summaryrefslogtreecommitdiff
path: root/src/regex-emacs.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/regex-emacs.c')
-rw-r--r--src/regex-emacs.c5062
1 files changed, 5062 insertions, 0 deletions
diff --git a/src/regex-emacs.c b/src/regex-emacs.c
new file mode 100644
index 00000000000..8dc69805024
--- /dev/null
+++ b/src/regex-emacs.c
@@ -0,0 +1,5062 @@
+/* Emacs regular expression matching and search
+
+ Copyright (C) 1993-2019 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <https://www.gnu.org/licenses/>. */
+
+/* TODO:
+ - structure the opcode space into opcode+flag.
+ - replace (succeed_n + jump_n + set_number_at) with something that doesn't
+ need to modify the compiled regexp so that re_search can be reentrant.
+ - get rid of on_failure_jump_smart by doing the optimization in re_comp
+ rather than at run-time, so that re_search can be reentrant.
+*/
+
+#include <config.h>
+
+#include "regex-emacs.h"
+
+#include <stdlib.h>
+
+#include "character.h"
+#include "buffer.h"
+#include "syntax.h"
+#include "category.h"
+
+/* Maximum number of duplicates an interval can allow. Some systems
+ define this in other header files, but we want our value, so remove
+ any previous define. Repeat counts are stored in opcodes as 2-byte
+ unsigned integers. */
+#ifdef RE_DUP_MAX
+# undef RE_DUP_MAX
+#endif
+#define RE_DUP_MAX (0xffff)
+
+/* Make syntax table lookup grant data in gl_state. */
+#define SYNTAX(c) syntax_property (c, 1)
+
+/* Convert the pointer to the char to BEG-based offset from the start. */
+#define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
+/* Strings are 0-indexed, buffers are 1-indexed; pun on the boolean
+ result to get the right base index. */
+#define POS_AS_IN_BUFFER(p) \
+ ((p) + (NILP (gl_state.object) || BUFFERP (gl_state.object)))
+
+#define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
+#define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
+#define RE_STRING_CHAR(p, multibyte) \
+ (multibyte ? STRING_CHAR (p) : *(p))
+#define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
+ (multibyte ? STRING_CHAR_AND_LENGTH (p, len) : ((len) = 1, *(p)))
+
+#define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
+
+#define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
+
+/* Set C a (possibly converted to multibyte) character before P. P
+ points into a string which is the virtual concatenation of STR1
+ (which ends at END1) or STR2 (which ends at END2). */
+#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
+ do { \
+ if (target_multibyte) \
+ { \
+ re_char *dtemp = (p) == (str2) ? (end1) : (p); \
+ re_char *dlimit = (p) > (str2) && (p) <= (end2) ? (str2) : (str1); \
+ while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)) \
+ continue; \
+ c = STRING_CHAR (dtemp); \
+ } \
+ else \
+ { \
+ (c = ((p) == (str2) ? (end1) : (p))[-1]); \
+ (c) = RE_CHAR_TO_MULTIBYTE (c); \
+ } \
+ } while (false)
+
+/* Set C a (possibly converted to multibyte) character at P, and set
+ LEN to the byte length of that character. */
+#define GET_CHAR_AFTER(c, p, len) \
+ do { \
+ if (target_multibyte) \
+ (c) = STRING_CHAR_AND_LENGTH (p, len); \
+ else \
+ { \
+ (c) = *p; \
+ len = 1; \
+ (c) = RE_CHAR_TO_MULTIBYTE (c); \
+ } \
+ } while (false)
+
+/* 1 if C is an ASCII character. */
+#define IS_REAL_ASCII(c) ((c) < 0200)
+
+/* 1 if C is a unibyte character. */
+#define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
+
+/* The Emacs definitions should not be directly affected by locales. */
+
+/* In Emacs, these are only used for single-byte characters. */
+#define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
+#define ISCNTRL(c) ((c) < ' ')
+#define ISXDIGIT(c) (0 <= char_hexdigit (c))
+
+/* The rest must handle multibyte characters. */
+
+#define ISBLANK(c) (IS_REAL_ASCII (c) \
+ ? ((c) == ' ' || (c) == '\t') \
+ : blankp (c))
+
+#define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
+ ? (c) > ' ' && !((c) >= 0177 && (c) <= 0240) \
+ : graphicp (c))
+
+#define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
+ ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
+ : printablep (c))
+
+#define ISALNUM(c) (IS_REAL_ASCII (c) \
+ ? (((c) >= 'a' && (c) <= 'z') \
+ || ((c) >= 'A' && (c) <= 'Z') \
+ || ((c) >= '0' && (c) <= '9')) \
+ : alphanumericp (c))
+
+#define ISALPHA(c) (IS_REAL_ASCII (c) \
+ ? (((c) >= 'a' && (c) <= 'z') \
+ || ((c) >= 'A' && (c) <= 'Z')) \
+ : alphabeticp (c))
+
+#define ISLOWER(c) lowercasep (c)
+
+#define ISPUNCT(c) (IS_REAL_ASCII (c) \
+ ? ((c) > ' ' && (c) < 0177 \
+ && !(((c) >= 'a' && (c) <= 'z') \
+ || ((c) >= 'A' && (c) <= 'Z') \
+ || ((c) >= '0' && (c) <= '9'))) \
+ : SYNTAX (c) != Sword)
+
+#define ISSPACE(c) (SYNTAX (c) == Swhitespace)
+
+#define ISUPPER(c) uppercasep (c)
+
+#define ISWORD(c) (SYNTAX (c) == Sword)
+
+/* Use alloca instead of malloc. This is because using malloc in
+ re_search* or re_match* could cause memory leaks when C-g is used
+ in Emacs (note that SAFE_ALLOCA could also call malloc, but does so
+ via 'record_xmalloc' which uses 'unwind_protect' to ensure the
+ memory is freed even in case of non-local exits); also, malloc is
+ slower and causes storage fragmentation. On the other hand, malloc
+ is more portable, and easier to debug.
+
+ Because we sometimes use alloca, some routines have to be macros,
+ not functions -- 'alloca'-allocated space disappears at the end of the
+ function it is called in. */
+
+/* This may be adjusted in main(), if the stack is successfully grown. */
+ptrdiff_t emacs_re_safe_alloca = MAX_ALLOCA;
+/* Like USE_SAFE_ALLOCA, but use emacs_re_safe_alloca. */
+#define REGEX_USE_SAFE_ALLOCA \
+ USE_SAFE_ALLOCA; sa_avail = emacs_re_safe_alloca
+
+/* Assumes a 'char *destination' variable. */
+#define REGEX_REALLOCATE(source, osize, nsize) \
+ (destination = SAFE_ALLOCA (nsize), \
+ memcpy (destination, source, osize))
+
+/* True if 'size1' is non-NULL and PTR is pointing anywhere inside
+ 'string1' or just past its end. This works if PTR is NULL, which is
+ a good thing. */
+#define FIRST_STRING_P(ptr) \
+ (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
+
+#define BYTEWIDTH 8 /* In bits. */
+
+/* Type of source-pattern and string chars. */
+typedef const unsigned char re_char;
+
+static void re_compile_fastmap (struct re_pattern_buffer *);
+static ptrdiff_t re_match_2_internal (struct re_pattern_buffer *bufp,
+ re_char *string1, ptrdiff_t size1,
+ re_char *string2, ptrdiff_t size2,
+ ptrdiff_t pos,
+ struct re_registers *regs,
+ ptrdiff_t stop);
+
+/* These are the command codes that appear in compiled regular
+ expressions. Some opcodes are followed by argument bytes. A
+ command code can specify any interpretation whatsoever for its
+ arguments. Zero bytes may appear in the compiled regular expression. */
+
+typedef enum
+{
+ no_op = 0,
+
+ /* Succeed right away--no more backtracking. */
+ succeed,
+
+ /* Followed by one byte giving n, then by n literal bytes. */
+ exactn,
+
+ /* Matches any (more or less) character. */
+ anychar,
+
+ /* Matches any one char belonging to specified set. First
+ following byte is number of bitmap bytes. Then come bytes
+ for a bitmap saying which chars are in. Bits in each byte
+ are ordered low-bit-first. A character is in the set if its
+ bit is 1. A character too large to have a bit in the map is
+ automatically not in the set.
+
+ If the length byte has the 0x80 bit set, then that stuff
+ is followed by a range table:
+ 2 bytes of flags for character sets (low 8 bits, high 8 bits)
+ See RANGE_TABLE_WORK_BITS below.
+ 2 bytes, the number of pairs that follow (upto 32767)
+ pairs, each 2 multibyte characters,
+ each multibyte character represented as 3 bytes. */
+ charset,
+
+ /* Same parameters as charset, but match any character that is
+ not one of those specified. */
+ charset_not,
+
+ /* Start remembering the text that is matched, for storing in a
+ register. Followed by one byte with the register number, in
+ the range 0 to one less than the pattern buffer's re_nsub
+ field. */
+ start_memory,
+
+ /* Stop remembering the text that is matched and store it in a
+ memory register. Followed by one byte with the register
+ number, in the range 0 to one less than 're_nsub' in the
+ pattern buffer. */
+ stop_memory,
+
+ /* Match a duplicate of something remembered. Followed by one
+ byte containing the register number. */
+ duplicate,
+
+ /* Fail unless at beginning of line. */
+ begline,
+
+ /* Fail unless at end of line. */
+ endline,
+
+ /* Succeeds if at beginning of buffer. */
+ begbuf,
+
+ /* Analogously, for end of buffer/string. */
+ endbuf,
+
+ /* Followed by two byte relative address to which to jump. */
+ jump,
+
+ /* Followed by two-byte relative address of place to resume at
+ in case of failure. */
+ on_failure_jump,
+
+ /* Like on_failure_jump, but pushes a placeholder instead of the
+ current string position when executed. */
+ on_failure_keep_string_jump,
+
+ /* Just like 'on_failure_jump', except that it checks that we
+ don't get stuck in an infinite loop (matching an empty string
+ indefinitely). */
+ on_failure_jump_loop,
+
+ /* Just like 'on_failure_jump_loop', except that it checks for
+ a different kind of loop (the kind that shows up with non-greedy
+ operators). This operation has to be immediately preceded
+ by a 'no_op'. */
+ on_failure_jump_nastyloop,
+
+ /* A smart 'on_failure_jump' used for greedy * and + operators.
+ It analyzes the loop before which it is put and if the
+ loop does not require backtracking, it changes itself to
+ 'on_failure_keep_string_jump' and short-circuits the loop,
+ else it just defaults to changing itself into 'on_failure_jump'.
+ It assumes that it is pointing to just past a 'jump'. */
+ on_failure_jump_smart,
+
+ /* Followed by two-byte relative address and two-byte number n.
+ After matching N times, jump to the address upon failure.
+ Does not work if N starts at 0: use on_failure_jump_loop
+ instead. */
+ succeed_n,
+
+ /* Followed by two-byte relative address, and two-byte number n.
+ Jump to the address N times, then fail. */
+ jump_n,
+
+ /* Set the following two-byte relative address to the
+ subsequent two-byte number. The address *includes* the two
+ bytes of number. */
+ set_number_at,
+
+ wordbeg, /* Succeeds if at word beginning. */
+ wordend, /* Succeeds if at word end. */
+
+ wordbound, /* Succeeds if at a word boundary. */
+ notwordbound, /* Succeeds if not at a word boundary. */
+
+ symbeg, /* Succeeds if at symbol beginning. */
+ symend, /* Succeeds if at symbol end. */
+
+ /* Matches any character whose syntax is specified. Followed by
+ a byte which contains a syntax code, e.g., Sword. */
+ syntaxspec,
+
+ /* Matches any character whose syntax is not that specified. */
+ notsyntaxspec,
+
+ at_dot, /* Succeeds if at point. */
+
+ /* Matches any character whose category-set contains the specified
+ category. The operator is followed by a byte which contains a
+ category code (mnemonic ASCII character). */
+ categoryspec,
+
+ /* Matches any character whose category-set does not contain the
+ specified category. The operator is followed by a byte which
+ contains the category code (mnemonic ASCII character). */
+ notcategoryspec
+} re_opcode_t;
+
+/* Common operations on the compiled pattern. */
+
+/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
+
+#define STORE_NUMBER(destination, number) \
+ do { \
+ (destination)[0] = (number) & 0377; \
+ (destination)[1] = (number) >> 8; \
+ } while (false)
+
+/* Same as STORE_NUMBER, except increment DESTINATION to
+ the byte after where the number is stored. Therefore, DESTINATION
+ must be an lvalue. */
+
+#define STORE_NUMBER_AND_INCR(destination, number) \
+ do { \
+ STORE_NUMBER (destination, number); \
+ (destination) += 2; \
+ } while (false)
+
+/* Put into DESTINATION a number stored in two contiguous bytes starting
+ at SOURCE. */
+
+#define EXTRACT_NUMBER(destination, source) \
+ ((destination) = extract_number (source))
+
+static int
+extract_number (re_char *source)
+{
+ signed char leading_byte = source[1];
+ return leading_byte * 256 + source[0];
+}
+
+/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
+ SOURCE must be an lvalue. */
+
+#define EXTRACT_NUMBER_AND_INCR(destination, source) \
+ ((destination) = extract_number_and_incr (&source))
+
+static int
+extract_number_and_incr (re_char **source)
+{
+ int num = extract_number (*source);
+ *source += 2;
+ return num;
+}
+
+/* Store a multibyte character in three contiguous bytes starting
+ DESTINATION, and increment DESTINATION to the byte after where the
+ character is stored. Therefore, DESTINATION must be an lvalue. */
+
+#define STORE_CHARACTER_AND_INCR(destination, character) \
+ do { \
+ (destination)[0] = (character) & 0377; \
+ (destination)[1] = ((character) >> 8) & 0377; \
+ (destination)[2] = (character) >> 16; \
+ (destination) += 3; \
+ } while (false)
+
+/* Put into DESTINATION a character stored in three contiguous bytes
+ starting at SOURCE. */
+
+#define EXTRACT_CHARACTER(destination, source) \
+ do { \
+ (destination) = ((source)[0] \
+ | ((source)[1] << 8) \
+ | ((source)[2] << 16)); \
+ } while (false)
+
+
+/* Macros for charset. */
+
+/* Size of bitmap of charset P in bytes. P is a start of charset,
+ i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
+#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
+
+/* Nonzero if charset P has range table. */
+#define CHARSET_RANGE_TABLE_EXISTS_P(p) (((p)[1] & 0x80) != 0)
+
+/* Return the address of range table of charset P. But not the start
+ of table itself, but the before where the number of ranges is
+ stored. '2 +' means to skip re_opcode_t and size of bitmap,
+ and the 2 bytes of flags at the start of the range table. */
+#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
+
+/* Extract the bit flags that start a range table. */
+#define CHARSET_RANGE_TABLE_BITS(p) \
+ ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
+ + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
+
+/* Return the address of end of RANGE_TABLE. COUNT is number of
+ ranges (which is a pair of (start, end)) in the RANGE_TABLE. '* 2'
+ is start of range and end of range. '* 3' is size of each start
+ and end. */
+#define CHARSET_RANGE_TABLE_END(range_table, count) \
+ ((range_table) + (count) * 2 * 3)
+
+/* If REGEX_EMACS_DEBUG is defined, print many voluminous messages
+ (if the variable regex_emacs_debug is positive). */
+
+#ifdef REGEX_EMACS_DEBUG
+
+/* Use standard I/O for debugging. */
+# include <stdio.h>
+
+static int regex_emacs_debug = -100000;
+
+# define DEBUG_STATEMENT(e) e
+# define DEBUG_PRINT(...) if (regex_emacs_debug > 0) printf (__VA_ARGS__)
+# define DEBUG_COMPILES_ARGUMENTS
+# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
+ if (regex_emacs_debug > 0) print_partial_compiled_pattern (s, e)
+# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
+ if (regex_emacs_debug > 0) print_double_string (w, s1, sz1, s2, sz2)
+
+
+/* Print the fastmap in human-readable form. */
+
+static void
+print_fastmap (char *fastmap)
+{
+ bool was_a_range = false;
+ int i = 0;
+
+ while (i < (1 << BYTEWIDTH))
+ {
+ if (fastmap[i++])
+ {
+ was_a_range = false;
+ putchar (i - 1);
+ while (i < (1 << BYTEWIDTH) && fastmap[i])
+ {
+ was_a_range = true;
+ i++;
+ }
+ if (was_a_range)
+ {
+ printf ("-");
+ putchar (i - 1);
+ }
+ }
+ }
+ putchar ('\n');
+}
+
+
+/* Print a compiled pattern string in human-readable form, starting at
+ the START pointer into it and ending just before the pointer END. */
+
+static void
+print_partial_compiled_pattern (re_char *start, re_char *end)
+{
+ int mcnt, mcnt2;
+ re_char *p = start;
+ re_char *pend = end;
+
+ if (start == NULL)
+ {
+ fprintf (stderr, "(null)\n");
+ return;
+ }
+
+ /* Loop over pattern commands. */
+ while (p < pend)
+ {
+ fprintf (stderr, "%td:\t", p - start);
+
+ switch ((re_opcode_t) *p++)
+ {
+ case no_op:
+ fprintf (stderr, "/no_op");
+ break;
+
+ case succeed:
+ fprintf (stderr, "/succeed");
+ break;
+
+ case exactn:
+ mcnt = *p++;
+ fprintf (stderr, "/exactn/%d", mcnt);
+ do
+ {
+ fprintf (stderr, "/%c", *p++);
+ }
+ while (--mcnt);
+ break;
+
+ case start_memory:
+ fprintf (stderr, "/start_memory/%d", *p++);
+ break;
+
+ case stop_memory:
+ fprintf (stderr, "/stop_memory/%d", *p++);
+ break;
+
+ case duplicate:
+ fprintf (stderr, "/duplicate/%d", *p++);
+ break;
+
+ case anychar:
+ fprintf (stderr, "/anychar");
+ break;
+
+ case charset:
+ case charset_not:
+ {
+ int c, last = -100;
+ bool in_range = false;
+ int length = CHARSET_BITMAP_SIZE (p - 1);
+ bool has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
+
+ fprintf (stderr, "/charset [%s",
+ (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
+
+ if (p + *p >= pend)
+ fprintf (stderr, " !extends past end of pattern! ");
+
+ for (c = 0; c < 256; c++)
+ if (c / 8 < length
+ && (p[1 + (c/8)] & (1 << (c % 8))))
+ {
+ /* Are we starting a range? */
+ if (last + 1 == c && ! in_range)
+ {
+ fprintf (stderr, "-");
+ in_range = true;
+ }
+ /* Have we broken a range? */
+ else if (last + 1 != c && in_range)
+ {
+ fprintf (stderr, "%c", last);
+ in_range = false;
+ }
+
+ if (! in_range)
+ fprintf (stderr, "%c", c);
+
+ last = c;
+ }
+
+ if (in_range)
+ fprintf (stderr, "%c", last);
+
+ fprintf (stderr, "]");
+
+ p += 1 + length;
+
+ if (has_range_table)
+ {
+ int count;
+ fprintf (stderr, "has-range-table");
+
+ /* ??? Should print the range table; for now, just skip it. */
+ p += 2; /* skip range table bits */
+ EXTRACT_NUMBER_AND_INCR (count, p);
+ p = CHARSET_RANGE_TABLE_END (p, count);
+ }
+ }
+ break;
+
+ case begline:
+ fprintf (stderr, "/begline");
+ break;
+
+ case endline:
+ fprintf (stderr, "/endline");
+ break;
+
+ case on_failure_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ fprintf (stderr, "/on_failure_jump to %td", p + mcnt - start);
+ break;
+
+ case on_failure_keep_string_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ fprintf (stderr, "/on_failure_keep_string_jump to %td",
+ p + mcnt - start);
+ break;
+
+ case on_failure_jump_nastyloop:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ fprintf (stderr, "/on_failure_jump_nastyloop to %td",
+ p + mcnt - start);
+ break;
+
+ case on_failure_jump_loop:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ fprintf (stderr, "/on_failure_jump_loop to %td",
+ p + mcnt - start);
+ break;
+
+ case on_failure_jump_smart:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ fprintf (stderr, "/on_failure_jump_smart to %td",
+ p + mcnt - start);
+ break;
+
+ case jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ fprintf (stderr, "/jump to %td", p + mcnt - start);
+ break;
+
+ case succeed_n:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ EXTRACT_NUMBER_AND_INCR (mcnt2, p);
+ fprintf (stderr, "/succeed_n to %td, %d times",
+ p - 2 + mcnt - start, mcnt2);
+ break;
+
+ case jump_n:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ EXTRACT_NUMBER_AND_INCR (mcnt2, p);
+ fprintf (stderr, "/jump_n to %td, %d times",
+ p - 2 + mcnt - start, mcnt2);
+ break;
+
+ case set_number_at:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ EXTRACT_NUMBER_AND_INCR (mcnt2, p);
+ fprintf (stderr, "/set_number_at location %td to %d",
+ p - 2 + mcnt - start, mcnt2);
+ break;
+
+ case wordbound:
+ fprintf (stderr, "/wordbound");
+ break;
+
+ case notwordbound:
+ fprintf (stderr, "/notwordbound");
+ break;
+
+ case wordbeg:
+ fprintf (stderr, "/wordbeg");
+ break;
+
+ case wordend:
+ fprintf (stderr, "/wordend");
+ break;
+
+ case symbeg:
+ fprintf (stderr, "/symbeg");
+ break;
+
+ case symend:
+ fprintf (stderr, "/symend");
+ break;
+
+ case syntaxspec:
+ fprintf (stderr, "/syntaxspec");
+ mcnt = *p++;
+ fprintf (stderr, "/%d", mcnt);
+ break;
+
+ case notsyntaxspec:
+ fprintf (stderr, "/notsyntaxspec");
+ mcnt = *p++;
+ fprintf (stderr, "/%d", mcnt);
+ break;
+
+ case at_dot:
+ fprintf (stderr, "/at_dot");
+ break;
+
+ case categoryspec:
+ fprintf (stderr, "/categoryspec");
+ mcnt = *p++;
+ fprintf (stderr, "/%d", mcnt);
+ break;
+
+ case notcategoryspec:
+ fprintf (stderr, "/notcategoryspec");
+ mcnt = *p++;
+ fprintf (stderr, "/%d", mcnt);
+ break;
+
+ case begbuf:
+ fprintf (stderr, "/begbuf");
+ break;
+
+ case endbuf:
+ fprintf (stderr, "/endbuf");
+ break;
+
+ default:
+ fprintf (stderr, "?%d", *(p-1));
+ }
+
+ fprintf (stderr, "\n");
+ }
+
+ fprintf (stderr, "%td:\tend of pattern.\n", p - start);
+}
+
+
+static void
+print_compiled_pattern (struct re_pattern_buffer *bufp)
+{
+ re_char *buffer = bufp->buffer;
+
+ print_partial_compiled_pattern (buffer, buffer + bufp->used);
+ printf ("%tu bytes used/%tu bytes allocated.\n",
+ bufp->used, bufp->allocated);
+
+ if (bufp->fastmap_accurate && bufp->fastmap)
+ {
+ printf ("fastmap: ");
+ print_fastmap (bufp->fastmap);
+ }
+
+ printf ("re_nsub: %tu\t", bufp->re_nsub);
+ printf ("regs_alloc: %d\t", bufp->regs_allocated);
+ printf ("can_be_null: %d\t", bufp->can_be_null);
+ fflush (stdout);
+ /* Perhaps we should print the translate table? */
+}
+
+
+static void
+print_double_string (re_char *where, re_char *string1, ptrdiff_t size1,
+ re_char *string2, ptrdiff_t size2)
+{
+ if (where == NULL)
+ printf ("(null)");
+ else
+ {
+ if (FIRST_STRING_P (where))
+ {
+ fwrite_unlocked (where, 1, string1 + size1 - where, stdout);
+ where = string2;
+ }
+
+ fwrite_unlocked (where, 1, string2 + size2 - where, stdout);
+ }
+}
+
+#else /* not REGEX_EMACS_DEBUG */
+
+# define DEBUG_STATEMENT(e)
+# define DEBUG_PRINT(...)
+# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
+# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
+
+#endif /* not REGEX_EMACS_DEBUG */
+
+typedef enum
+{
+ REG_NOERROR = 0, /* Success. */
+ REG_NOMATCH, /* Didn't find a match (for regexec). */
+
+ /* POSIX regcomp return error codes. (In the order listed in the
+ standard.) An older version of this code supported the POSIX
+ API; this version continues to use these names internally. */
+ REG_BADPAT, /* Invalid pattern. */
+ REG_ECOLLATE, /* Not implemented. */
+ REG_ECTYPE, /* Invalid character class name. */
+ REG_EESCAPE, /* Trailing backslash. */
+ REG_ESUBREG, /* Invalid back reference. */
+ REG_EBRACK, /* Unmatched left bracket. */
+ REG_EPAREN, /* Parenthesis imbalance. */
+ REG_EBRACE, /* Unmatched \{. */
+ REG_BADBR, /* Invalid contents of \{\}. */
+ REG_ERANGE, /* Invalid range end. */
+ REG_ESPACE, /* Ran out of memory. */
+ REG_BADRPT, /* No preceding re for repetition op. */
+
+ /* Error codes we've added. */
+ REG_EEND, /* Premature end. */
+ REG_ESIZE, /* Compiled pattern bigger than 2^16 bytes. */
+ REG_ERPAREN, /* Unmatched ) or \); not returned from regcomp. */
+ REG_ERANGEX, /* Range striding over charsets. */
+ REG_ESIZEBR /* n or m too big in \{n,m\} */
+} reg_errcode_t;
+
+static const char *re_error_msgid[] =
+ {
+ [REG_NOERROR] = "Success",
+ [REG_NOMATCH] = "No match",
+ [REG_BADPAT] = "Invalid regular expression",
+ [REG_ECOLLATE] = "Invalid collation character",
+ [REG_ECTYPE] = "Invalid character class name",
+ [REG_EESCAPE] = "Trailing backslash",
+ [REG_ESUBREG] = "Invalid back reference",
+ [REG_EBRACK] = "Unmatched [ or [^",
+ [REG_EPAREN] = "Unmatched ( or \\(",
+ [REG_EBRACE] = "Unmatched \\{",
+ [REG_BADBR] = "Invalid content of \\{\\}",
+ [REG_ERANGE] = "Invalid range end",
+ [REG_ESPACE] = "Memory exhausted",
+ [REG_BADRPT] = "Invalid preceding regular expression",
+ [REG_EEND] = "Premature end of regular expression",
+ [REG_ESIZE] = "Regular expression too big",
+ [REG_ERPAREN] = "Unmatched ) or \\)",
+ [REG_ERANGEX ] = "Range striding over charsets",
+ [REG_ESIZEBR ] = "Invalid content of \\{\\}",
+ };
+
+/* For 'regs_allocated'. */
+enum { REGS_UNALLOCATED, REGS_REALLOCATE, REGS_FIXED };
+
+/* If 'regs_allocated' is REGS_UNALLOCATED in the pattern buffer,
+ 're_match_2' returns information about at least this many registers
+ the first time a 'regs' structure is passed. */
+enum { RE_NREGS = 30 };
+
+/* The searching and matching functions allocate memory for the
+ failure stack and registers. Otherwise searching and matching
+ routines would have much smaller memory resources at their
+ disposal, and therefore might fail to handle complex regexps. */
+
+/* Failure stack declarations and macros; both re_compile_fastmap and
+ re_match_2 use a failure stack. These have to be macros because of
+ SAFE_ALLOCA. */
+
+
+/* Approximate number of failure points for which to initially allocate space
+ when matching. If this number is exceeded, we allocate more
+ space, so it is not a hard limit. */
+#define INIT_FAILURE_ALLOC 20
+
+/* Roughly the maximum number of failure points on the stack. Would be
+ exactly that if failure always used TYPICAL_FAILURE_SIZE items.
+ This is a variable only so users of regex can assign to it; we never
+ change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
+ before using it, so it should probably be a byte-count instead. */
+/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
+ whose default stack limit is 2mb. In order for a larger
+ value to work reliably, you have to try to make it accord
+ with the process stack limit. */
+ptrdiff_t emacs_re_max_failures = 40000;
+
+union fail_stack_elt
+{
+ re_char *pointer;
+ intptr_t integer;
+};
+
+typedef union fail_stack_elt fail_stack_elt_t;
+
+typedef struct
+{
+ fail_stack_elt_t *stack;
+ ptrdiff_t size;
+ ptrdiff_t avail; /* Offset of next open position. */
+ ptrdiff_t frame; /* Offset of the cur constructed frame. */
+} fail_stack_type;
+
+#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
+
+
+/* Define macros to initialize and free the failure stack. */
+
+#define INIT_FAIL_STACK() \
+ do { \
+ fail_stack.stack = \
+ SAFE_ALLOCA (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
+ * sizeof (fail_stack_elt_t)); \
+ fail_stack.size = INIT_FAILURE_ALLOC; \
+ fail_stack.avail = 0; \
+ fail_stack.frame = 0; \
+ } while (false)
+
+
+/* Double the size of FAIL_STACK, up to a limit
+ which allows approximately 'emacs_re_max_failures' items.
+
+ Return 1 if succeeds, and 0 if either ran out of memory
+ allocating space for it or it was already too large.
+
+ REGEX_REALLOCATE requires 'destination' be declared. */
+
+/* Factor to increase the failure stack size by.
+ This used to be 2, but 2 was too wasteful
+ because the old discarded stacks added up to as much space
+ were as ultimate, maximum-size stack. */
+#define FAIL_STACK_GROWTH_FACTOR 4
+
+#define GROW_FAIL_STACK(fail_stack) \
+ (((fail_stack).size >= emacs_re_max_failures * TYPICAL_FAILURE_SIZE) \
+ ? 0 \
+ : ((fail_stack).stack \
+ = REGEX_REALLOCATE ((fail_stack).stack, \
+ (fail_stack).size * sizeof (fail_stack_elt_t), \
+ min (emacs_re_max_failures * TYPICAL_FAILURE_SIZE, \
+ ((fail_stack).size * FAIL_STACK_GROWTH_FACTOR)) \
+ * sizeof (fail_stack_elt_t)), \
+ ((fail_stack).size \
+ = (min (emacs_re_max_failures * TYPICAL_FAILURE_SIZE, \
+ ((fail_stack).size * FAIL_STACK_GROWTH_FACTOR)))), \
+ 1))
+
+
+/* Push a pointer value onto the failure stack.
+ Assumes the variable 'fail_stack'. Probably should only
+ be called from within 'PUSH_FAILURE_POINT'. */
+#define PUSH_FAILURE_POINTER(item) \
+ fail_stack.stack[fail_stack.avail++].pointer = (item)
+
+/* This pushes an integer-valued item onto the failure stack.
+ Assumes the variable 'fail_stack'. Probably should only
+ be called from within 'PUSH_FAILURE_POINT'. */
+#define PUSH_FAILURE_INT(item) \
+ fail_stack.stack[fail_stack.avail++].integer = (item)
+
+/* These POP... operations complement the PUSH... operations.
+ All assume that 'fail_stack' is nonempty. */
+#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
+#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
+
+/* Individual items aside from the registers. */
+#define NUM_NONREG_ITEMS 3
+
+/* Used to examine the stack (to detect infinite loops). */
+#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
+#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
+#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
+#define TOP_FAILURE_HANDLE() fail_stack.frame
+
+
+#define ENSURE_FAIL_STACK(space) \
+while (REMAINING_AVAIL_SLOTS <= space) { \
+ if (!GROW_FAIL_STACK (fail_stack)) \
+ return -2; \
+ DEBUG_PRINT ("\n Doubled stack; size now: %tu\n", fail_stack.size); \
+ DEBUG_PRINT (" slots available: %tu\n", REMAINING_AVAIL_SLOTS);\
+}
+
+/* Push register NUM onto the stack. */
+#define PUSH_FAILURE_REG(num) \
+do { \
+ char *destination; \
+ intptr_t n = num; \
+ ENSURE_FAIL_STACK(3); \
+ DEBUG_PRINT (" Push reg %"PRIdPTR" (spanning %p -> %p)\n", \
+ n, regstart[n], regend[n]); \
+ PUSH_FAILURE_POINTER (regstart[n]); \
+ PUSH_FAILURE_POINTER (regend[n]); \
+ PUSH_FAILURE_INT (n); \
+} while (false)
+
+/* Change the counter's value to VAL, but make sure that it will
+ be reset when backtracking. */
+#define PUSH_NUMBER(ptr,val) \
+do { \
+ char *destination; \
+ int c; \
+ ENSURE_FAIL_STACK(3); \
+ EXTRACT_NUMBER (c, ptr); \
+ DEBUG_PRINT (" Push number %p = %d -> %d\n", ptr, c, val); \
+ PUSH_FAILURE_INT (c); \
+ PUSH_FAILURE_POINTER (ptr); \
+ PUSH_FAILURE_INT (-1); \
+ STORE_NUMBER (ptr, val); \
+} while (false)
+
+/* Pop a saved register off the stack. */
+#define POP_FAILURE_REG_OR_COUNT() \
+do { \
+ intptr_t pfreg = POP_FAILURE_INT (); \
+ if (pfreg == -1) \
+ { \
+ /* It's a counter. */ \
+ /* Discard 'const', making re_search non-reentrant. */ \
+ unsigned char *ptr = (unsigned char *) POP_FAILURE_POINTER (); \
+ pfreg = POP_FAILURE_INT (); \
+ STORE_NUMBER (ptr, pfreg); \
+ DEBUG_PRINT (" Pop counter %p = %"PRIdPTR"\n", ptr, pfreg); \
+ } \
+ else \
+ { \
+ regend[pfreg] = POP_FAILURE_POINTER (); \
+ regstart[pfreg] = POP_FAILURE_POINTER (); \
+ DEBUG_PRINT (" Pop reg %ld (spanning %p -> %p)\n", \
+ pfreg, regstart[pfreg], regend[pfreg]); \
+ } \
+} while (false)
+
+/* Check that we are not stuck in an infinite loop. */
+#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
+do { \
+ ptrdiff_t failure = TOP_FAILURE_HANDLE (); \
+ /* Check for infinite matching loops */ \
+ while (failure > 0 \
+ && (FAILURE_STR (failure) == string_place \
+ || FAILURE_STR (failure) == NULL)) \
+ { \
+ eassert (FAILURE_PAT (failure) >= bufp->buffer \
+ && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
+ if (FAILURE_PAT (failure) == pat_cur) \
+ { \
+ cycle = true; \
+ break; \
+ } \
+ DEBUG_PRINT (" Other pattern: %p\n", FAILURE_PAT (failure)); \
+ failure = NEXT_FAILURE_HANDLE(failure); \
+ } \
+ DEBUG_PRINT (" Other string: %p\n", FAILURE_STR (failure)); \
+} while (false)
+
+/* Push the information about the state we will need
+ if we ever fail back to it.
+
+ Requires variables fail_stack, regstart, regend and
+ num_regs be declared. GROW_FAIL_STACK requires 'destination' be
+ declared.
+
+ Does 'return FAILURE_CODE' if runs out of memory. */
+
+#define PUSH_FAILURE_POINT(pattern, string_place) \
+do { \
+ char *destination; \
+ DEBUG_STATEMENT (nfailure_points_pushed++); \
+ DEBUG_PRINT ("\nPUSH_FAILURE_POINT:\n"); \
+ DEBUG_PRINT (" Before push, next avail: %tu\n", fail_stack.avail); \
+ DEBUG_PRINT (" size: %tu\n", fail_stack.size); \
+ \
+ ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
+ \
+ DEBUG_PRINT ("\n"); \
+ \
+ DEBUG_PRINT (" Push frame index: %tu\n", fail_stack.frame); \
+ PUSH_FAILURE_INT (fail_stack.frame); \
+ \
+ DEBUG_PRINT (" Push string %p: \"", string_place); \
+ DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
+ DEBUG_PRINT ("\"\n"); \
+ PUSH_FAILURE_POINTER (string_place); \
+ \
+ DEBUG_PRINT (" Push pattern %p: ", pattern); \
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
+ PUSH_FAILURE_POINTER (pattern); \
+ \
+ /* Close the frame by moving the frame pointer past it. */ \
+ fail_stack.frame = fail_stack.avail; \
+} while (false)
+
+/* Estimate the size of data pushed by a typical failure stack entry.
+ An estimate is all we need, because all we use this for
+ is to choose a limit for how big to make the failure stack. */
+/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
+#define TYPICAL_FAILURE_SIZE 20
+
+/* How many items can still be added to the stack without overflowing it. */
+#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
+
+
+/* Pop what PUSH_FAIL_STACK pushes.
+
+ Restore into the parameters, all of which should be lvalues:
+ STR -- the saved data position.
+ PAT -- the saved pattern position.
+ REGSTART, REGEND -- arrays of string positions.
+
+ Also assume the variables FAIL_STACK and (if debugging) BUFP, PEND,
+ STRING1, SIZE1, STRING2, and SIZE2. */
+
+#define POP_FAILURE_POINT(str, pat) \
+do { \
+ eassert (!FAIL_STACK_EMPTY ()); \
+ \
+ /* Remove failure points and point to how many regs pushed. */ \
+ DEBUG_PRINT ("POP_FAILURE_POINT:\n"); \
+ DEBUG_PRINT (" Before pop, next avail: %tu\n", fail_stack.avail); \
+ DEBUG_PRINT (" size: %tu\n", fail_stack.size); \
+ \
+ /* Pop the saved registers. */ \
+ while (fail_stack.frame < fail_stack.avail) \
+ POP_FAILURE_REG_OR_COUNT (); \
+ \
+ pat = POP_FAILURE_POINTER (); \
+ DEBUG_PRINT (" Popping pattern %p: ", pat); \
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
+ \
+ /* If the saved string location is NULL, it came from an \
+ on_failure_keep_string_jump opcode, and we want to throw away the \
+ saved NULL, thus retaining our current position in the string. */ \
+ str = POP_FAILURE_POINTER (); \
+ DEBUG_PRINT (" Popping string %p: \"", str); \
+ DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
+ DEBUG_PRINT ("\"\n"); \
+ \
+ fail_stack.frame = POP_FAILURE_INT (); \
+ DEBUG_PRINT (" Popping frame index: %zu\n", fail_stack.frame); \
+ \
+ eassert (fail_stack.avail >= 0); \
+ eassert (fail_stack.frame <= fail_stack.avail); \
+ \
+ DEBUG_STATEMENT (nfailure_points_popped++); \
+} while (false) /* POP_FAILURE_POINT */
+
+
+
+/* Registers are set to a sentinel when they haven't yet matched. */
+#define REG_UNSET(e) ((e) == NULL)
+
+/* Subroutine declarations and macros for regex_compile. */
+
+static reg_errcode_t regex_compile (re_char *pattern, ptrdiff_t size,
+ bool posix_backtracking,
+ const char *whitespace_regexp,
+ struct re_pattern_buffer *bufp);
+static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
+static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
+static void insert_op1 (re_opcode_t op, unsigned char *loc,
+ int arg, unsigned char *end);
+static void insert_op2 (re_opcode_t op, unsigned char *loc,
+ int arg1, int arg2, unsigned char *end);
+static bool at_begline_loc_p (re_char *pattern, re_char *p);
+static bool at_endline_loc_p (re_char *p, re_char *pend);
+static re_char *skip_one_char (re_char *p);
+static int analyze_first (re_char *p, re_char *pend,
+ char *fastmap, bool multibyte);
+
+/* Fetch the next character in the uncompiled pattern, with no
+ translation. */
+#define PATFETCH(c) \
+ do { \
+ int len; \
+ if (p == pend) return REG_EEND; \
+ c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
+ p += len; \
+ } while (false)
+
+
+#define RE_TRANSLATE(TBL, C) char_table_translate (TBL, C)
+#define TRANSLATE(d) (!NILP (translate) ? RE_TRANSLATE (translate, d) : (d))
+
+/* Macros for outputting the compiled pattern into 'buffer'. */
+
+/* If the buffer isn't allocated when it comes in, use this. */
+#define INIT_BUF_SIZE 32
+
+/* Ensure at least N more bytes of space in buffer. */
+#define GET_BUFFER_SPACE(n) \
+ if (bufp->buffer + bufp->allocated - b < (n)) \
+ EXTEND_BUFFER ((n) - (bufp->buffer + bufp->allocated - b))
+
+/* Ensure one more byte of buffer space and then add C to it. */
+#define BUF_PUSH(c) \
+ do { \
+ GET_BUFFER_SPACE (1); \
+ *b++ = (unsigned char) (c); \
+ } while (false)
+
+
+/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
+#define BUF_PUSH_2(c1, c2) \
+ do { \
+ GET_BUFFER_SPACE (2); \
+ *b++ = (unsigned char) (c1); \
+ *b++ = (unsigned char) (c2); \
+ } while (false)
+
+
+/* Store a jump with opcode OP at LOC to location TO. Store a
+ relative address offset by the three bytes the jump itself occupies. */
+#define STORE_JUMP(op, loc, to) \
+ store_op1 (op, loc, (to) - (loc) - 3)
+
+/* Likewise, for a two-argument jump. */
+#define STORE_JUMP2(op, loc, to, arg) \
+ store_op2 (op, loc, (to) - (loc) - 3, arg)
+
+/* Like 'STORE_JUMP', but for inserting. Assume B is the buffer end. */
+#define INSERT_JUMP(op, loc, to) \
+ insert_op1 (op, loc, (to) - (loc) - 3, b)
+
+/* Like 'STORE_JUMP2', but for inserting. Assume B is the buffer end. */
+#define INSERT_JUMP2(op, loc, to, arg) \
+ insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
+
+
+/* This is not an arbitrary limit: the arguments which represent offsets
+ into the pattern are two bytes long. So if 2^15 bytes turns out to
+ be too small, many things would have to change. */
+# define MAX_BUF_SIZE (1 << 15)
+
+/* Extend the buffer by at least N bytes via realloc and
+ reset the pointers that pointed into the old block to point to the
+ correct places in the new one. If extending the buffer results in it
+ being larger than MAX_BUF_SIZE, then flag memory exhausted. */
+#define EXTEND_BUFFER(n) \
+ do { \
+ ptrdiff_t requested_extension = n; \
+ unsigned char *old_buffer = bufp->buffer; \
+ if (MAX_BUF_SIZE - bufp->allocated < requested_extension) \
+ return REG_ESIZE; \
+ ptrdiff_t b_off = b - old_buffer; \
+ ptrdiff_t begalt_off = begalt - old_buffer; \
+ bool fixup_alt_jump_set = !!fixup_alt_jump; \
+ bool laststart_set = !!laststart; \
+ bool pending_exact_set = !!pending_exact; \
+ ptrdiff_t fixup_alt_jump_off, laststart_off, pending_exact_off; \
+ if (fixup_alt_jump_set) fixup_alt_jump_off = fixup_alt_jump - old_buffer; \
+ if (laststart_set) laststart_off = laststart - old_buffer; \
+ if (pending_exact_set) pending_exact_off = pending_exact - old_buffer; \
+ bufp->buffer = xpalloc (bufp->buffer, &bufp->allocated, \
+ requested_extension, MAX_BUF_SIZE, 1); \
+ unsigned char *new_buffer = bufp->buffer; \
+ b = new_buffer + b_off; \
+ begalt = new_buffer + begalt_off; \
+ if (fixup_alt_jump_set) fixup_alt_jump = new_buffer + fixup_alt_jump_off; \
+ if (laststart_set) laststart = new_buffer + laststart_off; \
+ if (pending_exact_set) pending_exact = new_buffer + pending_exact_off; \
+ } while (false)
+
+
+/* Since we have one byte reserved for the register number argument to
+ {start,stop}_memory, the maximum number of groups we can report
+ things about is what fits in that byte. */
+#define MAX_REGNUM 255
+
+/* But patterns can have more than 'MAX_REGNUM' registers. Just
+ ignore the excess. */
+typedef int regnum_t;
+
+
+/* Macros for the compile stack. */
+
+typedef long pattern_offset_t;
+verify (LONG_MIN <= -(MAX_BUF_SIZE - 1) && MAX_BUF_SIZE - 1 <= LONG_MAX);
+
+typedef struct
+{
+ pattern_offset_t begalt_offset;
+ pattern_offset_t fixup_alt_jump;
+ pattern_offset_t laststart_offset;
+ regnum_t regnum;
+} compile_stack_elt_t;
+
+
+typedef struct
+{
+ compile_stack_elt_t *stack;
+ ptrdiff_t size;
+ ptrdiff_t avail; /* Offset of next open position. */
+} compile_stack_type;
+
+
+#define INIT_COMPILE_STACK_SIZE 32
+
+#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
+#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
+
+/* The next available element. */
+#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
+
+/* Structure to manage work area for range table. */
+struct range_table_work_area
+{
+ int *table; /* actual work area. */
+ int allocated; /* allocated size for work area in bytes. */
+ int used; /* actually used size in words. */
+ int bits; /* flag to record character classes */
+};
+
+/* Make sure that WORK_AREA can hold N more multibyte characters.
+ If it can't get the space, it returns from the surrounding function. */
+
+#define EXTEND_RANGE_TABLE(work_area, n) \
+ do { \
+ if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
+ { \
+ extend_range_table_work_area (&work_area); \
+ if ((work_area).table == 0) \
+ return (REG_ESPACE); \
+ } \
+ } while (false)
+
+#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
+ (work_area).bits |= (bit)
+
+/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
+#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
+ do { \
+ EXTEND_RANGE_TABLE ((work_area), 2); \
+ (work_area).table[(work_area).used++] = (range_start); \
+ (work_area).table[(work_area).used++] = (range_end); \
+ } while (false)
+
+/* Free allocated memory for WORK_AREA. */
+#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
+ do { \
+ if ((work_area).table) \
+ xfree ((work_area).table); \
+ } while (false)
+
+#define CLEAR_RANGE_TABLE_WORK_USED(work_area) \
+ ((work_area).used = 0, (work_area).bits = 0)
+#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
+#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
+#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
+
+/* Bits used to implement the multibyte-part of the various character classes
+ such as [:alnum:] in a charset's range table. The code currently assumes
+ that only the low 16 bits are used. */
+#define BIT_WORD 0x1
+#define BIT_LOWER 0x2
+#define BIT_PUNCT 0x4
+#define BIT_SPACE 0x8
+#define BIT_UPPER 0x10
+#define BIT_MULTIBYTE 0x20
+#define BIT_ALPHA 0x40
+#define BIT_ALNUM 0x80
+#define BIT_GRAPH 0x100
+#define BIT_PRINT 0x200
+#define BIT_BLANK 0x400
+
+
+/* Set the bit for character C in a list. */
+#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
+
+
+/* Store characters in the range FROM to TO in the bitmap at B (for
+ ASCII and unibyte characters) and WORK_AREA (for multibyte
+ characters) while translating them and paying attention to the
+ continuity of translated characters.
+
+ Implementation note: It is better to implement these fairly big
+ macros by a function, but it's not that easy because macros called
+ in this macro assume various local variables already declared. */
+
+/* Both FROM and TO are ASCII characters. */
+
+#define SETUP_ASCII_RANGE(work_area, FROM, TO) \
+ do { \
+ int C0, C1; \
+ \
+ for (C0 = (FROM); C0 <= (TO); C0++) \
+ { \
+ C1 = TRANSLATE (C0); \
+ if (! ASCII_CHAR_P (C1)) \
+ { \
+ SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
+ if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
+ C1 = C0; \
+ } \
+ SET_LIST_BIT (C1); \
+ } \
+ } while (false)
+
+
+/* Both FROM and TO are unibyte characters (0x80..0xFF). */
+
+#define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
+ do { \
+ int C0, C1, C2, I; \
+ int USED = RANGE_TABLE_WORK_USED (work_area); \
+ \
+ for (C0 = (FROM); C0 <= (TO); C0++) \
+ { \
+ C1 = RE_CHAR_TO_MULTIBYTE (C0); \
+ if (CHAR_BYTE8_P (C1)) \
+ SET_LIST_BIT (C0); \
+ else \
+ { \
+ C2 = TRANSLATE (C1); \
+ if (C2 == C1 \
+ || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
+ C1 = C0; \
+ SET_LIST_BIT (C1); \
+ for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
+ { \
+ int from = RANGE_TABLE_WORK_ELT (work_area, I); \
+ int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
+ \
+ if (C2 >= from - 1 && C2 <= to + 1) \
+ { \
+ if (C2 == from - 1) \
+ RANGE_TABLE_WORK_ELT (work_area, I)--; \
+ else if (C2 == to + 1) \
+ RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
+ break; \
+ } \
+ } \
+ if (I < USED) \
+ SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
+ } \
+ } \
+ } while (false)
+
+
+/* Both FROM and TO are multibyte characters. */
+
+#define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
+ do { \
+ int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
+ \
+ SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
+ for (C0 = (FROM); C0 <= (TO); C0++) \
+ { \
+ C1 = TRANSLATE (C0); \
+ if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
+ || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
+ SET_LIST_BIT (C2); \
+ if (C1 >= (FROM) && C1 <= (TO)) \
+ continue; \
+ for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
+ { \
+ int from = RANGE_TABLE_WORK_ELT (work_area, I); \
+ int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
+ \
+ if (C1 >= from - 1 && C1 <= to + 1) \
+ { \
+ if (C1 == from - 1) \
+ RANGE_TABLE_WORK_ELT (work_area, I)--; \
+ else if (C1 == to + 1) \
+ RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
+ break; \
+ } \
+ } \
+ if (I < USED) \
+ SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
+ } \
+ } while (false)
+
+/* Get the next unsigned number in the uncompiled pattern. */
+#define GET_INTERVAL_COUNT(num) \
+ do { \
+ if (p == pend) \
+ FREE_STACK_RETURN (REG_EBRACE); \
+ else \
+ { \
+ PATFETCH (c); \
+ while ('0' <= c && c <= '9') \
+ { \
+ if (num < 0) \
+ num = 0; \
+ if (RE_DUP_MAX / 10 - (RE_DUP_MAX % 10 < c - '0') < num) \
+ FREE_STACK_RETURN (REG_ESIZEBR); \
+ num = num * 10 + c - '0'; \
+ if (p == pend) \
+ FREE_STACK_RETURN (REG_EBRACE); \
+ PATFETCH (c); \
+ } \
+ } \
+ } while (false)
+
+/* Parse a character class, i.e. string such as "[:name:]". *strp
+ points to the string to be parsed and limit is length, in bytes, of
+ that string.
+
+ If *strp point to a string that begins with "[:name:]", where name is
+ a non-empty sequence of lower case letters, *strp will be advanced past the
+ closing square bracket and RECC_* constant which maps to the name will be
+ returned. If name is not a valid character class name zero, or RECC_ERROR,
+ is returned.
+
+ Otherwise, if *strp doesn't begin with "[:name:]", -1 is returned.
+
+ The function can be used on ASCII and multibyte (UTF-8-encoded) strings.
+ */
+re_wctype_t
+re_wctype_parse (const unsigned char **strp, ptrdiff_t limit)
+{
+ const char *beg = (const char *)*strp, *it;
+
+ if (limit < 4 || beg[0] != '[' || beg[1] != ':')
+ return -1;
+
+ beg += 2; /* skip opening "[:" */
+ limit -= 3; /* opening "[:" and half of closing ":]"; --limit handles rest */
+ for (it = beg; it[0] != ':' || it[1] != ']'; ++it)
+ if (!--limit)
+ return -1;
+
+ *strp = (const unsigned char *)(it + 2);
+
+ /* Sort tests in the length=five case by frequency the classes to minimize
+ number of times we fail the comparison. The frequencies of character class
+ names used in Emacs sources as of 2016-07-27:
+
+ $ find \( -name \*.c -o -name \*.el \) -exec grep -h '\[:[a-z]*:]' {} + |
+ sed 's/]/]\n/g' |grep -o '\[:[a-z]*:]' |sort |uniq -c |sort -nr
+ 213 [:alnum:]
+ 104 [:alpha:]
+ 62 [:space:]
+ 39 [:digit:]
+ 36 [:blank:]
+ 26 [:word:]
+ 26 [:upper:]
+ 21 [:lower:]
+ 10 [:xdigit:]
+ 10 [:punct:]
+ 10 [:ascii:]
+ 4 [:nonascii:]
+ 4 [:graph:]
+ 2 [:print:]
+ 2 [:cntrl:]
+ 1 [:ff:]
+
+ If you update this list, consider also updating chain of or'ed conditions
+ in execute_charset function.
+ */
+
+ switch (it - beg) {
+ case 4:
+ if (!memcmp (beg, "word", 4)) return RECC_WORD;
+ break;
+ case 5:
+ if (!memcmp (beg, "alnum", 5)) return RECC_ALNUM;
+ if (!memcmp (beg, "alpha", 5)) return RECC_ALPHA;
+ if (!memcmp (beg, "space", 5)) return RECC_SPACE;
+ if (!memcmp (beg, "digit", 5)) return RECC_DIGIT;
+ if (!memcmp (beg, "blank", 5)) return RECC_BLANK;
+ if (!memcmp (beg, "upper", 5)) return RECC_UPPER;
+ if (!memcmp (beg, "lower", 5)) return RECC_LOWER;
+ if (!memcmp (beg, "punct", 5)) return RECC_PUNCT;
+ if (!memcmp (beg, "ascii", 5)) return RECC_ASCII;
+ if (!memcmp (beg, "graph", 5)) return RECC_GRAPH;
+ if (!memcmp (beg, "print", 5)) return RECC_PRINT;
+ if (!memcmp (beg, "cntrl", 5)) return RECC_CNTRL;
+ break;
+ case 6:
+ if (!memcmp (beg, "xdigit", 6)) return RECC_XDIGIT;
+ break;
+ case 7:
+ if (!memcmp (beg, "unibyte", 7)) return RECC_UNIBYTE;
+ break;
+ case 8:
+ if (!memcmp (beg, "nonascii", 8)) return RECC_NONASCII;
+ break;
+ case 9:
+ if (!memcmp (beg, "multibyte", 9)) return RECC_MULTIBYTE;
+ break;
+ }
+
+ return RECC_ERROR;
+}
+
+/* True if CH is in the char class CC. */
+bool
+re_iswctype (int ch, re_wctype_t cc)
+{
+ switch (cc)
+ {
+ case RECC_ALNUM: return ISALNUM (ch) != 0;
+ case RECC_ALPHA: return ISALPHA (ch) != 0;
+ case RECC_BLANK: return ISBLANK (ch) != 0;
+ case RECC_CNTRL: return ISCNTRL (ch) != 0;
+ case RECC_DIGIT: return ISDIGIT (ch) != 0;
+ case RECC_GRAPH: return ISGRAPH (ch) != 0;
+ case RECC_LOWER: return ISLOWER (ch) != 0;
+ case RECC_PRINT: return ISPRINT (ch) != 0;
+ case RECC_PUNCT: return ISPUNCT (ch) != 0;
+ case RECC_SPACE: return ISSPACE (ch) != 0;
+ case RECC_UPPER: return ISUPPER (ch) != 0;
+ case RECC_XDIGIT: return ISXDIGIT (ch) != 0;
+ case RECC_ASCII: return IS_REAL_ASCII (ch) != 0;
+ case RECC_NONASCII: return !IS_REAL_ASCII (ch);
+ case RECC_UNIBYTE: return ISUNIBYTE (ch) != 0;
+ case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
+ case RECC_WORD: return ISWORD (ch) != 0;
+ case RECC_ERROR: return false;
+ default:
+ abort ();
+ }
+}
+
+/* Return a bit-pattern to use in the range-table bits to match multibyte
+ chars of class CC. */
+static int
+re_wctype_to_bit (re_wctype_t cc)
+{
+ switch (cc)
+ {
+ case RECC_NONASCII:
+ case RECC_MULTIBYTE: return BIT_MULTIBYTE;
+ case RECC_ALPHA: return BIT_ALPHA;
+ case RECC_ALNUM: return BIT_ALNUM;
+ case RECC_WORD: return BIT_WORD;
+ case RECC_LOWER: return BIT_LOWER;
+ case RECC_UPPER: return BIT_UPPER;
+ case RECC_PUNCT: return BIT_PUNCT;
+ case RECC_SPACE: return BIT_SPACE;
+ case RECC_GRAPH: return BIT_GRAPH;
+ case RECC_PRINT: return BIT_PRINT;
+ case RECC_BLANK: return BIT_BLANK;
+ case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
+ case RECC_UNIBYTE: case RECC_ERROR: return 0;
+ default:
+ abort ();
+ }
+}
+
+/* Filling in the work area of a range. */
+
+/* Actually extend the space in WORK_AREA. */
+
+static void
+extend_range_table_work_area (struct range_table_work_area *work_area)
+{
+ work_area->allocated += 16 * sizeof (int);
+ work_area->table = xrealloc (work_area->table, work_area->allocated);
+}
+
+/* regex_compile and helpers. */
+
+static bool group_in_compile_stack (compile_stack_type, regnum_t);
+
+/* Insert the 'jump' from the end of last alternative to "here".
+ The space for the jump has already been allocated. */
+#define FIXUP_ALT_JUMP() \
+do { \
+ if (fixup_alt_jump) \
+ STORE_JUMP (jump, fixup_alt_jump, b); \
+} while (false)
+
+
+/* Return, freeing storage we allocated. */
+#define FREE_STACK_RETURN(value) \
+ do { \
+ FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
+ xfree (compile_stack.stack); \
+ return value; \
+ } while (false)
+
+/* Compile PATTERN (of length SIZE) according to SYNTAX.
+ Return a nonzero error code on failure, or zero for success.
+
+ If WHITESPACE_REGEXP is given, use it instead of a space
+ character in PATTERN.
+
+ Assume the 'allocated' (and perhaps 'buffer') and 'translate'
+ fields are set in BUFP on entry.
+
+ If successful, put results in *BUFP (otherwise the
+ contents of *BUFP are undefined):
+ 'buffer' is the compiled pattern;
+ 'syntax' is set to SYNTAX;
+ 'used' is set to the length of the compiled pattern;
+ 'fastmap_accurate' is false;
+ 're_nsub' is the number of subexpressions in PATTERN;
+
+ The 'fastmap' field is neither examined nor set. */
+
+static reg_errcode_t
+regex_compile (re_char *pattern, ptrdiff_t size,
+ bool posix_backtracking,
+ const char *whitespace_regexp,
+ struct re_pattern_buffer *bufp)
+{
+ /* Fetch characters from PATTERN here. */
+ int c, c1;
+
+ /* Points to the end of the buffer, where we should append. */
+ unsigned char *b;
+
+ /* Keeps track of unclosed groups. */
+ compile_stack_type compile_stack;
+
+ /* Points to the current (ending) position in the pattern. */
+ re_char *p = pattern;
+ re_char *pend = pattern + size;
+
+ /* How to translate the characters in the pattern. */
+ Lisp_Object translate = bufp->translate;
+
+ /* Address of the count-byte of the most recently inserted 'exactn'
+ command. This makes it possible to tell if a new exact-match
+ character can be added to that command or if the character requires
+ a new 'exactn' command. */
+ unsigned char *pending_exact = 0;
+
+ /* Address of start of the most recently finished expression.
+ This tells, e.g., postfix * where to find the start of its
+ operand. Reset at the beginning of groups and alternatives. */
+ unsigned char *laststart = 0;
+
+ /* Address of beginning of regexp, or inside of last group. */
+ unsigned char *begalt;
+
+ /* Place in the uncompiled pattern (i.e., the {) to
+ which to go back if the interval is invalid. */
+ re_char *beg_interval;
+
+ /* Address of the place where a forward jump should go to the end of
+ the containing expression. Each alternative of an 'or' -- except the
+ last -- ends with a forward jump of this sort. */
+ unsigned char *fixup_alt_jump = 0;
+
+ /* Work area for range table of charset. */
+ struct range_table_work_area range_table_work;
+
+ /* If the regular expression is multibyte. */
+ bool multibyte = RE_MULTIBYTE_P (bufp);
+
+ /* Nonzero if we have pushed down into a subpattern. */
+ int in_subpattern = 0;
+
+ /* These hold the values of p, pattern, and pend from the main
+ pattern when we have pushed into a subpattern. */
+ re_char *main_p;
+ re_char *main_pattern;
+ re_char *main_pend;
+
+#ifdef REGEX_EMACS_DEBUG
+ regex_emacs_debug++;
+ DEBUG_PRINT ("\nCompiling pattern: ");
+ if (regex_emacs_debug > 0)
+ {
+ for (ptrdiff_t debug_count = 0; debug_count < size; debug_count++)
+ putchar (pattern[debug_count]);
+ putchar ('\n');
+ }
+#endif
+
+ /* Initialize the compile stack. */
+ compile_stack.stack = xmalloc (INIT_COMPILE_STACK_SIZE
+ * sizeof *compile_stack.stack);
+ compile_stack.size = INIT_COMPILE_STACK_SIZE;
+ compile_stack.avail = 0;
+
+ range_table_work.table = 0;
+ range_table_work.allocated = 0;
+
+ /* Initialize the pattern buffer. */
+ bufp->fastmap_accurate = false;
+ bufp->used_syntax = false;
+
+ /* Set 'used' to zero, so that if we return an error, the pattern
+ printer (for debugging) will think there's no pattern. We reset it
+ at the end. */
+ bufp->used = 0;
+
+ bufp->re_nsub = 0;
+
+ if (bufp->allocated == 0)
+ {
+ /* This loses if BUFP->buffer is bogus, but that is the user's
+ responsibility. */
+ bufp->buffer = xrealloc (bufp->buffer, INIT_BUF_SIZE);
+ bufp->allocated = INIT_BUF_SIZE;
+ }
+
+ begalt = b = bufp->buffer;
+
+ /* Loop through the uncompiled pattern until we're at the end. */
+ while (1)
+ {
+ if (p == pend)
+ {
+ /* If this is the end of an included regexp,
+ pop back to the main regexp and try again. */
+ if (in_subpattern)
+ {
+ in_subpattern = 0;
+ pattern = main_pattern;
+ p = main_p;
+ pend = main_pend;
+ continue;
+ }
+ /* If this is the end of the main regexp, we are done. */
+ break;
+ }
+
+ PATFETCH (c);
+
+ switch (c)
+ {
+ case ' ':
+ {
+ re_char *p1 = p;
+
+ /* If there's no special whitespace regexp, treat
+ spaces normally. And don't try to do this recursively. */
+ if (!whitespace_regexp || in_subpattern)
+ goto normal_char;
+
+ /* Peek past following spaces. */
+ while (p1 != pend)
+ {
+ if (*p1 != ' ')
+ break;
+ p1++;
+ }
+ /* If the spaces are followed by a repetition op,
+ treat them normally. */
+ if (p1 != pend
+ && (*p1 == '*' || *p1 == '+' || *p1 == '?'
+ || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
+ goto normal_char;
+
+ /* Replace the spaces with the whitespace regexp. */
+ in_subpattern = 1;
+ main_p = p1;
+ main_pend = pend;
+ main_pattern = pattern;
+ p = pattern = (re_char *) whitespace_regexp;
+ pend = p + strlen (whitespace_regexp);
+ break;
+ }
+
+ case '^':
+ if (! (p == pattern + 1 || at_begline_loc_p (pattern, p)))
+ goto normal_char;
+ BUF_PUSH (begline);
+ break;
+
+ case '$':
+ if (! (p == pend || at_endline_loc_p (p, pend)))
+ goto normal_char;
+ BUF_PUSH (endline);
+ break;
+
+
+ case '+':
+ case '?':
+ case '*':
+ /* If there is no previous pattern... */
+ if (!laststart)
+ goto normal_char;
+
+ {
+ /* 1 means zero (many) matches is allowed. */
+ bool zero_times_ok = false, many_times_ok = false;
+ bool greedy = true;
+
+ /* If there is a sequence of repetition chars, collapse it
+ down to just one (the right one). We can't combine
+ interval operators with these because of, e.g., 'a{2}*',
+ which should only match an even number of 'a's. */
+
+ for (;;)
+ {
+ if (c == '?' && (zero_times_ok || many_times_ok))
+ greedy = false;
+ else
+ {
+ zero_times_ok |= c != '+';
+ many_times_ok |= c != '?';
+ }
+
+ if (! (p < pend && (*p == '*' || *p == '+' || *p == '?')))
+ break;
+ /* If we get here, we found another repeat character. */
+ c = *p++;
+ }
+
+ /* Star, etc. applied to an empty pattern is equivalent
+ to an empty pattern. */
+ if (!laststart || laststart == b)
+ break;
+
+ /* Now we know whether or not zero matches is allowed
+ and also whether or not two or more matches is allowed. */
+ if (greedy)
+ {
+ if (many_times_ok)
+ {
+ bool simple = skip_one_char (laststart) == b;
+ ptrdiff_t startoffset = 0;
+ re_opcode_t ofj =
+ /* Check if the loop can match the empty string. */
+ (simple || !analyze_first (laststart, b, NULL, false))
+ ? on_failure_jump : on_failure_jump_loop;
+ eassert (skip_one_char (laststart) <= b);
+
+ if (!zero_times_ok && simple)
+ { /* Since simple * loops can be made faster by using
+ on_failure_keep_string_jump, we turn simple P+
+ into PP* if P is simple. */
+ unsigned char *p1, *p2;
+ startoffset = b - laststart;
+ GET_BUFFER_SPACE (startoffset);
+ p1 = b; p2 = laststart;
+ while (p2 < p1)
+ *b++ = *p2++;
+ zero_times_ok = 1;
+ }
+
+ GET_BUFFER_SPACE (6);
+ if (!zero_times_ok)
+ /* A + loop. */
+ STORE_JUMP (ofj, b, b + 6);
+ else
+ /* Simple * loops can use on_failure_keep_string_jump
+ depending on what follows. But since we don't know
+ that yet, we leave the decision up to
+ on_failure_jump_smart. */
+ INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
+ laststart + startoffset, b + 6);
+ b += 3;
+ STORE_JUMP (jump, b, laststart + startoffset);
+ b += 3;
+ }
+ else
+ {
+ /* A simple ? pattern. */
+ eassert (zero_times_ok);
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (on_failure_jump, laststart, b + 3);
+ b += 3;
+ }
+ }
+ else /* not greedy */
+ { /* I wish the greedy and non-greedy cases could be merged. */
+
+ GET_BUFFER_SPACE (7); /* We might use less. */
+ if (many_times_ok)
+ {
+ bool emptyp = !!analyze_first (laststart, b, NULL, false);
+
+ /* The non-greedy multiple match looks like
+ a repeat..until: we only need a conditional jump
+ at the end of the loop. */
+ if (emptyp) BUF_PUSH (no_op);
+ STORE_JUMP (emptyp ? on_failure_jump_nastyloop
+ : on_failure_jump, b, laststart);
+ b += 3;
+ if (zero_times_ok)
+ {
+ /* The repeat...until naturally matches one or more.
+ To also match zero times, we need to first jump to
+ the end of the loop (its conditional jump). */
+ INSERT_JUMP (jump, laststart, b);
+ b += 3;
+ }
+ }
+ else
+ {
+ /* non-greedy a?? */
+ INSERT_JUMP (jump, laststart, b + 3);
+ b += 3;
+ INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
+ b += 3;
+ }
+ }
+ }
+ pending_exact = 0;
+ break;
+
+
+ case '.':
+ laststart = b;
+ BUF_PUSH (anychar);
+ break;
+
+
+ case '[':
+ {
+ re_char *p1;
+
+ CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
+
+ if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+ /* Ensure that we have enough space to push a charset: the
+ opcode, the length count, and the bitset; 34 bytes in all. */
+ GET_BUFFER_SPACE (34);
+
+ laststart = b;
+
+ /* Test '*p == '^' twice, instead of using an if
+ statement, so we need only one BUF_PUSH. */
+ BUF_PUSH (*p == '^' ? charset_not : charset);
+ if (*p == '^')
+ p++;
+
+ /* Remember the first position in the bracket expression. */
+ p1 = p;
+
+ /* Push the number of bytes in the bitmap. */
+ BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
+
+ /* Clear the whole map. */
+ memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
+
+ /* Read in characters and ranges, setting map bits. */
+ for (;;)
+ {
+ const unsigned char *p2 = p;
+ int ch;
+
+ if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+ /* See if we're at the beginning of a possible character
+ class. */
+ re_wctype_t cc = re_wctype_parse (&p, pend - p);
+ if (cc != -1)
+ {
+ if (cc == 0)
+ FREE_STACK_RETURN (REG_ECTYPE);
+
+ if (p == pend)
+ FREE_STACK_RETURN (REG_EBRACK);
+
+ /* Most character classes in a multibyte match just set
+ a flag. Exceptions are is_blank, is_digit, is_cntrl, and
+ is_xdigit, since they can only match ASCII characters.
+ We don't need to handle them for multibyte. */
+
+ /* Setup the gl_state object to its buffer-defined value.
+ This hardcodes the buffer-global syntax-table for ASCII
+ chars, while the other chars will obey syntax-table
+ properties. It's not ideal, but it's the way it's been
+ done until now. */
+ SETUP_BUFFER_SYNTAX_TABLE ();
+
+ for (c = 0; c < 0x80; ++c)
+ if (re_iswctype (c, cc))
+ {
+ SET_LIST_BIT (c);
+ c1 = TRANSLATE (c);
+ if (c1 == c)
+ continue;
+ if (ASCII_CHAR_P (c1))
+ SET_LIST_BIT (c1);
+ else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
+ SET_LIST_BIT (c1);
+ }
+ SET_RANGE_TABLE_WORK_AREA_BIT
+ (range_table_work, re_wctype_to_bit (cc));
+
+ /* In most cases the matching rule for char classes only
+ uses the syntax table for multibyte chars, so that the
+ content of the syntax-table is not hardcoded in the
+ range_table. SPACE and WORD are the two exceptions. */
+ if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
+ bufp->used_syntax = true;
+
+ /* Repeat the loop. */
+ continue;
+ }
+
+ /* Don't translate yet. The range TRANSLATE(X..Y) cannot
+ always be determined from TRANSLATE(X) and TRANSLATE(Y)
+ So the translation is done later in a loop. Example:
+ (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
+ PATFETCH (c);
+
+ /* Could be the end of the bracket expression. If it's
+ not (i.e., when the bracket expression is '[]' so
+ far), the ']' character bit gets set way below. */
+ if (c == ']' && p2 != p1)
+ break;
+
+ if (p < pend && p[0] == '-' && p[1] != ']')
+ {
+
+ /* Discard the '-'. */
+ PATFETCH (c1);
+
+ /* Fetch the character which ends the range. */
+ PATFETCH (c1);
+
+ if (CHAR_BYTE8_P (c1)
+ && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
+ /* Treat the range from a multibyte character to
+ raw-byte character as empty. */
+ c = c1 + 1;
+ }
+ else
+ /* Range from C to C. */
+ c1 = c;
+
+ if (c <= c1)
+ {
+ if (c < 128)
+ {
+ ch = min (127, c1);
+ SETUP_ASCII_RANGE (range_table_work, c, ch);
+ c = ch + 1;
+ if (CHAR_BYTE8_P (c1))
+ c = BYTE8_TO_CHAR (128);
+ }
+ if (CHAR_BYTE8_P (c))
+ {
+ c = CHAR_TO_BYTE8 (c);
+ c1 = CHAR_TO_BYTE8 (c1);
+ for (; c <= c1; c++)
+ SET_LIST_BIT (c);
+ }
+ else if (multibyte)
+ SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
+ else
+ SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
+ }
+ }
+
+ /* Discard any (non)matching list bytes that are all 0 at the
+ end of the map. Decrease the map-length byte too. */
+ while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
+ b[-1]--;
+ b += b[-1];
+
+ /* Build real range table from work area. */
+ if (RANGE_TABLE_WORK_USED (range_table_work)
+ || RANGE_TABLE_WORK_BITS (range_table_work))
+ {
+ int i;
+ int used = RANGE_TABLE_WORK_USED (range_table_work);
+
+ /* Allocate space for COUNT + RANGE_TABLE. Needs two
+ bytes for flags, two for COUNT, and three bytes for
+ each character. */
+ GET_BUFFER_SPACE (4 + used * 3);
+
+ /* Indicate the existence of range table. */
+ laststart[1] |= 0x80;
+
+ /* Store the character class flag bits into the range table. */
+ *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
+ *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
+
+ STORE_NUMBER_AND_INCR (b, used / 2);
+ for (i = 0; i < used; i++)
+ STORE_CHARACTER_AND_INCR
+ (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
+ }
+ }
+ break;
+
+
+ case '\\':
+ if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+
+ /* Do not translate the character after the \, so that we can
+ distinguish, e.g., \B from \b, even if we normally would
+ translate, e.g., B to b. */
+ PATFETCH (c);
+
+ switch (c)
+ {
+ case '(':
+ {
+ bool shy = false;
+ regnum_t regnum = 0;
+ if (p+1 < pend)
+ {
+ /* Look for a special (?...) construct */
+ if (*p == '?')
+ {
+ PATFETCH (c); /* Gobble up the '?'. */
+ while (!shy)
+ {
+ PATFETCH (c);
+ switch (c)
+ {
+ case ':': shy = true; break;
+ case '0':
+ /* An explicitly specified regnum must start
+ with non-0. */
+ if (regnum == 0)
+ FREE_STACK_RETURN (REG_BADPAT);
+ FALLTHROUGH;
+ case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ if (INT_MULTIPLY_WRAPV (regnum, 10, &regnum)
+ || INT_ADD_WRAPV (regnum, c - '0',
+ &regnum))
+ FREE_STACK_RETURN (REG_ESIZE);
+ break;
+ default:
+ /* Only (?:...) is supported right now. */
+ FREE_STACK_RETURN (REG_BADPAT);
+ }
+ }
+ }
+ }
+
+ if (!shy)
+ regnum = ++bufp->re_nsub;
+ else if (regnum)
+ { /* It's actually not shy, but explicitly numbered. */
+ shy = false;
+ if (regnum > bufp->re_nsub)
+ bufp->re_nsub = regnum;
+ else if (regnum > bufp->re_nsub
+ /* Ideally, we'd want to check that the specified
+ group can't have matched (i.e. all subgroups
+ using the same regnum are in other branches of
+ OR patterns), but we don't currently keep track
+ of enough info to do that easily. */
+ || group_in_compile_stack (compile_stack, regnum))
+ FREE_STACK_RETURN (REG_BADPAT);
+ }
+ else
+ /* It's really shy. */
+ regnum = - bufp->re_nsub;
+
+ if (COMPILE_STACK_FULL)
+ compile_stack.stack
+ = xpalloc (compile_stack.stack, &compile_stack.size,
+ 1, -1, sizeof *compile_stack.stack);
+
+ /* These are the values to restore when we hit end of this
+ group. They are all relative offsets, so that if the
+ whole pattern moves because of realloc, they will still
+ be valid. */
+ COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
+ COMPILE_STACK_TOP.fixup_alt_jump
+ = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
+ COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
+ COMPILE_STACK_TOP.regnum = regnum;
+
+ /* Do not push a start_memory for groups beyond the last one
+ we can represent in the compiled pattern. */
+ if (regnum <= MAX_REGNUM && regnum > 0)
+ BUF_PUSH_2 (start_memory, regnum);
+
+ compile_stack.avail++;
+
+ fixup_alt_jump = 0;
+ laststart = 0;
+ begalt = b;
+ /* If we've reached MAX_REGNUM groups, then this open
+ won't actually generate any code, so we'll have to
+ clear pending_exact explicitly. */
+ pending_exact = 0;
+ break;
+ }
+
+ case ')':
+ if (COMPILE_STACK_EMPTY)
+ FREE_STACK_RETURN (REG_ERPAREN);
+
+ FIXUP_ALT_JUMP ();
+
+ /* See similar code for backslashed left paren above. */
+ if (COMPILE_STACK_EMPTY)
+ FREE_STACK_RETURN (REG_ERPAREN);
+
+ /* Since we just checked for an empty stack above, this
+ "can't happen". */
+ eassert (compile_stack.avail != 0);
+ {
+ /* We don't just want to restore into 'regnum', because
+ later groups should continue to be numbered higher,
+ as in '(ab)c(de)' -- the second group is #2. */
+ regnum_t regnum;
+
+ compile_stack.avail--;
+ begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
+ fixup_alt_jump
+ = COMPILE_STACK_TOP.fixup_alt_jump
+ ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
+ : 0;
+ laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
+ regnum = COMPILE_STACK_TOP.regnum;
+ /* If we've reached MAX_REGNUM groups, then this open
+ won't actually generate any code, so we'll have to
+ clear pending_exact explicitly. */
+ pending_exact = 0;
+
+ /* We're at the end of the group, so now we know how many
+ groups were inside this one. */
+ if (regnum <= MAX_REGNUM && regnum > 0)
+ BUF_PUSH_2 (stop_memory, regnum);
+ }
+ break;
+
+
+ case '|': /* '\|'. */
+ /* Insert before the previous alternative a jump which
+ jumps to this alternative if the former fails. */
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (on_failure_jump, begalt, b + 6);
+ pending_exact = 0;
+ b += 3;
+
+ /* The alternative before this one has a jump after it
+ which gets executed if it gets matched. Adjust that
+ jump so it will jump to this alternative's analogous
+ jump (put in below, which in turn will jump to the next
+ (if any) alternative's such jump, etc.). The last such
+ jump jumps to the correct final destination. A picture:
+ _____ _____
+ | | | |
+ | v | v
+ A | B | C
+
+ If we are at B, then fixup_alt_jump right now points to a
+ three-byte space after A. We'll put in the jump, set
+ fixup_alt_jump to right after B, and leave behind three
+ bytes which we'll fill in when we get to after C. */
+
+ FIXUP_ALT_JUMP ();
+
+ /* Mark and leave space for a jump after this alternative,
+ to be filled in later either by next alternative or
+ when know we're at the end of a series of alternatives. */
+ fixup_alt_jump = b;
+ GET_BUFFER_SPACE (3);
+ b += 3;
+
+ laststart = 0;
+ begalt = b;
+ break;
+
+
+ case '{':
+ {
+ /* At least (most) this many matches must be made. */
+ int lower_bound = 0, upper_bound = -1;
+
+ beg_interval = p;
+
+ GET_INTERVAL_COUNT (lower_bound);
+
+ if (c == ',')
+ GET_INTERVAL_COUNT (upper_bound);
+ else
+ /* Interval such as '{1}' => match exactly once. */
+ upper_bound = lower_bound;
+
+ if (lower_bound < 0
+ || (0 <= upper_bound && upper_bound < lower_bound)
+ || c != '\\')
+ FREE_STACK_RETURN (REG_BADBR);
+ if (p == pend)
+ FREE_STACK_RETURN (REG_EESCAPE);
+ if (*p++ != '}')
+ FREE_STACK_RETURN (REG_BADBR);
+
+ /* We just parsed a valid interval. */
+
+ /* If it's invalid to have no preceding re. */
+ if (!laststart)
+ goto unfetch_interval;
+
+ if (upper_bound == 0)
+ /* If the upper bound is zero, just drop the sub pattern
+ altogether. */
+ b = laststart;
+ else if (lower_bound == 1 && upper_bound == 1)
+ /* Just match it once: nothing to do here. */
+ ;
+
+ /* Otherwise, we have a nontrivial interval. When
+ we're all done, the pattern will look like:
+ set_number_at <jump count> <upper bound>
+ set_number_at <succeed_n count> <lower bound>
+ succeed_n <after jump addr> <succeed_n count>
+ <body of loop>
+ jump_n <succeed_n addr> <jump count>
+ (The upper bound and 'jump_n' are omitted if
+ 'upper_bound' is 1, though.) */
+ else
+ { /* If the upper bound is > 1, we need to insert
+ more at the end of the loop. */
+ int nbytes = upper_bound < 0 ? 3 : upper_bound > 1 ? 5 : 0;
+ int startoffset = 0;
+
+ GET_BUFFER_SPACE (20); /* We might use less. */
+
+ if (lower_bound == 0)
+ {
+ /* A succeed_n that starts with 0 is really a
+ a simple on_failure_jump_loop. */
+ INSERT_JUMP (on_failure_jump_loop, laststart,
+ b + 3 + nbytes);
+ b += 3;
+ }
+ else
+ {
+ /* Initialize lower bound of the 'succeed_n', even
+ though it will be set during matching by its
+ attendant 'set_number_at' (inserted next),
+ because 're_compile_fastmap' needs to know.
+ Jump to the 'jump_n' we might insert below. */
+ INSERT_JUMP2 (succeed_n, laststart,
+ b + 5 + nbytes,
+ lower_bound);
+ b += 5;
+
+ /* Code to initialize the lower bound. Insert
+ before the 'succeed_n'. The '5' is the last two
+ bytes of this 'set_number_at', plus 3 bytes of
+ the following 'succeed_n'. */
+ insert_op2 (set_number_at, laststart, 5,
+ lower_bound, b);
+ b += 5;
+ startoffset += 5;
+ }
+
+ if (upper_bound < 0)
+ {
+ /* A negative upper bound stands for infinity,
+ in which case it degenerates to a plain jump. */
+ STORE_JUMP (jump, b, laststart + startoffset);
+ b += 3;
+ }
+ else if (upper_bound > 1)
+ { /* More than one repetition is allowed, so
+ append a backward jump to the 'succeed_n'
+ that starts this interval.
+
+ When we've reached this during matching,
+ we'll have matched the interval once, so
+ jump back only 'upper_bound - 1' times. */
+ STORE_JUMP2 (jump_n, b, laststart + startoffset,
+ upper_bound - 1);
+ b += 5;
+
+ /* The location we want to set is the second
+ parameter of the 'jump_n'; that is 'b-2' as
+ an absolute address. 'laststart' will be
+ the 'set_number_at' we're about to insert;
+ 'laststart+3' the number to set, the source
+ for the relative address. But we are
+ inserting into the middle of the pattern --
+ so everything is getting moved up by 5.
+ Conclusion: (b - 2) - (laststart + 3) + 5,
+ i.e., b - laststart.
+
+ Insert this at the beginning of the loop
+ so that if we fail during matching, we'll
+ reinitialize the bounds. */
+ insert_op2 (set_number_at, laststart, b - laststart,
+ upper_bound - 1, b);
+ b += 5;
+ }
+ }
+ pending_exact = 0;
+ beg_interval = NULL;
+ }
+ break;
+
+ unfetch_interval:
+ /* If an invalid interval, match the characters as literals. */
+ eassert (beg_interval);
+ p = beg_interval;
+ beg_interval = NULL;
+ eassert (p > pattern && p[-1] == '\\');
+ c = '{';
+ goto normal_char;
+
+ case '=':
+ laststart = b;
+ BUF_PUSH (at_dot);
+ break;
+
+ case 's':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
+ break;
+
+ case 'S':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
+ break;
+
+ case 'c':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (categoryspec, c);
+ break;
+
+ case 'C':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (notcategoryspec, c);
+ break;
+
+ case 'w':
+ laststart = b;
+ BUF_PUSH_2 (syntaxspec, Sword);
+ break;
+
+
+ case 'W':
+ laststart = b;
+ BUF_PUSH_2 (notsyntaxspec, Sword);
+ break;
+
+
+ case '<':
+ laststart = b;
+ BUF_PUSH (wordbeg);
+ break;
+
+ case '>':
+ laststart = b;
+ BUF_PUSH (wordend);
+ break;
+
+ case '_':
+ laststart = b;
+ PATFETCH (c);
+ if (c == '<')
+ BUF_PUSH (symbeg);
+ else if (c == '>')
+ BUF_PUSH (symend);
+ else
+ FREE_STACK_RETURN (REG_BADPAT);
+ break;
+
+ case 'b':
+ BUF_PUSH (wordbound);
+ break;
+
+ case 'B':
+ BUF_PUSH (notwordbound);
+ break;
+
+ case '`':
+ BUF_PUSH (begbuf);
+ break;
+
+ case '\'':
+ BUF_PUSH (endbuf);
+ break;
+
+ case '1': case '2': case '3': case '4': case '5':
+ case '6': case '7': case '8': case '9':
+ {
+ regnum_t reg = c - '0';
+
+ if (reg > bufp->re_nsub || reg < 1
+ /* Can't back reference to a subexp before its end. */
+ || group_in_compile_stack (compile_stack, reg))
+ FREE_STACK_RETURN (REG_ESUBREG);
+
+ laststart = b;
+ BUF_PUSH_2 (duplicate, reg);
+ }
+ break;
+
+ default:
+ /* You might think it would be useful for \ to mean
+ not to translate; but if we don't translate it
+ it will never match anything. */
+ goto normal_char;
+ }
+ break;
+
+
+ default:
+ /* Expects the character in C. */
+ normal_char:
+ /* If no exactn currently being built. */
+ if (!pending_exact
+
+ /* If last exactn not at current position. */
+ || pending_exact + *pending_exact + 1 != b
+
+ /* Only one byte follows the exactn for the count. */
+ || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
+
+ /* If followed by a repetition operator. */
+ || (p != pend
+ && (*p == '*' || *p == '+' || *p == '?' || *p == '^'))
+ || (p + 1 < pend && p[0] == '\\' && p[1] == '{'))
+ {
+ /* Start building a new exactn. */
+
+ laststart = b;
+
+ BUF_PUSH_2 (exactn, 0);
+ pending_exact = b - 1;
+ }
+
+ GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
+ {
+ int len;
+
+ if (multibyte)
+ {
+ c = TRANSLATE (c);
+ len = CHAR_STRING (c, b);
+ b += len;
+ }
+ else
+ {
+ c1 = RE_CHAR_TO_MULTIBYTE (c);
+ if (! CHAR_BYTE8_P (c1))
+ {
+ int c2 = TRANSLATE (c1);
+
+ if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
+ c = c1;
+ }
+ *b++ = c;
+ len = 1;
+ }
+ (*pending_exact) += len;
+ }
+
+ break;
+ } /* switch (c) */
+ } /* while p != pend */
+
+
+ /* Through the pattern now. */
+
+ FIXUP_ALT_JUMP ();
+
+ if (!COMPILE_STACK_EMPTY)
+ FREE_STACK_RETURN (REG_EPAREN);
+
+ /* If we don't want backtracking, force success
+ the first time we reach the end of the compiled pattern. */
+ if (!posix_backtracking)
+ BUF_PUSH (succeed);
+
+ /* Success; set the length of the buffer. */
+ bufp->used = b - bufp->buffer;
+
+#ifdef REGEX_EMACS_DEBUG
+ if (regex_emacs_debug > 0)
+ {
+ re_compile_fastmap (bufp);
+ DEBUG_PRINT ("\nCompiled pattern: \n");
+ print_compiled_pattern (bufp);
+ }
+ regex_emacs_debug--;
+#endif
+
+ FREE_STACK_RETURN (REG_NOERROR);
+
+} /* regex_compile */
+
+/* Subroutines for 'regex_compile'. */
+
+/* Store OP at LOC followed by two-byte integer parameter ARG. */
+
+static void
+store_op1 (re_opcode_t op, unsigned char *loc, int arg)
+{
+ *loc = (unsigned char) op;
+ STORE_NUMBER (loc + 1, arg);
+}
+
+
+/* Like 'store_op1', but for two two-byte parameters ARG1 and ARG2. */
+
+static void
+store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
+{
+ *loc = (unsigned char) op;
+ STORE_NUMBER (loc + 1, arg1);
+ STORE_NUMBER (loc + 3, arg2);
+}
+
+
+/* Copy the bytes from LOC to END to open up three bytes of space at LOC
+ for OP followed by two-byte integer parameter ARG. */
+
+static void
+insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
+{
+ register unsigned char *pfrom = end;
+ register unsigned char *pto = end + 3;
+
+ while (pfrom != loc)
+ *--pto = *--pfrom;
+
+ store_op1 (op, loc, arg);
+}
+
+
+/* Like 'insert_op1', but for two two-byte parameters ARG1 and ARG2. */
+
+static void
+insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2,
+ unsigned char *end)
+{
+ register unsigned char *pfrom = end;
+ register unsigned char *pto = end + 5;
+
+ while (pfrom != loc)
+ *--pto = *--pfrom;
+
+ store_op2 (op, loc, arg1, arg2);
+}
+
+
+/* P points to just after a ^ in PATTERN. Return true if that ^ comes
+ after an alternative or a begin-subexpression. Assume there is at
+ least one character before the ^. */
+
+static bool
+at_begline_loc_p (re_char *pattern, re_char *p)
+{
+ re_char *prev = p - 2;
+
+ switch (*prev)
+ {
+ case '(': /* After a subexpression. */
+ case '|': /* After an alternative. */
+ break;
+
+ case ':': /* After a shy subexpression. */
+ /* Skip over optional regnum. */
+ while (prev > pattern && '0' <= prev[-1] && prev[-1] <= '9')
+ --prev;
+
+ if (! (prev > pattern + 1 && prev[-1] == '?' && prev[-2] == '('))
+ return false;
+ prev -= 2;
+ break;
+
+ default:
+ return false;
+ }
+
+ /* Count the number of preceding backslashes. */
+ p = prev;
+ while (prev > pattern && prev[-1] == '\\')
+ --prev;
+ return (p - prev) & 1;
+}
+
+
+/* The dual of at_begline_loc_p. This one is for $. Assume there is
+ at least one character after the $, i.e., 'P < PEND'. */
+
+static bool
+at_endline_loc_p (re_char *p, re_char *pend)
+{
+ /* Before a subexpression or an alternative? */
+ return *p == '\\' && p + 1 < pend && (p[1] == ')' || p[1] == '|');
+}
+
+
+/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
+ false if it's not. */
+
+static bool
+group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
+{
+ ptrdiff_t this_element;
+
+ for (this_element = compile_stack.avail - 1;
+ this_element >= 0;
+ this_element--)
+ if (compile_stack.stack[this_element].regnum == regnum)
+ return true;
+
+ return false;
+}
+
+/* analyze_first.
+ If fastmap is non-NULL, go through the pattern and fill fastmap
+ with all the possible leading chars. If fastmap is NULL, don't
+ bother filling it up (obviously) and only return whether the
+ pattern could potentially match the empty string.
+
+ Return 1 if p..pend might match the empty string.
+ Return 0 if p..pend matches at least one char.
+ Return -1 if fastmap was not updated accurately. */
+
+static int
+analyze_first (re_char *p, re_char *pend, char *fastmap, bool multibyte)
+{
+ int j, k;
+ bool not;
+
+ /* If all elements for base leading-codes in fastmap is set, this
+ flag is set true. */
+ bool match_any_multibyte_characters = false;
+
+ eassert (p);
+
+ /* The loop below works as follows:
+ - It has a working-list kept in the PATTERN_STACK and which basically
+ starts by only containing a pointer to the first operation.
+ - If the opcode we're looking at is a match against some set of
+ chars, then we add those chars to the fastmap and go on to the
+ next work element from the worklist (done via 'break').
+ - If the opcode is a control operator on the other hand, we either
+ ignore it (if it's meaningless at this point, such as 'start_memory')
+ or execute it (if it's a jump). If the jump has several destinations
+ (i.e. 'on_failure_jump'), then we push the other destination onto the
+ worklist.
+ We guarantee termination by ignoring backward jumps (more or less),
+ so that P is monotonically increasing. More to the point, we
+ never set P (or push) anything '<= p1'. */
+
+ while (p < pend)
+ {
+ /* P1 is used as a marker of how far back a 'on_failure_jump'
+ can go without being ignored. It is normally equal to P
+ (which prevents any backward 'on_failure_jump') except right
+ after a plain 'jump', to allow patterns such as:
+ 0: jump 10
+ 3..9: <body>
+ 10: on_failure_jump 3
+ as used for the *? operator. */
+ re_char *p1 = p;
+
+ switch (*p++)
+ {
+ case succeed:
+ return 1;
+
+ case duplicate:
+ /* If the first character has to match a backreference, that means
+ that the group was empty (since it already matched). Since this
+ is the only case that interests us here, we can assume that the
+ backreference must match the empty string. */
+ p++;
+ continue;
+
+
+ /* Following are the cases which match a character. These end
+ with 'break'. */
+
+ case exactn:
+ if (fastmap)
+ {
+ /* If multibyte is nonzero, the first byte of each
+ character is an ASCII or a leading code. Otherwise,
+ each byte is a character. Thus, this works in both
+ cases. */
+ fastmap[p[1]] = 1;
+ if (! multibyte)
+ {
+ /* For the case of matching this unibyte regex
+ against multibyte, we must set a leading code of
+ the corresponding multibyte character. */
+ int c = RE_CHAR_TO_MULTIBYTE (p[1]);
+
+ fastmap[CHAR_LEADING_CODE (c)] = 1;
+ }
+ }
+ break;
+
+
+ case anychar:
+ /* We could put all the chars except for \n (and maybe \0)
+ but we don't bother since it is generally not worth it. */
+ if (!fastmap) break;
+ return -1;
+
+
+ case charset_not:
+ if (!fastmap) break;
+ {
+ /* Chars beyond end of bitmap are possible matches. */
+ for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
+ j < (1 << BYTEWIDTH); j++)
+ fastmap[j] = 1;
+ }
+ FALLTHROUGH;
+ case charset:
+ if (!fastmap) break;
+ not = (re_opcode_t) *(p - 1) == charset_not;
+ for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
+ j >= 0; j--)
+ if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
+ fastmap[j] = 1;
+
+ if (/* Any leading code can possibly start a character
+ which doesn't match the specified set of characters. */
+ not
+ ||
+ /* If we can match a character class, we can match any
+ multibyte characters. */
+ (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
+ && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
+
+ {
+ if (match_any_multibyte_characters == false)
+ {
+ for (j = MIN_MULTIBYTE_LEADING_CODE;
+ j <= MAX_MULTIBYTE_LEADING_CODE; j++)
+ fastmap[j] = 1;
+ match_any_multibyte_characters = true;
+ }
+ }
+
+ else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
+ && match_any_multibyte_characters == false)
+ {
+ /* Set fastmap[I] to 1 where I is a leading code of each
+ multibyte character in the range table. */
+ int c, count;
+ unsigned char lc1, lc2;
+
+ /* Make P points the range table. '+ 2' is to skip flag
+ bits for a character class. */
+ p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
+
+ /* Extract the number of ranges in range table into COUNT. */
+ EXTRACT_NUMBER_AND_INCR (count, p);
+ for (; count > 0; count--, p += 3)
+ {
+ /* Extract the start and end of each range. */
+ EXTRACT_CHARACTER (c, p);
+ lc1 = CHAR_LEADING_CODE (c);
+ p += 3;
+ EXTRACT_CHARACTER (c, p);
+ lc2 = CHAR_LEADING_CODE (c);
+ for (j = lc1; j <= lc2; j++)
+ fastmap[j] = 1;
+ }
+ }
+ break;
+
+ case syntaxspec:
+ case notsyntaxspec:
+ if (!fastmap) break;
+ /* This match depends on text properties. These end with
+ aborting optimizations. */
+ return -1;
+
+ case categoryspec:
+ case notcategoryspec:
+ if (!fastmap) break;
+ not = (re_opcode_t)p[-1] == notcategoryspec;
+ k = *p++;
+ for (j = (1 << BYTEWIDTH); j >= 0; j--)
+ if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
+ fastmap[j] = 1;
+
+ /* Any leading code can possibly start a character which
+ has or doesn't has the specified category. */
+ if (match_any_multibyte_characters == false)
+ {
+ for (j = MIN_MULTIBYTE_LEADING_CODE;
+ j <= MAX_MULTIBYTE_LEADING_CODE; j++)
+ fastmap[j] = 1;
+ match_any_multibyte_characters = true;
+ }
+ break;
+
+ /* All cases after this match the empty string. These end with
+ 'continue'. */
+
+ case at_dot:
+ case no_op:
+ case begline:
+ case endline:
+ case begbuf:
+ case endbuf:
+ case wordbound:
+ case notwordbound:
+ case wordbeg:
+ case wordend:
+ case symbeg:
+ case symend:
+ continue;
+
+
+ case jump:
+ EXTRACT_NUMBER_AND_INCR (j, p);
+ if (j < 0)
+ /* Backward jumps can only go back to code that we've already
+ visited. 're_compile' should make sure this is true. */
+ break;
+ p += j;
+ switch (*p)
+ {
+ case on_failure_jump:
+ case on_failure_keep_string_jump:
+ case on_failure_jump_loop:
+ case on_failure_jump_nastyloop:
+ case on_failure_jump_smart:
+ p++;
+ break;
+ default:
+ continue;
+ };
+ /* Keep P1 to allow the 'on_failure_jump' we are jumping to
+ to jump back to "just after here". */
+ FALLTHROUGH;
+ case on_failure_jump:
+ case on_failure_keep_string_jump:
+ case on_failure_jump_nastyloop:
+ case on_failure_jump_loop:
+ case on_failure_jump_smart:
+ EXTRACT_NUMBER_AND_INCR (j, p);
+ if (p + j <= p1)
+ ; /* Backward jump to be ignored. */
+ else
+ { /* We have to look down both arms.
+ We first go down the "straight" path so as to minimize
+ stack usage when going through alternatives. */
+ int r = analyze_first (p, pend, fastmap, multibyte);
+ if (r) return r;
+ p += j;
+ }
+ continue;
+
+
+ case jump_n:
+ /* This code simply does not properly handle forward jump_n. */
+ DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); eassert (j < 0));
+ p += 4;
+ /* jump_n can either jump or fall through. The (backward) jump
+ case has already been handled, so we only need to look at the
+ fallthrough case. */
+ continue;
+
+ case succeed_n:
+ /* If N == 0, it should be an on_failure_jump_loop instead. */
+ DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); eassert (j > 0));
+ p += 4;
+ /* We only care about one iteration of the loop, so we don't
+ need to consider the case where this behaves like an
+ on_failure_jump. */
+ continue;
+
+
+ case set_number_at:
+ p += 4;
+ continue;
+
+
+ case start_memory:
+ case stop_memory:
+ p += 1;
+ continue;
+
+
+ default:
+ abort (); /* We have listed all the cases. */
+ } /* switch *p++ */
+
+ /* Getting here means we have found the possible starting
+ characters for one path of the pattern -- and that the empty
+ string does not match. We need not follow this path further. */
+ return 0;
+ } /* while p */
+
+ /* We reached the end without matching anything. */
+ return 1;
+
+} /* analyze_first */
+
+/* Compute a fastmap for the compiled pattern in BUFP.
+ A fastmap records which of the (1 << BYTEWIDTH) possible
+ characters can start a string that matches the pattern. This fastmap
+ is used by re_search to skip quickly over impossible starting points.
+
+ Character codes above (1 << BYTEWIDTH) are not represented in the
+ fastmap, but the leading codes are represented. Thus, the fastmap
+ indicates which character sets could start a match.
+
+ The caller must supply the address of a (1 << BYTEWIDTH)-byte data
+ area as BUFP->fastmap.
+
+ Set the 'fastmap', 'fastmap_accurate', and 'can_be_null' fields in
+ the pattern buffer. */
+
+static void
+re_compile_fastmap (struct re_pattern_buffer *bufp)
+{
+ char *fastmap = bufp->fastmap;
+ int analysis;
+
+ eassert (fastmap && bufp->buffer);
+
+ memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
+
+ /* FIXME: Is the following assignment correct even when ANALYSIS < 0? */
+ bufp->fastmap_accurate = 1; /* It will be when we're done. */
+
+ analysis = analyze_first (bufp->buffer, bufp->buffer + bufp->used,
+ fastmap, RE_MULTIBYTE_P (bufp));
+ bufp->can_be_null = (analysis != 0);
+} /* re_compile_fastmap */
+
+/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
+ ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
+ this memory for recording register information. STARTS and ENDS
+ must be allocated using the malloc library routine, and must each
+ be at least NUM_REGS * sizeof (ptrdiff_t) bytes long.
+
+ If NUM_REGS == 0, then subsequent matches should allocate their own
+ register data.
+
+ Unless this function is called, the first search or match using
+ PATTERN_BUFFER will allocate its own register data, without
+ freeing the old data. */
+
+void
+re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs,
+ ptrdiff_t num_regs, ptrdiff_t *starts, ptrdiff_t *ends)
+{
+ if (num_regs)
+ {
+ bufp->regs_allocated = REGS_REALLOCATE;
+ regs->num_regs = num_regs;
+ regs->start = starts;
+ regs->end = ends;
+ }
+ else
+ {
+ bufp->regs_allocated = REGS_UNALLOCATED;
+ regs->num_regs = 0;
+ regs->start = regs->end = 0;
+ }
+}
+
+/* Searching routines. */
+
+/* Like re_search_2, below, but only one string is specified, and
+ doesn't let you say where to stop matching. */
+
+ptrdiff_t
+re_search (struct re_pattern_buffer *bufp, const char *string, ptrdiff_t size,
+ ptrdiff_t startpos, ptrdiff_t range, struct re_registers *regs)
+{
+ return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
+ regs, size);
+}
+
+/* Head address of virtual concatenation of string. */
+#define HEAD_ADDR_VSTRING(P) \
+ (((P) >= size1 ? string2 : string1))
+
+/* Address of POS in the concatenation of virtual string. */
+#define POS_ADDR_VSTRING(POS) \
+ (((POS) >= size1 ? string2 - size1 : string1) + (POS))
+
+/* Using the compiled pattern in BUFP->buffer, first tries to match the
+ virtual concatenation of STRING1 and STRING2, starting first at index
+ STARTPOS, then at STARTPOS + 1, and so on.
+
+ STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
+
+ RANGE is how far to scan while trying to match. RANGE = 0 means try
+ only at STARTPOS; in general, the last start tried is STARTPOS +
+ RANGE.
+
+ In REGS, return the indices of the virtual concatenation of STRING1
+ and STRING2 that matched the entire BUFP->buffer and its contained
+ subexpressions.
+
+ Do not consider matching one past the index STOP in the virtual
+ concatenation of STRING1 and STRING2.
+
+ Return either the position in the strings at which the match was
+ found, -1 if no match, or -2 if error (such as failure
+ stack overflow). */
+
+ptrdiff_t
+re_search_2 (struct re_pattern_buffer *bufp, const char *str1, ptrdiff_t size1,
+ const char *str2, ptrdiff_t size2,
+ ptrdiff_t startpos, ptrdiff_t range,
+ struct re_registers *regs, ptrdiff_t stop)
+{
+ ptrdiff_t val;
+ re_char *string1 = (re_char *) str1;
+ re_char *string2 = (re_char *) str2;
+ char *fastmap = bufp->fastmap;
+ Lisp_Object translate = bufp->translate;
+ ptrdiff_t total_size = size1 + size2;
+ ptrdiff_t endpos = startpos + range;
+ bool anchored_start;
+ /* Nonzero if we are searching multibyte string. */
+ bool multibyte = RE_TARGET_MULTIBYTE_P (bufp);
+
+ /* Check for out-of-range STARTPOS. */
+ if (startpos < 0 || startpos > total_size)
+ return -1;
+
+ /* Fix up RANGE if it might eventually take us outside
+ the virtual concatenation of STRING1 and STRING2.
+ Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
+ if (endpos < 0)
+ range = 0 - startpos;
+ else if (endpos > total_size)
+ range = total_size - startpos;
+
+ /* If the search isn't to be a backwards one, don't waste time in a
+ search for a pattern anchored at beginning of buffer. */
+ if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
+ {
+ if (startpos > 0)
+ return -1;
+ else
+ range = 0;
+ }
+
+ /* In a forward search for something that starts with \=.
+ don't keep searching past point. */
+ if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
+ {
+ range = PT_BYTE - BEGV_BYTE - startpos;
+ if (range < 0)
+ return -1;
+ }
+
+ /* Update the fastmap now if not correct already. */
+ if (fastmap && !bufp->fastmap_accurate)
+ re_compile_fastmap (bufp);
+
+ /* See whether the pattern is anchored. */
+ anchored_start = (bufp->buffer[0] == begline);
+
+ gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
+ {
+ ptrdiff_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
+
+ SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
+ }
+
+ /* Loop through the string, looking for a place to start matching. */
+ for (;;)
+ {
+ /* If the pattern is anchored,
+ skip quickly past places we cannot match.
+ Don't bother to treat startpos == 0 specially
+ because that case doesn't repeat. */
+ if (anchored_start && startpos > 0)
+ {
+ if (! ((startpos <= size1 ? string1[startpos - 1]
+ : string2[startpos - size1 - 1])
+ == '\n'))
+ goto advance;
+ }
+
+ /* If a fastmap is supplied, skip quickly over characters that
+ cannot be the start of a match. If the pattern can match the
+ null string, however, we don't need to skip characters; we want
+ the first null string. */
+ if (fastmap && startpos < total_size && !bufp->can_be_null)
+ {
+ re_char *d;
+ int buf_ch;
+
+ d = POS_ADDR_VSTRING (startpos);
+
+ if (range > 0) /* Searching forwards. */
+ {
+ ptrdiff_t irange = range, lim = 0;
+
+ if (startpos < size1 && startpos + range >= size1)
+ lim = range - (size1 - startpos);
+
+ /* Written out as an if-else to avoid testing 'translate'
+ inside the loop. */
+ if (!NILP (translate))
+ {
+ if (multibyte)
+ while (range > lim)
+ {
+ int buf_charlen;
+
+ buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
+ buf_ch = RE_TRANSLATE (translate, buf_ch);
+ if (fastmap[CHAR_LEADING_CODE (buf_ch)])
+ break;
+
+ range -= buf_charlen;
+ d += buf_charlen;
+ }
+ else
+ while (range > lim)
+ {
+ buf_ch = *d;
+ int ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
+ int translated = RE_TRANSLATE (translate, ch);
+ if (translated != ch
+ && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
+ buf_ch = ch;
+ if (fastmap[buf_ch])
+ break;
+ d++;
+ range--;
+ }
+ }
+ else
+ {
+ if (multibyte)
+ while (range > lim)
+ {
+ int buf_charlen;
+
+ buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
+ if (fastmap[CHAR_LEADING_CODE (buf_ch)])
+ break;
+ range -= buf_charlen;
+ d += buf_charlen;
+ }
+ else
+ while (range > lim && !fastmap[*d])
+ {
+ d++;
+ range--;
+ }
+ }
+ startpos += irange - range;
+ }
+ else /* Searching backwards. */
+ {
+ if (multibyte)
+ {
+ buf_ch = STRING_CHAR (d);
+ buf_ch = TRANSLATE (buf_ch);
+ if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
+ goto advance;
+ }
+ else
+ {
+ buf_ch = *d;
+ int ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
+ int translated = TRANSLATE (ch);
+ if (translated != ch
+ && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
+ buf_ch = ch;
+ if (! fastmap[TRANSLATE (buf_ch)])
+ goto advance;
+ }
+ }
+ }
+
+ /* If can't match the null string, and that's all we have left, fail. */
+ if (range >= 0 && startpos == total_size && fastmap
+ && !bufp->can_be_null)
+ return -1;
+
+ val = re_match_2_internal (bufp, string1, size1, string2, size2,
+ startpos, regs, stop);
+
+ if (val >= 0)
+ return startpos;
+
+ if (val == -2)
+ return -2;
+
+ advance:
+ if (!range)
+ break;
+ else if (range > 0)
+ {
+ /* Update STARTPOS to the next character boundary. */
+ if (multibyte)
+ {
+ re_char *p = POS_ADDR_VSTRING (startpos);
+ int len = BYTES_BY_CHAR_HEAD (*p);
+
+ range -= len;
+ if (range < 0)
+ break;
+ startpos += len;
+ }
+ else
+ {
+ range--;
+ startpos++;
+ }
+ }
+ else
+ {
+ range++;
+ startpos--;
+
+ /* Update STARTPOS to the previous character boundary. */
+ if (multibyte)
+ {
+ re_char *p = POS_ADDR_VSTRING (startpos) + 1;
+ re_char *p0 = p;
+ re_char *phead = HEAD_ADDR_VSTRING (startpos);
+
+ /* Find the head of multibyte form. */
+ PREV_CHAR_BOUNDARY (p, phead);
+ range += p0 - 1 - p;
+ if (range > 0)
+ break;
+
+ startpos -= p0 - 1 - p;
+ }
+ }
+ }
+ return -1;
+} /* re_search_2 */
+
+/* Declarations and macros for re_match_2. */
+
+static bool bcmp_translate (re_char *, re_char *, ptrdiff_t,
+ Lisp_Object, bool);
+
+/* This converts PTR, a pointer into one of the search strings 'string1'
+ and 'string2' into an offset from the beginning of that string. */
+#define POINTER_TO_OFFSET(ptr) \
+ (FIRST_STRING_P (ptr) \
+ ? (ptr) - string1 \
+ : (ptr) - string2 + (ptrdiff_t) size1)
+
+/* Call before fetching a character with *d. This switches over to
+ string2 if necessary.
+ Check re_match_2_internal for a discussion of why end_match_2 might
+ not be within string2 (but be equal to end_match_1 instead). */
+#define PREFETCH() \
+ while (d == dend) \
+ { \
+ /* End of string2 => fail. */ \
+ if (dend == end_match_2) \
+ goto fail; \
+ /* End of string1 => advance to string2. */ \
+ d = string2; \
+ dend = end_match_2; \
+ }
+
+/* Call before fetching a char with *d if you already checked other limits.
+ This is meant for use in lookahead operations like wordend, etc..
+ where we might need to look at parts of the string that might be
+ outside of the LIMITs (i.e past 'stop'). */
+#define PREFETCH_NOLIMIT() \
+ if (d == end1) \
+ { \
+ d = string2; \
+ dend = end_match_2; \
+ } \
+
+/* Test if at very beginning or at very end of the virtual concatenation
+ of STRING1 and STRING2. If only one string, it's STRING2. */
+#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
+#define AT_STRINGS_END(d) ((d) == end2)
+
+/* Disabled due to a compiler bug -- see comment at case wordbound */
+
+/* The comment at case wordbound is following one, but we don't use
+ AT_WORD_BOUNDARY anymore to support multibyte form.
+
+ The DEC Alpha C compiler 3.x generates incorrect code for the
+ test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
+ AT_WORD_BOUNDARY, so this code is disabled. Expanding the
+ macro and introducing temporary variables works around the bug. */
+
+#if 0
+/* Test if D points to a character which is word-constituent. We have
+ two special cases to check for: if past the end of string1, look at
+ the first character in string2; and if before the beginning of
+ string2, look at the last character in string1. */
+#define WORDCHAR_P(d) \
+ (SYNTAX ((d) == end1 ? *string2 \
+ : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
+ == Sword)
+
+/* Test if the character before D and the one at D differ with respect
+ to being word-constituent. */
+#define AT_WORD_BOUNDARY(d) \
+ (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
+ || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
+#endif
+
+
+/* Optimization routines. */
+
+/* If the operation is a match against one or more chars,
+ return a pointer to the next operation, else return NULL. */
+static re_char *
+skip_one_char (re_char *p)
+{
+ switch (*p++)
+ {
+ case anychar:
+ break;
+
+ case exactn:
+ p += *p + 1;
+ break;
+
+ case charset_not:
+ case charset:
+ if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
+ {
+ int mcnt;
+ p = CHARSET_RANGE_TABLE (p - 1);
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ p = CHARSET_RANGE_TABLE_END (p, mcnt);
+ }
+ else
+ p += 1 + CHARSET_BITMAP_SIZE (p - 1);
+ break;
+
+ case syntaxspec:
+ case notsyntaxspec:
+ case categoryspec:
+ case notcategoryspec:
+ p++;
+ break;
+
+ default:
+ p = NULL;
+ }
+ return p;
+}
+
+
+/* Jump over non-matching operations. */
+static re_char *
+skip_noops (re_char *p, re_char *pend)
+{
+ int mcnt;
+ while (p < pend)
+ {
+ switch (*p)
+ {
+ case start_memory:
+ case stop_memory:
+ p += 2; break;
+ case no_op:
+ p += 1; break;
+ case jump:
+ p += 1;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ p += mcnt;
+ break;
+ default:
+ return p;
+ }
+ }
+ eassert (p == pend);
+ return p;
+}
+
+/* Test if C matches charset op. *PP points to the charset or charset_not
+ opcode. When the function finishes, *PP will be advanced past that opcode.
+ C is character to test (possibly after translations) and CORIG is original
+ character (i.e. without any translations). UNIBYTE denotes whether c is
+ unibyte or multibyte character. */
+static bool
+execute_charset (re_char **pp, int c, int corig, bool unibyte)
+{
+ eassume (0 <= c && 0 <= corig);
+ re_char *p = *pp, *rtp = NULL;
+ bool not = (re_opcode_t) *p == charset_not;
+
+ if (CHARSET_RANGE_TABLE_EXISTS_P (p))
+ {
+ int count;
+ rtp = CHARSET_RANGE_TABLE (p);
+ EXTRACT_NUMBER_AND_INCR (count, rtp);
+ *pp = CHARSET_RANGE_TABLE_END ((rtp), (count));
+ }
+ else
+ *pp += 2 + CHARSET_BITMAP_SIZE (p);
+
+ if (unibyte && c < (1 << BYTEWIDTH))
+ { /* Lookup bitmap. */
+ /* Cast to 'unsigned' instead of 'unsigned char' in
+ case the bit list is a full 32 bytes long. */
+ if (c < (unsigned) (CHARSET_BITMAP_SIZE (p) * BYTEWIDTH)
+ && p[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+ return !not;
+ }
+ else if (rtp)
+ {
+ int class_bits = CHARSET_RANGE_TABLE_BITS (p);
+ int range_start, range_end;
+
+ /* Sort tests by the most commonly used classes with some adjustment to which
+ tests are easiest to perform. Take a look at comment in re_wctype_parse
+ for table with frequencies of character class names. */
+
+ if ((class_bits & BIT_MULTIBYTE) ||
+ (class_bits & BIT_ALNUM && ISALNUM (c)) ||
+ (class_bits & BIT_ALPHA && ISALPHA (c)) ||
+ (class_bits & BIT_SPACE && ISSPACE (c)) ||
+ (class_bits & BIT_BLANK && ISBLANK (c)) ||
+ (class_bits & BIT_WORD && ISWORD (c)) ||
+ ((class_bits & BIT_UPPER) &&
+ (ISUPPER (c) || (corig != c &&
+ c == downcase (corig) && ISLOWER (c)))) ||
+ ((class_bits & BIT_LOWER) &&
+ (ISLOWER (c) || (corig != c &&
+ c == upcase (corig) && ISUPPER(c)))) ||
+ (class_bits & BIT_PUNCT && ISPUNCT (c)) ||
+ (class_bits & BIT_GRAPH && ISGRAPH (c)) ||
+ (class_bits & BIT_PRINT && ISPRINT (c)))
+ return !not;
+
+ for (p = *pp; rtp < p; rtp += 2 * 3)
+ {
+ EXTRACT_CHARACTER (range_start, rtp);
+ EXTRACT_CHARACTER (range_end, rtp + 3);
+ if (range_start <= c && c <= range_end)
+ return !not;
+ }
+ }
+
+ return not;
+}
+
+/* True if "p1 matches something" implies "p2 fails". */
+static bool
+mutually_exclusive_p (struct re_pattern_buffer *bufp, re_char *p1,
+ re_char *p2)
+{
+ re_opcode_t op2;
+ bool multibyte = RE_MULTIBYTE_P (bufp);
+ unsigned char *pend = bufp->buffer + bufp->used;
+
+ eassert (p1 >= bufp->buffer && p1 < pend
+ && p2 >= bufp->buffer && p2 <= pend);
+
+ /* Skip over open/close-group commands.
+ If what follows this loop is a ...+ construct,
+ look at what begins its body, since we will have to
+ match at least one of that. */
+ p2 = skip_noops (p2, pend);
+ /* The same skip can be done for p1, except that this function
+ is only used in the case where p1 is a simple match operator. */
+ /* p1 = skip_noops (p1, pend); */
+
+ eassert (p1 >= bufp->buffer && p1 < pend
+ && p2 >= bufp->buffer && p2 <= pend);
+
+ op2 = p2 == pend ? succeed : *p2;
+
+ switch (op2)
+ {
+ case succeed:
+ case endbuf:
+ /* If we're at the end of the pattern, we can change. */
+ if (skip_one_char (p1))
+ {
+ DEBUG_PRINT (" End of pattern: fast loop.\n");
+ return true;
+ }
+ break;
+
+ case endline:
+ case exactn:
+ {
+ int c
+ = (re_opcode_t) *p2 == endline ? '\n'
+ : RE_STRING_CHAR (p2 + 2, multibyte);
+
+ if ((re_opcode_t) *p1 == exactn)
+ {
+ if (c != RE_STRING_CHAR (p1 + 2, multibyte))
+ {
+ DEBUG_PRINT (" '%c' != '%c' => fast loop.\n", c, p1[2]);
+ return true;
+ }
+ }
+
+ else if ((re_opcode_t) *p1 == charset
+ || (re_opcode_t) *p1 == charset_not)
+ {
+ if (!execute_charset (&p1, c, c, !multibyte || ASCII_CHAR_P (c)))
+ {
+ DEBUG_PRINT (" No match => fast loop.\n");
+ return true;
+ }
+ }
+ else if ((re_opcode_t) *p1 == anychar
+ && c == '\n')
+ {
+ DEBUG_PRINT (" . != \\n => fast loop.\n");
+ return true;
+ }
+ }
+ break;
+
+ case charset:
+ {
+ if ((re_opcode_t) *p1 == exactn)
+ /* Reuse the code above. */
+ return mutually_exclusive_p (bufp, p2, p1);
+
+ /* It is hard to list up all the character in charset
+ P2 if it includes multibyte character. Give up in
+ such case. */
+ else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
+ {
+ /* Now, we are sure that P2 has no range table.
+ So, for the size of bitmap in P2, 'p2[1]' is
+ enough. But P1 may have range table, so the
+ size of bitmap table of P1 is extracted by
+ using macro 'CHARSET_BITMAP_SIZE'.
+
+ In a multibyte case, we know that all the character
+ listed in P2 is ASCII. In a unibyte case, P1 has only a
+ bitmap table. So, in both cases, it is enough to test
+ only the bitmap table of P1. */
+
+ if ((re_opcode_t) *p1 == charset)
+ {
+ int idx;
+ /* We win if the charset inside the loop
+ has no overlap with the one after the loop. */
+ for (idx = 0;
+ (idx < (int) p2[1]
+ && idx < CHARSET_BITMAP_SIZE (p1));
+ idx++)
+ if ((p2[2 + idx] & p1[2 + idx]) != 0)
+ break;
+
+ if (idx == p2[1]
+ || idx == CHARSET_BITMAP_SIZE (p1))
+ {
+ DEBUG_PRINT (" No match => fast loop.\n");
+ return true;
+ }
+ }
+ else if ((re_opcode_t) *p1 == charset_not)
+ {
+ int idx;
+ /* We win if the charset_not inside the loop lists
+ every character listed in the charset after. */
+ for (idx = 0; idx < (int) p2[1]; idx++)
+ if (! (p2[2 + idx] == 0
+ || (idx < CHARSET_BITMAP_SIZE (p1)
+ && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
+ break;
+
+ if (idx == p2[1])
+ {
+ DEBUG_PRINT (" No match => fast loop.\n");
+ return true;
+ }
+ }
+ }
+ }
+ break;
+
+ case charset_not:
+ switch (*p1)
+ {
+ case exactn:
+ case charset:
+ /* Reuse the code above. */
+ return mutually_exclusive_p (bufp, p2, p1);
+ case charset_not:
+ /* When we have two charset_not, it's very unlikely that
+ they don't overlap. The union of the two sets of excluded
+ chars should cover all possible chars, which, as a matter of
+ fact, is virtually impossible in multibyte buffers. */
+ break;
+ }
+ break;
+
+ case wordend:
+ return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
+ case symend:
+ return ((re_opcode_t) *p1 == syntaxspec
+ && (p1[1] == Ssymbol || p1[1] == Sword));
+ case notsyntaxspec:
+ return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
+
+ case wordbeg:
+ return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
+ case symbeg:
+ return ((re_opcode_t) *p1 == notsyntaxspec
+ && (p1[1] == Ssymbol || p1[1] == Sword));
+ case syntaxspec:
+ return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
+
+ case wordbound:
+ return (((re_opcode_t) *p1 == notsyntaxspec
+ || (re_opcode_t) *p1 == syntaxspec)
+ && p1[1] == Sword);
+
+ case categoryspec:
+ return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
+ case notcategoryspec:
+ return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
+
+ default:
+ ;
+ }
+
+ /* Safe default. */
+ return false;
+}
+
+
+/* Matching routines. */
+
+/* re_match_2 matches the compiled pattern in BUFP against the
+ the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
+ and SIZE2, respectively). We start matching at POS, and stop
+ matching at STOP.
+
+ If REGS is non-null, store offsets for the substring each group
+ matched in REGS.
+
+ We return -1 if no match, -2 if an internal error (such as the
+ failure stack overflowing). Otherwise, we return the length of the
+ matched substring. */
+
+ptrdiff_t
+re_match_2 (struct re_pattern_buffer *bufp,
+ char const *string1, ptrdiff_t size1,
+ char const *string2, ptrdiff_t size2,
+ ptrdiff_t pos, struct re_registers *regs, ptrdiff_t stop)
+{
+ ptrdiff_t result;
+
+ ptrdiff_t charpos;
+ gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
+ charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
+ SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
+
+ result = re_match_2_internal (bufp, (re_char *) string1, size1,
+ (re_char *) string2, size2,
+ pos, regs, stop);
+ return result;
+}
+
+
+/* This is a separate function so that we can force an alloca cleanup
+ afterwards. */
+static ptrdiff_t
+re_match_2_internal (struct re_pattern_buffer *bufp,
+ re_char *string1, ptrdiff_t size1,
+ re_char *string2, ptrdiff_t size2,
+ ptrdiff_t pos, struct re_registers *regs, ptrdiff_t stop)
+{
+ /* General temporaries. */
+ int mcnt;
+
+ /* Just past the end of the corresponding string. */
+ re_char *end1, *end2;
+
+ /* Pointers into string1 and string2, just past the last characters in
+ each to consider matching. */
+ re_char *end_match_1, *end_match_2;
+
+ /* Where we are in the data, and the end of the current string. */
+ re_char *d, *dend;
+
+ /* Used sometimes to remember where we were before starting matching
+ an operator so that we can go back in case of failure. This "atomic"
+ behavior of matching opcodes is indispensable to the correctness
+ of the on_failure_keep_string_jump optimization. */
+ re_char *dfail;
+
+ /* Where we are in the pattern, and the end of the pattern. */
+ re_char *p = bufp->buffer;
+ re_char *pend = p + bufp->used;
+
+ /* We use this to map every character in the string. */
+ Lisp_Object translate = bufp->translate;
+
+ /* True if BUFP is setup from a multibyte regex. */
+ bool multibyte = RE_MULTIBYTE_P (bufp);
+
+ /* True if STRING1/STRING2 are multibyte. */
+ bool target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
+
+ /* Failure point stack. Each place that can handle a failure further
+ down the line pushes a failure point on this stack. It consists of
+ regstart, and regend for all registers corresponding to
+ the subexpressions we're currently inside, plus the number of such
+ registers, and, finally, two char *'s. The first char * is where
+ to resume scanning the pattern; the second one is where to resume
+ scanning the strings. */
+ fail_stack_type fail_stack;
+#ifdef DEBUG_COMPILES_ARGUMENTS
+ ptrdiff_t nfailure_points_pushed = 0, nfailure_points_popped = 0;
+#endif
+
+ /* We fill all the registers internally, independent of what we
+ return, for use in backreferences. The number here includes
+ an element for register zero. */
+ ptrdiff_t num_regs = bufp->re_nsub + 1;
+ eassume (0 < num_regs);
+
+ /* Information on the contents of registers. These are pointers into
+ the input strings; they record just what was matched (on this
+ attempt) by a subexpression part of the pattern, that is, the
+ regnum-th regstart pointer points to where in the pattern we began
+ matching and the regnum-th regend points to right after where we
+ stopped matching the regnum-th subexpression. (The zeroth register
+ keeps track of what the whole pattern matches.) */
+ re_char **regstart UNINIT, **regend UNINIT;
+
+ /* The following record the register info as found in the above
+ variables when we find a match better than any we've seen before.
+ This happens as we backtrack through the failure points, which in
+ turn happens only if we have not yet matched the entire string. */
+ bool best_regs_set = false;
+ re_char **best_regstart UNINIT, **best_regend UNINIT;
+
+ /* Logically, this is 'best_regend[0]'. But we don't want to have to
+ allocate space for that if we're not allocating space for anything
+ else (see below). Also, we never need info about register 0 for
+ any of the other register vectors, and it seems rather a kludge to
+ treat 'best_regend' differently than the rest. So we keep track of
+ the end of the best match so far in a separate variable. We
+ initialize this to NULL so that when we backtrack the first time
+ and need to test it, it's not garbage. */
+ re_char *match_end = NULL;
+
+#ifdef DEBUG_COMPILES_ARGUMENTS
+ /* Counts the total number of registers pushed. */
+ ptrdiff_t num_regs_pushed = 0;
+#endif
+
+ DEBUG_PRINT ("\n\nEntering re_match_2.\n");
+
+ REGEX_USE_SAFE_ALLOCA;
+
+ INIT_FAIL_STACK ();
+
+ /* Do not bother to initialize all the register variables if there are
+ no groups in the pattern, as it takes a fair amount of time. If
+ there are groups, we include space for register 0 (the whole
+ pattern), even though we never use it, since it simplifies the
+ array indexing. We should fix this. */
+ if (bufp->re_nsub)
+ {
+ regstart = SAFE_ALLOCA (num_regs * 4 * sizeof *regstart);
+ regend = regstart + num_regs;
+ best_regstart = regend + num_regs;
+ best_regend = best_regstart + num_regs;
+ }
+
+ /* The starting position is bogus. */
+ if (pos < 0 || pos > size1 + size2)
+ {
+ SAFE_FREE ();
+ return -1;
+ }
+
+ /* Initialize subexpression text positions to -1 to mark ones that no
+ start_memory/stop_memory has been seen for. */
+ for (ptrdiff_t reg = 1; reg < num_regs; reg++)
+ regstart[reg] = regend[reg] = NULL;
+
+ /* We move 'string1' into 'string2' if the latter's empty -- but not if
+ 'string1' is null. */
+ if (size2 == 0 && string1 != NULL)
+ {
+ string2 = string1;
+ size2 = size1;
+ string1 = 0;
+ size1 = 0;
+ }
+ end1 = string1 + size1;
+ end2 = string2 + size2;
+
+ /* P scans through the pattern as D scans through the data.
+ DEND is the end of the input string that D points within.
+ Advance D into the following input string whenever necessary, but
+ this happens before fetching; therefore, at the beginning of the
+ loop, D can be pointing at the end of a string, but it cannot
+ equal STRING2. */
+ if (pos >= size1)
+ {
+ /* Only match within string2. */
+ d = string2 + pos - size1;
+ dend = end_match_2 = string2 + stop - size1;
+ end_match_1 = end1; /* Just to give it a value. */
+ }
+ else
+ {
+ if (stop < size1)
+ {
+ /* Only match within string1. */
+ end_match_1 = string1 + stop;
+ /* BEWARE!
+ When we reach end_match_1, PREFETCH normally switches to string2.
+ But in the present case, this means that just doing a PREFETCH
+ makes us jump from 'stop' to 'gap' within the string.
+ What we really want here is for the search to stop as
+ soon as we hit end_match_1. That's why we set end_match_2
+ to end_match_1 (since PREFETCH fails as soon as we hit
+ end_match_2). */
+ end_match_2 = end_match_1;
+ }
+ else
+ { /* It's important to use this code when STOP == SIZE so that
+ moving D from end1 to string2 will not prevent the D == DEND
+ check from catching the end of string. */
+ end_match_1 = end1;
+ end_match_2 = string2 + stop - size1;
+ }
+ d = string1 + pos;
+ dend = end_match_1;
+ }
+
+ DEBUG_PRINT ("The compiled pattern is: ");
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
+ DEBUG_PRINT ("The string to match is: \"");
+ DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
+ DEBUG_PRINT ("\"\n");
+
+ /* This loops over pattern commands. It exits by returning from the
+ function if the match is complete, or it drops through if the match
+ fails at this starting point in the input data. */
+ for (;;)
+ {
+ DEBUG_PRINT ("\n%p: ", p);
+
+ if (p == pend)
+ {
+ /* End of pattern means we might have succeeded. */
+ DEBUG_PRINT ("end of pattern ... ");
+
+ /* If we haven't matched the entire string, and we want the
+ longest match, try backtracking. */
+ if (d != end_match_2)
+ {
+ /* True if this match is the best seen so far. */
+ bool best_match_p;
+
+ {
+ /* True if this match ends in the same string (string1
+ or string2) as the best previous match. */
+ bool same_str_p = (FIRST_STRING_P (match_end)
+ == FIRST_STRING_P (d));
+
+ /* AIX compiler got confused when this was combined
+ with the previous declaration. */
+ if (same_str_p)
+ best_match_p = d > match_end;
+ else
+ best_match_p = !FIRST_STRING_P (d);
+ }
+
+ DEBUG_PRINT ("backtracking.\n");
+
+ if (!FAIL_STACK_EMPTY ())
+ { /* More failure points to try. */
+
+ /* If exceeds best match so far, save it. */
+ if (!best_regs_set || best_match_p)
+ {
+ best_regs_set = true;
+ match_end = d;
+
+ DEBUG_PRINT ("\nSAVING match as best so far.\n");
+
+ for (ptrdiff_t reg = 1; reg < num_regs; reg++)
+ {
+ best_regstart[reg] = regstart[reg];
+ best_regend[reg] = regend[reg];
+ }
+ }
+ goto fail;
+ }
+
+ /* If no failure points, don't restore garbage. And if
+ last match is real best match, don't restore second
+ best one. */
+ else if (best_regs_set && !best_match_p)
+ {
+ restore_best_regs:
+ /* Restore best match. It may happen that 'dend ==
+ end_match_1' while the restored d is in string2.
+ For example, the pattern 'x.*y.*z' against the
+ strings 'x-' and 'y-z-', if the two strings are
+ not consecutive in memory. */
+ DEBUG_PRINT ("Restoring best registers.\n");
+
+ d = match_end;
+ dend = ((d >= string1 && d <= end1)
+ ? end_match_1 : end_match_2);
+
+ for (ptrdiff_t reg = 1; reg < num_regs; reg++)
+ {
+ regstart[reg] = best_regstart[reg];
+ regend[reg] = best_regend[reg];
+ }
+ }
+ } /* d != end_match_2 */
+
+ succeed_label:
+ DEBUG_PRINT ("Accepting match.\n");
+
+ /* If caller wants register contents data back, do it. */
+ if (regs)
+ {
+ /* Have the register data arrays been allocated? */
+ if (bufp->regs_allocated == REGS_UNALLOCATED)
+ { /* No. So allocate them with malloc. */
+ ptrdiff_t n = max (RE_NREGS, num_regs);
+ regs->start = xnmalloc (n, sizeof *regs->start);
+ regs->end = xnmalloc (n, sizeof *regs->end);
+ regs->num_regs = n;
+ bufp->regs_allocated = REGS_REALLOCATE;
+ }
+ else if (bufp->regs_allocated == REGS_REALLOCATE)
+ { /* Yes. If we need more elements than were already
+ allocated, reallocate them. If we need fewer, just
+ leave it alone. */
+ ptrdiff_t n = regs->num_regs;
+ if (n < num_regs)
+ {
+ n = max (n + (n >> 1), num_regs);
+ regs->start
+ = xnrealloc (regs->start, n, sizeof *regs->start);
+ regs->end = xnrealloc (regs->end, n, sizeof *regs->end);
+ regs->num_regs = n;
+ }
+ }
+ else
+ eassert (bufp->regs_allocated == REGS_FIXED);
+
+ /* Convert the pointer data in 'regstart' and 'regend' to
+ indices. Register zero has to be set differently,
+ since we haven't kept track of any info for it. */
+ if (regs->num_regs > 0)
+ {
+ regs->start[0] = pos;
+ regs->end[0] = POINTER_TO_OFFSET (d);
+ }
+
+ for (ptrdiff_t reg = 1; reg < num_regs; reg++)
+ {
+ if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
+ regs->start[reg] = regs->end[reg] = -1;
+ else
+ {
+ regs->start[reg] = POINTER_TO_OFFSET (regstart[reg]);
+ regs->end[reg] = POINTER_TO_OFFSET (regend[reg]);
+ }
+ }
+
+ /* If the regs structure we return has more elements than
+ were in the pattern, set the extra elements to -1. */
+ for (ptrdiff_t reg = num_regs; reg < regs->num_regs; reg++)
+ regs->start[reg] = regs->end[reg] = -1;
+ }
+
+ DEBUG_PRINT ("%td failure points pushed, %td popped (%td remain).\n",
+ nfailure_points_pushed, nfailure_points_popped,
+ nfailure_points_pushed - nfailure_points_popped);
+ DEBUG_PRINT ("%td registers pushed.\n", num_regs_pushed);
+
+ ptrdiff_t dcnt = POINTER_TO_OFFSET (d) - pos;
+
+ DEBUG_PRINT ("Returning %td from re_match_2.\n", dcnt);
+
+ SAFE_FREE ();
+ return dcnt;
+ }
+
+ /* Otherwise match next pattern command. */
+ switch (*p++)
+ {
+ /* Ignore these. Used to ignore the n of succeed_n's which
+ currently have n == 0. */
+ case no_op:
+ DEBUG_PRINT ("EXECUTING no_op.\n");
+ break;
+
+ case succeed:
+ DEBUG_PRINT ("EXECUTING succeed.\n");
+ goto succeed_label;
+
+ /* Match the next n pattern characters exactly. The following
+ byte in the pattern defines n, and the n bytes after that
+ are the characters to match. */
+ case exactn:
+ mcnt = *p++;
+ DEBUG_PRINT ("EXECUTING exactn %d.\n", mcnt);
+
+ /* Remember the start point to rollback upon failure. */
+ dfail = d;
+
+ /* The cost of testing 'translate' is comparatively small. */
+ if (target_multibyte)
+ do
+ {
+ int pat_charlen, buf_charlen;
+ int pat_ch, buf_ch;
+
+ PREFETCH ();
+ if (multibyte)
+ pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
+ else
+ {
+ pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
+ pat_charlen = 1;
+ }
+ buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
+
+ if (TRANSLATE (buf_ch) != pat_ch)
+ {
+ d = dfail;
+ goto fail;
+ }
+
+ p += pat_charlen;
+ d += buf_charlen;
+ mcnt -= pat_charlen;
+ }
+ while (mcnt > 0);
+ else
+ do
+ {
+ int pat_charlen;
+ int pat_ch, buf_ch;
+
+ PREFETCH ();
+ if (multibyte)
+ {
+ pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
+ pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
+ }
+ else
+ {
+ pat_ch = *p;
+ pat_charlen = 1;
+ }
+ buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
+ if (! CHAR_BYTE8_P (buf_ch))
+ {
+ buf_ch = TRANSLATE (buf_ch);
+ buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
+ if (buf_ch < 0)
+ buf_ch = *d;
+ }
+ else
+ buf_ch = *d;
+ if (buf_ch != pat_ch)
+ {
+ d = dfail;
+ goto fail;
+ }
+ p += pat_charlen;
+ d++;
+ }
+ while (--mcnt);
+
+ break;
+
+
+ /* Match any character except newline. */
+ case anychar:
+ {
+ int buf_charlen;
+ int buf_ch;
+
+ DEBUG_PRINT ("EXECUTING anychar.\n");
+
+ PREFETCH ();
+ buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
+ target_multibyte);
+ buf_ch = TRANSLATE (buf_ch);
+ if (buf_ch == '\n')
+ goto fail;
+
+ DEBUG_PRINT (" Matched \"%d\".\n", *d);
+ d += buf_charlen;
+ }
+ break;
+
+
+ case charset:
+ case charset_not:
+ {
+ /* Whether matching against a unibyte character. */
+ bool unibyte_char = false;
+
+ DEBUG_PRINT ("EXECUTING charset%s.\n",
+ (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
+
+ PREFETCH ();
+ int len;
+ int corig = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
+ int c = corig;
+ if (target_multibyte)
+ {
+ int c1;
+
+ c = TRANSLATE (c);
+ c1 = RE_CHAR_TO_UNIBYTE (c);
+ if (c1 >= 0)
+ {
+ unibyte_char = true;
+ c = c1;
+ }
+ }
+ else
+ {
+ int c1 = RE_CHAR_TO_MULTIBYTE (c);
+
+ if (! CHAR_BYTE8_P (c1))
+ {
+ c1 = TRANSLATE (c1);
+ c1 = RE_CHAR_TO_UNIBYTE (c1);
+ if (c1 >= 0)
+ {
+ unibyte_char = true;
+ c = c1;
+ }
+ }
+ else
+ unibyte_char = true;
+ }
+
+ p -= 1;
+ if (!execute_charset (&p, c, corig, unibyte_char))
+ goto fail;
+
+ d += len;
+ }
+ break;
+
+
+ /* The beginning of a group is represented by start_memory.
+ The argument is the register number. The text
+ matched within the group is recorded (in the internal
+ registers data structure) under the register number. */
+ case start_memory:
+ DEBUG_PRINT ("EXECUTING start_memory %d:\n", *p);
+
+ /* In case we need to undo this operation (via backtracking). */
+ PUSH_FAILURE_REG (*p);
+
+ regstart[*p] = d;
+ regend[*p] = NULL; /* probably unnecessary. -sm */
+ DEBUG_PRINT (" regstart: %td\n", POINTER_TO_OFFSET (regstart[*p]));
+
+ /* Move past the register number and inner group count. */
+ p += 1;
+ break;
+
+
+ /* The stop_memory opcode represents the end of a group. Its
+ argument is the same as start_memory's: the register number. */
+ case stop_memory:
+ DEBUG_PRINT ("EXECUTING stop_memory %d:\n", *p);
+
+ eassert (!REG_UNSET (regstart[*p]));
+ /* Strictly speaking, there should be code such as:
+
+ eassert (REG_UNSET (regend[*p]));
+ PUSH_FAILURE_REGSTOP (*p);
+
+ But the only info to be pushed is regend[*p] and it is known to
+ be UNSET, so there really isn't anything to push.
+ Not pushing anything, on the other hand deprives us from the
+ guarantee that regend[*p] is UNSET since undoing this operation
+ will not reset its value properly. This is not important since
+ the value will only be read on the next start_memory or at
+ the very end and both events can only happen if this stop_memory
+ is *not* undone. */
+
+ regend[*p] = d;
+ DEBUG_PRINT (" regend: %td\n", POINTER_TO_OFFSET (regend[*p]));
+
+ /* Move past the register number and the inner group count. */
+ p += 1;
+ break;
+
+
+ /* \<digit> has been turned into a 'duplicate' command which is
+ followed by the numeric value of <digit> as the register number. */
+ case duplicate:
+ {
+ re_char *d2, *dend2;
+ int regno = *p++; /* Get which register to match against. */
+ DEBUG_PRINT ("EXECUTING duplicate %d.\n", regno);
+
+ /* Can't back reference a group which we've never matched. */
+ if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
+ goto fail;
+
+ /* Where in input to try to start matching. */
+ d2 = regstart[regno];
+
+ /* Remember the start point to rollback upon failure. */
+ dfail = d;
+
+ /* Where to stop matching; if both the place to start and
+ the place to stop matching are in the same string, then
+ set to the place to stop, otherwise, for now have to use
+ the end of the first string. */
+
+ dend2 = ((FIRST_STRING_P (regstart[regno])
+ == FIRST_STRING_P (regend[regno]))
+ ? regend[regno] : end_match_1);
+ for (;;)
+ {
+ ptrdiff_t dcnt;
+
+ /* If necessary, advance to next segment in register
+ contents. */
+ while (d2 == dend2)
+ {
+ if (dend2 == end_match_2) break;
+ if (dend2 == regend[regno]) break;
+
+ /* End of string1 => advance to string2. */
+ d2 = string2;
+ dend2 = regend[regno];
+ }
+ /* At end of register contents => success */
+ if (d2 == dend2) break;
+
+ /* If necessary, advance to next segment in data. */
+ PREFETCH ();
+
+ /* How many characters left in this segment to match. */
+ dcnt = dend - d;
+
+ /* Want how many consecutive characters we can match in
+ one shot, so, if necessary, adjust the count. */
+ if (dcnt > dend2 - d2)
+ dcnt = dend2 - d2;
+
+ /* Compare that many; failure if mismatch, else move
+ past them. */
+ if (!NILP (translate)
+ ? bcmp_translate (d, d2, dcnt, translate, target_multibyte)
+ : memcmp (d, d2, dcnt))
+ {
+ d = dfail;
+ goto fail;
+ }
+ d += dcnt, d2 += dcnt;
+ }
+ }
+ break;
+
+
+ /* begline matches the empty string at the beginning of the string,
+ and after newlines. */
+ case begline:
+ DEBUG_PRINT ("EXECUTING begline.\n");
+
+ if (AT_STRINGS_BEG (d))
+ break;
+ else
+ {
+ unsigned c;
+ GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
+ if (c == '\n')
+ break;
+ }
+ goto fail;
+
+
+ /* endline is the dual of begline. */
+ case endline:
+ DEBUG_PRINT ("EXECUTING endline.\n");
+
+ if (AT_STRINGS_END (d))
+ break;
+ PREFETCH_NOLIMIT ();
+ if (*d == '\n')
+ break;
+ goto fail;
+
+
+ /* Match at the very beginning of the data. */
+ case begbuf:
+ DEBUG_PRINT ("EXECUTING begbuf.\n");
+ if (AT_STRINGS_BEG (d))
+ break;
+ goto fail;
+
+
+ /* Match at the very end of the data. */
+ case endbuf:
+ DEBUG_PRINT ("EXECUTING endbuf.\n");
+ if (AT_STRINGS_END (d))
+ break;
+ goto fail;
+
+
+ /* on_failure_keep_string_jump is used to optimize '.*\n'. It
+ pushes NULL as the value for the string on the stack. Then
+ 'POP_FAILURE_POINT' will keep the current value for the
+ string, instead of restoring it. To see why, consider
+ matching 'foo\nbar' against '.*\n'. The .* matches the foo;
+ then the . fails against the \n. But the next thing we want
+ to do is match the \n against the \n; if we restored the
+ string value, we would be back at the foo.
+
+ Because this is used only in specific cases, we don't need to
+ check all the things that 'on_failure_jump' does, to make
+ sure the right things get saved on the stack. Hence we don't
+ share its code. The only reason to push anything on the
+ stack at all is that otherwise we would have to change
+ 'anychar's code to do something besides goto fail in this
+ case; that seems worse than this. */
+ case on_failure_keep_string_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
+ mcnt, p + mcnt);
+
+ PUSH_FAILURE_POINT (p - 3, NULL);
+ break;
+
+ /* A nasty loop is introduced by the non-greedy *? and +?.
+ With such loops, the stack only ever contains one failure point
+ at a time, so that a plain on_failure_jump_loop kind of
+ cycle detection cannot work. Worse yet, such a detection
+ can not only fail to detect a cycle, but it can also wrongly
+ detect a cycle (between different instantiations of the same
+ loop).
+ So the method used for those nasty loops is a little different:
+ We use a special cycle-detection-stack-frame which is pushed
+ when the on_failure_jump_nastyloop failure-point is *popped*.
+ This special frame thus marks the beginning of one iteration
+ through the loop and we can hence easily check right here
+ whether something matched between the beginning and the end of
+ the loop. */
+ case on_failure_jump_nastyloop:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
+ mcnt, p + mcnt);
+
+ eassert ((re_opcode_t)p[-4] == no_op);
+ {
+ bool cycle = false;
+ CHECK_INFINITE_LOOP (p - 4, d);
+ if (!cycle)
+ /* If there's a cycle, just continue without pushing
+ this failure point. The failure point is the "try again"
+ option, which shouldn't be tried.
+ We want (x?)*?y\1z to match both xxyz and xxyxz. */
+ PUSH_FAILURE_POINT (p - 3, d);
+ }
+ break;
+
+ /* Simple loop detecting on_failure_jump: just check on the
+ failure stack if the same spot was already hit earlier. */
+ case on_failure_jump_loop:
+ on_failure:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT ("EXECUTING on_failure_jump_loop %d (to %p):\n",
+ mcnt, p + mcnt);
+ {
+ bool cycle = false;
+ CHECK_INFINITE_LOOP (p - 3, d);
+ if (cycle)
+ /* If there's a cycle, get out of the loop, as if the matching
+ had failed. We used to just 'goto fail' here, but that was
+ aborting the search a bit too early: we want to keep the
+ empty-loop-match and keep matching after the loop.
+ We want (x?)*y\1z to match both xxyz and xxyxz. */
+ p += mcnt;
+ else
+ PUSH_FAILURE_POINT (p - 3, d);
+ }
+ break;
+
+
+ /* Uses of on_failure_jump:
+
+ Each alternative starts with an on_failure_jump that points
+ to the beginning of the next alternative. Each alternative
+ except the last ends with a jump that in effect jumps past
+ the rest of the alternatives. (They really jump to the
+ ending jump of the following alternative, because tensioning
+ these jumps is a hassle.)
+
+ Repeats start with an on_failure_jump that points past both
+ the repetition text and either the following jump or
+ pop_failure_jump back to this on_failure_jump. */
+ case on_failure_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT ("EXECUTING on_failure_jump %d (to %p):\n",
+ mcnt, p + mcnt);
+
+ PUSH_FAILURE_POINT (p -3, d);
+ break;
+
+ /* This operation is used for greedy *.
+ Compare the beginning of the repeat with what in the
+ pattern follows its end. If we can establish that there
+ is nothing that they would both match, i.e., that we
+ would have to backtrack because of (as in, e.g., 'a*a')
+ then we can use a non-backtracking loop based on
+ on_failure_keep_string_jump instead of on_failure_jump. */
+ case on_failure_jump_smart:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT ("EXECUTING on_failure_jump_smart %d (to %p).\n",
+ mcnt, p + mcnt);
+ {
+ re_char *p1 = p; /* Next operation. */
+ /* Discard 'const', making re_search non-reentrant. */
+ unsigned char *p2 = (unsigned char *) p + mcnt; /* Jump dest. */
+ unsigned char *p3 = (unsigned char *) p - 3; /* opcode location. */
+
+ p -= 3; /* Reset so that we will re-execute the
+ instruction once it's been changed. */
+
+ EXTRACT_NUMBER (mcnt, p2 - 2);
+
+ /* Ensure this is indeed the trivial kind of loop
+ we are expecting. */
+ eassert (skip_one_char (p1) == p2 - 3);
+ eassert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
+ DEBUG_STATEMENT (regex_emacs_debug += 2);
+ if (mutually_exclusive_p (bufp, p1, p2))
+ {
+ /* Use a fast 'on_failure_keep_string_jump' loop. */
+ DEBUG_PRINT (" smart exclusive => fast loop.\n");
+ *p3 = (unsigned char) on_failure_keep_string_jump;
+ STORE_NUMBER (p2 - 2, mcnt + 3);
+ }
+ else
+ {
+ /* Default to a safe 'on_failure_jump' loop. */
+ DEBUG_PRINT (" smart default => slow loop.\n");
+ *p3 = (unsigned char) on_failure_jump;
+ }
+ DEBUG_STATEMENT (regex_emacs_debug -= 2);
+ }
+ break;
+
+ /* Unconditionally jump (without popping any failure points). */
+ case jump:
+ unconditional_jump:
+ maybe_quit ();
+ EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
+ DEBUG_PRINT ("EXECUTING jump %d ", mcnt);
+ p += mcnt; /* Do the jump. */
+ DEBUG_PRINT ("(to %p).\n", p);
+ break;
+
+
+ /* Have to succeed matching what follows at least n times.
+ After that, handle like 'on_failure_jump'. */
+ case succeed_n:
+ /* Signedness doesn't matter since we only compare MCNT to 0. */
+ EXTRACT_NUMBER (mcnt, p + 2);
+ DEBUG_PRINT ("EXECUTING succeed_n %d.\n", mcnt);
+
+ /* Originally, mcnt is how many times we HAVE to succeed. */
+ if (mcnt != 0)
+ {
+ /* Discard 'const', making re_search non-reentrant. */
+ unsigned char *p2 = (unsigned char *) p + 2; /* counter loc. */
+ mcnt--;
+ p += 4;
+ PUSH_NUMBER (p2, mcnt);
+ }
+ else
+ /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
+ goto on_failure;
+ break;
+
+ case jump_n:
+ /* Signedness doesn't matter since we only compare MCNT to 0. */
+ EXTRACT_NUMBER (mcnt, p + 2);
+ DEBUG_PRINT ("EXECUTING jump_n %d.\n", mcnt);
+
+ /* Originally, this is how many times we CAN jump. */
+ if (mcnt != 0)
+ {
+ /* Discard 'const', making re_search non-reentrant. */
+ unsigned char *p2 = (unsigned char *) p + 2; /* counter loc. */
+ mcnt--;
+ PUSH_NUMBER (p2, mcnt);
+ goto unconditional_jump;
+ }
+ /* If don't have to jump any more, skip over the rest of command. */
+ else
+ p += 4;
+ break;
+
+ case set_number_at:
+ {
+ unsigned char *p2; /* Location of the counter. */
+ DEBUG_PRINT ("EXECUTING set_number_at.\n");
+
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ /* Discard 'const', making re_search non-reentrant. */
+ p2 = (unsigned char *) p + mcnt;
+ /* Signedness doesn't matter since we only copy MCNT's bits. */
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT (" Setting %p to %d.\n", p2, mcnt);
+ PUSH_NUMBER (p2, mcnt);
+ break;
+ }
+
+ case wordbound:
+ case notwordbound:
+ {
+ bool not = (re_opcode_t) *(p - 1) == notwordbound;
+ DEBUG_PRINT ("EXECUTING %swordbound.\n", not ? "not" : "");
+
+ /* We SUCCEED (or FAIL) in one of the following cases: */
+
+ /* Case 1: D is at the beginning or the end of string. */
+ if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
+ not = !not;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ int c1, c2;
+ int s1, s2;
+ int dummy;
+ ptrdiff_t offset = PTR_TO_OFFSET (d);
+ ptrdiff_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset) - 1;
+ UPDATE_SYNTAX_TABLE (charpos);
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+ s1 = SYNTAX (c1);
+ UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
+ PREFETCH_NOLIMIT ();
+ GET_CHAR_AFTER (c2, d, dummy);
+ s2 = SYNTAX (c2);
+
+ if (/* Case 2: Only one of S1 and S2 is Sword. */
+ ((s1 == Sword) != (s2 == Sword))
+ /* Case 3: Both of S1 and S2 are Sword, and macro
+ WORD_BOUNDARY_P (C1, C2) returns nonzero. */
+ || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
+ not = !not;
+ }
+ if (not)
+ break;
+ else
+ goto fail;
+ }
+
+ case wordbeg:
+ DEBUG_PRINT ("EXECUTING wordbeg.\n");
+
+ /* We FAIL in one of the following cases: */
+
+ /* Case 1: D is at the end of string. */
+ if (AT_STRINGS_END (d))
+ goto fail;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ int c1, c2;
+ int s1, s2;
+ int dummy;
+ ptrdiff_t offset = PTR_TO_OFFSET (d);
+ ptrdiff_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+ UPDATE_SYNTAX_TABLE (charpos);
+ PREFETCH ();
+ GET_CHAR_AFTER (c2, d, dummy);
+ s2 = SYNTAX (c2);
+
+ /* Case 2: S2 is not Sword. */
+ if (s2 != Sword)
+ goto fail;
+
+ /* Case 3: D is not at the beginning of string ... */
+ if (!AT_STRINGS_BEG (d))
+ {
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+ UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
+ s1 = SYNTAX (c1);
+
+ /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
+ returns 0. */
+ if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
+ goto fail;
+ }
+ }
+ break;
+
+ case wordend:
+ DEBUG_PRINT ("EXECUTING wordend.\n");
+
+ /* We FAIL in one of the following cases: */
+
+ /* Case 1: D is at the beginning of string. */
+ if (AT_STRINGS_BEG (d))
+ goto fail;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ int c1, c2;
+ int s1, s2;
+ int dummy;
+ ptrdiff_t offset = PTR_TO_OFFSET (d);
+ ptrdiff_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset) - 1;
+ UPDATE_SYNTAX_TABLE (charpos);
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+ s1 = SYNTAX (c1);
+
+ /* Case 2: S1 is not Sword. */
+ if (s1 != Sword)
+ goto fail;
+
+ /* Case 3: D is not at the end of string ... */
+ if (!AT_STRINGS_END (d))
+ {
+ PREFETCH_NOLIMIT ();
+ GET_CHAR_AFTER (c2, d, dummy);
+ UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
+ s2 = SYNTAX (c2);
+
+ /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
+ returns 0. */
+ if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
+ goto fail;
+ }
+ }
+ break;
+
+ case symbeg:
+ DEBUG_PRINT ("EXECUTING symbeg.\n");
+
+ /* We FAIL in one of the following cases: */
+
+ /* Case 1: D is at the end of string. */
+ if (AT_STRINGS_END (d))
+ goto fail;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ int c1, c2;
+ int s1, s2;
+ ptrdiff_t offset = PTR_TO_OFFSET (d);
+ ptrdiff_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+ UPDATE_SYNTAX_TABLE (charpos);
+ PREFETCH ();
+ c2 = RE_STRING_CHAR (d, target_multibyte);
+ s2 = SYNTAX (c2);
+
+ /* Case 2: S2 is neither Sword nor Ssymbol. */
+ if (s2 != Sword && s2 != Ssymbol)
+ goto fail;
+
+ /* Case 3: D is not at the beginning of string ... */
+ if (!AT_STRINGS_BEG (d))
+ {
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+ UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
+ s1 = SYNTAX (c1);
+
+ /* ... and S1 is Sword or Ssymbol. */
+ if (s1 == Sword || s1 == Ssymbol)
+ goto fail;
+ }
+ }
+ break;
+
+ case symend:
+ DEBUG_PRINT ("EXECUTING symend.\n");
+
+ /* We FAIL in one of the following cases: */
+
+ /* Case 1: D is at the beginning of string. */
+ if (AT_STRINGS_BEG (d))
+ goto fail;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ int c1, c2;
+ int s1, s2;
+ ptrdiff_t offset = PTR_TO_OFFSET (d);
+ ptrdiff_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset) - 1;
+ UPDATE_SYNTAX_TABLE (charpos);
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+ s1 = SYNTAX (c1);
+
+ /* Case 2: S1 is neither Ssymbol nor Sword. */
+ if (s1 != Sword && s1 != Ssymbol)
+ goto fail;
+
+ /* Case 3: D is not at the end of string ... */
+ if (!AT_STRINGS_END (d))
+ {
+ PREFETCH_NOLIMIT ();
+ c2 = RE_STRING_CHAR (d, target_multibyte);
+ UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
+ s2 = SYNTAX (c2);
+
+ /* ... and S2 is Sword or Ssymbol. */
+ if (s2 == Sword || s2 == Ssymbol)
+ goto fail;
+ }
+ }
+ break;
+
+ case syntaxspec:
+ case notsyntaxspec:
+ {
+ bool not = (re_opcode_t) *(p - 1) == notsyntaxspec;
+ mcnt = *p++;
+ DEBUG_PRINT ("EXECUTING %ssyntaxspec %d.\n", not ? "not" : "",
+ mcnt);
+ PREFETCH ();
+ {
+ ptrdiff_t offset = PTR_TO_OFFSET (d);
+ ptrdiff_t pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+ UPDATE_SYNTAX_TABLE (pos1);
+ }
+ {
+ int len;
+ int c;
+
+ GET_CHAR_AFTER (c, d, len);
+ if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
+ goto fail;
+ d += len;
+ }
+ }
+ break;
+
+ case at_dot:
+ DEBUG_PRINT ("EXECUTING at_dot.\n");
+ if (PTR_BYTE_POS (d) != PT_BYTE)
+ goto fail;
+ break;
+
+ case categoryspec:
+ case notcategoryspec:
+ {
+ bool not = (re_opcode_t) *(p - 1) == notcategoryspec;
+ mcnt = *p++;
+ DEBUG_PRINT ("EXECUTING %scategoryspec %d.\n",
+ not ? "not" : "", mcnt);
+ PREFETCH ();
+
+ {
+ int len;
+ int c;
+ GET_CHAR_AFTER (c, d, len);
+ if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
+ goto fail;
+ d += len;
+ }
+ }
+ break;
+
+ default:
+ abort ();
+ }
+ continue; /* Successfully executed one pattern command; keep going. */
+
+
+ /* We goto here if a matching operation fails. */
+ fail:
+ maybe_quit ();
+ if (!FAIL_STACK_EMPTY ())
+ {
+ re_char *str, *pat;
+ /* A restart point is known. Restore to that state. */
+ DEBUG_PRINT ("\nFAIL:\n");
+ POP_FAILURE_POINT (str, pat);
+ switch (*pat++)
+ {
+ case on_failure_keep_string_jump:
+ eassert (str == NULL);
+ goto continue_failure_jump;
+
+ case on_failure_jump_nastyloop:
+ eassert ((re_opcode_t)pat[-2] == no_op);
+ PUSH_FAILURE_POINT (pat - 2, str);
+ FALLTHROUGH;
+ case on_failure_jump_loop:
+ case on_failure_jump:
+ case succeed_n:
+ d = str;
+ continue_failure_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, pat);
+ p = pat + mcnt;
+ break;
+
+ case no_op:
+ /* A special frame used for nastyloops. */
+ goto fail;
+
+ default:
+ abort ();
+ }
+
+ eassert (p >= bufp->buffer && p <= pend);
+
+ if (d >= string1 && d <= end1)
+ dend = end_match_1;
+ }
+ else
+ break; /* Matching at this starting point really fails. */
+ } /* for (;;) */
+
+ if (best_regs_set)
+ goto restore_best_regs;
+
+ SAFE_FREE ();
+
+ return -1; /* Failure to match. */
+}
+
+/* Subroutine definitions for re_match_2. */
+
+/* Return true if TRANSLATE[S1] and TRANSLATE[S2] are not identical
+ for LEN bytes. */
+
+static bool
+bcmp_translate (re_char *s1, re_char *s2, ptrdiff_t len,
+ Lisp_Object translate, bool target_multibyte)
+{
+ re_char *p1 = s1, *p2 = s2;
+ re_char *p1_end = s1 + len;
+ re_char *p2_end = s2 + len;
+
+ /* FIXME: Checking both p1 and p2 presumes that the two strings might have
+ different lengths, but relying on a single LEN would break this. -sm */
+ while (p1 < p1_end && p2 < p2_end)
+ {
+ int p1_charlen, p2_charlen;
+ int p1_ch, p2_ch;
+
+ GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
+ GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
+
+ if (RE_TRANSLATE (translate, p1_ch)
+ != RE_TRANSLATE (translate, p2_ch))
+ return true;
+
+ p1 += p1_charlen, p2 += p2_charlen;
+ }
+
+ return p1 != p1_end || p2 != p2_end;
+}
+
+/* Entry points for GNU code. */
+
+/* re_compile_pattern is the GNU regular expression compiler: it
+ compiles PATTERN (of length SIZE) and puts the result in BUFP.
+ Returns 0 if the pattern was valid, otherwise an error string.
+
+ Assumes the 'allocated' (and perhaps 'buffer') and 'translate' fields
+ are set in BUFP on entry.
+
+ We call regex_compile to do the actual compilation. */
+
+const char *
+re_compile_pattern (const char *pattern, ptrdiff_t length,
+ bool posix_backtracking, const char *whitespace_regexp,
+ struct re_pattern_buffer *bufp)
+{
+ bufp->regs_allocated = REGS_UNALLOCATED;
+
+ reg_errcode_t ret
+ = regex_compile ((re_char *) pattern, length,
+ posix_backtracking,
+ whitespace_regexp,
+ bufp);
+
+ if (!ret)
+ return NULL;
+ return re_error_msgid[ret];
+}