base;
- }
- }
- immediate_quit = 0;
- if (shortage != 0)
- *shortage = count * direction;
- return (start + ((direction == 1 ? 0 : 1)));
-}
-
-int
-find_next_newline (from, cnt)
- register int from, cnt;
-{
- return scan_buffer ('\n', from, cnt, (int *) 0, 1);
-}
-
-Lisp_Object skip_chars ();
-
-DEFUN ("skip-chars-forward", Fskip_chars_forward, Sskip_chars_forward, 1, 2, 0,
- "Move point forward, stopping before a char not in STRING, or at pos LIM.\n\
-STRING is like the inside of a `[...]' in a regular expression\n\
-except that `]' is never special and `\\' quotes `^', `-' or `\\'.\n\
-Thus, with arg \"a-zA-Z\", this skips letters stopping before first nonletter.\n\
-With arg \"^a-zA-Z\", skips nonletters stopping before first letter.\n\
-Returns the distance traveled, either zero or positive.")
- (string, lim)
- Lisp_Object string, lim;
-{
- return skip_chars (1, 0, string, lim);
-}
-
-DEFUN ("skip-chars-backward", Fskip_chars_backward, Sskip_chars_backward, 1, 2, 0,
- "Move point backward, stopping after a char not in STRING, or at pos LIM.\n\
-See `skip-chars-forward' for details.\n\
-Returns the distance traveled, either zero or negative.")
- (string, lim)
- Lisp_Object string, lim;
-{
- return skip_chars (0, 0, string, lim);
-}
-
-DEFUN ("skip-syntax-forward", Fskip_syntax_forward, Sskip_syntax_forward, 1, 2, 0,
- "Move point forward across chars in specified syntax classes.\n\
-SYNTAX is a string of syntax code characters.\n\
-Stop before a char whose syntax is not in SYNTAX, or at position LIM.\n\
-If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
-This function returns the distance traveled, either zero or positive.")
- (syntax, lim)
- Lisp_Object syntax, lim;
-{
- return skip_chars (1, 1, syntax, lim);
-}
-
-DEFUN ("skip-syntax-backward", Fskip_syntax_backward, Sskip_syntax_backward, 1, 2, 0,
- "Move point backward across chars in specified syntax classes.\n\
-SYNTAX is a string of syntax code characters.\n\
-Stop on reaching a char whose syntax is not in SYNTAX, or at position LIM.\n\
-If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
-This function returns the distance traveled, either zero or negative.")
- (syntax, lim)
- Lisp_Object syntax, lim;
-{
- return skip_chars (0, 1, syntax, lim);
-}
-
-Lisp_Object
-skip_chars (forwardp, syntaxp, string, lim)
- int forwardp, syntaxp;
- Lisp_Object string, lim;
-{
- register unsigned char *p, *pend;
- register unsigned char c;
- unsigned char fastmap[0400];
- int negate = 0;
- register int i;
-
- CHECK_STRING (string, 0);
-
- if (NILP (lim))
- XSET (lim, Lisp_Int, forwardp ? ZV : BEGV);
- else
- CHECK_NUMBER_COERCE_MARKER (lim, 1);
-
- /* In any case, don't allow scan outside bounds of buffer. */
- /* jla turned this off, for no known reason.
- bfox turned the ZV part on, and rms turned the
- BEGV part back on. */
- if (XINT (lim) > ZV)
- XFASTINT (lim) = ZV;
- if (XINT (lim) < BEGV)
- XFASTINT (lim) = BEGV;
-
- p = XSTRING (string)->data;
- pend = p + XSTRING (string)->size;
- bzero (fastmap, sizeof fastmap);
-
- if (p != pend && *p == '^')
- {
- negate = 1; p++;
- }
-
- /* Find the characters specified and set their elements of fastmap.
- If syntaxp, each character counts as itself.
- Otherwise, handle backslashes and ranges specially */
-
- while (p != pend)
- {
- c = *p++;
- if (syntaxp)
- fastmap[c] = 1;
- else
- {
- if (c == '\\')
- {
- if (p == pend) break;
- c = *p++;
- }
- if (p != pend && *p == '-')
- {
- p++;
- if (p == pend) break;
- while (c <= *p)
- {
- fastmap[c] = 1;
- c++;
- }
- p++;
- }
- else
- fastmap[c] = 1;
- }
- }
-
- if (syntaxp && fastmap['-'] != 0)
- fastmap[' '] = 1;
-
- /* If ^ was the first character, complement the fastmap. */
-
- if (negate)
- for (i = 0; i < sizeof fastmap; i++)
- fastmap[i] ^= 1;
-
- {
- int start_point = point;
-
- immediate_quit = 1;
- if (syntaxp)
- {
-
- if (forwardp)
- {
- while (point < XINT (lim)
- && fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point))]])
- SET_PT (point + 1);
- }
- else
- {
- while (point > XINT (lim)
- && fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point - 1))]])
- SET_PT (point - 1);
- }
- }
- else
- {
- if (forwardp)
- {
- while (point < XINT (lim) && fastmap[FETCH_CHAR (point)])
- SET_PT (point + 1);
- }
- else
- {
- while (point > XINT (lim) && fastmap[FETCH_CHAR (point - 1)])
- SET_PT (point - 1);
- }
- }
- immediate_quit = 0;
-
- return make_number (point - start_point);
- }
-}
-
-/* Subroutines of Lisp buffer search functions. */
-
-static Lisp_Object
-search_command (string, bound, noerror, count, direction, RE)
- Lisp_Object string, bound, noerror, count;
- int direction;
- int RE;
-{
- register int np;
- int lim;
- int n = direction;
-
- if (!NILP (count))
- {
- CHECK_NUMBER (count, 3);
- n *= XINT (count);
- }
-
- CHECK_STRING (string, 0);
- if (NILP (bound))
- lim = n > 0 ? ZV : BEGV;
- else
- {
- CHECK_NUMBER_COERCE_MARKER (bound, 1);
- lim = XINT (bound);
- if (n > 0 ? lim < point : lim > point)
- error ("Invalid search bound (wrong side of point)");
- if (lim > ZV)
- lim = ZV;
- if (lim < BEGV)
- lim = BEGV;
- }
-
- np = search_buffer (string, point, lim, n, RE,
- (!NILP (current_buffer->case_fold_search)
- ? XSTRING (current_buffer->case_canon_table)->data : 0),
- (!NILP (current_buffer->case_fold_search)
- ? XSTRING (current_buffer->case_eqv_table)->data : 0));
- if (np <= 0)
- {
- if (NILP (noerror))
- return signal_failure (string);
- if (!EQ (noerror, Qt))
- {
- if (lim < BEGV || lim > ZV)
- abort ();
- SET_PT (lim);
- return Qnil;
-#if 0 /* This would be clean, but maybe programs depend on
- a value of nil here. */
- np = lim;
-#endif
- }
- else
- return Qnil;
- }
-
- if (np < BEGV || np > ZV)
- abort ();
-
- SET_PT (np);
-
- return make_number (np);
-}
-
-/* Search for the n'th occurrence of STRING in the current buffer,
- starting at position POS and stopping at position LIM,
- treating PAT as a literal string if RE is false or as
- a regular expression if RE is true.
-
- If N is positive, searching is forward and LIM must be greater than POS.
- If N is negative, searching is backward and LIM must be less than POS.
-
- Returns -x if only N-x occurrences found (x > 0),
- or else the position at the beginning of the Nth occurrence
- (if searching backward) or the end (if searching forward). */
-
-search_buffer (string, pos, lim, n, RE, trt, inverse_trt)
- Lisp_Object string;
- int pos;
- int lim;
- int n;
- int RE;
- register unsigned char *trt;
- register unsigned char *inverse_trt;
-{
- int len = XSTRING (string)->size;
- unsigned char *base_pat = XSTRING (string)->data;
- register int *BM_tab;
- int *BM_tab_base;
- register int direction = ((n > 0) ? 1 : -1);
- register int dirlen;
- int infinity, limit, k, stride_for_teases;
- register unsigned char *pat, *cursor, *p_limit;
- register int i, j;
- unsigned char *p1, *p2;
- int s1, s2;
-
- /* Null string is found at starting position. */
- if (len == 0)
- {
- set_search_regs (pos, 0);
- return pos;
- }
-
- /* Searching 0 times means don't move. */
- if (n == 0)
- return pos;
-
- if (RE)
- compile_pattern (string, &searchbuf, &search_regs, (char *) trt);
-
- if (RE /* Here we detect whether the */
- /* generality of an RE search is */
- /* really needed. */
- /* first item is "exact match" */
- && *(searchbuf.buffer) == (char) RE_EXACTN_VALUE
- && searchbuf.buffer[1] + 2 == searchbuf.used) /*first is ONLY item */
- {
- RE = 0; /* can do straight (non RE) search */
- pat = (base_pat = (unsigned char *) searchbuf.buffer + 2);
- /* trt already applied */
- len = searchbuf.used - 2;
- }
- else if (!RE)
- {
- pat = (unsigned char *) alloca (len);
-
- for (i = len; i--;) /* Copy the pattern; apply trt */
- *pat++ = (((int) trt) ? trt [*base_pat++] : *base_pat++);
- pat -= len; base_pat = pat;
- }
-
- if (RE)
- {
- immediate_quit = 1; /* Quit immediately if user types ^G,
- because letting this function finish
- can take too long. */
- QUIT; /* Do a pending quit right away,
- to avoid paradoxical behavior */
- /* Get pointers and sizes of the two strings
- that make up the visible portion of the buffer. */
-
- p1 = BEGV_ADDR;
- s1 = GPT - BEGV;
- p2 = GAP_END_ADDR;
- s2 = ZV - GPT;
- if (s1 < 0)
- {
- p2 = p1;
- s2 = ZV - BEGV;
- s1 = 0;
- }
- if (s2 < 0)
- {
- s1 = ZV - BEGV;
- s2 = 0;
- }
- while (n < 0)
- {
- int val;
- val = re_search_2 (&searchbuf, (char *) p1, s1, (char *) p2, s2,
- pos - BEGV, lim - pos, &search_regs,
- /* Don't allow match past current point */
- pos - BEGV);
- if (val == -2)
- matcher_overflow ();
- if (val >= 0)
- {
- j = BEGV;
- for (i = 0; i < search_regs.num_regs; i++)
- if (search_regs.start[i] >= 0)
- {
- search_regs.start[i] += j;
- search_regs.end[i] += j;
- }
- XSET (last_thing_searched, Lisp_Buffer, current_buffer);
- /* Set pos to the new position. */
- pos = search_regs.start[0];
- }
- else
- {
- immediate_quit = 0;
- return (n);
- }
- n++;
- }
- while (n > 0)
- {
- int val;
- val = re_search_2 (&searchbuf, (char *) p1, s1, (char *) p2, s2,
- pos - BEGV, lim - pos, &search_regs,
- lim - BEGV);
- if (val == -2)
- matcher_overflow ();
- if (val >= 0)
- {
- j = BEGV;
- for (i = 0; i < search_regs.num_regs; i++)
- if (search_regs.start[i] >= 0)
- {
- search_regs.start[i] += j;
- search_regs.end[i] += j;
- }
- XSET (last_thing_searched, Lisp_Buffer, current_buffer);
- pos = search_regs.end[0];
- }
- else
- {
- immediate_quit = 0;
- return (0 - n);
- }
- n--;
- }
- immediate_quit = 0;
- return (pos);
- }
- else /* non-RE case */
- {
-#ifdef C_ALLOCA
- int BM_tab_space[0400];
- BM_tab = &BM_tab_space[0];
-#else
- BM_tab = (int *) alloca (0400 * sizeof (int));
-#endif
- /* The general approach is that we are going to maintain that we know */
- /* the first (closest to the present position, in whatever direction */
- /* we're searching) character that could possibly be the last */
- /* (furthest from present position) character of a valid match. We */
- /* advance the state of our knowledge by looking at that character */
- /* and seeing whether it indeed matches the last character of the */
- /* pattern. If it does, we take a closer look. If it does not, we */
- /* move our pointer (to putative last characters) as far as is */
- /* logically possible. This amount of movement, which I call a */
- /* stride, will be the length of the pattern if the actual character */
- /* appears nowhere in the pattern, otherwise it will be the distance */
- /* from the last occurrence of that character to the end of the */
- /* pattern. */
- /* As a coding trick, an enormous stride is coded into the table for */
- /* characters that match the last character. This allows use of only */
- /* a single test, a test for having gone past the end of the */
- /* permissible match region, to test for both possible matches (when */
- /* the stride goes past the end immediately) and failure to */
- /* match (where you get nudged past the end one stride at a time). */
-
- /* Here we make a "mickey mouse" BM table. The stride of the search */
- /* is determined only by the last character of the putative match. */
- /* If that character does not match, we will stride the proper */
- /* distance to propose a match that superimposes it on the last */
- /* instance of a character that matches it (per trt), or misses */
- /* it entirely if there is none. */
-
- dirlen = len * direction;
- infinity = dirlen - (lim + pos + len + len) * direction;
- if (direction < 0)
- pat = (base_pat += len - 1);
- BM_tab_base = BM_tab;
- BM_tab += 0400;
- j = dirlen; /* to get it in a register */
- /* A character that does not appear in the pattern induces a */
- /* stride equal to the pattern length. */
- while (BM_tab_base != BM_tab)
- {
- *--BM_tab = j;
- *--BM_tab = j;
- *--BM_tab = j;
- *--BM_tab = j;
- }
- i = 0;
- while (i != infinity)
- {
- j = pat[i]; i += direction;
- if (i == dirlen) i = infinity;
- if ((int) trt)
- {
- k = (j = trt[j]);
- if (i == infinity)
- stride_for_teases = BM_tab[j];
- BM_tab[j] = dirlen - i;
- /* A translation table is accompanied by its inverse -- see */
- /* comment following downcase_table for details */
- while ((j = inverse_trt[j]) != k)
- BM_tab[j] = dirlen - i;
- }
- else
- {
- if (i == infinity)
- stride_for_teases = BM_tab[j];
- BM_tab[j] = dirlen - i;
- }
- /* stride_for_teases tells how much to stride if we get a */
- /* match on the far character but are subsequently */
- /* disappointed, by recording what the stride would have been */
- /* for that character if the last character had been */
- /* different. */
- }
- infinity = dirlen - infinity;
- pos += dirlen - ((direction > 0) ? direction : 0);
- /* loop invariant - pos points at where last char (first char if reverse)
- of pattern would align in a possible match. */
- while (n != 0)
- {
- /* It's been reported that some (broken) compiler thinks that
- Boolean expressions in an arithmetic context are unsigned.
- Using an explicit ?1:0 prevents this. */
- if ((lim - pos - ((direction > 0) ? 1 : 0)) * direction < 0)
- return (n * (0 - direction));
- /* First we do the part we can by pointers (maybe nothing) */
- QUIT;
- pat = base_pat;
- limit = pos - dirlen + direction;
- limit = ((direction > 0)
- ? BUFFER_CEILING_OF (limit)
- : BUFFER_FLOOR_OF (limit));
- /* LIMIT is now the last (not beyond-last!) value
- POS can take on without hitting edge of buffer or the gap. */
- limit = ((direction > 0)
- ? min (lim - 1, min (limit, pos + 20000))
- : max (lim, max (limit, pos - 20000)));
- if ((limit - pos) * direction > 20)
- {
- p_limit = &FETCH_CHAR (limit);
- p2 = (cursor = &FETCH_CHAR (pos));
- /* In this loop, pos + cursor - p2 is the surrogate for pos */
- while (1) /* use one cursor setting as long as i can */
- {
- if (direction > 0) /* worth duplicating */
- {
- /* Use signed comparison if appropriate
- to make cursor+infinity sure to be > p_limit.
- Assuming that the buffer lies in a range of addresses
- that are all "positive" (as ints) or all "negative",
- either kind of comparison will work as long
- as we don't step by infinity. So pick the kind
- that works when we do step by infinity. */
- if ((int) (p_limit + infinity) > (int) p_limit)
- while ((int) cursor <= (int) p_limit)
- cursor += BM_tab[*cursor];
- else
- while ((unsigned int) cursor <= (unsigned int) p_limit)
- cursor += BM_tab[*cursor];
- }
- else
- {
- if ((int) (p_limit + infinity) < (int) p_limit)
- while ((int) cursor >= (int) p_limit)
- cursor += BM_tab[*cursor];
- else
- while ((unsigned int) cursor >= (unsigned int) p_limit)
- cursor += BM_tab[*cursor];
- }
-/* If you are here, cursor is beyond the end of the searched region. */
- /* This can happen if you match on the far character of the pattern, */
- /* because the "stride" of that character is infinity, a number able */
- /* to throw you well beyond the end of the search. It can also */
- /* happen if you fail to match within the permitted region and would */
- /* otherwise try a character beyond that region */
- if ((cursor - p_limit) * direction <= len)
- break; /* a small overrun is genuine */
- cursor -= infinity; /* large overrun = hit */
- i = dirlen - direction;
- if ((int) trt)
- {
- while ((i -= direction) + direction != 0)
- if (pat[i] != trt[*(cursor -= direction)])
- break;
- }
- else
- {
- while ((i -= direction) + direction != 0)
- if (pat[i] != *(cursor -= direction))
- break;
- }
- cursor += dirlen - i - direction; /* fix cursor */
- if (i + direction == 0)
- {
- cursor -= direction;
-
- set_search_regs (pos + cursor - p2 + ((direction > 0)
- ? 1 - len : 0),
- len);
-
- if ((n -= direction) != 0)
- cursor += dirlen; /* to resume search */
- else
- return ((direction > 0)
- ? search_regs.end[0] : search_regs.start[0]);
- }
- else
- cursor += stride_for_teases; /* <sigh> we lose - */
- }
- pos += cursor - p2;
- }
- else
- /* Now we'll pick up a clump that has to be done the hard */
- /* way because it covers a discontinuity */
- {
- limit = ((direction > 0)
- ? BUFFER_CEILING_OF (pos - dirlen + 1)
- : BUFFER_FLOOR_OF (pos - dirlen - 1));
- limit = ((direction > 0)
- ? min (limit + len, lim - 1)
- : max (limit - len, lim));
- /* LIMIT is now the last value POS can have
- and still be valid for a possible match. */
- while (1)
- {
- /* This loop can be coded for space rather than */
- /* speed because it will usually run only once. */
- /* (the reach is at most len + 21, and typically */
- /* does not exceed len) */
- while ((limit - pos) * direction >= 0)
- pos += BM_tab[FETCH_CHAR(pos)];
- /* now run the same tests to distinguish going off the */
- /* end, a match or a phony match. */
- if ((pos - limit) * direction <= len)
- break; /* ran off the end */
- /* Found what might be a match.
- Set POS back to last (first if reverse) char pos. */
- pos -= infinity;
- i = dirlen - direction;
- while ((i -= direction) + direction != 0)
- {
- pos -= direction;
- if (pat[i] != (((int) trt)
- ? trt[FETCH_CHAR(pos)]
- : FETCH_CHAR (pos)))
- break;
- }
- /* Above loop has moved POS part or all the way
- back to the first char pos (last char pos if reverse).
- Set it once again at the last (first if reverse) char. */
- pos += dirlen - i- direction;
- if (i + direction == 0)
- {
- pos -= direction;
-
- set_search_regs (pos + ((direction > 0) ? 1 - len : 0),
- len);
-
- if ((n -= direction) != 0)
- pos += dirlen; /* to resume search */
- else
- return ((direction > 0)
- ? search_regs.end[0] : search_regs.start[0]);
- }
- else
- pos += stride_for_teases;
- }
- }
- /* We have done one clump. Can we continue? */
- if ((lim - pos) * direction < 0)
- return ((0 - n) * direction);
- }
- return pos;
- }
-}
-
-/* Record beginning BEG and end BEG + LEN
- for a match just found in the current buffer. */
-
-static void
-set_search_regs (beg, len)
- int beg, len;
-{
- /* Make sure we have registers in which to store
- the match position. */
- if (search_regs.num_regs == 0)
- {
- regoff_t *starts, *ends;
-
- starts = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
- ends = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
- BLOCK_INPUT;
- re_set_registers (&searchbuf,
- &search_regs,
- 2, starts, ends);
- UNBLOCK_INPUT;
- }
-
- search_regs.start[0] = beg;
- search_regs.end[0] = beg + len;
- XSET (last_thing_searched, Lisp_Buffer, current_buffer);
-}
-
-/* Given a string of words separated by word delimiters,
- compute a regexp that matches those exact words
- separated by arbitrary punctuation. */
-
-static Lisp_Object
-wordify (string)
- Lisp_Object string;
-{
- register unsigned char *p, *o;
- register int i, len, punct_count = 0, word_count = 0;
- Lisp_Object val;
-
- CHECK_STRING (string, 0);
- p = XSTRING (string)->data;
- len = XSTRING (string)->size;
-
- for (i = 0; i < len; i++)
- if (SYNTAX (p[i]) != Sword)
- {
- punct_count++;
- if (i > 0 && SYNTAX (p[i-1]) == Sword) word_count++;
- }
- if (SYNTAX (p[len-1]) == Sword) word_count++;
- if (!word_count) return build_string ("");
-
- val = make_string (p, len - punct_count + 5 * (word_count - 1) + 4);
-
- o = XSTRING (val)->data;
- *o++ = '\\';
- *o++ = 'b';
-
- for (i = 0; i < len; i++)
- if (SYNTAX (p[i]) == Sword)
- *o++ = p[i];
- else if (i > 0 && SYNTAX (p[i-1]) == Sword && --word_count)
- {
- *o++ = '\\';
- *o++ = 'W';
- *o++ = '\\';
- *o++ = 'W';
- *o++ = '*';
- }
-
- *o++ = '\\';
- *o++ = 'b';
-
- return val;
-}
-
-DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
- "sSearch backward: ",
- "Search backward from point for STRING.\n\
-Set point to the beginning of the occurrence found, and return point.\n\
-An optional second argument bounds the search; it is a buffer position.\n\
-The match found must not extend before that position.\n\
-Optional third argument, if t, means if fail just return nil (no error).\n\
- If not nil and not t, position at limit of search and return nil.\n\
-Optional fourth argument is repeat count--search for successive occurrences.\n\
-See also the functions `match-beginning', `match-end' and `replace-match'.")
- (string, bound, noerror, count)
- Lisp_Object string, bound, noerror, count;
-{
- return search_command (string, bound, noerror, count, -1, 0);
-}
-
-DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "sSearch: ",
- "Search forward from point for STRING.\n\
-Set point to the end of the occurrence found, and return point.\n\
-An optional second argument bounds the search; it is a buffer position.\n\
-The match found must not extend after that position. nil is equivalent\n\
- to (point-max).\n\
-Optional third argument, if t, means if fail just return nil (no error).\n\
- If not nil and not t, move to limit of search and return nil.\n\
-Optional fourth argument is repeat count--search for successive occurrences.\n\
-See also the functions `match-beginning', `match-end' and `replace-match'.")
- (string, bound, noerror, count)
- Lisp_Object string, bound, noerror, count;
-{
- return search_command (string, bound, noerror, count, 1, 0);
-}
-
-DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
- "sWord search backward: ",
- "Search backward from point for STRING, ignoring differences in punctuation.\n\
-Set point to the beginning of the occurrence found, and return point.\n\
-An optional second argument bounds the search; it is a buffer position.\n\
-The match found must not extend before that position.\n\
-Optional third argument, if t, means if fail just return nil (no error).\n\
- If not nil and not t, move to limit of search and return nil.\n\
-Optional fourth argument is repeat count--search for successive occurrences.")
- (string, bound, noerror, count)
- Lisp_Object string, bound, noerror, count;
-{
- return search_command (wordify (string), bound, noerror, count, -1, 1);
-}
-
-DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
- "sWord search: ",
- "Search forward from point for STRING, ignoring differences in punctuation.\n\
-Set point to the end of the occurrence found, and return point.\n\
-An optional second argument bounds the search; it is a buffer position.\n\
-The match found must not extend after that position.\n\
-Optional third argument, if t, means if fail just return nil (no error).\n\
- If not nil and not t, move to limit of search and return nil.\n\
-Optional fourth argument is repeat count--search for successive occurrences.")
- (string, bound, noerror, count)
- Lisp_Object string, bound, noerror, count;
-{
- return search_command (wordify (string), bound, noerror, count, 1, 1);
-}
-
-DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
- "sRE search backward: ",
- "Search backward from point for match for regular expression REGEXP.\n\
-Set point to the beginning of the match, and return point.\n\
-The match found is the one starting last in the buffer\n\
-and yet ending before the origin of the search.\n\
-An optional second argument bounds the search; it is a buffer position.\n\
-The match found must start at or after that position.\n\
-Optional third argument, if t, means if fail just return nil (no error).\n\
- If not nil and not t, move to limit of search and return nil.\n\
-Optional fourth argument is repeat count--search for successive occurrences.\n\
-See also the functions `match-beginning', `match-end' and `replace-match'.")
- (regexp, bound, noerror, count)
- Lisp_Object regexp, bound, noerror, count;
-{
- return search_command (regexp, bound, noerror, count, -1, 1);
-}
-
-DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
- "sRE search: ",
- "Search forward from point for regular expression REGEXP.\n\
-Set point to the end of the occurrence found, and return point.\n\
-An optional second argument bounds the search; it is a buffer position.\n\
-The match found must not extend after that position.\n\
-Optional third argument, if t, means if fail just return nil (no error).\n\
- If not nil and not t, move to limit of search and return nil.\n\
-Optional fourth argument is repeat count--search for successive occurrences.\n\
-See also the functions `match-beginning', `match-end' and `replace-match'.")
- (regexp, bound, noerror, count)
- Lisp_Object regexp, bound, noerror, count;
-{
- return search_command (regexp, bound, noerror, count, 1, 1);
-}
-
-DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 3, 0,
- "Replace text matched by last search with NEWTEXT.\n\
-If second arg FIXEDCASE is non-nil, do not alter case of replacement text.\n\
-Otherwise maybe capitalize the whole text, or maybe just word initials,\n\
-based on the replaced text.\n\
-If the replaced text has only capital letters\n\
-and has at least one multiletter word, convert NEWTEXT to all caps.\n\
-If the replaced text has at least one word starting with a capital letter,\n\
-then capitalize each word in NEWTEXT.\n\n\
-If third arg LITERAL is non-nil, insert NEWTEXT literally.\n\
-Otherwise treat `\\' as special:\n\
- `\\&' in NEWTEXT means substitute original matched text.\n\
- `\\N' means substitute what matched the Nth `\\(...\\)'.\n\
- If Nth parens didn't match, substitute nothing.\n\
- `\\\\' means insert one `\\'.\n\
-FIXEDCASE and LITERAL are optional arguments.\n\
-Leaves point at end of replacement text.")
- (newtext, fixedcase, literal)
- Lisp_Object newtext, fixedcase, literal;
-{
- enum { nochange, all_caps, cap_initial } case_action;
- register int pos, last;
- int some_multiletter_word;
- int some_lowercase;
- int some_lowercase_initial;
- register int c, prevc;
- int inslen;
-
- CHECK_STRING (newtext, 0);
-
- case_action = nochange; /* We tried an initialization */
- /* but some C compilers blew it */
-
- if (search_regs.num_regs <= 0)
- error ("replace-match called before any match found");
-
- if (search_regs.start[0] < BEGV
- || search_regs.start[0] > search_regs.end[0]
- || search_regs.end[0] > ZV)
- args_out_of_range (make_number (search_regs.start[0]),
- make_number (search_regs.end[0]));
-
- if (NILP (fixedcase))
- {
- /* Decide how to casify by examining the matched text. */
-
- last = search_regs.end[0];
- prevc = '\n';
- case_action = all_caps;
-
- /* some_multiletter_word is set nonzero if any original word
- is more than one letter long. */
- some_multiletter_word = 0;
- some_lowercase = 0;
- some_lowercase_initial = 0;
-
- for (pos = search_regs.start[0]; pos < last; pos++)
- {
- c = FETCH_CHAR (pos);
- if (LOWERCASEP (c))
- {
- /* Cannot be all caps if any original char is lower case */
-
- some_lowercase = 1;
- if (SYNTAX (prevc) != Sword)
- some_lowercase_initial = 1;
- else
- some_multiletter_word = 1;
- }
- else if (!NOCASEP (c))
- {
- if (SYNTAX (prevc) != Sword)
- ;
- else
- some_multiletter_word = 1;
- }
-
- prevc = c;
- }
-
- /* Convert to all caps if the old text is all caps
- and has at least one multiletter word. */
- if (! some_lowercase && some_multiletter_word)
- case_action = all_caps;
- /* Capitalize each word, if the old text has all capitalized words. */
- else if (!some_lowercase_initial && some_multiletter_word)
- case_action = cap_initial;
- else
- case_action = nochange;
- }
-
- /* We insert the replacement text before the old text, and then
- delete the original text. This means that markers at the
- beginning or end of the original will float to the corresponding
- position in the replacement. */
- SET_PT (search_regs.start[0]);
- if (!NILP (literal))
- Finsert_and_inherit (1, &newtext);
- else
- {
- struct gcpro gcpro1;
- GCPRO1 (newtext);
-
- for (pos = 0; pos < XSTRING (newtext)->size; pos++)
- {
- int offset = point - search_regs.start[0];
-
- c = XSTRING (newtext)->data[pos];
- if (c == '\\')
- {
- c = XSTRING (newtext)->data[++pos];
- if (c == '&')
- Finsert_buffer_substring
- (Fcurrent_buffer (),
- make_number (search_regs.start[0] + offset),
- make_number (search_regs.end[0] + offset));
- else if (c >= '1' && c <= search_regs.num_regs + '0')
- {
- if (search_regs.start[c - '0'] >= 1)
- Finsert_buffer_substring
- (Fcurrent_buffer (),
- make_number (search_regs.start[c - '0'] + offset),
- make_number (search_regs.end[c - '0'] + offset));
- }
- else
- insert_char (c);
- }
- else
- insert_char (c);
- }
- UNGCPRO;
- }
-
- inslen = point - (search_regs.start[0]);
- del_range (search_regs.start[0] + inslen, search_regs.end[0] + inslen);
-
- if (case_action == all_caps)
- Fupcase_region (make_number (point - inslen), make_number (point));
- else if (case_action == cap_initial)
- upcase_initials_region (make_number (point - inslen), make_number (point));
- return Qnil;
-}
-
-static Lisp_Object
-match_limit (num, beginningp)
- Lisp_Object num;
- int beginningp;
-{
- register int n;
-
- CHECK_NUMBER (num, 0);
- n = XINT (num);
- if (n < 0 || n >= search_regs.num_regs)
- args_out_of_range (num, make_number (search_regs.num_regs));
- if (search_regs.num_regs <= 0
- || search_regs.start[n] < 0)
- return Qnil;
- return (make_number ((beginningp) ? search_regs.start[n]
- : search_regs.end[n]));
-}
-
-DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
- "Return position of start of text matched by last search.\n\
-NUM specifies which parenthesized expression in the last regexp.\n\
- Value is nil if NUMth pair didn't match, or there were less than NUM pairs.\n\
-Zero means the entire text matched by the whole regexp or whole string.")
- (num)
- Lisp_Object num;
-{
- return match_limit (num, 1);
-}
-
-DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
- "Return position of end of text matched by last search.\n\
-ARG, a number, specifies which parenthesized expression in the last regexp.\n\
- Value is nil if ARGth pair didn't match, or there were less than ARG pairs.\n\
-Zero means the entire text matched by the whole regexp or whole string.")
- (num)
- Lisp_Object num;
-{
- return match_limit (num, 0);
-}
-
-DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 0, 0,
- "Return a list containing all info on what the last search matched.\n\
-Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.\n\
-All the elements are markers or nil (nil if the Nth pair didn't match)\n\
-if the last match was on a buffer; integers or nil if a string was matched.\n\
-Use `store-match-data' to reinstate the data in this list.")
- ()
-{
- Lisp_Object *data;
- int i, len;
-
- if (NILP (last_thing_searched))
- error ("match-data called before any match found");
-
- data = (Lisp_Object *) alloca ((2 * search_regs.num_regs)
- * sizeof (Lisp_Object));
-
- len = -1;
- for (i = 0; i < search_regs.num_regs; i++)
- {
- int start = search_regs.start[i];
- if (start >= 0)
- {
- if (EQ (last_thing_searched, Qt))
- {
- XFASTINT (data[2 * i]) = start;
- XFASTINT (data[2 * i + 1]) = search_regs.end[i];
- }
- else if (XTYPE (last_thing_searched) == Lisp_Buffer)
- {
- data[2 * i] = Fmake_marker ();
- Fset_marker (data[2 * i],
- make_number (start),
- last_thing_searched);
- data[2 * i + 1] = Fmake_marker ();
- Fset_marker (data[2 * i + 1],
- make_number (search_regs.end[i]),
- last_thing_searched);
- }
- else
- /* last_thing_searched must always be Qt, a buffer, or Qnil. */
- abort ();
-
- len = i;
- }
- else
- data[2 * i] = data [2 * i + 1] = Qnil;
- }
- return Flist (2 * len + 2, data);
-}
-
-
-DEFUN ("store-match-data", Fstore_match_data, Sstore_match_data, 1, 1, 0,
- "Set internal data on last search match from elements of LIST.\n\
-LIST should have been created by calling `match-data' previously.")
- (list)
- register Lisp_Object list;
-{
- register int i;
- register Lisp_Object marker;
-
- if (!CONSP (list) && !NILP (list))
- list = wrong_type_argument (Qconsp, list);
-
- /* Unless we find a marker with a buffer in LIST, assume that this
- match data came from a string. */
- last_thing_searched = Qt;
-
- /* Allocate registers if they don't already exist. */
- {
- int length = XFASTINT (Flength (list)) / 2;
-
- if (length > search_regs.num_regs)
- {
- if (search_regs.num_regs == 0)
- {
- search_regs.start
- = (regoff_t *) xmalloc (length * sizeof (regoff_t));
- search_regs.end
- = (regoff_t *) xmalloc (length * sizeof (regoff_t));
- }
- else
- {
- search_regs.start
- = (regoff_t *) xrealloc (search_regs.start,
- length * sizeof (regoff_t));
- search_regs.end
- = (regoff_t *) xrealloc (search_regs.end,
- length * sizeof (regoff_t));
- }
-
- BLOCK_INPUT;
- re_set_registers (&searchbuf, &search_regs, length,
- search_regs.start, search_regs.end);
- UNBLOCK_INPUT;
- }
- }
-
- for (i = 0; i < search_regs.num_regs; i++)
- {
- marker = Fcar (list);
- if (NILP (marker))
- {
- search_regs.start[i] = -1;
- list = Fcdr (list);
- }
- else
- {
- if (XTYPE (marker) == Lisp_Marker)
- {
- if (XMARKER (marker)->buffer == 0)
- XFASTINT (marker) = 0;
- else
- XSET (last_thing_searched, Lisp_Buffer,
- XMARKER (marker)->buffer);
- }
-
- CHECK_NUMBER_COERCE_MARKER (marker, 0);
- search_regs.start[i] = XINT (marker);
- list = Fcdr (list);
-
- marker = Fcar (list);
- if (XTYPE (marker) == Lisp_Marker
- && XMARKER (marker)->buffer == 0)
- XFASTINT (marker) = 0;
-
- CHECK_NUMBER_COERCE_MARKER (marker, 0);
- search_regs.end[i] = XINT (marker);
- }
- list = Fcdr (list);
- }
-
- return Qnil;
-}
-
-/* Quote a string to inactivate reg-expr chars */
-
-DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
- "Return a regexp string which matches exactly STRING and nothing else.")
- (str)
- Lisp_Object str;
-{
- register unsigned char *in, *out, *end;
- register unsigned char *temp;
-
- CHECK_STRING (str, 0);
-
- temp = (unsigned char *) alloca (XSTRING (str)->size * 2);
-
- /* Now copy the data into the new string, inserting escapes. */
-
- in = XSTRING (str)->data;
- end = in + XSTRING (str)->size;
- out = temp;
-
- for (; in != end; in++)
- {
- if (*in == '[' || *in == ']'
- || *in == '*' || *in == '.' || *in == '\\'
- || *in == '?' || *in == '+'
- || *in == '^' || *in == '$')
- *out++ = '\\';
- *out++ = *in;
- }
-
- return make_string (temp, out - temp);
-}
-
-syms_of_search ()
-{
- register int i;
-
- searchbuf.allocated = 100;
- searchbuf.buffer = (unsigned char *) malloc (searchbuf.allocated);
- searchbuf.fastmap = search_fastmap;
-
- Qsearch_failed = intern ("search-failed");
- staticpro (&Qsearch_failed);
- Qinvalid_regexp = intern ("invalid-regexp");
- staticpro (&Qinvalid_regexp);
-
- Fput (Qsearch_failed, Qerror_conditions,
- Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
- Fput (Qsearch_failed, Qerror_message,
- build_string ("Search failed"));
-
- Fput (Qinvalid_regexp, Qerror_conditions,
- Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
- Fput (Qinvalid_regexp, Qerror_message,
- build_string ("Invalid regexp"));
-
- last_regexp = Qnil;
- staticpro (&last_regexp);
-
- last_thing_searched = Qnil;
- staticpro (&last_thing_searched);
-
- defsubr (&Sstring_match);
- defsubr (&Slooking_at);
- defsubr (&Sskip_chars_forward);
- defsubr (&Sskip_chars_backward);
- defsubr (&Sskip_syntax_forward);
- defsubr (&Sskip_syntax_backward);
- defsubr (&Ssearch_forward);
- defsubr (&Ssearch_backward);
- defsubr (&Sword_search_forward);
- defsubr (&Sword_search_backward);
- defsubr (&Sre_search_forward);
- defsubr (&Sre_search_backward);
- defsubr (&Sreplace_match);
- defsubr (&Smatch_beginning);
- defsubr (&Smatch_end);
- defsubr (&Smatch_data);
- defsubr (&Sstore_match_data);
- defsubr (&Sregexp_quote);
-}