summaryrefslogtreecommitdiff
path: root/lisp/calc/calcalg2.el
diff options
context:
space:
mode:
Diffstat (limited to 'lisp/calc/calcalg2.el')
-rw-r--r--lisp/calc/calcalg2.el3507
1 files changed, 3507 insertions, 0 deletions
diff --git a/lisp/calc/calcalg2.el b/lisp/calc/calcalg2.el
new file mode 100644
index 00000000000..d748c98fe1f
--- /dev/null
+++ b/lisp/calc/calcalg2.el
@@ -0,0 +1,3507 @@
+;; Calculator for GNU Emacs, part II [calc-alg-2.el]
+;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
+;; Written by Dave Gillespie, daveg@synaptics.com.
+
+;; This file is part of GNU Emacs.
+
+;; GNU Emacs is distributed in the hope that it will be useful,
+;; but WITHOUT ANY WARRANTY. No author or distributor
+;; accepts responsibility to anyone for the consequences of using it
+;; or for whether it serves any particular purpose or works at all,
+;; unless he says so in writing. Refer to the GNU Emacs General Public
+;; License for full details.
+
+;; Everyone is granted permission to copy, modify and redistribute
+;; GNU Emacs, but only under the conditions described in the
+;; GNU Emacs General Public License. A copy of this license is
+;; supposed to have been given to you along with GNU Emacs so you
+;; can know your rights and responsibilities. It should be in a
+;; file named COPYING. Among other things, the copyright notice
+;; and this notice must be preserved on all copies.
+
+
+
+;; This file is autoloaded from calc-ext.el.
+(require 'calc-ext)
+
+(require 'calc-macs)
+
+(defun calc-Need-calc-alg-2 () nil)
+
+
+(defun calc-derivative (var num)
+ (interactive "sDifferentiate with respect to: \np")
+ (calc-slow-wrapper
+ (and (< num 0) (error "Order of derivative must be positive"))
+ (let ((func (if (calc-is-hyperbolic) 'calcFunc-tderiv 'calcFunc-deriv))
+ n expr)
+ (if (or (equal var "") (equal var "$"))
+ (setq n 2
+ expr (calc-top-n 2)
+ var (calc-top-n 1))
+ (setq var (math-read-expr var))
+ (if (eq (car-safe var) 'error)
+ (error "Bad format in expression: %s" (nth 1 var)))
+ (setq n 1
+ expr (calc-top-n 1)))
+ (while (>= (setq num (1- num)) 0)
+ (setq expr (list func expr var)))
+ (calc-enter-result n "derv" expr)))
+)
+
+(defun calc-integral (var)
+ (interactive "sIntegration variable: ")
+ (calc-slow-wrapper
+ (if (or (equal var "") (equal var "$"))
+ (calc-enter-result 2 "intg" (list 'calcFunc-integ
+ (calc-top-n 2)
+ (calc-top-n 1)))
+ (let ((var (math-read-expr var)))
+ (if (eq (car-safe var) 'error)
+ (error "Bad format in expression: %s" (nth 1 var)))
+ (calc-enter-result 1 "intg" (list 'calcFunc-integ
+ (calc-top-n 1)
+ var)))))
+)
+
+(defun calc-num-integral (&optional varname lowname highname)
+ (interactive "sIntegration variable: ")
+ (calc-tabular-command 'calcFunc-ninteg "Integration" "nint"
+ nil varname lowname highname)
+)
+
+(defun calc-summation (arg &optional varname lowname highname)
+ (interactive "P\nsSummation variable: ")
+ (calc-tabular-command 'calcFunc-sum "Summation" "sum"
+ arg varname lowname highname)
+)
+
+(defun calc-alt-summation (arg &optional varname lowname highname)
+ (interactive "P\nsSummation variable: ")
+ (calc-tabular-command 'calcFunc-asum "Summation" "asum"
+ arg varname lowname highname)
+)
+
+(defun calc-product (arg &optional varname lowname highname)
+ (interactive "P\nsIndex variable: ")
+ (calc-tabular-command 'calcFunc-prod "Index" "prod"
+ arg varname lowname highname)
+)
+
+(defun calc-tabulate (arg &optional varname lowname highname)
+ (interactive "P\nsIndex variable: ")
+ (calc-tabular-command 'calcFunc-table "Index" "tabl"
+ arg varname lowname highname)
+)
+
+(defun calc-tabular-command (func prompt prefix arg varname lowname highname)
+ (calc-slow-wrapper
+ (let (var (low nil) (high nil) (step nil) stepname stepnum (num 1) expr)
+ (if (consp arg)
+ (setq stepnum 1)
+ (setq stepnum 0))
+ (if (or (equal varname "") (equal varname "$") (null varname))
+ (setq high (calc-top-n (+ stepnum 1))
+ low (calc-top-n (+ stepnum 2))
+ var (calc-top-n (+ stepnum 3))
+ num (+ stepnum 4))
+ (setq var (if (stringp varname) (math-read-expr varname) varname))
+ (if (eq (car-safe var) 'error)
+ (error "Bad format in expression: %s" (nth 1 var)))
+ (or lowname
+ (setq lowname (read-string (concat prompt " variable: " varname
+ ", from: "))))
+ (if (or (equal lowname "") (equal lowname "$"))
+ (setq high (calc-top-n (+ stepnum 1))
+ low (calc-top-n (+ stepnum 2))
+ num (+ stepnum 3))
+ (setq low (if (stringp lowname) (math-read-expr lowname) lowname))
+ (if (eq (car-safe low) 'error)
+ (error "Bad format in expression: %s" (nth 1 low)))
+ (or highname
+ (setq highname (read-string (concat prompt " variable: " varname
+ ", from: " lowname
+ ", to: "))))
+ (if (or (equal highname "") (equal highname "$"))
+ (setq high (calc-top-n (+ stepnum 1))
+ num (+ stepnum 2))
+ (setq high (if (stringp highname) (math-read-expr highname)
+ highname))
+ (if (eq (car-safe high) 'error)
+ (error "Bad format in expression: %s" (nth 1 high)))
+ (if (consp arg)
+ (progn
+ (setq stepname (read-string (concat prompt " variable: "
+ varname
+ ", from: " lowname
+ ", to: " highname
+ ", step: ")))
+ (if (or (equal stepname "") (equal stepname "$"))
+ (setq step (calc-top-n 1)
+ num 2)
+ (setq step (math-read-expr stepname))
+ (if (eq (car-safe step) 'error)
+ (error "Bad format in expression: %s"
+ (nth 1 step)))))))))
+ (or step
+ (if (consp arg)
+ (setq step (calc-top-n 1))
+ (if arg
+ (setq step (prefix-numeric-value arg)))))
+ (setq expr (calc-top-n num))
+ (calc-enter-result num prefix (append (list func expr var low high)
+ (and step (list step))))))
+)
+
+(defun calc-solve-for (var)
+ (interactive "sVariable to solve for: ")
+ (calc-slow-wrapper
+ (let ((func (if (calc-is-inverse)
+ (if (calc-is-hyperbolic) 'calcFunc-ffinv 'calcFunc-finv)
+ (if (calc-is-hyperbolic) 'calcFunc-fsolve 'calcFunc-solve))))
+ (if (or (equal var "") (equal var "$"))
+ (calc-enter-result 2 "solv" (list func
+ (calc-top-n 2)
+ (calc-top-n 1)))
+ (let ((var (if (and (string-match ",\\|[^ ] +[^ ]" var)
+ (not (string-match "\\[" var)))
+ (math-read-expr (concat "[" var "]"))
+ (math-read-expr var))))
+ (if (eq (car-safe var) 'error)
+ (error "Bad format in expression: %s" (nth 1 var)))
+ (calc-enter-result 1 "solv" (list func
+ (calc-top-n 1)
+ var))))))
+)
+
+(defun calc-poly-roots (var)
+ (interactive "sVariable to solve for: ")
+ (calc-slow-wrapper
+ (if (or (equal var "") (equal var "$"))
+ (calc-enter-result 2 "prts" (list 'calcFunc-roots
+ (calc-top-n 2)
+ (calc-top-n 1)))
+ (let ((var (if (and (string-match ",\\|[^ ] +[^ ]" var)
+ (not (string-match "\\[" var)))
+ (math-read-expr (concat "[" var "]"))
+ (math-read-expr var))))
+ (if (eq (car-safe var) 'error)
+ (error "Bad format in expression: %s" (nth 1 var)))
+ (calc-enter-result 1 "prts" (list 'calcFunc-roots
+ (calc-top-n 1)
+ var)))))
+)
+
+(defun calc-taylor (var nterms)
+ (interactive "sTaylor expansion variable: \nNNumber of terms: ")
+ (calc-slow-wrapper
+ (let ((var (math-read-expr var)))
+ (if (eq (car-safe var) 'error)
+ (error "Bad format in expression: %s" (nth 1 var)))
+ (calc-enter-result 1 "tylr" (list 'calcFunc-taylor
+ (calc-top-n 1)
+ var
+ (prefix-numeric-value nterms)))))
+)
+
+
+(defun math-derivative (expr) ; uses global values: deriv-var, deriv-total.
+ (cond ((equal expr deriv-var)
+ 1)
+ ((or (Math-scalarp expr)
+ (eq (car expr) 'sdev)
+ (and (eq (car expr) 'var)
+ (or (not deriv-total)
+ (math-const-var expr)
+ (progn
+ (math-setup-declarations)
+ (memq 'const (nth 1 (or (assq (nth 2 expr)
+ math-decls-cache)
+ math-decls-all)))))))
+ 0)
+ ((eq (car expr) '+)
+ (math-add (math-derivative (nth 1 expr))
+ (math-derivative (nth 2 expr))))
+ ((eq (car expr) '-)
+ (math-sub (math-derivative (nth 1 expr))
+ (math-derivative (nth 2 expr))))
+ ((memq (car expr) '(calcFunc-eq calcFunc-neq calcFunc-lt
+ calcFunc-gt calcFunc-leq calcFunc-geq))
+ (list (car expr)
+ (math-derivative (nth 1 expr))
+ (math-derivative (nth 2 expr))))
+ ((eq (car expr) 'neg)
+ (math-neg (math-derivative (nth 1 expr))))
+ ((eq (car expr) '*)
+ (math-add (math-mul (nth 2 expr)
+ (math-derivative (nth 1 expr)))
+ (math-mul (nth 1 expr)
+ (math-derivative (nth 2 expr)))))
+ ((eq (car expr) '/)
+ (math-sub (math-div (math-derivative (nth 1 expr))
+ (nth 2 expr))
+ (math-div (math-mul (nth 1 expr)
+ (math-derivative (nth 2 expr)))
+ (math-sqr (nth 2 expr)))))
+ ((eq (car expr) '^)
+ (let ((du (math-derivative (nth 1 expr)))
+ (dv (math-derivative (nth 2 expr))))
+ (or (Math-zerop du)
+ (setq du (math-mul (nth 2 expr)
+ (math-mul (math-normalize
+ (list '^
+ (nth 1 expr)
+ (math-add (nth 2 expr) -1)))
+ du))))
+ (or (Math-zerop dv)
+ (setq dv (math-mul (math-normalize
+ (list 'calcFunc-ln (nth 1 expr)))
+ (math-mul expr dv))))
+ (math-add du dv)))
+ ((eq (car expr) '%)
+ (math-derivative (nth 1 expr))) ; a reasonable definition
+ ((eq (car expr) 'vec)
+ (math-map-vec 'math-derivative expr))
+ ((and (memq (car expr) '(calcFunc-conj calcFunc-re calcFunc-im))
+ (= (length expr) 2))
+ (list (car expr) (math-derivative (nth 1 expr))))
+ ((and (memq (car expr) '(calcFunc-subscr calcFunc-mrow calcFunc-mcol))
+ (= (length expr) 3))
+ (let ((d (math-derivative (nth 1 expr))))
+ (if (math-numberp d)
+ 0 ; assume x and x_1 are independent vars
+ (list (car expr) d (nth 2 expr)))))
+ (t (or (and (symbolp (car expr))
+ (if (= (length expr) 2)
+ (let ((handler (get (car expr) 'math-derivative)))
+ (and handler
+ (let ((deriv (math-derivative (nth 1 expr))))
+ (if (Math-zerop deriv)
+ deriv
+ (math-mul (funcall handler (nth 1 expr))
+ deriv)))))
+ (let ((handler (get (car expr) 'math-derivative-n)))
+ (and handler
+ (funcall handler expr)))))
+ (and (not (eq deriv-symb 'pre-expand))
+ (let ((exp (math-expand-formula expr)))
+ (and exp
+ (or (let ((deriv-symb 'pre-expand))
+ (catch 'math-deriv (math-derivative expr)))
+ (math-derivative exp)))))
+ (if (or (Math-objvecp expr)
+ (eq (car expr) 'var)
+ (not (symbolp (car expr))))
+ (if deriv-symb
+ (throw 'math-deriv nil)
+ (list (if deriv-total 'calcFunc-tderiv 'calcFunc-deriv)
+ expr
+ deriv-var))
+ (let ((accum 0)
+ (arg expr)
+ (n 1)
+ derv)
+ (while (setq arg (cdr arg))
+ (or (Math-zerop (setq derv (math-derivative (car arg))))
+ (let ((func (intern (concat (symbol-name (car expr))
+ "'"
+ (if (> n 1)
+ (int-to-string n)
+ ""))))
+ (prop (cond ((= (length expr) 2)
+ 'math-derivative-1)
+ ((= (length expr) 3)
+ 'math-derivative-2)
+ ((= (length expr) 4)
+ 'math-derivative-3)
+ ((= (length expr) 5)
+ 'math-derivative-4)
+ ((= (length expr) 6)
+ 'math-derivative-5))))
+ (setq accum
+ (math-add
+ accum
+ (math-mul
+ derv
+ (let ((handler (get func prop)))
+ (or (and prop handler
+ (apply handler (cdr expr)))
+ (if (and deriv-symb
+ (not (get func
+ 'calc-user-defn)))
+ (throw 'math-deriv nil)
+ (cons func (cdr expr))))))))))
+ (setq n (1+ n)))
+ accum)))))
+)
+
+(defun calcFunc-deriv (expr deriv-var &optional deriv-value deriv-symb)
+ (let* ((deriv-total nil)
+ (res (catch 'math-deriv (math-derivative expr))))
+ (or (eq (car-safe res) 'calcFunc-deriv)
+ (null res)
+ (setq res (math-normalize res)))
+ (and res
+ (if deriv-value
+ (math-expr-subst res deriv-var deriv-value)
+ res)))
+)
+
+(defun calcFunc-tderiv (expr deriv-var &optional deriv-value deriv-symb)
+ (math-setup-declarations)
+ (let* ((deriv-total t)
+ (res (catch 'math-deriv (math-derivative expr))))
+ (or (eq (car-safe res) 'calcFunc-tderiv)
+ (null res)
+ (setq res (math-normalize res)))
+ (and res
+ (if deriv-value
+ (math-expr-subst res deriv-var deriv-value)
+ res)))
+)
+
+(put 'calcFunc-inv\' 'math-derivative-1
+ (function (lambda (u) (math-neg (math-div 1 (math-sqr u))))))
+
+(put 'calcFunc-sqrt\' 'math-derivative-1
+ (function (lambda (u) (math-div 1 (math-mul 2 (list 'calcFunc-sqrt u))))))
+
+(put 'calcFunc-deg\' 'math-derivative-1
+ (function (lambda (u) (math-div-float '(float 18 1) (math-pi)))))
+
+(put 'calcFunc-rad\' 'math-derivative-1
+ (function (lambda (u) (math-pi-over-180))))
+
+(put 'calcFunc-ln\' 'math-derivative-1
+ (function (lambda (u) (math-div 1 u))))
+
+(put 'calcFunc-log10\' 'math-derivative-1
+ (function (lambda (u)
+ (math-div (math-div 1 (math-normalize '(calcFunc-ln 10)))
+ u))))
+
+(put 'calcFunc-lnp1\' 'math-derivative-1
+ (function (lambda (u) (math-div 1 (math-add u 1)))))
+
+(put 'calcFunc-log\' 'math-derivative-2
+ (function (lambda (x b)
+ (and (not (Math-zerop b))
+ (let ((lnv (math-normalize
+ (list 'calcFunc-ln b))))
+ (math-div 1 (math-mul lnv x)))))))
+
+(put 'calcFunc-log\'2 'math-derivative-2
+ (function (lambda (x b)
+ (let ((lnv (list 'calcFunc-ln b)))
+ (math-neg (math-div (list 'calcFunc-log x b)
+ (math-mul lnv b)))))))
+
+(put 'calcFunc-exp\' 'math-derivative-1
+ (function (lambda (u) (math-normalize (list 'calcFunc-exp u)))))
+
+(put 'calcFunc-expm1\' 'math-derivative-1
+ (function (lambda (u) (math-normalize (list 'calcFunc-expm1 u)))))
+
+(put 'calcFunc-sin\' 'math-derivative-1
+ (function (lambda (u) (math-to-radians-2 (math-normalize
+ (list 'calcFunc-cos u))))))
+
+(put 'calcFunc-cos\' 'math-derivative-1
+ (function (lambda (u) (math-neg (math-to-radians-2
+ (math-normalize
+ (list 'calcFunc-sin u)))))))
+
+(put 'calcFunc-tan\' 'math-derivative-1
+ (function (lambda (u) (math-to-radians-2
+ (math-div 1 (math-sqr
+ (math-normalize
+ (list 'calcFunc-cos u))))))))
+
+(put 'calcFunc-arcsin\' 'math-derivative-1
+ (function (lambda (u)
+ (math-from-radians-2
+ (math-div 1 (math-normalize
+ (list 'calcFunc-sqrt
+ (math-sub 1 (math-sqr u)))))))))
+
+(put 'calcFunc-arccos\' 'math-derivative-1
+ (function (lambda (u)
+ (math-from-radians-2
+ (math-div -1 (math-normalize
+ (list 'calcFunc-sqrt
+ (math-sub 1 (math-sqr u)))))))))
+
+(put 'calcFunc-arctan\' 'math-derivative-1
+ (function (lambda (u) (math-from-radians-2
+ (math-div 1 (math-add 1 (math-sqr u)))))))
+
+(put 'calcFunc-sinh\' 'math-derivative-1
+ (function (lambda (u) (math-normalize (list 'calcFunc-cosh u)))))
+
+(put 'calcFunc-cosh\' 'math-derivative-1
+ (function (lambda (u) (math-normalize (list 'calcFunc-sinh u)))))
+
+(put 'calcFunc-tanh\' 'math-derivative-1
+ (function (lambda (u) (math-div 1 (math-sqr
+ (math-normalize
+ (list 'calcFunc-cosh u)))))))
+
+(put 'calcFunc-arcsinh\' 'math-derivative-1
+ (function (lambda (u)
+ (math-div 1 (math-normalize
+ (list 'calcFunc-sqrt
+ (math-add (math-sqr u) 1)))))))
+
+(put 'calcFunc-arccosh\' 'math-derivative-1
+ (function (lambda (u)
+ (math-div 1 (math-normalize
+ (list 'calcFunc-sqrt
+ (math-add (math-sqr u) -1)))))))
+
+(put 'calcFunc-arctanh\' 'math-derivative-1
+ (function (lambda (u) (math-div 1 (math-sub 1 (math-sqr u))))))
+
+(put 'calcFunc-bern\'2 'math-derivative-2
+ (function (lambda (n x)
+ (math-mul n (list 'calcFunc-bern (math-add n -1) x)))))
+
+(put 'calcFunc-euler\'2 'math-derivative-2
+ (function (lambda (n x)
+ (math-mul n (list 'calcFunc-euler (math-add n -1) x)))))
+
+(put 'calcFunc-gammag\'2 'math-derivative-2
+ (function (lambda (a x) (math-deriv-gamma a x 1))))
+
+(put 'calcFunc-gammaG\'2 'math-derivative-2
+ (function (lambda (a x) (math-deriv-gamma a x -1))))
+
+(put 'calcFunc-gammaP\'2 'math-derivative-2
+ (function (lambda (a x) (math-deriv-gamma a x
+ (math-div
+ 1 (math-normalize
+ (list 'calcFunc-gamma
+ a)))))))
+
+(put 'calcFunc-gammaQ\'2 'math-derivative-2
+ (function (lambda (a x) (math-deriv-gamma a x
+ (math-div
+ -1 (math-normalize
+ (list 'calcFunc-gamma
+ a)))))))
+
+(defun math-deriv-gamma (a x scale)
+ (math-mul scale
+ (math-mul (math-pow x (math-add a -1))
+ (list 'calcFunc-exp (math-neg x))))
+)
+
+(put 'calcFunc-betaB\' 'math-derivative-3
+ (function (lambda (x a b) (math-deriv-beta x a b 1))))
+
+(put 'calcFunc-betaI\' 'math-derivative-3
+ (function (lambda (x a b) (math-deriv-beta x a b
+ (math-div
+ 1 (list 'calcFunc-beta
+ a b))))))
+
+(defun math-deriv-beta (x a b scale)
+ (math-mul (math-mul (math-pow x (math-add a -1))
+ (math-pow (math-sub 1 x) (math-add b -1)))
+ scale)
+)
+
+(put 'calcFunc-erf\' 'math-derivative-1
+ (function (lambda (x) (math-div 2
+ (math-mul (list 'calcFunc-exp
+ (math-sqr x))
+ (if calc-symbolic-mode
+ '(calcFunc-sqrt
+ (var pi var-pi))
+ (math-sqrt-pi)))))))
+
+(put 'calcFunc-erfc\' 'math-derivative-1
+ (function (lambda (x) (math-div -2
+ (math-mul (list 'calcFunc-exp
+ (math-sqr x))
+ (if calc-symbolic-mode
+ '(calcFunc-sqrt
+ (var pi var-pi))
+ (math-sqrt-pi)))))))
+
+(put 'calcFunc-besJ\'2 'math-derivative-2
+ (function (lambda (v z) (math-div (math-sub (list 'calcFunc-besJ
+ (math-add v -1)
+ z)
+ (list 'calcFunc-besJ
+ (math-add v 1)
+ z))
+ 2))))
+
+(put 'calcFunc-besY\'2 'math-derivative-2
+ (function (lambda (v z) (math-div (math-sub (list 'calcFunc-besY
+ (math-add v -1)
+ z)
+ (list 'calcFunc-besY
+ (math-add v 1)
+ z))
+ 2))))
+
+(put 'calcFunc-sum 'math-derivative-n
+ (function
+ (lambda (expr)
+ (if (math-expr-contains (cons 'vec (cdr (cdr expr))) deriv-var)
+ (throw 'math-deriv nil)
+ (cons 'calcFunc-sum
+ (cons (math-derivative (nth 1 expr))
+ (cdr (cdr expr))))))))
+
+(put 'calcFunc-prod 'math-derivative-n
+ (function
+ (lambda (expr)
+ (if (math-expr-contains (cons 'vec (cdr (cdr expr))) deriv-var)
+ (throw 'math-deriv nil)
+ (math-mul expr
+ (cons 'calcFunc-sum
+ (cons (math-div (math-derivative (nth 1 expr))
+ (nth 1 expr))
+ (cdr (cdr expr)))))))))
+
+(put 'calcFunc-integ 'math-derivative-n
+ (function
+ (lambda (expr)
+ (if (= (length expr) 3)
+ (if (equal (nth 2 expr) deriv-var)
+ (nth 1 expr)
+ (math-normalize
+ (list 'calcFunc-integ
+ (math-derivative (nth 1 expr))
+ (nth 2 expr))))
+ (if (= (length expr) 5)
+ (let ((lower (math-expr-subst (nth 1 expr) (nth 2 expr)
+ (nth 3 expr)))
+ (upper (math-expr-subst (nth 1 expr) (nth 2 expr)
+ (nth 4 expr))))
+ (math-add (math-sub (math-mul upper
+ (math-derivative (nth 4 expr)))
+ (math-mul lower
+ (math-derivative (nth 3 expr))))
+ (if (equal (nth 2 expr) deriv-var)
+ 0
+ (math-normalize
+ (list 'calcFunc-integ
+ (math-derivative (nth 1 expr)) (nth 2 expr)
+ (nth 3 expr) (nth 4 expr)))))))))))
+
+(put 'calcFunc-if 'math-derivative-n
+ (function
+ (lambda (expr)
+ (and (= (length expr) 4)
+ (list 'calcFunc-if (nth 1 expr)
+ (math-derivative (nth 2 expr))
+ (math-derivative (nth 3 expr)))))))
+
+(put 'calcFunc-subscr 'math-derivative-n
+ (function
+ (lambda (expr)
+ (and (= (length expr) 3)
+ (list 'calcFunc-subscr (nth 1 expr)
+ (math-derivative (nth 2 expr)))))))
+
+
+
+
+
+(setq math-integ-var '(var X ---))
+(setq math-integ-var-2 '(var Y ---))
+(setq math-integ-vars (list 'f math-integ-var math-integ-var-2))
+(setq math-integ-var-list (list math-integ-var))
+(setq math-integ-var-list-list (list math-integ-var-list))
+
+(defmacro math-tracing-integral (&rest parts)
+ (list 'and
+ 'trace-buffer
+ (list 'save-excursion
+ '(set-buffer trace-buffer)
+ '(goto-char (point-max))
+ (list 'and
+ '(bolp)
+ '(insert (make-string (- math-integral-limit
+ math-integ-level) 32)
+ (format "%2d " math-integ-depth)
+ (make-string math-integ-level 32)))
+ ;;(list 'condition-case 'err
+ (cons 'insert parts)
+ ;; '(error (insert (prin1-to-string err))))
+ '(sit-for 0)))
+)
+
+;;; The following wrapper caches results and avoids infinite recursion.
+;;; Each cache entry is: ( A B ) Integral of A is B;
+;;; ( A N ) Integral of A failed at level N;
+;;; ( A busy ) Currently working on integral of A;
+;;; ( A parts ) Currently working, integ-by-parts;
+;;; ( A parts2 ) Currently working, integ-by-parts;
+;;; ( A cancelled ) Ignore this cache entry;
+;;; ( A [B] ) Same result as for cur-record = B.
+(defun math-integral (expr &optional simplify same-as-above)
+ (let* ((simp cur-record)
+ (cur-record (assoc expr math-integral-cache))
+ (math-integ-depth (1+ math-integ-depth))
+ (val 'cancelled))
+ (math-tracing-integral "Integrating "
+ (math-format-value expr 1000)
+ "...\n")
+ (and cur-record
+ (progn
+ (math-tracing-integral "Found "
+ (math-format-value (nth 1 cur-record) 1000))
+ (and (consp (nth 1 cur-record))
+ (math-replace-integral-parts cur-record))
+ (math-tracing-integral " => "
+ (math-format-value (nth 1 cur-record) 1000)
+ "\n")))
+ (or (and cur-record
+ (not (eq (nth 1 cur-record) 'cancelled))
+ (or (not (integerp (nth 1 cur-record)))
+ (>= (nth 1 cur-record) math-integ-level)))
+ (and (math-integral-contains-parts expr)
+ (progn
+ (setq val nil)
+ t))
+ (unwind-protect
+ (progn
+ (let (math-integ-msg)
+ (if (eq calc-display-working-message 'lots)
+ (progn
+ (calc-set-command-flag 'clear-message)
+ (setq math-integ-msg (format
+ "Working... Integrating %s"
+ (math-format-flat-expr expr 0)))
+ (message math-integ-msg)))
+ (if cur-record
+ (setcar (cdr cur-record)
+ (if same-as-above (vector simp) 'busy))
+ (setq cur-record
+ (list expr (if same-as-above (vector simp) 'busy))
+ math-integral-cache (cons cur-record
+ math-integral-cache)))
+ (if (eq simplify 'yes)
+ (progn
+ (math-tracing-integral "Simplifying...")
+ (setq simp (math-simplify expr))
+ (setq val (if (equal simp expr)
+ (progn
+ (math-tracing-integral " no change\n")
+ (math-do-integral expr))
+ (math-tracing-integral " simplified\n")
+ (math-integral simp 'no t))))
+ (or (setq val (math-do-integral expr))
+ (eq simplify 'no)
+ (let ((simp (math-simplify expr)))
+ (or (equal simp expr)
+ (progn
+ (math-tracing-integral "Trying again after "
+ "simplification...\n")
+ (setq val (math-integral simp 'no t))))))))
+ (if (eq calc-display-working-message 'lots)
+ (message math-integ-msg)))
+ (setcar (cdr cur-record) (or val
+ (if (or math-enable-subst
+ (not math-any-substs))
+ math-integ-level
+ 'cancelled)))))
+ (setq val cur-record)
+ (while (vectorp (nth 1 val))
+ (setq val (aref (nth 1 val) 0)))
+ (setq val (if (memq (nth 1 val) '(parts parts2))
+ (progn
+ (setcar (cdr val) 'parts2)
+ (list 'var 'PARTS val))
+ (and (consp (nth 1 val))
+ (nth 1 val))))
+ (math-tracing-integral "Integral of "
+ (math-format-value expr 1000)
+ " is "
+ (math-format-value val 1000)
+ "\n")
+ val)
+)
+(defvar math-integral-cache nil)
+(defvar math-integral-cache-state nil)
+
+(defun math-integral-contains-parts (expr)
+ (if (Math-primp expr)
+ (and (eq (car-safe expr) 'var)
+ (eq (nth 1 expr) 'PARTS)
+ (listp (nth 2 expr)))
+ (while (and (setq expr (cdr expr))
+ (not (math-integral-contains-parts (car expr)))))
+ expr)
+)
+
+(defun math-replace-integral-parts (expr)
+ (or (Math-primp expr)
+ (while (setq expr (cdr expr))
+ (and (consp (car expr))
+ (if (eq (car (car expr)) 'var)
+ (and (eq (nth 1 (car expr)) 'PARTS)
+ (consp (nth 2 (car expr)))
+ (if (listp (nth 1 (nth 2 (car expr))))
+ (progn
+ (setcar expr (nth 1 (nth 2 (car expr))))
+ (math-replace-integral-parts (cons 'foo expr)))
+ (setcar (cdr cur-record) 'cancelled)))
+ (math-replace-integral-parts (car expr))))))
+)
+
+(defun math-do-integral (expr)
+ (let (t1 t2)
+ (or (cond ((not (math-expr-contains expr math-integ-var))
+ (math-mul expr math-integ-var))
+ ((equal expr math-integ-var)
+ (math-div (math-sqr expr) 2))
+ ((eq (car expr) '+)
+ (and (setq t1 (math-integral (nth 1 expr)))
+ (setq t2 (math-integral (nth 2 expr)))
+ (math-add t1 t2)))
+ ((eq (car expr) '-)
+ (and (setq t1 (math-integral (nth 1 expr)))
+ (setq t2 (math-integral (nth 2 expr)))
+ (math-sub t1 t2)))
+ ((eq (car expr) 'neg)
+ (and (setq t1 (math-integral (nth 1 expr)))
+ (math-neg t1)))
+ ((eq (car expr) '*)
+ (cond ((not (math-expr-contains (nth 1 expr) math-integ-var))
+ (and (setq t1 (math-integral (nth 2 expr)))
+ (math-mul (nth 1 expr) t1)))
+ ((not (math-expr-contains (nth 2 expr) math-integ-var))
+ (and (setq t1 (math-integral (nth 1 expr)))
+ (math-mul t1 (nth 2 expr))))
+ ((memq (car-safe (nth 1 expr)) '(+ -))
+ (math-integral (list (car (nth 1 expr))
+ (math-mul (nth 1 (nth 1 expr))
+ (nth 2 expr))
+ (math-mul (nth 2 (nth 1 expr))
+ (nth 2 expr)))
+ 'yes t))
+ ((memq (car-safe (nth 2 expr)) '(+ -))
+ (math-integral (list (car (nth 2 expr))
+ (math-mul (nth 1 (nth 2 expr))
+ (nth 1 expr))
+ (math-mul (nth 2 (nth 2 expr))
+ (nth 1 expr)))
+ 'yes t))))
+ ((eq (car expr) '/)
+ (cond ((and (not (math-expr-contains (nth 1 expr)
+ math-integ-var))
+ (not (math-equal-int (nth 1 expr) 1)))
+ (and (setq t1 (math-integral (math-div 1 (nth 2 expr))))
+ (math-mul (nth 1 expr) t1)))
+ ((not (math-expr-contains (nth 2 expr) math-integ-var))
+ (and (setq t1 (math-integral (nth 1 expr)))
+ (math-div t1 (nth 2 expr))))
+ ((and (eq (car-safe (nth 1 expr)) '*)
+ (not (math-expr-contains (nth 1 (nth 1 expr))
+ math-integ-var)))
+ (and (setq t1 (math-integral
+ (math-div (nth 2 (nth 1 expr))
+ (nth 2 expr))))
+ (math-mul t1 (nth 1 (nth 1 expr)))))
+ ((and (eq (car-safe (nth 1 expr)) '*)
+ (not (math-expr-contains (nth 2 (nth 1 expr))
+ math-integ-var)))
+ (and (setq t1 (math-integral
+ (math-div (nth 1 (nth 1 expr))
+ (nth 2 expr))))
+ (math-mul t1 (nth 2 (nth 1 expr)))))
+ ((and (eq (car-safe (nth 2 expr)) '*)
+ (not (math-expr-contains (nth 1 (nth 2 expr))
+ math-integ-var)))
+ (and (setq t1 (math-integral
+ (math-div (nth 1 expr)
+ (nth 2 (nth 2 expr)))))
+ (math-div t1 (nth 1 (nth 2 expr)))))
+ ((and (eq (car-safe (nth 2 expr)) '*)
+ (not (math-expr-contains (nth 2 (nth 2 expr))
+ math-integ-var)))
+ (and (setq t1 (math-integral
+ (math-div (nth 1 expr)
+ (nth 1 (nth 2 expr)))))
+ (math-div t1 (nth 2 (nth 2 expr)))))
+ ((eq (car-safe (nth 2 expr)) 'calcFunc-exp)
+ (math-integral
+ (math-mul (nth 1 expr)
+ (list 'calcFunc-exp
+ (math-neg (nth 1 (nth 2 expr)))))))))
+ ((eq (car expr) '^)
+ (cond ((not (math-expr-contains (nth 1 expr) math-integ-var))
+ (or (and (setq t1 (math-is-polynomial (nth 2 expr)
+ math-integ-var 1))
+ (math-div expr
+ (math-mul (nth 1 t1)
+ (math-normalize
+ (list 'calcFunc-ln
+ (nth 1 expr))))))
+ (math-integral
+ (list 'calcFunc-exp
+ (math-mul (nth 2 expr)
+ (math-normalize
+ (list 'calcFunc-ln
+ (nth 1 expr)))))
+ 'yes t)))
+ ((not (math-expr-contains (nth 2 expr) math-integ-var))
+ (if (and (integerp (nth 2 expr)) (< (nth 2 expr) 0))
+ (math-integral
+ (list '/ 1 (math-pow (nth 1 expr) (- (nth 2 expr))))
+ nil t)
+ (or (and (setq t1 (math-is-polynomial (nth 1 expr)
+ math-integ-var
+ 1))
+ (setq t2 (math-add (nth 2 expr) 1))
+ (math-div (math-pow (nth 1 expr) t2)
+ (math-mul t2 (nth 1 t1))))
+ (and (Math-negp (nth 2 expr))
+ (math-integral
+ (math-div 1
+ (math-pow (nth 1 expr)
+ (math-neg
+ (nth 2 expr))))
+ nil t))
+ nil))))))
+
+ ;; Integral of a polynomial.
+ (and (setq t1 (math-is-polynomial expr math-integ-var 20))
+ (let ((accum 0)
+ (n 1))
+ (while t1
+ (if (setq accum (math-add accum
+ (math-div (math-mul (car t1)
+ (math-pow
+ math-integ-var
+ n))
+ n))
+ t1 (cdr t1))
+ (setq n (1+ n))))
+ accum))
+
+ ;; Try looking it up!
+ (cond ((= (length expr) 2)
+ (and (symbolp (car expr))
+ (setq t1 (get (car expr) 'math-integral))
+ (progn
+ (while (and t1
+ (not (setq t2 (funcall (car t1)
+ (nth 1 expr)))))
+ (setq t1 (cdr t1)))
+ (and t2 (math-normalize t2)))))
+ ((= (length expr) 3)
+ (and (symbolp (car expr))
+ (setq t1 (get (car expr) 'math-integral-2))
+ (progn
+ (while (and t1
+ (not (setq t2 (funcall (car t1)
+ (nth 1 expr)
+ (nth 2 expr)))))
+ (setq t1 (cdr t1)))
+ (and t2 (math-normalize t2))))))
+
+ ;; Integral of a rational function.
+ (and (math-ratpoly-p expr math-integ-var)
+ (setq t1 (calcFunc-apart expr math-integ-var))
+ (not (equal t1 expr))
+ (math-integral t1))
+
+ ;; Try user-defined integration rules.
+ (and has-rules
+ (let ((math-old-integ (symbol-function 'calcFunc-integ))
+ (input (list 'calcFunc-integtry expr math-integ-var))
+ res part)
+ (unwind-protect
+ (progn
+ (fset 'calcFunc-integ 'math-sub-integration)
+ (setq res (math-rewrite input
+ '(var IntegRules var-IntegRules)
+ 1))
+ (fset 'calcFunc-integ math-old-integ)
+ (and (not (equal res input))
+ (if (setq part (math-expr-calls
+ res '(calcFunc-integsubst)))
+ (and (memq (length part) '(3 4 5))
+ (let ((parts (mapcar
+ (function
+ (lambda (x)
+ (math-expr-subst
+ x (nth 2 part)
+ math-integ-var)))
+ (cdr part))))
+ (math-integrate-by-substitution
+ expr (car parts) t
+ (or (nth 2 parts)
+ (list 'calcFunc-integfailed
+ math-integ-var))
+ (nth 3 parts))))
+ (if (not (math-expr-calls res
+ '(calcFunc-integtry
+ calcFunc-integfailed)))
+ res))))
+ (fset 'calcFunc-integ math-old-integ))))
+
+ ;; See if the function is a symbolic derivative.
+ (and (string-match "'" (symbol-name (car expr)))
+ (let ((name (symbol-name (car expr)))
+ (p expr) (n 0) (which nil) (bad nil))
+ (while (setq n (1+ n) p (cdr p))
+ (if (equal (car p) math-integ-var)
+ (if which (setq bad t) (setq which n))
+ (if (math-expr-contains (car p) math-integ-var)
+ (setq bad t))))
+ (and which (not bad)
+ (let ((prime (if (= which 1) "'" (format "'%d" which))))
+ (and (string-match (concat prime "\\('['0-9]*\\|$\\)")
+ name)
+ (cons (intern
+ (concat
+ (substring name 0 (match-beginning 0))
+ (substring name (+ (match-beginning 0)
+ (length prime)))))
+ (cdr expr)))))))
+
+ ;; Try transformation methods (parts, substitutions).
+ (and (> math-integ-level 0)
+ (math-do-integral-methods expr))
+
+ ;; Try expanding the function's definition.
+ (let ((res (math-expand-formula expr)))
+ (and res
+ (math-integral res)))))
+)
+
+(defun math-sub-integration (expr &rest rest)
+ (or (if (or (not rest)
+ (and (< math-integ-level math-integral-limit)
+ (eq (car rest) math-integ-var)))
+ (math-integral expr)
+ (let ((res (apply math-old-integ expr rest)))
+ (and (or (= math-integ-level math-integral-limit)
+ (not (math-expr-calls res 'calcFunc-integ)))
+ res)))
+ (list 'calcFunc-integfailed expr))
+)
+
+(defun math-do-integral-methods (expr)
+ (let ((so-far math-integ-var-list-list)
+ rat-in)
+
+ ;; Integration by substitution, for various likely sub-expressions.
+ ;; (In first pass, we look only for sub-exprs that are linear in X.)
+ (or (if math-enable-subst
+ (math-integ-try-substitutions expr)
+ (math-integ-try-linear-substitutions expr))
+
+ ;; If function has sines and cosines, try tan(x/2) substitution.
+ (and (let ((p (setq rat-in (math-expr-rational-in expr))))
+ (while (and p
+ (memq (car (car p)) '(calcFunc-sin
+ calcFunc-cos
+ calcFunc-tan))
+ (equal (nth 1 (car p)) math-integ-var))
+ (setq p (cdr p)))
+ (null p))
+ (or (and (math-integ-parts-easy expr)
+ (math-integ-try-parts expr t))
+ (math-integrate-by-good-substitution
+ expr (list 'calcFunc-tan (math-div math-integ-var 2)))))
+
+ ;; If function has sinh and cosh, try tanh(x/2) substitution.
+ (and (let ((p rat-in))
+ (while (and p
+ (memq (car (car p)) '(calcFunc-sinh
+ calcFunc-cosh
+ calcFunc-tanh
+ calcFunc-exp))
+ (equal (nth 1 (car p)) math-integ-var))
+ (setq p (cdr p)))
+ (null p))
+ (or (and (math-integ-parts-easy expr)
+ (math-integ-try-parts expr t))
+ (math-integrate-by-good-substitution
+ expr (list 'calcFunc-tanh (math-div math-integ-var 2)))))
+
+ ;; If function has square roots, try sin, tan, or sec substitution.
+ (and (let ((p rat-in))
+ (setq t1 nil)
+ (while (and p
+ (or (equal (car p) math-integ-var)
+ (and (eq (car (car p)) 'calcFunc-sqrt)
+ (setq t1 (math-is-polynomial
+ (nth 1 (setq t2 (car p)))
+ math-integ-var 2)))))
+ (setq p (cdr p)))
+ (and (null p) t1))
+ (if (cdr (cdr t1))
+ (if (math-guess-if-neg (nth 2 t1))
+ (let* ((c (math-sqrt (math-neg (nth 2 t1))))
+ (d (math-div (nth 1 t1) (math-mul -2 c)))
+ (a (math-sqrt (math-add (car t1) (math-sqr d)))))
+ (math-integrate-by-good-substitution
+ expr (list 'calcFunc-arcsin
+ (math-div-thru
+ (math-add (math-mul c math-integ-var) d)
+ a))))
+ (let* ((c (math-sqrt (nth 2 t1)))
+ (d (math-div (nth 1 t1) (math-mul 2 c)))
+ (aa (math-sub (car t1) (math-sqr d))))
+ (if (and nil (not (and (eq d 0) (eq c 1))))
+ (math-integrate-by-good-substitution
+ expr (math-add (math-mul c math-integ-var) d))
+ (if (math-guess-if-neg aa)
+ (math-integrate-by-good-substitution
+ expr (list 'calcFunc-arccosh
+ (math-div-thru
+ (math-add (math-mul c math-integ-var)
+ d)
+ (math-sqrt (math-neg aa)))))
+ (math-integrate-by-good-substitution
+ expr (list 'calcFunc-arcsinh
+ (math-div-thru
+ (math-add (math-mul c math-integ-var)
+ d)
+ (math-sqrt aa))))))))
+ (math-integrate-by-good-substitution expr t2)) )
+
+ ;; Try integration by parts.
+ (math-integ-try-parts expr)
+
+ ;; Give up.
+ nil))
+)
+
+(defun math-integ-parts-easy (expr)
+ (cond ((Math-primp expr) t)
+ ((memq (car expr) '(+ - *))
+ (and (math-integ-parts-easy (nth 1 expr))
+ (math-integ-parts-easy (nth 2 expr))))
+ ((eq (car expr) '/)
+ (and (math-integ-parts-easy (nth 1 expr))
+ (math-atomic-factorp (nth 2 expr))))
+ ((eq (car expr) '^)
+ (and (natnump (nth 2 expr))
+ (math-integ-parts-easy (nth 1 expr))))
+ ((eq (car expr) 'neg)
+ (math-integ-parts-easy (nth 1 expr)))
+ (t t))
+)
+
+(defun math-integ-try-parts (expr &optional math-good-parts)
+ ;; Integration by parts:
+ ;; integ(f(x) g(x),x) = f(x) h(x) - integ(h(x) f'(x),x)
+ ;; where h(x) = integ(g(x),x).
+ (or (let ((exp (calcFunc-expand expr)))
+ (and (not (equal exp expr))
+ (math-integral exp)))
+ (and (eq (car expr) '*)
+ (let ((first-bad (or (math-polynomial-p (nth 1 expr)
+ math-integ-var)
+ (equal (nth 2 expr) math-prev-parts-v))))
+ (or (and first-bad ; so try this one first
+ (math-integrate-by-parts (nth 1 expr) (nth 2 expr)))
+ (math-integrate-by-parts (nth 2 expr) (nth 1 expr))
+ (and (not first-bad)
+ (math-integrate-by-parts (nth 1 expr) (nth 2 expr))))))
+ (and (eq (car expr) '/)
+ (math-expr-contains (nth 1 expr) math-integ-var)
+ (let ((recip (math-div 1 (nth 2 expr))))
+ (or (math-integrate-by-parts (nth 1 expr) recip)
+ (math-integrate-by-parts recip (nth 1 expr)))))
+ (and (eq (car expr) '^)
+ (math-integrate-by-parts (math-pow (nth 1 expr)
+ (math-sub (nth 2 expr) 1))
+ (nth 1 expr))))
+)
+
+(defun math-integrate-by-parts (u vprime)
+ (let ((math-integ-level (if (or math-good-parts
+ (math-polynomial-p u math-integ-var))
+ math-integ-level
+ (1- math-integ-level)))
+ (math-doing-parts t)
+ v temp)
+ (and (>= math-integ-level 0)
+ (unwind-protect
+ (progn
+ (setcar (cdr cur-record) 'parts)
+ (math-tracing-integral "Integrating by parts, u = "
+ (math-format-value u 1000)
+ ", v' = "
+ (math-format-value vprime 1000)
+ "\n")
+ (and (setq v (math-integral vprime))
+ (setq temp (calcFunc-deriv u math-integ-var nil t))
+ (setq temp (let ((math-prev-parts-v v))
+ (math-integral (math-mul v temp) 'yes)))
+ (setq temp (math-sub (math-mul u v) temp))
+ (if (eq (nth 1 cur-record) 'parts)
+ (calcFunc-expand temp)
+ (setq v (list 'var 'PARTS cur-record)
+ var-thing (list 'vec (math-sub v temp) v)
+ temp (let (calc-next-why)
+ (math-solve-for (math-sub v temp) 0 v nil)))
+ (and temp (not (integerp temp))
+ (math-simplify-extended temp)))))
+ (setcar (cdr cur-record) 'busy))))
+)
+
+;;; This tries two different formulations, hoping the algebraic simplifier
+;;; will be strong enough to handle at least one.
+(defun math-integrate-by-substitution (expr u &optional user uinv uinvprime)
+ (and (> math-integ-level 0)
+ (let ((math-integ-level (max (- math-integ-level 2) 0)))
+ (math-integrate-by-good-substitution expr u user uinv uinvprime)))
+)
+
+(defun math-integrate-by-good-substitution (expr u &optional user
+ uinv uinvprime)
+ (let ((math-living-dangerously t)
+ deriv temp)
+ (and (setq uinv (if uinv
+ (math-expr-subst uinv math-integ-var
+ math-integ-var-2)
+ (let (calc-next-why)
+ (math-solve-for u
+ math-integ-var-2
+ math-integ-var nil))))
+ (progn
+ (math-tracing-integral "Integrating by substitution, u = "
+ (math-format-value u 1000)
+ "\n")
+ (or (and (setq deriv (calcFunc-deriv u
+ math-integ-var nil
+ (not user)))
+ (setq temp (math-integral (math-expr-subst
+ (math-expr-subst
+ (math-expr-subst
+ (math-div expr deriv)
+ u
+ math-integ-var-2)
+ math-integ-var
+ uinv)
+ math-integ-var-2
+ math-integ-var)
+ 'yes)))
+ (and (setq deriv (or uinvprime
+ (calcFunc-deriv uinv
+ math-integ-var-2
+ math-integ-var
+ (not user))))
+ (setq temp (math-integral (math-mul
+ (math-expr-subst
+ (math-expr-subst
+ (math-expr-subst
+ expr
+ u
+ math-integ-var-2)
+ math-integ-var
+ uinv)
+ math-integ-var-2
+ math-integ-var)
+ deriv)
+ 'yes)))))
+ (math-simplify-extended
+ (math-expr-subst temp math-integ-var u))))
+)
+
+;;; Look for substitutions of the form u = a x + b.
+(defun math-integ-try-linear-substitutions (sub-expr)
+ (and (not (Math-primp sub-expr))
+ (or (and (not (memq (car sub-expr) '(+ - * / neg)))
+ (not (and (eq (car sub-expr) '^)
+ (integerp (nth 2 sub-expr))))
+ (math-expr-contains sub-expr math-integ-var)
+ (let ((res nil))
+ (while (and (setq sub-expr (cdr sub-expr))
+ (or (not (math-linear-in (car sub-expr)
+ math-integ-var))
+ (assoc (car sub-expr) so-far)
+ (progn
+ (setq so-far (cons (list (car sub-expr))
+ so-far))
+ (not (setq res
+ (math-integrate-by-substitution
+ expr (car sub-expr))))))))
+ res))
+ (let ((res nil))
+ (while (and (setq sub-expr (cdr sub-expr))
+ (not (setq res (math-integ-try-linear-substitutions
+ (car sub-expr))))))
+ res)))
+)
+
+;;; Recursively try different substitutions based on various sub-expressions.
+(defun math-integ-try-substitutions (sub-expr &optional allow-rat)
+ (and (not (Math-primp sub-expr))
+ (not (assoc sub-expr so-far))
+ (math-expr-contains sub-expr math-integ-var)
+ (or (and (if (and (not (memq (car sub-expr) '(+ - * / neg)))
+ (not (and (eq (car sub-expr) '^)
+ (integerp (nth 2 sub-expr)))))
+ (setq allow-rat t)
+ (prog1 allow-rat (setq allow-rat nil)))
+ (not (eq sub-expr expr))
+ (or (math-integrate-by-substitution expr sub-expr)
+ (and (eq (car sub-expr) '^)
+ (integerp (nth 2 sub-expr))
+ (< (nth 2 sub-expr) 0)
+ (math-integ-try-substitutions
+ (math-pow (nth 1 sub-expr) (- (nth 2 sub-expr)))
+ t))))
+ (let ((res nil))
+ (setq so-far (cons (list sub-expr) so-far))
+ (while (and (setq sub-expr (cdr sub-expr))
+ (not (setq res (math-integ-try-substitutions
+ (car sub-expr) allow-rat)))))
+ res)))
+)
+
+(defun math-expr-rational-in (expr)
+ (let ((parts nil))
+ (math-expr-rational-in-rec expr)
+ (mapcar 'car parts))
+)
+
+(defun math-expr-rational-in-rec (expr)
+ (cond ((Math-primp expr)
+ (and (equal expr math-integ-var)
+ (not (assoc expr parts))
+ (setq parts (cons (list expr) parts))))
+ ((or (memq (car expr) '(+ - * / neg))
+ (and (eq (car expr) '^) (integerp (nth 2 expr))))
+ (math-expr-rational-in-rec (nth 1 expr))
+ (and (nth 2 expr) (math-expr-rational-in-rec (nth 2 expr))))
+ ((and (eq (car expr) '^)
+ (eq (math-quarter-integer (nth 2 expr)) 2))
+ (math-expr-rational-in-rec (list 'calcFunc-sqrt (nth 1 expr))))
+ (t
+ (and (not (assoc expr parts))
+ (math-expr-contains expr math-integ-var)
+ (setq parts (cons (list expr) parts)))))
+)
+
+(defun math-expr-calls (expr funcs &optional arg-contains)
+ (if (consp expr)
+ (if (or (memq (car expr) funcs)
+ (and (eq (car expr) '^) (eq (car funcs) 'calcFunc-sqrt)
+ (eq (math-quarter-integer (nth 2 expr)) 2)))
+ (and (or (not arg-contains)
+ (math-expr-contains expr arg-contains))
+ expr)
+ (and (not (Math-primp expr))
+ (let ((res nil))
+ (while (and (setq expr (cdr expr))
+ (not (setq res (math-expr-calls
+ (car expr) funcs arg-contains)))))
+ res))))
+)
+
+(defun math-fix-const-terms (expr except-vars)
+ (cond ((not (math-expr-depends expr except-vars)) 0)
+ ((Math-primp expr) expr)
+ ((eq (car expr) '+)
+ (math-add (math-fix-const-terms (nth 1 expr) except-vars)
+ (math-fix-const-terms (nth 2 expr) except-vars)))
+ ((eq (car expr) '-)
+ (math-sub (math-fix-const-terms (nth 1 expr) except-vars)
+ (math-fix-const-terms (nth 2 expr) except-vars)))
+ (t expr))
+)
+
+;; Command for debugging the Calculator's symbolic integrator.
+(defun calc-dump-integral-cache (&optional arg)
+ (interactive "P")
+ (let ((buf (current-buffer)))
+ (unwind-protect
+ (let ((p math-integral-cache)
+ cur-record)
+ (display-buffer (get-buffer-create "*Integral Cache*"))
+ (set-buffer (get-buffer "*Integral Cache*"))
+ (erase-buffer)
+ (while p
+ (setq cur-record (car p))
+ (or arg (math-replace-integral-parts cur-record))
+ (insert (math-format-flat-expr (car cur-record) 0)
+ " --> "
+ (if (symbolp (nth 1 cur-record))
+ (concat "(" (symbol-name (nth 1 cur-record)) ")")
+ (math-format-flat-expr (nth 1 cur-record) 0))
+ "\n")
+ (setq p (cdr p)))
+ (goto-char (point-min)))
+ (set-buffer buf)))
+)
+
+(defun math-try-integral (expr)
+ (let ((math-integ-level math-integral-limit)
+ (math-integ-depth 0)
+ (math-integ-msg "Working...done")
+ (cur-record nil) ; a technicality
+ (math-integrating t)
+ (calc-prefer-frac t)
+ (calc-symbolic-mode t)
+ (has-rules (calc-has-rules 'var-IntegRules)))
+ (or (math-integral expr 'yes)
+ (and math-any-substs
+ (setq math-enable-subst t)
+ (math-integral expr 'yes))
+ (and (> math-max-integral-limit math-integral-limit)
+ (setq math-integral-limit math-max-integral-limit
+ math-integ-level math-integral-limit)
+ (math-integral expr 'yes))))
+)
+
+(defun calcFunc-integ (expr var &optional low high)
+ (cond
+ ;; Do these even if the parts turn out not to be integrable.
+ ((eq (car-safe expr) '+)
+ (math-add (calcFunc-integ (nth 1 expr) var low high)
+ (calcFunc-integ (nth 2 expr) var low high)))
+ ((eq (car-safe expr) '-)
+ (math-sub (calcFunc-integ (nth 1 expr) var low high)
+ (calcFunc-integ (nth 2 expr) var low high)))
+ ((eq (car-safe expr) 'neg)
+ (math-neg (calcFunc-integ (nth 1 expr) var low high)))
+ ((and (eq (car-safe expr) '*)
+ (not (math-expr-contains (nth 1 expr) var)))
+ (math-mul (nth 1 expr) (calcFunc-integ (nth 2 expr) var low high)))
+ ((and (eq (car-safe expr) '*)
+ (not (math-expr-contains (nth 2 expr) var)))
+ (math-mul (calcFunc-integ (nth 1 expr) var low high) (nth 2 expr)))
+ ((and (eq (car-safe expr) '/)
+ (not (math-expr-contains (nth 1 expr) var))
+ (not (math-equal-int (nth 1 expr) 1)))
+ (math-mul (nth 1 expr)
+ (calcFunc-integ (math-div 1 (nth 2 expr)) var low high)))
+ ((and (eq (car-safe expr) '/)
+ (not (math-expr-contains (nth 2 expr) var)))
+ (math-div (calcFunc-integ (nth 1 expr) var low high) (nth 2 expr)))
+ ((and (eq (car-safe expr) '/)
+ (eq (car-safe (nth 1 expr)) '*)
+ (not (math-expr-contains (nth 1 (nth 1 expr)) var)))
+ (math-mul (nth 1 (nth 1 expr))
+ (calcFunc-integ (math-div (nth 2 (nth 1 expr)) (nth 2 expr))
+ var low high)))
+ ((and (eq (car-safe expr) '/)
+ (eq (car-safe (nth 1 expr)) '*)
+ (not (math-expr-contains (nth 2 (nth 1 expr)) var)))
+ (math-mul (nth 2 (nth 1 expr))
+ (calcFunc-integ (math-div (nth 1 (nth 1 expr)) (nth 2 expr))
+ var low high)))
+ ((and (eq (car-safe expr) '/)
+ (eq (car-safe (nth 2 expr)) '*)
+ (not (math-expr-contains (nth 1 (nth 2 expr)) var)))
+ (math-div (calcFunc-integ (math-div (nth 1 expr) (nth 2 (nth 2 expr)))
+ var low high)
+ (nth 1 (nth 2 expr))))
+ ((and (eq (car-safe expr) '/)
+ (eq (car-safe (nth 2 expr)) '*)
+ (not (math-expr-contains (nth 2 (nth 2 expr)) var)))
+ (math-div (calcFunc-integ (math-div (nth 1 expr) (nth 1 (nth 2 expr)))
+ var low high)
+ (nth 2 (nth 2 expr))))
+ ((eq (car-safe expr) 'vec)
+ (cons 'vec (mapcar (function (lambda (x) (calcFunc-integ x var low high)))
+ (cdr expr))))
+ (t
+ (let ((state (list calc-angle-mode
+ ;;calc-symbolic-mode
+ ;;calc-prefer-frac
+ calc-internal-prec
+ (calc-var-value 'var-IntegRules)
+ (calc-var-value 'var-IntegSimpRules))))
+ (or (equal state math-integral-cache-state)
+ (setq math-integral-cache-state state
+ math-integral-cache nil)))
+ (let* ((math-max-integral-limit (or (and (boundp 'var-IntegLimit)
+ (natnump var-IntegLimit)
+ var-IntegLimit)
+ 3))
+ (math-integral-limit 1)
+ (sexpr (math-expr-subst expr var math-integ-var))
+ (trace-buffer (get-buffer "*Trace*"))
+ (calc-language (if (eq calc-language 'big) nil calc-language))
+ (math-any-substs t)
+ (math-enable-subst nil)
+ (math-prev-parts-v nil)
+ (math-doing-parts nil)
+ (math-good-parts nil)
+ (res
+ (if trace-buffer
+ (let ((calcbuf (current-buffer))
+ (calcwin (selected-window)))
+ (unwind-protect
+ (progn
+ (if (get-buffer-window trace-buffer)
+ (select-window (get-buffer-window trace-buffer)))
+ (set-buffer trace-buffer)
+ (goto-char (point-max))
+ (or (assq 'scroll-stop (buffer-local-variables))
+ (progn
+ (make-local-variable 'scroll-step)
+ (setq scroll-step 3)))
+ (insert "\n\n\n")
+ (set-buffer calcbuf)
+ (math-try-integral sexpr))
+ (select-window calcwin)
+ (set-buffer calcbuf)))
+ (math-try-integral sexpr))))
+ (if res
+ (progn
+ (if (calc-has-rules 'var-IntegAfterRules)
+ (setq res (math-rewrite res '(var IntegAfterRules
+ var-IntegAfterRules))))
+ (math-simplify
+ (if (and low high)
+ (math-sub (math-expr-subst res math-integ-var high)
+ (math-expr-subst res math-integ-var low))
+ (setq res (math-fix-const-terms res math-integ-vars))
+ (if low
+ (math-expr-subst res math-integ-var low)
+ (math-expr-subst res math-integ-var var)))))
+ (append (list 'calcFunc-integ expr var)
+ (and low (list low))
+ (and high (list high)))))))
+)
+
+
+(math-defintegral calcFunc-inv
+ (math-integral (math-div 1 u)))
+
+(math-defintegral calcFunc-conj
+ (let ((int (math-integral u)))
+ (and int
+ (list 'calcFunc-conj int))))
+
+(math-defintegral calcFunc-deg
+ (let ((int (math-integral u)))
+ (and int
+ (list 'calcFunc-deg int))))
+
+(math-defintegral calcFunc-rad
+ (let ((int (math-integral u)))
+ (and int
+ (list 'calcFunc-rad int))))
+
+(math-defintegral calcFunc-re
+ (let ((int (math-integral u)))
+ (and int
+ (list 'calcFunc-re int))))
+
+(math-defintegral calcFunc-im
+ (let ((int (math-integral u)))
+ (and int
+ (list 'calcFunc-im int))))
+
+(math-defintegral calcFunc-sqrt
+ (and (equal u math-integ-var)
+ (math-mul '(frac 2 3)
+ (list 'calcFunc-sqrt (math-pow u 3)))))
+
+(math-defintegral calcFunc-exp
+ (or (and (equal u math-integ-var)
+ (list 'calcFunc-exp u))
+ (let ((p (math-is-polynomial u math-integ-var 2)))
+ (and (nth 2 p)
+ (let ((sqa (math-sqrt (math-neg (nth 2 p)))))
+ (math-div
+ (math-mul
+ (math-mul (math-div (list 'calcFunc-sqrt '(var pi var-pi))
+ sqa)
+ (math-normalize
+ (list 'calcFunc-exp
+ (math-div (math-sub (math-mul (car p)
+ (nth 2 p))
+ (math-div
+ (math-sqr (nth 1 p))
+ 4))
+ (nth 2 p)))))
+ (list 'calcFunc-erf
+ (math-sub (math-mul sqa math-integ-var)
+ (math-div (nth 1 p) (math-mul 2 sqa)))))
+ 2))))))
+
+(math-defintegral calcFunc-ln
+ (or (and (equal u math-integ-var)
+ (math-sub (math-mul u (list 'calcFunc-ln u)) u))
+ (and (eq (car u) '*)
+ (math-integral (math-add (list 'calcFunc-ln (nth 1 u))
+ (list 'calcFunc-ln (nth 2 u)))))
+ (and (eq (car u) '/)
+ (math-integral (math-sub (list 'calcFunc-ln (nth 1 u))
+ (list 'calcFunc-ln (nth 2 u)))))
+ (and (eq (car u) '^)
+ (math-integral (math-mul (nth 2 u)
+ (list 'calcFunc-ln (nth 1 u)))))))
+
+(math-defintegral calcFunc-log10
+ (and (equal u math-integ-var)
+ (math-sub (math-mul u (list 'calcFunc-ln u))
+ (math-div u (list 'calcFunc-ln 10)))))
+
+(math-defintegral-2 calcFunc-log
+ (math-integral (math-div (list 'calcFunc-ln u)
+ (list 'calcFunc-ln v))))
+
+(math-defintegral calcFunc-sin
+ (or (and (equal u math-integ-var)
+ (math-neg (math-from-radians-2 (list 'calcFunc-cos u))))
+ (and (nth 2 (math-is-polynomial u math-integ-var 2))
+ (math-integral (math-to-exponentials (list 'calcFunc-sin u))))))
+
+(math-defintegral calcFunc-cos
+ (or (and (equal u math-integ-var)
+ (math-from-radians-2 (list 'calcFunc-sin u)))
+ (and (nth 2 (math-is-polynomial u math-integ-var 2))
+ (math-integral (math-to-exponentials (list 'calcFunc-cos u))))))
+
+(math-defintegral calcFunc-tan
+ (and (equal u math-integ-var)
+ (math-neg (math-from-radians-2
+ (list 'calcFunc-ln (list 'calcFunc-cos u))))))
+
+(math-defintegral calcFunc-arcsin
+ (and (equal u math-integ-var)
+ (math-add (math-mul u (list 'calcFunc-arcsin u))
+ (math-from-radians-2
+ (list 'calcFunc-sqrt (math-sub 1 (math-sqr u)))))))
+
+(math-defintegral calcFunc-arccos
+ (and (equal u math-integ-var)
+ (math-sub (math-mul u (list 'calcFunc-arccos u))
+ (math-from-radians-2
+ (list 'calcFunc-sqrt (math-sub 1 (math-sqr u)))))))
+
+(math-defintegral calcFunc-arctan
+ (and (equal u math-integ-var)
+ (math-sub (math-mul u (list 'calcFunc-arctan u))
+ (math-from-radians-2
+ (math-div (list 'calcFunc-ln (math-add 1 (math-sqr u)))
+ 2)))))
+
+(math-defintegral calcFunc-sinh
+ (and (equal u math-integ-var)
+ (list 'calcFunc-cosh u)))
+
+(math-defintegral calcFunc-cosh
+ (and (equal u math-integ-var)
+ (list 'calcFunc-sinh u)))
+
+(math-defintegral calcFunc-tanh
+ (and (equal u math-integ-var)
+ (list 'calcFunc-ln (list 'calcFunc-cosh u))))
+
+(math-defintegral calcFunc-arcsinh
+ (and (equal u math-integ-var)
+ (math-sub (math-mul u (list 'calcFunc-arcsinh u))
+ (list 'calcFunc-sqrt (math-add (math-sqr u) 1)))))
+
+(math-defintegral calcFunc-arccosh
+ (and (equal u math-integ-var)
+ (math-sub (math-mul u (list 'calcFunc-arccosh u))
+ (list 'calcFunc-sqrt (math-sub 1 (math-sqr u))))))
+
+(math-defintegral calcFunc-arctanh
+ (and (equal u math-integ-var)
+ (math-sub (math-mul u (list 'calcFunc-arctan u))
+ (math-div (list 'calcFunc-ln
+ (math-add 1 (math-sqr u)))
+ 2))))
+
+;;; (Ax + B) / (ax^2 + bx + c)^n forms.
+(math-defintegral-2 /
+ (math-integral-rational-funcs u v))
+
+(defun math-integral-rational-funcs (u v)
+ (let ((pu (math-is-polynomial u math-integ-var 1))
+ (vpow 1) pv)
+ (and pu
+ (catch 'int-rat
+ (if (and (eq (car-safe v) '^) (natnump (nth 2 v)))
+ (setq vpow (nth 2 v)
+ v (nth 1 v)))
+ (and (setq pv (math-is-polynomial v math-integ-var 2))
+ (let ((int (math-mul-thru
+ (car pu)
+ (math-integral-q02 (car pv) (nth 1 pv)
+ (nth 2 pv) v vpow))))
+ (if (cdr pu)
+ (setq int (math-add int
+ (math-mul-thru
+ (nth 1 pu)
+ (math-integral-q12
+ (car pv) (nth 1 pv)
+ (nth 2 pv) v vpow)))))
+ int))))))
+
+(defun math-integral-q12 (a b c v vpow)
+ (let (q)
+ (cond ((not c)
+ (cond ((= vpow 1)
+ (math-sub (math-div math-integ-var b)
+ (math-mul (math-div a (math-sqr b))
+ (list 'calcFunc-ln v))))
+ ((= vpow 2)
+ (math-div (math-add (list 'calcFunc-ln v)
+ (math-div a v))
+ (math-sqr b)))
+ (t
+ (let ((nm1 (math-sub vpow 1))
+ (nm2 (math-sub vpow 2)))
+ (math-div (math-sub
+ (math-div a (math-mul nm1 (math-pow v nm1)))
+ (math-div 1 (math-mul nm2 (math-pow v nm2))))
+ (math-sqr b))))))
+ ((math-zerop
+ (setq q (math-sub (math-mul 4 (math-mul a c)) (math-sqr b))))
+ (let ((part (math-div b (math-mul 2 c))))
+ (math-mul-thru (math-pow c vpow)
+ (math-integral-q12 part 1 nil
+ (math-add math-integ-var part)
+ (* vpow 2)))))
+ ((= vpow 1)
+ (and (math-ratp q) (math-negp q)
+ (let ((calc-symbolic-mode t))
+ (math-ratp (math-sqrt (math-neg q))))
+ (throw 'int-rat nil)) ; should have used calcFunc-apart first
+ (math-sub (math-div (list 'calcFunc-ln v) (math-mul 2 c))
+ (math-mul-thru (math-div b (math-mul 2 c))
+ (math-integral-q02 a b c v 1))))
+ (t
+ (let ((n (1- vpow)))
+ (math-sub (math-neg (math-div
+ (math-add (math-mul b math-integ-var)
+ (math-mul 2 a))
+ (math-mul n (math-mul q (math-pow v n)))))
+ (math-mul-thru (math-div (math-mul b (1- (* 2 n)))
+ (math-mul n q))
+ (math-integral-q02 a b c v n)))))))
+)
+
+(defun math-integral-q02 (a b c v vpow)
+ (let (q rq part)
+ (cond ((not c)
+ (cond ((= vpow 1)
+ (math-div (list 'calcFunc-ln v) b))
+ (t
+ (math-div (math-pow v (- 1 vpow))
+ (math-mul (- 1 vpow) b)))))
+ ((math-zerop
+ (setq q (math-sub (math-mul 4 (math-mul a c)) (math-sqr b))))
+ (let ((part (math-div b (math-mul 2 c))))
+ (math-mul-thru (math-pow c vpow)
+ (math-integral-q02 part 1 nil
+ (math-add math-integ-var part)
+ (* vpow 2)))))
+ ((progn
+ (setq part (math-add (math-mul 2 (math-mul c math-integ-var)) b))
+ (> vpow 1))
+ (let ((n (1- vpow)))
+ (math-add (math-div part (math-mul n (math-mul q (math-pow v n))))
+ (math-mul-thru (math-div (math-mul (- (* 4 n) 2) c)
+ (math-mul n q))
+ (math-integral-q02 a b c v n)))))
+ ((math-guess-if-neg q)
+ (setq rq (list 'calcFunc-sqrt (math-neg q)))
+ ;;(math-div-thru (list 'calcFunc-ln
+ ;; (math-div (math-sub part rq)
+ ;; (math-add part rq)))
+ ;; rq)
+ (math-div (math-mul -2 (list 'calcFunc-arctanh
+ (math-div part rq)))
+ rq))
+ (t
+ (setq rq (list 'calcFunc-sqrt q))
+ (math-div (math-mul 2 (math-to-radians-2
+ (list 'calcFunc-arctan
+ (math-div part rq))))
+ rq))))
+)
+
+
+(math-defintegral calcFunc-erf
+ (and (equal u math-integ-var)
+ (math-add (math-mul u (list 'calcFunc-erf u))
+ (math-div 1 (math-mul (list 'calcFunc-exp (math-sqr u))
+ (list 'calcFunc-sqrt
+ '(var pi var-pi)))))))
+
+(math-defintegral calcFunc-erfc
+ (and (equal u math-integ-var)
+ (math-sub (math-mul u (list 'calcFunc-erfc u))
+ (math-div 1 (math-mul (list 'calcFunc-exp (math-sqr u))
+ (list 'calcFunc-sqrt
+ '(var pi var-pi)))))))
+
+
+
+
+(defun calcFunc-table (expr var &optional low high step)
+ (or low (setq low '(neg (var inf var-inf)) high '(var inf var-inf)))
+ (or high (setq high low low 1))
+ (and (or (math-infinitep low) (math-infinitep high))
+ (not step)
+ (math-scan-for-limits expr))
+ (and step (math-zerop step) (math-reject-arg step 'nonzerop))
+ (let ((known (+ (if (Math-objectp low) 1 0)
+ (if (Math-objectp high) 1 0)
+ (if (or (null step) (Math-objectp step)) 1 0)))
+ (count '(var inf var-inf))
+ vec)
+ (or (= known 2) ; handy optimization
+ (equal high '(var inf var-inf))
+ (progn
+ (setq count (math-div (math-sub high low) (or step 1)))
+ (or (Math-objectp count)
+ (setq count (math-simplify count)))
+ (if (Math-messy-integerp count)
+ (setq count (math-trunc count)))))
+ (if (Math-negp count)
+ (setq count -1))
+ (if (integerp count)
+ (let ((var-DUMMY nil)
+ (vec math-tabulate-initial)
+ (math-working-step-2 (1+ count))
+ (math-working-step 0))
+ (setq expr (math-evaluate-expr
+ (math-expr-subst expr var '(var DUMMY var-DUMMY))))
+ (while (>= count 0)
+ (setq math-working-step (1+ math-working-step)
+ var-DUMMY low
+ vec (cond ((eq math-tabulate-function 'calcFunc-sum)
+ (math-add vec (math-evaluate-expr expr)))
+ ((eq math-tabulate-function 'calcFunc-prod)
+ (math-mul vec (math-evaluate-expr expr)))
+ (t
+ (cons (math-evaluate-expr expr) vec)))
+ low (math-add low (or step 1))
+ count (1- count)))
+ (if math-tabulate-function
+ vec
+ (cons 'vec (nreverse vec))))
+ (if (Math-integerp count)
+ (calc-record-why 'fixnump high)
+ (if (Math-num-integerp low)
+ (if (Math-num-integerp high)
+ (calc-record-why 'integerp step)
+ (calc-record-why 'integerp high))
+ (calc-record-why 'integerp low)))
+ (append (list (or math-tabulate-function 'calcFunc-table)
+ expr var)
+ (and (not (and (equal low '(neg (var inf var-inf)))
+ (equal high '(var inf var-inf))))
+ (list low high))
+ (and step (list step)))))
+)
+
+(setq math-tabulate-initial nil)
+(setq math-tabulate-function nil)
+
+(defun math-scan-for-limits (x)
+ (cond ((Math-primp x))
+ ((and (eq (car x) 'calcFunc-subscr)
+ (Math-vectorp (nth 1 x))
+ (math-expr-contains (nth 2 x) var))
+ (let* ((calc-next-why nil)
+ (low-val (math-solve-for (nth 2 x) 1 var nil))
+ (high-val (math-solve-for (nth 2 x) (1- (length (nth 1 x)))
+ var nil))
+ temp)
+ (and low-val (math-realp low-val)
+ high-val (math-realp high-val))
+ (and (Math-lessp high-val low-val)
+ (setq temp low-val low-val high-val high-val temp))
+ (setq low (math-max low (math-ceiling low-val))
+ high (math-min high (math-floor high-val)))))
+ (t
+ (while (setq x (cdr x))
+ (math-scan-for-limits (car x)))))
+)
+
+
+(defun calcFunc-sum (expr var &optional low high step)
+ (if math-disable-sums (math-reject-arg))
+ (let* ((res (let* ((calc-internal-prec (+ calc-internal-prec 2)))
+ (math-sum-rec expr var low high step)))
+ (math-disable-sums t))
+ (math-normalize res))
+)
+(setq math-disable-sums nil)
+
+(defun math-sum-rec (expr var &optional low high step)
+ (or low (setq low '(neg (var inf var-inf)) high '(var inf var-inf)))
+ (and low (not high) (setq high low low 1))
+ (let (t1 t2 val)
+ (setq val
+ (cond
+ ((not (math-expr-contains expr var))
+ (math-mul expr (math-add (math-div (math-sub high low) (or step 1))
+ 1)))
+ ((and step (not (math-equal-int step 1)))
+ (if (math-negp step)
+ (math-sum-rec expr var high low (math-neg step))
+ (let ((lo (math-simplify (math-div low step))))
+ (if (math-known-num-integerp lo)
+ (math-sum-rec (math-normalize
+ (math-expr-subst expr var
+ (math-mul step var)))
+ var lo (math-simplify (math-div high step)))
+ (math-sum-rec (math-normalize
+ (math-expr-subst expr var
+ (math-add (math-mul step var)
+ low)))
+ var 0
+ (math-simplify (math-div (math-sub high low)
+ step)))))))
+ ((memq (setq t1 (math-compare low high)) '(0 1))
+ (if (eq t1 0)
+ (math-expr-subst expr var low)
+ 0))
+ ((setq t1 (math-is-polynomial expr var 20))
+ (let ((poly nil)
+ (n 0))
+ (while t1
+ (setq poly (math-poly-mix poly 1
+ (math-sum-integer-power n) (car t1))
+ n (1+ n)
+ t1 (cdr t1)))
+ (setq n (math-build-polynomial-expr poly high))
+ (if (memq low '(0 1))
+ n
+ (math-sub n (math-build-polynomial-expr poly
+ (math-sub low 1))))))
+ ((and (memq (car expr) '(+ -))
+ (setq t1 (math-sum-rec (nth 1 expr) var low high)
+ t2 (math-sum-rec (nth 2 expr) var low high))
+ (not (and (math-expr-calls t1 '(calcFunc-sum))
+ (math-expr-calls t2 '(calcFunc-sum)))))
+ (list (car expr) t1 t2))
+ ((and (eq (car expr) '*)
+ (setq t1 (math-sum-const-factors expr var)))
+ (math-mul (car t1) (math-sum-rec (cdr t1) var low high)))
+ ((and (eq (car expr) '*) (memq (car-safe (nth 1 expr)) '(+ -)))
+ (math-sum-rec (math-add-or-sub (math-mul (nth 1 (nth 1 expr))
+ (nth 2 expr))
+ (math-mul (nth 2 (nth 1 expr))
+ (nth 2 expr))
+ nil (eq (car (nth 1 expr)) '-))
+ var low high))
+ ((and (eq (car expr) '*) (memq (car-safe (nth 2 expr)) '(+ -)))
+ (math-sum-rec (math-add-or-sub (math-mul (nth 1 expr)
+ (nth 1 (nth 2 expr)))
+ (math-mul (nth 1 expr)
+ (nth 2 (nth 2 expr)))
+ nil (eq (car (nth 2 expr)) '-))
+ var low high))
+ ((and (eq (car expr) '/)
+ (not (math-primp (nth 1 expr)))
+ (setq t1 (math-sum-const-factors (nth 1 expr) var)))
+ (math-mul (car t1)
+ (math-sum-rec (math-div (cdr t1) (nth 2 expr))
+ var low high)))
+ ((and (eq (car expr) '/)
+ (setq t1 (math-sum-const-factors (nth 2 expr) var)))
+ (math-div (math-sum-rec (math-div (nth 1 expr) (cdr t1))
+ var low high)
+ (car t1)))
+ ((eq (car expr) 'neg)
+ (math-neg (math-sum-rec (nth 1 expr) var low high)))
+ ((and (eq (car expr) '^)
+ (not (math-expr-contains (nth 1 expr) var))
+ (setq t1 (math-is-polynomial (nth 2 expr) var 1)))
+ (let ((x (math-pow (nth 1 expr) (nth 1 t1))))
+ (math-div (math-mul (math-sub (math-pow x (math-add 1 high))
+ (math-pow x low))
+ (math-pow (nth 1 expr) (car t1)))
+ (math-sub x 1))))
+ ((and (setq t1 (math-to-exponentials expr))
+ (setq t1 (math-sum-rec t1 var low high))
+ (not (math-expr-calls t1 '(calcFunc-sum))))
+ (math-to-exps t1))
+ ((memq (car expr) '(calcFunc-ln calcFunc-log10))
+ (list (car expr) (calcFunc-prod (nth 1 expr) var low high)))
+ ((and (eq (car expr) 'calcFunc-log)
+ (= (length expr) 3)
+ (not (math-expr-contains (nth 2 expr) var)))
+ (list 'calcFunc-log
+ (calcFunc-prod (nth 1 expr) var low high)
+ (nth 2 expr)))))
+ (if (equal val '(var nan var-nan)) (setq val nil))
+ (or val
+ (let* ((math-tabulate-initial 0)
+ (math-tabulate-function 'calcFunc-sum))
+ (calcFunc-table expr var low high))))
+)
+
+(defun calcFunc-asum (expr var low &optional high step no-mul-flag)
+ (or high (setq high low low 1))
+ (if (and step (not (math-equal-int step 1)))
+ (if (math-negp step)
+ (math-mul (math-pow -1 low)
+ (calcFunc-asum expr var high low (math-neg step) t))
+ (let ((lo (math-simplify (math-div low step))))
+ (if (math-num-integerp lo)
+ (calcFunc-asum (math-normalize
+ (math-expr-subst expr var
+ (math-mul step var)))
+ var lo (math-simplify (math-div high step)))
+ (calcFunc-asum (math-normalize
+ (math-expr-subst expr var
+ (math-add (math-mul step var)
+ low)))
+ var 0
+ (math-simplify (math-div (math-sub high low)
+ step))))))
+ (math-mul (if no-mul-flag 1 (math-pow -1 low))
+ (calcFunc-sum (math-mul (math-pow -1 var) expr) var low high)))
+)
+
+(defun math-sum-const-factors (expr var)
+ (let ((const nil)
+ (not-const nil)
+ (p expr))
+ (while (eq (car-safe p) '*)
+ (if (math-expr-contains (nth 1 p) var)
+ (setq not-const (cons (nth 1 p) not-const))
+ (setq const (cons (nth 1 p) const)))
+ (setq p (nth 2 p)))
+ (if (math-expr-contains p var)
+ (setq not-const (cons p not-const))
+ (setq const (cons p const)))
+ (and const
+ (cons (let ((temp (car const)))
+ (while (setq const (cdr const))
+ (setq temp (list '* (car const) temp)))
+ temp)
+ (let ((temp (or (car not-const) 1)))
+ (while (setq not-const (cdr not-const))
+ (setq temp (list '* (car not-const) temp)))
+ temp))))
+)
+
+;; Following is from CRC Math Tables, 27th ed, pp. 52-53.
+(defun math-sum-integer-power (pow)
+ (let ((calc-prefer-frac t)
+ (n (length math-sum-int-pow-cache)))
+ (while (<= n pow)
+ (let* ((new (list 0 0))
+ (lin new)
+ (pp (cdr (nth (1- n) math-sum-int-pow-cache)))
+ (p 2)
+ (sum 0)
+ q)
+ (while pp
+ (setq q (math-div (car pp) p)
+ new (cons (math-mul q n) new)
+ sum (math-add sum q)
+ p (1+ p)
+ pp (cdr pp)))
+ (setcar lin (math-sub 1 (math-mul n sum)))
+ (setq math-sum-int-pow-cache
+ (nconc math-sum-int-pow-cache (list (nreverse new)))
+ n (1+ n))))
+ (nth pow math-sum-int-pow-cache))
+)
+(setq math-sum-int-pow-cache (list '(0 1)))
+
+(defun math-to-exponentials (expr)
+ (and (consp expr)
+ (= (length expr) 2)
+ (let ((x (nth 1 expr))
+ (pi (if calc-symbolic-mode '(var pi var-pi) (math-pi)))
+ (i (if calc-symbolic-mode '(var i var-i) '(cplx 0 1))))
+ (cond ((eq (car expr) 'calcFunc-exp)
+ (list '^ '(var e var-e) x))
+ ((eq (car expr) 'calcFunc-sin)
+ (or (eq calc-angle-mode 'rad)
+ (setq x (list '/ (list '* x pi) 180)))
+ (list '/ (list '-
+ (list '^ '(var e var-e) (list '* x i))
+ (list '^ '(var e var-e)
+ (list 'neg (list '* x i))))
+ (list '* 2 i)))
+ ((eq (car expr) 'calcFunc-cos)
+ (or (eq calc-angle-mode 'rad)
+ (setq x (list '/ (list '* x pi) 180)))
+ (list '/ (list '+
+ (list '^ '(var e var-e)
+ (list '* x i))
+ (list '^ '(var e var-e)
+ (list 'neg (list '* x i))))
+ 2))
+ ((eq (car expr) 'calcFunc-sinh)
+ (list '/ (list '-
+ (list '^ '(var e var-e) x)
+ (list '^ '(var e var-e) (list 'neg x)))
+ 2))
+ ((eq (car expr) 'calcFunc-cosh)
+ (list '/ (list '+
+ (list '^ '(var e var-e) x)
+ (list '^ '(var e var-e) (list 'neg x)))
+ 2))
+ (t nil))))
+)
+
+(defun math-to-exps (expr)
+ (cond (calc-symbolic-mode expr)
+ ((Math-primp expr)
+ (if (equal expr '(var e var-e)) (math-e) expr))
+ ((and (eq (car expr) '^)
+ (equal (nth 1 expr) '(var e var-e)))
+ (list 'calcFunc-exp (nth 2 expr)))
+ (t
+ (cons (car expr) (mapcar 'math-to-exps (cdr expr)))))
+)
+
+
+(defun calcFunc-prod (expr var &optional low high step)
+ (if math-disable-prods (math-reject-arg))
+ (let* ((res (let* ((calc-internal-prec (+ calc-internal-prec 2)))
+ (math-prod-rec expr var low high step)))
+ (math-disable-prods t))
+ (math-normalize res))
+)
+(setq math-disable-prods nil)
+
+(defun math-prod-rec (expr var &optional low high step)
+ (or low (setq low '(neg (var inf var-inf)) high '(var inf var-inf)))
+ (and low (not high) (setq high '(var inf var-inf)))
+ (let (t1 t2 t3 val)
+ (setq val
+ (cond
+ ((not (math-expr-contains expr var))
+ (math-pow expr (math-add (math-div (math-sub high low) (or step 1))
+ 1)))
+ ((and step (not (math-equal-int step 1)))
+ (if (math-negp step)
+ (math-prod-rec expr var high low (math-neg step))
+ (let ((lo (math-simplify (math-div low step))))
+ (if (math-known-num-integerp lo)
+ (math-prod-rec (math-normalize
+ (math-expr-subst expr var
+ (math-mul step var)))
+ var lo (math-simplify (math-div high step)))
+ (math-prod-rec (math-normalize
+ (math-expr-subst expr var
+ (math-add (math-mul step
+ var)
+ low)))
+ var 0
+ (math-simplify (math-div (math-sub high low)
+ step)))))))
+ ((and (memq (car expr) '(* /))
+ (setq t1 (math-prod-rec (nth 1 expr) var low high)
+ t2 (math-prod-rec (nth 2 expr) var low high))
+ (not (and (math-expr-calls t1 '(calcFunc-prod))
+ (math-expr-calls t2 '(calcFunc-prod)))))
+ (list (car expr) t1 t2))
+ ((and (eq (car expr) '^)
+ (not (math-expr-contains (nth 2 expr) var)))
+ (math-pow (math-prod-rec (nth 1 expr) var low high)
+ (nth 2 expr)))
+ ((and (eq (car expr) '^)
+ (not (math-expr-contains (nth 1 expr) var)))
+ (math-pow (nth 1 expr)
+ (calcFunc-sum (nth 2 expr) var low high)))
+ ((eq (car expr) 'sqrt)
+ (math-normalize (list 'calcFunc-sqrt
+ (list 'calcFunc-prod (nth 1 expr)
+ var low high))))
+ ((eq (car expr) 'neg)
+ (math-mul (math-pow -1 (math-add (math-sub high low) 1))
+ (math-prod-rec (nth 1 expr) var low high)))
+ ((eq (car expr) 'calcFunc-exp)
+ (list 'calcFunc-exp (calcFunc-sum (nth 1 expr) var low high)))
+ ((and (setq t1 (math-is-polynomial expr var 1))
+ (setq t2
+ (cond
+ ((or (and (math-equal-int (nth 1 t1) 1)
+ (setq low (math-simplify
+ (math-add low (car t1)))
+ high (math-simplify
+ (math-add high (car t1)))))
+ (and (math-equal-int (nth 1 t1) -1)
+ (setq t2 low
+ low (math-simplify
+ (math-sub (car t1) high))
+ high (math-simplify
+ (math-sub (car t1) t2)))))
+ (if (or (math-zerop low) (math-zerop high))
+ 0
+ (if (and (or (math-negp low) (math-negp high))
+ (or (math-num-integerp low)
+ (math-num-integerp high)))
+ (if (math-posp high)
+ 0
+ (math-mul (math-pow -1
+ (math-add
+ (math-add low high) 1))
+ (list '/
+ (list 'calcFunc-fact
+ (math-neg low))
+ (list 'calcFunc-fact
+ (math-sub -1 high)))))
+ (list '/
+ (list 'calcFunc-fact high)
+ (list 'calcFunc-fact (math-sub low 1))))))
+ ((and (or (and (math-equal-int (nth 1 t1) 2)
+ (setq t2 (math-simplify
+ (math-add (math-mul low 2)
+ (car t1)))
+ t3 (math-simplify
+ (math-add (math-mul high 2)
+ (car t1)))))
+ (and (math-equal-int (nth 1 t1) -2)
+ (setq t2 (math-simplify
+ (math-sub (car t1)
+ (math-mul high 2)))
+ t3 (math-simplify
+ (math-sub (car t1)
+ (math-mul low
+ 2))))))
+ (or (math-integerp t2)
+ (and (math-messy-integerp t2)
+ (setq t2 (math-trunc t2)))
+ (math-integerp t3)
+ (and (math-messy-integerp t3)
+ (setq t3 (math-trunc t3)))))
+ (if (or (math-zerop t2) (math-zerop t3))
+ 0
+ (if (or (math-evenp t2) (math-evenp t3))
+ (if (or (math-negp t2) (math-negp t3))
+ (if (math-posp high)
+ 0
+ (list '/
+ (list 'calcFunc-dfact
+ (math-neg t2))
+ (list 'calcFunc-dfact
+ (math-sub -2 t3))))
+ (list '/
+ (list 'calcFunc-dfact t3)
+ (list 'calcFunc-dfact
+ (math-sub t2 2))))
+ (if (math-negp t3)
+ (list '*
+ (list '^ -1
+ (list '/ (list '- (list '- t2 t3)
+ 2)
+ 2))
+ (list '/
+ (list 'calcFunc-dfact
+ (math-neg t2))
+ (list 'calcFunc-dfact
+ (math-sub -2 t3))))
+ (if (math-posp t2)
+ (list '/
+ (list 'calcFunc-dfact t3)
+ (list 'calcFunc-dfact
+ (math-sub t2 2)))
+ nil))))))))
+ t2)))
+ (if (equal val '(var nan var-nan)) (setq val nil))
+ (or val
+ (let* ((math-tabulate-initial 1)
+ (math-tabulate-function 'calcFunc-prod))
+ (calcFunc-table expr var low high))))
+)
+
+
+
+
+;;; Attempt to reduce lhs = rhs to solve-var = rhs', where solve-var appears
+;;; in lhs but not in rhs or rhs'; return rhs'.
+;;; Uses global values: solve-*.
+(defun math-try-solve-for (lhs rhs &optional sign no-poly)
+ (let (t1 t2 t3)
+ (cond ((equal lhs solve-var)
+ (setq math-solve-sign sign)
+ (if (eq solve-full 'all)
+ (let ((vec (list 'vec (math-evaluate-expr rhs)))
+ newvec var p)
+ (while math-solve-ranges
+ (setq p (car math-solve-ranges)
+ var (car p)
+ newvec (list 'vec))
+ (while (setq p (cdr p))
+ (setq newvec (nconc newvec
+ (cdr (math-expr-subst
+ vec var (car p))))))
+ (setq vec newvec
+ math-solve-ranges (cdr math-solve-ranges)))
+ (math-normalize vec))
+ rhs))
+ ((Math-primp lhs)
+ nil)
+ ((and (eq (car lhs) '-)
+ (eq (car-safe (nth 1 lhs)) (car-safe (nth 2 lhs)))
+ (Math-zerop rhs)
+ (= (length (nth 1 lhs)) 2)
+ (= (length (nth 2 lhs)) 2)
+ (setq t1 (get (car (nth 1 lhs)) 'math-inverse))
+ (setq t2 (funcall t1 '(var SOLVEDUM SOLVEDUM)))
+ (eq (math-expr-contains-count t2 '(var SOLVEDUM SOLVEDUM)) 1)
+ (setq t3 (math-solve-above-dummy t2))
+ (setq t1 (math-try-solve-for (math-sub (nth 1 (nth 1 lhs))
+ (math-expr-subst
+ t2 t3
+ (nth 1 (nth 2 lhs))))
+ 0)))
+ t1)
+ ((eq (car lhs) 'neg)
+ (math-try-solve-for (nth 1 lhs) (math-neg rhs)
+ (and sign (- sign))))
+ ((and (not (eq solve-full 't)) (math-try-solve-prod)))
+ ((and (not no-poly)
+ (setq t2 (math-decompose-poly lhs solve-var 15 rhs)))
+ (setq t1 (cdr (nth 1 t2))
+ t1 (let ((math-solve-ranges math-solve-ranges))
+ (cond ((= (length t1) 5)
+ (apply 'math-solve-quartic (car t2) t1))
+ ((= (length t1) 4)
+ (apply 'math-solve-cubic (car t2) t1))
+ ((= (length t1) 3)
+ (apply 'math-solve-quadratic (car t2) t1))
+ ((= (length t1) 2)
+ (apply 'math-solve-linear (car t2) sign t1))
+ (solve-full
+ (math-poly-all-roots (car t2) t1))
+ (calc-symbolic-mode nil)
+ (t
+ (math-try-solve-for
+ (car t2)
+ (math-poly-any-root (reverse t1) 0 t)
+ nil t)))))
+ (if t1
+ (if (eq (nth 2 t2) 1)
+ t1
+ (math-solve-prod t1 (math-try-solve-for (nth 2 t2) 0 nil t)))
+ (calc-record-why "*Unable to find a symbolic solution")
+ nil))
+ ((and (math-solve-find-root-term lhs nil)
+ (eq (math-expr-contains-count lhs t1) 1)) ; just in case
+ (math-try-solve-for (math-simplify
+ (math-sub (if (or t3 (math-evenp t2))
+ (math-pow t1 t2)
+ (math-neg (math-pow t1 t2)))
+ (math-expand-power
+ (math-sub (math-normalize
+ (math-expr-subst
+ lhs t1 0))
+ rhs)
+ t2 solve-var)))
+ 0))
+ ((eq (car lhs) '+)
+ (cond ((not (math-expr-contains (nth 1 lhs) solve-var))
+ (math-try-solve-for (nth 2 lhs)
+ (math-sub rhs (nth 1 lhs))
+ sign))
+ ((not (math-expr-contains (nth 2 lhs) solve-var))
+ (math-try-solve-for (nth 1 lhs)
+ (math-sub rhs (nth 2 lhs))
+ sign))))
+ ((eq (car lhs) 'calcFunc-eq)
+ (math-try-solve-for (math-sub (nth 1 lhs) (nth 2 lhs))
+ rhs sign no-poly))
+ ((eq (car lhs) '-)
+ (cond ((or (and (eq (car-safe (nth 1 lhs)) 'calcFunc-sin)
+ (eq (car-safe (nth 2 lhs)) 'calcFunc-cos))
+ (and (eq (car-safe (nth 1 lhs)) 'calcFunc-cos)
+ (eq (car-safe (nth 2 lhs)) 'calcFunc-sin)))
+ (math-try-solve-for (math-sub (nth 1 lhs)
+ (list (car (nth 1 lhs))
+ (math-sub
+ (math-quarter-circle t)
+ (nth 1 (nth 2 lhs)))))
+ rhs))
+ ((not (math-expr-contains (nth 1 lhs) solve-var))
+ (math-try-solve-for (nth 2 lhs)
+ (math-sub (nth 1 lhs) rhs)
+ (and sign (- sign))))
+ ((not (math-expr-contains (nth 2 lhs) solve-var))
+ (math-try-solve-for (nth 1 lhs)
+ (math-add rhs (nth 2 lhs))
+ sign))))
+ ((and (eq solve-full 't) (math-try-solve-prod)))
+ ((and (eq (car lhs) '%)
+ (not (math-expr-contains (nth 2 lhs) solve-var)))
+ (math-try-solve-for (nth 1 lhs) (math-add rhs
+ (math-solve-get-int
+ (nth 2 lhs)))))
+ ((eq (car lhs) 'calcFunc-log)
+ (cond ((not (math-expr-contains (nth 2 lhs) solve-var))
+ (math-try-solve-for (nth 1 lhs) (math-pow (nth 2 lhs) rhs)))
+ ((not (math-expr-contains (nth 1 lhs) solve-var))
+ (math-try-solve-for (nth 2 lhs) (math-pow
+ (nth 1 lhs)
+ (math-div 1 rhs))))))
+ ((and (= (length lhs) 2)
+ (symbolp (car lhs))
+ (setq t1 (get (car lhs) 'math-inverse))
+ (setq t2 (funcall t1 rhs)))
+ (setq t1 (get (car lhs) 'math-inverse-sign))
+ (math-try-solve-for (nth 1 lhs) (math-normalize t2)
+ (and sign t1
+ (if (integerp t1)
+ (* t1 sign)
+ (funcall t1 lhs sign)))))
+ ((and (symbolp (car lhs))
+ (setq t1 (get (car lhs) 'math-inverse-n))
+ (setq t2 (funcall t1 lhs rhs)))
+ t2)
+ ((setq t1 (math-expand-formula lhs))
+ (math-try-solve-for t1 rhs sign))
+ (t
+ (calc-record-why "*No inverse known" lhs)
+ nil)))
+)
+
+(setq math-solve-ranges nil)
+
+(defun math-try-solve-prod ()
+ (cond ((eq (car lhs) '*)
+ (cond ((not (math-expr-contains (nth 1 lhs) solve-var))
+ (math-try-solve-for (nth 2 lhs)
+ (math-div rhs (nth 1 lhs))
+ (math-solve-sign sign (nth 1 lhs))))
+ ((not (math-expr-contains (nth 2 lhs) solve-var))
+ (math-try-solve-for (nth 1 lhs)
+ (math-div rhs (nth 2 lhs))
+ (math-solve-sign sign (nth 2 lhs))))
+ ((Math-zerop rhs)
+ (math-solve-prod (let ((math-solve-ranges math-solve-ranges))
+ (math-try-solve-for (nth 2 lhs) 0))
+ (math-try-solve-for (nth 1 lhs) 0)))))
+ ((eq (car lhs) '/)
+ (cond ((not (math-expr-contains (nth 1 lhs) solve-var))
+ (math-try-solve-for (nth 2 lhs)
+ (math-div (nth 1 lhs) rhs)
+ (math-solve-sign sign (nth 1 lhs))))
+ ((not (math-expr-contains (nth 2 lhs) solve-var))
+ (math-try-solve-for (nth 1 lhs)
+ (math-mul rhs (nth 2 lhs))
+ (math-solve-sign sign (nth 2 lhs))))
+ ((setq t1 (math-try-solve-for (math-sub (nth 1 lhs)
+ (math-mul (nth 2 lhs)
+ rhs))
+ 0))
+ t1)))
+ ((eq (car lhs) '^)
+ (cond ((not (math-expr-contains (nth 1 lhs) solve-var))
+ (math-try-solve-for
+ (nth 2 lhs)
+ (math-add (math-normalize
+ (list 'calcFunc-log rhs (nth 1 lhs)))
+ (math-div
+ (math-mul 2
+ (math-mul '(var pi var-pi)
+ (math-solve-get-int
+ '(var i var-i))))
+ (math-normalize
+ (list 'calcFunc-ln (nth 1 lhs)))))))
+ ((not (math-expr-contains (nth 2 lhs) solve-var))
+ (cond ((and (integerp (nth 2 lhs))
+ (>= (nth 2 lhs) 2)
+ (setq t1 (math-integer-log2 (nth 2 lhs))))
+ (setq t2 rhs)
+ (if (and (eq solve-full t)
+ (math-known-realp (nth 1 lhs)))
+ (progn
+ (while (>= (setq t1 (1- t1)) 0)
+ (setq t2 (list 'calcFunc-sqrt t2)))
+ (setq t2 (math-solve-get-sign t2)))
+ (while (>= (setq t1 (1- t1)) 0)
+ (setq t2 (math-solve-get-sign
+ (math-normalize
+ (list 'calcFunc-sqrt t2))))))
+ (math-try-solve-for
+ (nth 1 lhs)
+ (math-normalize t2)))
+ ((math-looks-negp (nth 2 lhs))
+ (math-try-solve-for
+ (list '^ (nth 1 lhs) (math-neg (nth 2 lhs)))
+ (math-div 1 rhs)))
+ ((and (eq solve-full t)
+ (Math-integerp (nth 2 lhs))
+ (math-known-realp (nth 1 lhs)))
+ (setq t1 (math-normalize
+ (list 'calcFunc-nroot rhs (nth 2 lhs))))
+ (if (math-evenp (nth 2 lhs))
+ (setq t1 (math-solve-get-sign t1)))
+ (math-try-solve-for
+ (nth 1 lhs) t1
+ (and sign
+ (math-oddp (nth 2 lhs))
+ (math-solve-sign sign (nth 2 lhs)))))
+ (t (math-try-solve-for
+ (nth 1 lhs)
+ (math-mul
+ (math-normalize
+ (list 'calcFunc-exp
+ (if (Math-realp (nth 2 lhs))
+ (math-div (math-mul
+ '(var pi var-pi)
+ (math-solve-get-int
+ '(var i var-i)
+ (and (integerp (nth 2 lhs))
+ (math-abs
+ (nth 2 lhs)))))
+ (math-div (nth 2 lhs) 2))
+ (math-div (math-mul
+ 2
+ (math-mul
+ '(var pi var-pi)
+ (math-solve-get-int
+ '(var i var-i)
+ (and (integerp (nth 2 lhs))
+ (math-abs
+ (nth 2 lhs))))))
+ (nth 2 lhs)))))
+ (math-normalize
+ (list 'calcFunc-nroot
+ rhs
+ (nth 2 lhs))))
+ (and sign
+ (math-oddp (nth 2 lhs))
+ (math-solve-sign sign (nth 2 lhs)))))))))
+ (t nil))
+)
+
+(defun math-solve-prod (lsoln rsoln)
+ (cond ((null lsoln)
+ rsoln)
+ ((null rsoln)
+ lsoln)
+ ((eq solve-full 'all)
+ (cons 'vec (append (cdr lsoln) (cdr rsoln))))
+ (solve-full
+ (list 'calcFunc-if
+ (list 'calcFunc-gt (math-solve-get-sign 1) 0)
+ lsoln
+ rsoln))
+ (t lsoln))
+)
+
+;;; This deals with negative, fractional, and symbolic powers of "x".
+(defun math-solve-poly-funny-powers (sub-rhs) ; uses "t1", "t2"
+ (setq t1 lhs)
+ (let ((pp math-poly-neg-powers)
+ fac)
+ (while pp
+ (setq fac (math-pow (car pp) (or math-poly-mult-powers 1))
+ t1 (math-mul t1 fac)
+ rhs (math-mul rhs fac)
+ pp (cdr pp))))
+ (if sub-rhs (setq t1 (math-sub t1 rhs)))
+ (let ((math-poly-neg-powers nil))
+ (setq t2 (math-mul (or math-poly-mult-powers 1)
+ (let ((calc-prefer-frac t))
+ (math-div 1 math-poly-frac-powers)))
+ t1 (math-is-polynomial (math-simplify (calcFunc-expand t1)) b 50)))
+)
+
+;;; This converts "a x^8 + b x^5 + c x^2" to "(a (x^3)^2 + b (x^3) + c) * x^2".
+(defun math-solve-crunch-poly (max-degree) ; uses "t1", "t3"
+ (let ((count 0))
+ (while (and t1 (Math-zerop (car t1)))
+ (setq t1 (cdr t1)
+ count (1+ count)))
+ (and t1
+ (let* ((degree (1- (length t1)))
+ (scale degree))
+ (while (and (> scale 1) (= (car t3) 1))
+ (and (= (% degree scale) 0)
+ (let ((p t1)
+ (n 0)
+ (new-t1 nil)
+ (okay t))
+ (while (and p okay)
+ (if (= (% n scale) 0)
+ (setq new-t1 (nconc new-t1 (list (car p))))
+ (or (Math-zerop (car p))
+ (setq okay nil)))
+ (setq p (cdr p)
+ n (1+ n)))
+ (if okay
+ (setq t3 (cons scale (cdr t3))
+ t1 new-t1))))
+ (setq scale (1- scale)))
+ (setq t3 (list (math-mul (car t3) t2) (math-mul count t2)))
+ (<= (1- (length t1)) max-degree))))
+)
+
+(defun calcFunc-poly (expr var &optional degree)
+ (if degree
+ (or (natnump degree) (math-reject-arg degree 'fixnatnump))
+ (setq degree 50))
+ (let ((p (math-is-polynomial expr var degree 'gen)))
+ (if p
+ (if (equal p '(0))
+ (list 'vec)
+ (cons 'vec p))
+ (math-reject-arg expr "Expected a polynomial")))
+)
+
+(defun calcFunc-gpoly (expr var &optional degree)
+ (if degree
+ (or (natnump degree) (math-reject-arg degree 'fixnatnump))
+ (setq degree 50))
+ (let* ((math-poly-base-variable var)
+ (d (math-decompose-poly expr var degree nil)))
+ (if d
+ (cons 'vec d)
+ (math-reject-arg expr "Expected a polynomial")))
+)
+
+(defun math-decompose-poly (lhs solve-var degree sub-rhs)
+ (let ((rhs (or sub-rhs 1))
+ t1 t2 t3)
+ (setq t2 (math-polynomial-base
+ lhs
+ (function
+ (lambda (b)
+ (let ((math-poly-neg-powers '(1))
+ (math-poly-mult-powers nil)
+ (math-poly-frac-powers 1)
+ (math-poly-exp-base t))
+ (and (not (equal b lhs))
+ (or (not (memq (car-safe b) '(+ -))) sub-rhs)
+ (setq t3 '(1 0) t2 1
+ t1 (math-is-polynomial lhs b 50))
+ (if (and (equal math-poly-neg-powers '(1))
+ (memq math-poly-mult-powers '(nil 1))
+ (eq math-poly-frac-powers 1)
+ sub-rhs)
+ (setq t1 (cons (math-sub (car t1) rhs)
+ (cdr t1)))
+ (math-solve-poly-funny-powers sub-rhs))
+ (math-solve-crunch-poly degree)
+ (or (math-expr-contains b solve-var)
+ (math-expr-contains (car t3) solve-var))))))))
+ (if t2
+ (list (math-pow t2 (car t3))
+ (cons 'vec t1)
+ (if sub-rhs
+ (math-pow t2 (nth 1 t3))
+ (math-div (math-pow t2 (nth 1 t3)) rhs)))))
+)
+
+(defun math-solve-linear (var sign b a)
+ (math-try-solve-for var
+ (math-div (math-neg b) a)
+ (math-solve-sign sign a)
+ t)
+)
+
+(defun math-solve-quadratic (var c b a)
+ (math-try-solve-for
+ var
+ (if (math-looks-evenp b)
+ (let ((halfb (math-div b 2)))
+ (math-div
+ (math-add
+ (math-neg halfb)
+ (math-solve-get-sign
+ (math-normalize
+ (list 'calcFunc-sqrt
+ (math-add (math-sqr halfb)
+ (math-mul (math-neg c) a))))))
+ a))
+ (math-div
+ (math-add
+ (math-neg b)
+ (math-solve-get-sign
+ (math-normalize
+ (list 'calcFunc-sqrt
+ (math-add (math-sqr b)
+ (math-mul 4 (math-mul (math-neg c) a)))))))
+ (math-mul 2 a)))
+ nil t)
+)
+
+(defun math-solve-cubic (var d c b a)
+ (let* ((p (math-div b a))
+ (q (math-div c a))
+ (r (math-div d a))
+ (psqr (math-sqr p))
+ (aa (math-sub q (math-div psqr 3)))
+ (bb (math-add r
+ (math-div (math-sub (math-mul 2 (math-mul psqr p))
+ (math-mul 9 (math-mul p q)))
+ 27)))
+ m)
+ (if (Math-zerop aa)
+ (math-try-solve-for (math-pow (math-add var (math-div p 3)) 3)
+ (math-neg bb) nil t)
+ (if (Math-zerop bb)
+ (math-try-solve-for
+ (math-mul (math-add var (math-div p 3))
+ (math-add (math-sqr (math-add var (math-div p 3)))
+ aa))
+ 0 nil t)
+ (setq m (math-mul 2 (list 'calcFunc-sqrt (math-div aa -3))))
+ (math-try-solve-for
+ var
+ (math-sub
+ (math-normalize
+ (math-mul
+ m
+ (list 'calcFunc-cos
+ (math-div
+ (math-sub (list 'calcFunc-arccos
+ (math-div (math-mul 3 bb)
+ (math-mul aa m)))
+ (math-mul 2
+ (math-mul
+ (math-add 1 (math-solve-get-int
+ 1 3))
+ (math-half-circle
+ calc-symbolic-mode))))
+ 3))))
+ (math-div p 3))
+ nil t))))
+)
+
+(defun math-solve-quartic (var d c b a aa)
+ (setq a (math-div a aa))
+ (setq b (math-div b aa))
+ (setq c (math-div c aa))
+ (setq d (math-div d aa))
+ (math-try-solve-for
+ var
+ (let* ((asqr (math-sqr a))
+ (asqr4 (math-div asqr 4))
+ (y (let ((solve-full nil)
+ calc-next-why)
+ (math-solve-cubic solve-var
+ (math-sub (math-sub
+ (math-mul 4 (math-mul b d))
+ (math-mul asqr d))
+ (math-sqr c))
+ (math-sub (math-mul a c)
+ (math-mul 4 d))
+ (math-neg b)
+ 1)))
+ (rsqr (math-add (math-sub asqr4 b) y))
+ (r (list 'calcFunc-sqrt rsqr))
+ (sign1 (math-solve-get-sign 1))
+ (de (list 'calcFunc-sqrt
+ (math-add
+ (math-sub (math-mul 3 asqr4)
+ (math-mul 2 b))
+ (if (Math-zerop rsqr)
+ (math-mul
+ 2
+ (math-mul sign1
+ (list 'calcFunc-sqrt
+ (math-sub (math-sqr y)
+ (math-mul 4 d)))))
+ (math-sub
+ (math-mul sign1
+ (math-div
+ (math-sub (math-sub
+ (math-mul 4 (math-mul a b))
+ (math-mul 8 c))
+ (math-mul asqr a))
+ (math-mul 4 r)))
+ rsqr))))))
+ (math-normalize
+ (math-sub (math-add (math-mul sign1 (math-div r 2))
+ (math-solve-get-sign (math-div de 2)))
+ (math-div a 4))))
+ nil t)
+)
+
+(defun math-poly-all-roots (var p &optional math-factoring)
+ (catch 'ouch
+ (let* ((math-symbolic-solve calc-symbolic-mode)
+ (roots nil)
+ (deg (1- (length p)))
+ (orig-p (reverse p))
+ (math-int-coefs nil)
+ (math-int-scale nil)
+ (math-double-roots nil)
+ (math-int-factors nil)
+ (math-int-threshold nil)
+ (pp p))
+ ;; If rational coefficients, look for exact rational factors.
+ (while (and pp (Math-ratp (car pp)))
+ (setq pp (cdr pp)))
+ (if pp
+ (if (or math-factoring math-symbolic-solve)
+ (throw 'ouch nil))
+ (let ((lead (car orig-p))
+ (calc-prefer-frac t)
+ (scale (apply 'math-lcm-denoms p)))
+ (setq math-int-scale (math-abs (math-mul scale lead))
+ math-int-threshold (math-div '(float 5 -2) math-int-scale)
+ math-int-coefs (cdr (math-div (cons 'vec orig-p) lead)))))
+ (if (> deg 4)
+ (let ((calc-prefer-frac nil)
+ (calc-symbolic-mode nil)
+ (pp p)
+ (def-p (copy-sequence orig-p)))
+ (while pp
+ (if (Math-numberp (car pp))
+ (setq pp (cdr pp))
+ (throw 'ouch nil)))
+ (while (> deg (if math-symbolic-solve 2 4))
+ (let* ((x (math-poly-any-root def-p '(float 0 0) nil))
+ b c pp)
+ (if (and (eq (car-safe x) 'cplx)
+ (math-nearly-zerop (nth 2 x) (nth 1 x)))
+ (setq x (calcFunc-re x)))
+ (or math-factoring
+ (setq roots (cons x roots)))
+ (or (math-numberp x)
+ (setq x (math-evaluate-expr x)))
+ (setq pp def-p
+ b (car def-p))
+ (while (setq pp (cdr pp))
+ (setq c (car pp))
+ (setcar pp b)
+ (setq b (math-add (math-mul x b) c)))
+ (setq def-p (cdr def-p)
+ deg (1- deg))))
+ (setq p (reverse def-p))))
+ (if (> deg 1)
+ (let ((solve-var '(var DUMMY var-DUMMY))
+ (math-solve-sign nil)
+ (math-solve-ranges nil)
+ (solve-full 'all))
+ (if (= (length p) (length math-int-coefs))
+ (setq p (reverse math-int-coefs)))
+ (setq roots (append (cdr (apply (cond ((= deg 2)
+ 'math-solve-quadratic)
+ ((= deg 3)
+ 'math-solve-cubic)
+ (t
+ 'math-solve-quartic))
+ solve-var p))
+ roots)))
+ (if (> deg 0)
+ (setq roots (cons (math-div (math-neg (car p)) (nth 1 p))
+ roots))))
+ (if math-factoring
+ (progn
+ (while roots
+ (math-poly-integer-root (car roots))
+ (setq roots (cdr roots)))
+ (list math-int-factors (nreverse math-int-coefs) math-int-scale))
+ (let ((vec nil) res)
+ (while roots
+ (let ((root (car roots))
+ (solve-full (and solve-full 'all)))
+ (if (math-floatp root)
+ (setq root (math-poly-any-root orig-p root t)))
+ (setq vec (append vec
+ (cdr (or (math-try-solve-for var root nil t)
+ (throw 'ouch nil))))))
+ (setq roots (cdr roots)))
+ (setq vec (cons 'vec (nreverse vec)))
+ (if math-symbolic-solve
+ (setq vec (math-normalize vec)))
+ (if (eq solve-full t)
+ (list 'calcFunc-subscr
+ vec
+ (math-solve-get-int 1 (1- (length orig-p)) 1))
+ vec)))))
+)
+(setq math-symbolic-solve nil)
+
+(defun math-lcm-denoms (&rest fracs)
+ (let ((den 1))
+ (while fracs
+ (if (eq (car-safe (car fracs)) 'frac)
+ (setq den (calcFunc-lcm den (nth 2 (car fracs)))))
+ (setq fracs (cdr fracs)))
+ den)
+)
+
+(defun math-poly-any-root (p x polish) ; p is a reverse poly coeff list
+ (let* ((newt (if (math-zerop x)
+ (math-poly-newton-root
+ p '(cplx (float 123 -6) (float 1 -4)) 4)
+ (math-poly-newton-root p x 4)))
+ (res (if (math-zerop (cdr newt))
+ (car newt)
+ (if (and (math-lessp (cdr newt) '(float 1 -3)) (not polish))
+ (setq newt (math-poly-newton-root p (car newt) 30)))
+ (if (math-zerop (cdr newt))
+ (car newt)
+ (math-poly-laguerre-root p x polish)))))
+ (and math-symbolic-solve (math-floatp res)
+ (throw 'ouch nil))
+ res)
+)
+
+(defun math-poly-newton-root (p x iters)
+ (let* ((calc-prefer-frac nil)
+ (calc-symbolic-mode nil)
+ (try-integer math-int-coefs)
+ (dx x) b d)
+ (while (and (> (setq iters (1- iters)) 0)
+ (let ((pp p))
+ (math-working "newton" x)
+ (setq b (car p)
+ d 0)
+ (while (setq pp (cdr pp))
+ (setq d (math-add (math-mul x d) b)
+ b (math-add (math-mul x b) (car pp))))
+ (not (math-zerop d)))
+ (progn
+ (setq dx (math-div b d)
+ x (math-sub x dx))
+ (if try-integer
+ (let ((adx (math-abs-approx dx)))
+ (and (math-lessp adx math-int-threshold)
+ (let ((iroot (math-poly-integer-root x)))
+ (if iroot
+ (setq x iroot dx 0)
+ (setq try-integer nil))))))
+ (or (not (or (eq dx 0)
+ (math-nearly-zerop dx (math-abs-approx x))))
+ (progn (setq dx 0) nil)))))
+ (cons x (if (math-zerop x)
+ 1 (math-div (math-abs-approx dx) (math-abs-approx x)))))
+)
+
+(defun math-poly-integer-root (x)
+ (and (math-lessp (calcFunc-xpon (math-abs-approx x)) calc-internal-prec)
+ math-int-coefs
+ (let* ((calc-prefer-frac t)
+ (xre (calcFunc-re x))
+ (xim (calcFunc-im x))
+ (xresq (math-sqr xre))
+ (ximsq (math-sqr xim)))
+ (if (math-lessp ximsq (calcFunc-scf xresq -1))
+ ;; Look for linear factor
+ (let* ((rnd (math-div (math-round (math-mul xre math-int-scale))
+ math-int-scale))
+ (icp math-int-coefs)
+ (rem (car icp))
+ (newcoef nil))
+ (while (setq icp (cdr icp))
+ (setq newcoef (cons rem newcoef)
+ rem (math-add (car icp)
+ (math-mul rem rnd))))
+ (and (math-zerop rem)
+ (progn
+ (setq math-int-coefs (nreverse newcoef)
+ math-int-factors (cons (list (math-neg rnd))
+ math-int-factors))
+ rnd)))
+ ;; Look for irreducible quadratic factor
+ (let* ((rnd1 (math-div (math-round
+ (math-mul xre (math-mul -2 math-int-scale)))
+ math-int-scale))
+ (sqscale (math-sqr math-int-scale))
+ (rnd0 (math-div (math-round (math-mul (math-add xresq ximsq)
+ sqscale))
+ sqscale))
+ (rem1 (car math-int-coefs))
+ (icp (cdr math-int-coefs))
+ (rem0 (car icp))
+ (newcoef nil)
+ (found (assoc (list rnd0 rnd1 (math-posp xim))
+ math-double-roots))
+ this)
+ (if found
+ (setq math-double-roots (delq found math-double-roots)
+ rem0 0 rem1 0)
+ (while (setq icp (cdr icp))
+ (setq this rem1
+ newcoef (cons rem1 newcoef)
+ rem1 (math-sub rem0 (math-mul this rnd1))
+ rem0 (math-sub (car icp) (math-mul this rnd0)))))
+ (and (math-zerop rem0)
+ (math-zerop rem1)
+ (let ((aa (math-div rnd1 -2)))
+ (or found (setq math-int-coefs (reverse newcoef)
+ math-double-roots (cons (list
+ (list
+ rnd0 rnd1
+ (math-negp xim)))
+ math-double-roots)
+ math-int-factors (cons (cons rnd0 rnd1)
+ math-int-factors)))
+ (math-add aa
+ (let ((calc-symbolic-mode math-symbolic-solve))
+ (math-mul (math-sqrt (math-sub (math-sqr aa)
+ rnd0))
+ (if (math-negp xim) -1 1))))))))))
+)
+(setq math-int-coefs nil)
+
+;;; The following routine is from Numerical Recipes, section 9.5.
+(defun math-poly-laguerre-root (p x polish)
+ (let* ((calc-prefer-frac nil)
+ (calc-symbolic-mode nil)
+ (iters 0)
+ (m (1- (length p)))
+ (try-newt (not polish))
+ (tried-newt nil)
+ b d f x1 dx dxold)
+ (while
+ (and (or (< (setq iters (1+ iters)) 50)
+ (math-reject-arg x "*Laguerre's method failed to converge"))
+ (let ((err (math-abs-approx (car p)))
+ (abx (math-abs-approx x))
+ (pp p))
+ (setq b (car p)
+ d 0 f 0)
+ (while (setq pp (cdr pp))
+ (setq f (math-add (math-mul x f) d)
+ d (math-add (math-mul x d) b)
+ b (math-add (math-mul x b) (car pp))
+ err (math-add (math-abs-approx b) (math-mul abx err))))
+ (math-lessp (calcFunc-scf err (- -2 calc-internal-prec))
+ (math-abs-approx b)))
+ (or (not (math-zerop d))
+ (not (math-zerop f))
+ (progn
+ (setq x (math-pow (math-neg b) (list 'frac 1 m)))
+ nil))
+ (let* ((g (math-div d b))
+ (g2 (math-sqr g))
+ (h (math-sub g2 (math-mul 2 (math-div f b))))
+ (sq (math-sqrt
+ (math-mul (1- m) (math-sub (math-mul m h) g2))))
+ (gp (math-add g sq))
+ (gm (math-sub g sq)))
+ (if (math-lessp (calcFunc-abssqr gp) (calcFunc-abssqr gm))
+ (setq gp gm))
+ (setq dx (math-div m gp)
+ x1 (math-sub x dx))
+ (if (and try-newt
+ (math-lessp (math-abs-approx dx)
+ (calcFunc-scf (math-abs-approx x) -3)))
+ (let ((newt (math-poly-newton-root p x1 7)))
+ (setq tried-newt t
+ try-newt nil)
+ (if (math-zerop (cdr newt))
+ (setq x (car newt) x1 x)
+ (if (math-lessp (cdr newt) '(float 1 -6))
+ (let ((newt2 (math-poly-newton-root
+ p (car newt) 20)))
+ (if (math-zerop (cdr newt2))
+ (setq x (car newt2) x1 x)
+ (setq x (car newt))))))))
+ (not (or (eq x x1)
+ (math-nearly-equal x x1))))
+ (let ((cdx (math-abs-approx dx)))
+ (setq x x1
+ tried-newt nil)
+ (prog1
+ (or (<= iters 6)
+ (math-lessp cdx dxold)
+ (progn
+ (if polish
+ (let ((digs (calcFunc-xpon
+ (math-div (math-abs-approx x) cdx))))
+ (calc-record-why
+ "*Could not attain full precision")
+ (if (natnump digs)
+ (let ((calc-internal-prec (max 3 digs)))
+ (setq x (math-normalize x))))))
+ nil))
+ (setq dxold cdx)))
+ (or polish
+ (math-lessp (calcFunc-scf (math-abs-approx x)
+ (- calc-internal-prec))
+ dxold))))
+ (or (and (math-floatp x)
+ (math-poly-integer-root x))
+ x))
+)
+
+(defun math-solve-above-dummy (x)
+ (and (not (Math-primp x))
+ (if (and (equal (nth 1 x) '(var SOLVEDUM SOLVEDUM))
+ (= (length x) 2))
+ x
+ (let ((res nil))
+ (while (and (setq x (cdr x))
+ (not (setq res (math-solve-above-dummy (car x))))))
+ res)))
+)
+
+(defun math-solve-find-root-term (x neg) ; sets "t2", "t3"
+ (if (math-solve-find-root-in-prod x)
+ (setq t3 neg
+ t1 x)
+ (and (memq (car-safe x) '(+ -))
+ (or (math-solve-find-root-term (nth 1 x) neg)
+ (math-solve-find-root-term (nth 2 x)
+ (if (eq (car x) '-) (not neg) neg)))))
+)
+
+(defun math-solve-find-root-in-prod (x)
+ (and (consp x)
+ (math-expr-contains x solve-var)
+ (or (and (eq (car x) 'calcFunc-sqrt)
+ (setq t2 2))
+ (and (eq (car x) '^)
+ (or (and (memq (math-quarter-integer (nth 2 x)) '(1 2 3))
+ (setq t2 2))
+ (and (eq (car-safe (nth 2 x)) 'frac)
+ (eq (nth 2 (nth 2 x)) 3)
+ (setq t2 3))))
+ (and (memq (car x) '(* /))
+ (or (and (not (math-expr-contains (nth 1 x) solve-var))
+ (math-solve-find-root-in-prod (nth 2 x)))
+ (and (not (math-expr-contains (nth 2 x) solve-var))
+ (math-solve-find-root-in-prod (nth 1 x)))))))
+)
+
+
+(defun math-solve-system (exprs solve-vars solve-full)
+ (setq exprs (mapcar 'list (if (Math-vectorp exprs)
+ (cdr exprs)
+ (list exprs)))
+ solve-vars (if (Math-vectorp solve-vars)
+ (cdr solve-vars)
+ (list solve-vars)))
+ (or (let ((math-solve-simplifying nil))
+ (math-solve-system-rec exprs solve-vars nil))
+ (let ((math-solve-simplifying t))
+ (math-solve-system-rec exprs solve-vars nil)))
+)
+
+;;; The following backtracking solver works by choosing a variable
+;;; and equation, and trying to solve the equation for the variable.
+;;; If it succeeds it calls itself recursively with that variable and
+;;; equation removed from their respective lists, and with the solution
+;;; added to solns as well as being substituted into all existing
+;;; equations. The algorithm terminates when any solution path
+;;; manages to remove all the variables from var-list.
+
+;;; To support calcFunc-roots, entries in eqn-list and solns are
+;;; actually lists of equations.
+
+(defun math-solve-system-rec (eqn-list var-list solns)
+ (if var-list
+ (let ((v var-list)
+ (res nil))
+
+ ;; Try each variable in turn.
+ (while
+ (and
+ v
+ (let* ((vv (car v))
+ (e eqn-list)
+ (elim (eq (car-safe vv) 'calcFunc-elim)))
+ (if elim
+ (setq vv (nth 1 vv)))
+
+ ;; Try each equation in turn.
+ (while
+ (and
+ e
+ (let ((e2 (car e))
+ (eprev nil)
+ res2)
+ (setq res nil)
+
+ ;; Try to solve for vv the list of equations e2.
+ (while (and e2
+ (setq res2 (or (and (eq (car e2) eprev)
+ res2)
+ (math-solve-for (car e2) 0 vv
+ solve-full))))
+ (setq eprev (car e2)
+ res (cons (if (eq solve-full 'all)
+ (cdr res2)
+ (list res2))
+ res)
+ e2 (cdr e2)))
+ (if e2
+ (setq res nil)
+
+ ;; Found a solution. Now try other variables.
+ (setq res (nreverse res)
+ res (math-solve-system-rec
+ (mapcar
+ 'math-solve-system-subst
+ (delq (car e)
+ (copy-sequence eqn-list)))
+ (delq (car v) (copy-sequence var-list))
+ (let ((math-solve-simplifying nil)
+ (s (mapcar
+ (function
+ (lambda (x)
+ (cons
+ (car x)
+ (math-solve-system-subst
+ (cdr x)))))
+ solns)))
+ (if elim
+ s
+ (cons (cons vv (apply 'append res))
+ s)))))
+ (not res))))
+ (setq e (cdr e)))
+ (not res)))
+ (setq v (cdr v)))
+ res)
+
+ ;; Eliminated all variables, so now put solution into the proper format.
+ (setq solns (sort solns
+ (function
+ (lambda (x y)
+ (not (memq (car x) (memq (car y) solve-vars)))))))
+ (if (eq solve-full 'all)
+ (math-transpose
+ (math-normalize
+ (cons 'vec
+ (if solns
+ (mapcar (function (lambda (x) (cons 'vec (cdr x)))) solns)
+ (mapcar (function (lambda (x) (cons 'vec x))) eqn-list)))))
+ (math-normalize
+ (cons 'vec
+ (if solns
+ (mapcar (function (lambda (x) (cons 'calcFunc-eq x))) solns)
+ (mapcar 'car eqn-list))))))
+)
+
+(defun math-solve-system-subst (x) ; uses "res" and "v"
+ (let ((accum nil)
+ (res2 res))
+ (while x
+ (setq accum (nconc accum
+ (mapcar (function
+ (lambda (r)
+ (if math-solve-simplifying
+ (math-simplify
+ (math-expr-subst (car x) vv r))
+ (math-expr-subst (car x) vv r))))
+ (car res2)))
+ x (cdr x)
+ res2 (cdr res2)))
+ accum)
+)
+
+
+(defun math-get-from-counter (name)
+ (let ((ctr (assq name calc-command-flags)))
+ (if ctr
+ (setcdr ctr (1+ (cdr ctr)))
+ (setq ctr (cons name 1)
+ calc-command-flags (cons ctr calc-command-flags)))
+ (cdr ctr))
+)
+
+(defun math-solve-get-sign (val)
+ (setq val (math-simplify val))
+ (if (and (eq (car-safe val) '*)
+ (Math-numberp (nth 1 val)))
+ (list '* (nth 1 val) (math-solve-get-sign (nth 2 val)))
+ (and (eq (car-safe val) 'calcFunc-sqrt)
+ (eq (car-safe (nth 1 val)) '^)
+ (setq val (math-normalize (list '^
+ (nth 1 (nth 1 val))
+ (math-div (nth 2 (nth 1 val)) 2)))))
+ (if solve-full
+ (if (and (calc-var-value 'var-GenCount)
+ (Math-natnump var-GenCount)
+ (not (eq solve-full 'all)))
+ (prog1
+ (math-mul (list 'calcFunc-as var-GenCount) val)
+ (setq var-GenCount (math-add var-GenCount 1))
+ (calc-refresh-evaltos 'var-GenCount))
+ (let* ((var (concat "s" (math-get-from-counter 'solve-sign)))
+ (var2 (list 'var (intern var) (intern (concat "var-" var)))))
+ (if (eq solve-full 'all)
+ (setq math-solve-ranges (cons (list var2 1 -1)
+ math-solve-ranges)))
+ (math-mul var2 val)))
+ (calc-record-why "*Choosing positive solution")
+ val))
+)
+
+(defun math-solve-get-int (val &optional range first)
+ (if solve-full
+ (if (and (calc-var-value 'var-GenCount)
+ (Math-natnump var-GenCount)
+ (not (eq solve-full 'all)))
+ (prog1
+ (math-mul val (list 'calcFunc-an var-GenCount))
+ (setq var-GenCount (math-add var-GenCount 1))
+ (calc-refresh-evaltos 'var-GenCount))
+ (let* ((var (concat "n" (math-get-from-counter 'solve-int)))
+ (var2 (list 'var (intern var) (intern (concat "var-" var)))))
+ (if (and range (eq solve-full 'all))
+ (setq math-solve-ranges (cons (cons var2
+ (cdr (calcFunc-index
+ range (or first 0))))
+ math-solve-ranges)))
+ (math-mul val var2)))
+ (calc-record-why "*Choosing 0 for arbitrary integer in solution")
+ 0)
+)
+
+(defun math-solve-sign (sign expr)
+ (and sign
+ (let ((s1 (math-possible-signs expr)))
+ (cond ((memq s1 '(4 6))
+ sign)
+ ((memq s1 '(1 3))
+ (- sign)))))
+)
+
+(defun math-looks-evenp (expr)
+ (if (Math-integerp expr)
+ (math-evenp expr)
+ (if (memq (car expr) '(* /))
+ (math-looks-evenp (nth 1 expr))))
+)
+
+(defun math-solve-for (lhs rhs solve-var solve-full &optional sign)
+ (if (math-expr-contains rhs solve-var)
+ (math-solve-for (math-sub lhs rhs) 0 solve-var solve-full)
+ (and (math-expr-contains lhs solve-var)
+ (math-with-extra-prec 1
+ (let* ((math-poly-base-variable solve-var)
+ (res (math-try-solve-for lhs rhs sign)))
+ (if (and (eq solve-full 'all)
+ (math-known-realp solve-var))
+ (let ((old-len (length res))
+ new-len)
+ (setq res (delq nil
+ (mapcar (function
+ (lambda (x)
+ (and (not (memq (car-safe x)
+ '(cplx polar)))
+ x)))
+ res))
+ new-len (length res))
+ (if (< new-len old-len)
+ (calc-record-why (if (= new-len 1)
+ "*All solutions were complex"
+ (format
+ "*Omitted %d complex solutions"
+ (- old-len new-len)))))))
+ res))))
+)
+
+(defun math-solve-eqn (expr var full)
+ (if (memq (car-safe expr) '(calcFunc-neq calcFunc-lt calcFunc-gt
+ calcFunc-leq calcFunc-geq))
+ (let ((res (math-solve-for (cons '- (cdr expr))
+ 0 var full
+ (if (eq (car expr) 'calcFunc-neq) nil 1))))
+ (and res
+ (if (eq math-solve-sign 1)
+ (list (car expr) var res)
+ (if (eq math-solve-sign -1)
+ (list (car expr) res var)
+ (or (eq (car expr) 'calcFunc-neq)
+ (calc-record-why
+ "*Can't determine direction of inequality"))
+ (and (memq (car expr) '(calcFunc-neq calcFunc-lt calcFunc-gt))
+ (list 'calcFunc-neq var res))))))
+ (let ((res (math-solve-for expr 0 var full)))
+ (and res
+ (list 'calcFunc-eq var res))))
+)
+
+(defun math-reject-solution (expr var func)
+ (if (math-expr-contains expr var)
+ (or (equal (car calc-next-why) '(* "Unable to find a symbolic solution"))
+ (calc-record-why "*Unable to find a solution")))
+ (list func expr var)
+)
+
+(defun calcFunc-solve (expr var)
+ (or (if (or (Math-vectorp expr) (Math-vectorp var))
+ (math-solve-system expr var nil)
+ (math-solve-eqn expr var nil))
+ (math-reject-solution expr var 'calcFunc-solve))
+)
+
+(defun calcFunc-fsolve (expr var)
+ (or (if (or (Math-vectorp expr) (Math-vectorp var))
+ (math-solve-system expr var t)
+ (math-solve-eqn expr var t))
+ (math-reject-solution expr var 'calcFunc-fsolve))
+)
+
+(defun calcFunc-roots (expr var)
+ (let ((math-solve-ranges nil))
+ (or (if (or (Math-vectorp expr) (Math-vectorp var))
+ (math-solve-system expr var 'all)
+ (math-solve-for expr 0 var 'all))
+ (math-reject-solution expr var 'calcFunc-roots)))
+)
+
+(defun calcFunc-finv (expr var)
+ (let ((res (math-solve-for expr math-integ-var var nil)))
+ (if res
+ (math-normalize (math-expr-subst res math-integ-var var))
+ (math-reject-solution expr var 'calcFunc-finv)))
+)
+
+(defun calcFunc-ffinv (expr var)
+ (let ((res (math-solve-for expr math-integ-var var t)))
+ (if res
+ (math-normalize (math-expr-subst res math-integ-var var))
+ (math-reject-solution expr var 'calcFunc-finv)))
+)
+
+
+(put 'calcFunc-inv 'math-inverse
+ (function (lambda (x) (math-div 1 x))))
+(put 'calcFunc-inv 'math-inverse-sign -1)
+
+(put 'calcFunc-sqrt 'math-inverse
+ (function (lambda (x) (math-sqr x))))
+
+(put 'calcFunc-conj 'math-inverse
+ (function (lambda (x) (list 'calcFunc-conj x))))
+
+(put 'calcFunc-abs 'math-inverse
+ (function (lambda (x) (math-solve-get-sign x))))
+
+(put 'calcFunc-deg 'math-inverse
+ (function (lambda (x) (list 'calcFunc-rad x))))
+(put 'calcFunc-deg 'math-inverse-sign 1)
+
+(put 'calcFunc-rad 'math-inverse
+ (function (lambda (x) (list 'calcFunc-deg x))))
+(put 'calcFunc-rad 'math-inverse-sign 1)
+
+(put 'calcFunc-ln 'math-inverse
+ (function (lambda (x) (list 'calcFunc-exp x))))
+(put 'calcFunc-ln 'math-inverse-sign 1)
+
+(put 'calcFunc-log10 'math-inverse
+ (function (lambda (x) (list 'calcFunc-exp10 x))))
+(put 'calcFunc-log10 'math-inverse-sign 1)
+
+(put 'calcFunc-lnp1 'math-inverse
+ (function (lambda (x) (list 'calcFunc-expm1 x))))
+(put 'calcFunc-lnp1 'math-inverse-sign 1)
+
+(put 'calcFunc-exp 'math-inverse
+ (function (lambda (x) (math-add (math-normalize (list 'calcFunc-ln x))
+ (math-mul 2
+ (math-mul '(var pi var-pi)
+ (math-solve-get-int
+ '(var i var-i))))))))
+(put 'calcFunc-exp 'math-inverse-sign 1)
+
+(put 'calcFunc-expm1 'math-inverse
+ (function (lambda (x) (math-add (math-normalize (list 'calcFunc-lnp1 x))
+ (math-mul 2
+ (math-mul '(var pi var-pi)
+ (math-solve-get-int
+ '(var i var-i))))))))
+(put 'calcFunc-expm1 'math-inverse-sign 1)
+
+(put 'calcFunc-sin 'math-inverse
+ (function (lambda (x) (let ((n (math-solve-get-int 1)))
+ (math-add (math-mul (math-normalize
+ (list 'calcFunc-arcsin x))
+ (math-pow -1 n))
+ (math-mul (math-half-circle t)
+ n))))))
+
+(put 'calcFunc-cos 'math-inverse
+ (function (lambda (x) (math-add (math-solve-get-sign
+ (math-normalize
+ (list 'calcFunc-arccos x)))
+ (math-solve-get-int
+ (math-full-circle t))))))
+
+(put 'calcFunc-tan 'math-inverse
+ (function (lambda (x) (math-add (math-normalize (list 'calcFunc-arctan x))
+ (math-solve-get-int
+ (math-half-circle t))))))
+
+(put 'calcFunc-arcsin 'math-inverse
+ (function (lambda (x) (math-normalize (list 'calcFunc-sin x)))))
+
+(put 'calcFunc-arccos 'math-inverse
+ (function (lambda (x) (math-normalize (list 'calcFunc-cos x)))))
+
+(put 'calcFunc-arctan 'math-inverse
+ (function (lambda (x) (math-normalize (list 'calcFunc-tan x)))))
+
+(put 'calcFunc-sinh 'math-inverse
+ (function (lambda (x) (let ((n (math-solve-get-int 1)))
+ (math-add (math-mul (math-normalize
+ (list 'calcFunc-arcsinh x))
+ (math-pow -1 n))
+ (math-mul (math-half-circle t)
+ (math-mul
+ '(var i var-i)
+ n)))))))
+(put 'calcFunc-sinh 'math-inverse-sign 1)
+
+(put 'calcFunc-cosh 'math-inverse
+ (function (lambda (x) (math-add (math-solve-get-sign
+ (math-normalize
+ (list 'calcFunc-arccosh x)))
+ (math-mul (math-full-circle t)
+ (math-solve-get-int
+ '(var i var-i)))))))
+
+(put 'calcFunc-tanh 'math-inverse
+ (function (lambda (x) (math-add (math-normalize
+ (list 'calcFunc-arctanh x))
+ (math-mul (math-half-circle t)
+ (math-solve-get-int
+ '(var i var-i)))))))
+(put 'calcFunc-tanh 'math-inverse-sign 1)
+
+(put 'calcFunc-arcsinh 'math-inverse
+ (function (lambda (x) (math-normalize (list 'calcFunc-sinh x)))))
+(put 'calcFunc-arcsinh 'math-inverse-sign 1)
+
+(put 'calcFunc-arccosh 'math-inverse
+ (function (lambda (x) (math-normalize (list 'calcFunc-cosh x)))))
+
+(put 'calcFunc-arctanh 'math-inverse
+ (function (lambda (x) (math-normalize (list 'calcFunc-tanh x)))))
+(put 'calcFunc-arctanh 'math-inverse-sign 1)
+
+
+
+(defun calcFunc-taylor (expr var num)
+ (let ((x0 0) (v var))
+ (if (memq (car-safe var) '(+ - calcFunc-eq))
+ (setq x0 (if (eq (car var) '+) (math-neg (nth 2 var)) (nth 2 var))
+ v (nth 1 var)))
+ (or (and (eq (car-safe v) 'var)
+ (math-expr-contains expr v)
+ (natnump num)
+ (let ((accum (math-expr-subst expr v x0))
+ (var2 (if (eq (car var) 'calcFunc-eq)
+ (cons '- (cdr var))
+ var))
+ (n 0)
+ (nfac 1)
+ (fprime expr))
+ (while (and (<= (setq n (1+ n)) num)
+ (setq fprime (calcFunc-deriv fprime v nil t)))
+ (setq fprime (math-simplify fprime)
+ nfac (math-mul nfac n)
+ accum (math-add accum
+ (math-div (math-mul (math-pow var2 n)
+ (math-expr-subst
+ fprime v x0))
+ nfac))))
+ (and fprime
+ (math-normalize accum))))
+ (list 'calcFunc-taylor expr var num)))
+)
+
+
+
+