diff options
Diffstat (limited to 'lisp/calc/calcalg2.el')
-rw-r--r-- | lisp/calc/calcalg2.el | 3507 |
1 files changed, 3507 insertions, 0 deletions
diff --git a/lisp/calc/calcalg2.el b/lisp/calc/calcalg2.el new file mode 100644 index 00000000000..d748c98fe1f --- /dev/null +++ b/lisp/calc/calcalg2.el @@ -0,0 +1,3507 @@ +;; Calculator for GNU Emacs, part II [calc-alg-2.el] +;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc. +;; Written by Dave Gillespie, daveg@synaptics.com. + +;; This file is part of GNU Emacs. + +;; GNU Emacs is distributed in the hope that it will be useful, +;; but WITHOUT ANY WARRANTY. No author or distributor +;; accepts responsibility to anyone for the consequences of using it +;; or for whether it serves any particular purpose or works at all, +;; unless he says so in writing. Refer to the GNU Emacs General Public +;; License for full details. + +;; Everyone is granted permission to copy, modify and redistribute +;; GNU Emacs, but only under the conditions described in the +;; GNU Emacs General Public License. A copy of this license is +;; supposed to have been given to you along with GNU Emacs so you +;; can know your rights and responsibilities. It should be in a +;; file named COPYING. Among other things, the copyright notice +;; and this notice must be preserved on all copies. + + + +;; This file is autoloaded from calc-ext.el. +(require 'calc-ext) + +(require 'calc-macs) + +(defun calc-Need-calc-alg-2 () nil) + + +(defun calc-derivative (var num) + (interactive "sDifferentiate with respect to: \np") + (calc-slow-wrapper + (and (< num 0) (error "Order of derivative must be positive")) + (let ((func (if (calc-is-hyperbolic) 'calcFunc-tderiv 'calcFunc-deriv)) + n expr) + (if (or (equal var "") (equal var "$")) + (setq n 2 + expr (calc-top-n 2) + var (calc-top-n 1)) + (setq var (math-read-expr var)) + (if (eq (car-safe var) 'error) + (error "Bad format in expression: %s" (nth 1 var))) + (setq n 1 + expr (calc-top-n 1))) + (while (>= (setq num (1- num)) 0) + (setq expr (list func expr var))) + (calc-enter-result n "derv" expr))) +) + +(defun calc-integral (var) + (interactive "sIntegration variable: ") + (calc-slow-wrapper + (if (or (equal var "") (equal var "$")) + (calc-enter-result 2 "intg" (list 'calcFunc-integ + (calc-top-n 2) + (calc-top-n 1))) + (let ((var (math-read-expr var))) + (if (eq (car-safe var) 'error) + (error "Bad format in expression: %s" (nth 1 var))) + (calc-enter-result 1 "intg" (list 'calcFunc-integ + (calc-top-n 1) + var))))) +) + +(defun calc-num-integral (&optional varname lowname highname) + (interactive "sIntegration variable: ") + (calc-tabular-command 'calcFunc-ninteg "Integration" "nint" + nil varname lowname highname) +) + +(defun calc-summation (arg &optional varname lowname highname) + (interactive "P\nsSummation variable: ") + (calc-tabular-command 'calcFunc-sum "Summation" "sum" + arg varname lowname highname) +) + +(defun calc-alt-summation (arg &optional varname lowname highname) + (interactive "P\nsSummation variable: ") + (calc-tabular-command 'calcFunc-asum "Summation" "asum" + arg varname lowname highname) +) + +(defun calc-product (arg &optional varname lowname highname) + (interactive "P\nsIndex variable: ") + (calc-tabular-command 'calcFunc-prod "Index" "prod" + arg varname lowname highname) +) + +(defun calc-tabulate (arg &optional varname lowname highname) + (interactive "P\nsIndex variable: ") + (calc-tabular-command 'calcFunc-table "Index" "tabl" + arg varname lowname highname) +) + +(defun calc-tabular-command (func prompt prefix arg varname lowname highname) + (calc-slow-wrapper + (let (var (low nil) (high nil) (step nil) stepname stepnum (num 1) expr) + (if (consp arg) + (setq stepnum 1) + (setq stepnum 0)) + (if (or (equal varname "") (equal varname "$") (null varname)) + (setq high (calc-top-n (+ stepnum 1)) + low (calc-top-n (+ stepnum 2)) + var (calc-top-n (+ stepnum 3)) + num (+ stepnum 4)) + (setq var (if (stringp varname) (math-read-expr varname) varname)) + (if (eq (car-safe var) 'error) + (error "Bad format in expression: %s" (nth 1 var))) + (or lowname + (setq lowname (read-string (concat prompt " variable: " varname + ", from: ")))) + (if (or (equal lowname "") (equal lowname "$")) + (setq high (calc-top-n (+ stepnum 1)) + low (calc-top-n (+ stepnum 2)) + num (+ stepnum 3)) + (setq low (if (stringp lowname) (math-read-expr lowname) lowname)) + (if (eq (car-safe low) 'error) + (error "Bad format in expression: %s" (nth 1 low))) + (or highname + (setq highname (read-string (concat prompt " variable: " varname + ", from: " lowname + ", to: ")))) + (if (or (equal highname "") (equal highname "$")) + (setq high (calc-top-n (+ stepnum 1)) + num (+ stepnum 2)) + (setq high (if (stringp highname) (math-read-expr highname) + highname)) + (if (eq (car-safe high) 'error) + (error "Bad format in expression: %s" (nth 1 high))) + (if (consp arg) + (progn + (setq stepname (read-string (concat prompt " variable: " + varname + ", from: " lowname + ", to: " highname + ", step: "))) + (if (or (equal stepname "") (equal stepname "$")) + (setq step (calc-top-n 1) + num 2) + (setq step (math-read-expr stepname)) + (if (eq (car-safe step) 'error) + (error "Bad format in expression: %s" + (nth 1 step))))))))) + (or step + (if (consp arg) + (setq step (calc-top-n 1)) + (if arg + (setq step (prefix-numeric-value arg))))) + (setq expr (calc-top-n num)) + (calc-enter-result num prefix (append (list func expr var low high) + (and step (list step)))))) +) + +(defun calc-solve-for (var) + (interactive "sVariable to solve for: ") + (calc-slow-wrapper + (let ((func (if (calc-is-inverse) + (if (calc-is-hyperbolic) 'calcFunc-ffinv 'calcFunc-finv) + (if (calc-is-hyperbolic) 'calcFunc-fsolve 'calcFunc-solve)))) + (if (or (equal var "") (equal var "$")) + (calc-enter-result 2 "solv" (list func + (calc-top-n 2) + (calc-top-n 1))) + (let ((var (if (and (string-match ",\\|[^ ] +[^ ]" var) + (not (string-match "\\[" var))) + (math-read-expr (concat "[" var "]")) + (math-read-expr var)))) + (if (eq (car-safe var) 'error) + (error "Bad format in expression: %s" (nth 1 var))) + (calc-enter-result 1 "solv" (list func + (calc-top-n 1) + var)))))) +) + +(defun calc-poly-roots (var) + (interactive "sVariable to solve for: ") + (calc-slow-wrapper + (if (or (equal var "") (equal var "$")) + (calc-enter-result 2 "prts" (list 'calcFunc-roots + (calc-top-n 2) + (calc-top-n 1))) + (let ((var (if (and (string-match ",\\|[^ ] +[^ ]" var) + (not (string-match "\\[" var))) + (math-read-expr (concat "[" var "]")) + (math-read-expr var)))) + (if (eq (car-safe var) 'error) + (error "Bad format in expression: %s" (nth 1 var))) + (calc-enter-result 1 "prts" (list 'calcFunc-roots + (calc-top-n 1) + var))))) +) + +(defun calc-taylor (var nterms) + (interactive "sTaylor expansion variable: \nNNumber of terms: ") + (calc-slow-wrapper + (let ((var (math-read-expr var))) + (if (eq (car-safe var) 'error) + (error "Bad format in expression: %s" (nth 1 var))) + (calc-enter-result 1 "tylr" (list 'calcFunc-taylor + (calc-top-n 1) + var + (prefix-numeric-value nterms))))) +) + + +(defun math-derivative (expr) ; uses global values: deriv-var, deriv-total. + (cond ((equal expr deriv-var) + 1) + ((or (Math-scalarp expr) + (eq (car expr) 'sdev) + (and (eq (car expr) 'var) + (or (not deriv-total) + (math-const-var expr) + (progn + (math-setup-declarations) + (memq 'const (nth 1 (or (assq (nth 2 expr) + math-decls-cache) + math-decls-all))))))) + 0) + ((eq (car expr) '+) + (math-add (math-derivative (nth 1 expr)) + (math-derivative (nth 2 expr)))) + ((eq (car expr) '-) + (math-sub (math-derivative (nth 1 expr)) + (math-derivative (nth 2 expr)))) + ((memq (car expr) '(calcFunc-eq calcFunc-neq calcFunc-lt + calcFunc-gt calcFunc-leq calcFunc-geq)) + (list (car expr) + (math-derivative (nth 1 expr)) + (math-derivative (nth 2 expr)))) + ((eq (car expr) 'neg) + (math-neg (math-derivative (nth 1 expr)))) + ((eq (car expr) '*) + (math-add (math-mul (nth 2 expr) + (math-derivative (nth 1 expr))) + (math-mul (nth 1 expr) + (math-derivative (nth 2 expr))))) + ((eq (car expr) '/) + (math-sub (math-div (math-derivative (nth 1 expr)) + (nth 2 expr)) + (math-div (math-mul (nth 1 expr) + (math-derivative (nth 2 expr))) + (math-sqr (nth 2 expr))))) + ((eq (car expr) '^) + (let ((du (math-derivative (nth 1 expr))) + (dv (math-derivative (nth 2 expr)))) + (or (Math-zerop du) + (setq du (math-mul (nth 2 expr) + (math-mul (math-normalize + (list '^ + (nth 1 expr) + (math-add (nth 2 expr) -1))) + du)))) + (or (Math-zerop dv) + (setq dv (math-mul (math-normalize + (list 'calcFunc-ln (nth 1 expr))) + (math-mul expr dv)))) + (math-add du dv))) + ((eq (car expr) '%) + (math-derivative (nth 1 expr))) ; a reasonable definition + ((eq (car expr) 'vec) + (math-map-vec 'math-derivative expr)) + ((and (memq (car expr) '(calcFunc-conj calcFunc-re calcFunc-im)) + (= (length expr) 2)) + (list (car expr) (math-derivative (nth 1 expr)))) + ((and (memq (car expr) '(calcFunc-subscr calcFunc-mrow calcFunc-mcol)) + (= (length expr) 3)) + (let ((d (math-derivative (nth 1 expr)))) + (if (math-numberp d) + 0 ; assume x and x_1 are independent vars + (list (car expr) d (nth 2 expr))))) + (t (or (and (symbolp (car expr)) + (if (= (length expr) 2) + (let ((handler (get (car expr) 'math-derivative))) + (and handler + (let ((deriv (math-derivative (nth 1 expr)))) + (if (Math-zerop deriv) + deriv + (math-mul (funcall handler (nth 1 expr)) + deriv))))) + (let ((handler (get (car expr) 'math-derivative-n))) + (and handler + (funcall handler expr))))) + (and (not (eq deriv-symb 'pre-expand)) + (let ((exp (math-expand-formula expr))) + (and exp + (or (let ((deriv-symb 'pre-expand)) + (catch 'math-deriv (math-derivative expr))) + (math-derivative exp))))) + (if (or (Math-objvecp expr) + (eq (car expr) 'var) + (not (symbolp (car expr)))) + (if deriv-symb + (throw 'math-deriv nil) + (list (if deriv-total 'calcFunc-tderiv 'calcFunc-deriv) + expr + deriv-var)) + (let ((accum 0) + (arg expr) + (n 1) + derv) + (while (setq arg (cdr arg)) + (or (Math-zerop (setq derv (math-derivative (car arg)))) + (let ((func (intern (concat (symbol-name (car expr)) + "'" + (if (> n 1) + (int-to-string n) + "")))) + (prop (cond ((= (length expr) 2) + 'math-derivative-1) + ((= (length expr) 3) + 'math-derivative-2) + ((= (length expr) 4) + 'math-derivative-3) + ((= (length expr) 5) + 'math-derivative-4) + ((= (length expr) 6) + 'math-derivative-5)))) + (setq accum + (math-add + accum + (math-mul + derv + (let ((handler (get func prop))) + (or (and prop handler + (apply handler (cdr expr))) + (if (and deriv-symb + (not (get func + 'calc-user-defn))) + (throw 'math-deriv nil) + (cons func (cdr expr)))))))))) + (setq n (1+ n))) + accum))))) +) + +(defun calcFunc-deriv (expr deriv-var &optional deriv-value deriv-symb) + (let* ((deriv-total nil) + (res (catch 'math-deriv (math-derivative expr)))) + (or (eq (car-safe res) 'calcFunc-deriv) + (null res) + (setq res (math-normalize res))) + (and res + (if deriv-value + (math-expr-subst res deriv-var deriv-value) + res))) +) + +(defun calcFunc-tderiv (expr deriv-var &optional deriv-value deriv-symb) + (math-setup-declarations) + (let* ((deriv-total t) + (res (catch 'math-deriv (math-derivative expr)))) + (or (eq (car-safe res) 'calcFunc-tderiv) + (null res) + (setq res (math-normalize res))) + (and res + (if deriv-value + (math-expr-subst res deriv-var deriv-value) + res))) +) + +(put 'calcFunc-inv\' 'math-derivative-1 + (function (lambda (u) (math-neg (math-div 1 (math-sqr u)))))) + +(put 'calcFunc-sqrt\' 'math-derivative-1 + (function (lambda (u) (math-div 1 (math-mul 2 (list 'calcFunc-sqrt u)))))) + +(put 'calcFunc-deg\' 'math-derivative-1 + (function (lambda (u) (math-div-float '(float 18 1) (math-pi))))) + +(put 'calcFunc-rad\' 'math-derivative-1 + (function (lambda (u) (math-pi-over-180)))) + +(put 'calcFunc-ln\' 'math-derivative-1 + (function (lambda (u) (math-div 1 u)))) + +(put 'calcFunc-log10\' 'math-derivative-1 + (function (lambda (u) + (math-div (math-div 1 (math-normalize '(calcFunc-ln 10))) + u)))) + +(put 'calcFunc-lnp1\' 'math-derivative-1 + (function (lambda (u) (math-div 1 (math-add u 1))))) + +(put 'calcFunc-log\' 'math-derivative-2 + (function (lambda (x b) + (and (not (Math-zerop b)) + (let ((lnv (math-normalize + (list 'calcFunc-ln b)))) + (math-div 1 (math-mul lnv x))))))) + +(put 'calcFunc-log\'2 'math-derivative-2 + (function (lambda (x b) + (let ((lnv (list 'calcFunc-ln b))) + (math-neg (math-div (list 'calcFunc-log x b) + (math-mul lnv b))))))) + +(put 'calcFunc-exp\' 'math-derivative-1 + (function (lambda (u) (math-normalize (list 'calcFunc-exp u))))) + +(put 'calcFunc-expm1\' 'math-derivative-1 + (function (lambda (u) (math-normalize (list 'calcFunc-expm1 u))))) + +(put 'calcFunc-sin\' 'math-derivative-1 + (function (lambda (u) (math-to-radians-2 (math-normalize + (list 'calcFunc-cos u)))))) + +(put 'calcFunc-cos\' 'math-derivative-1 + (function (lambda (u) (math-neg (math-to-radians-2 + (math-normalize + (list 'calcFunc-sin u))))))) + +(put 'calcFunc-tan\' 'math-derivative-1 + (function (lambda (u) (math-to-radians-2 + (math-div 1 (math-sqr + (math-normalize + (list 'calcFunc-cos u)))))))) + +(put 'calcFunc-arcsin\' 'math-derivative-1 + (function (lambda (u) + (math-from-radians-2 + (math-div 1 (math-normalize + (list 'calcFunc-sqrt + (math-sub 1 (math-sqr u))))))))) + +(put 'calcFunc-arccos\' 'math-derivative-1 + (function (lambda (u) + (math-from-radians-2 + (math-div -1 (math-normalize + (list 'calcFunc-sqrt + (math-sub 1 (math-sqr u))))))))) + +(put 'calcFunc-arctan\' 'math-derivative-1 + (function (lambda (u) (math-from-radians-2 + (math-div 1 (math-add 1 (math-sqr u))))))) + +(put 'calcFunc-sinh\' 'math-derivative-1 + (function (lambda (u) (math-normalize (list 'calcFunc-cosh u))))) + +(put 'calcFunc-cosh\' 'math-derivative-1 + (function (lambda (u) (math-normalize (list 'calcFunc-sinh u))))) + +(put 'calcFunc-tanh\' 'math-derivative-1 + (function (lambda (u) (math-div 1 (math-sqr + (math-normalize + (list 'calcFunc-cosh u))))))) + +(put 'calcFunc-arcsinh\' 'math-derivative-1 + (function (lambda (u) + (math-div 1 (math-normalize + (list 'calcFunc-sqrt + (math-add (math-sqr u) 1))))))) + +(put 'calcFunc-arccosh\' 'math-derivative-1 + (function (lambda (u) + (math-div 1 (math-normalize + (list 'calcFunc-sqrt + (math-add (math-sqr u) -1))))))) + +(put 'calcFunc-arctanh\' 'math-derivative-1 + (function (lambda (u) (math-div 1 (math-sub 1 (math-sqr u)))))) + +(put 'calcFunc-bern\'2 'math-derivative-2 + (function (lambda (n x) + (math-mul n (list 'calcFunc-bern (math-add n -1) x))))) + +(put 'calcFunc-euler\'2 'math-derivative-2 + (function (lambda (n x) + (math-mul n (list 'calcFunc-euler (math-add n -1) x))))) + +(put 'calcFunc-gammag\'2 'math-derivative-2 + (function (lambda (a x) (math-deriv-gamma a x 1)))) + +(put 'calcFunc-gammaG\'2 'math-derivative-2 + (function (lambda (a x) (math-deriv-gamma a x -1)))) + +(put 'calcFunc-gammaP\'2 'math-derivative-2 + (function (lambda (a x) (math-deriv-gamma a x + (math-div + 1 (math-normalize + (list 'calcFunc-gamma + a))))))) + +(put 'calcFunc-gammaQ\'2 'math-derivative-2 + (function (lambda (a x) (math-deriv-gamma a x + (math-div + -1 (math-normalize + (list 'calcFunc-gamma + a))))))) + +(defun math-deriv-gamma (a x scale) + (math-mul scale + (math-mul (math-pow x (math-add a -1)) + (list 'calcFunc-exp (math-neg x)))) +) + +(put 'calcFunc-betaB\' 'math-derivative-3 + (function (lambda (x a b) (math-deriv-beta x a b 1)))) + +(put 'calcFunc-betaI\' 'math-derivative-3 + (function (lambda (x a b) (math-deriv-beta x a b + (math-div + 1 (list 'calcFunc-beta + a b)))))) + +(defun math-deriv-beta (x a b scale) + (math-mul (math-mul (math-pow x (math-add a -1)) + (math-pow (math-sub 1 x) (math-add b -1))) + scale) +) + +(put 'calcFunc-erf\' 'math-derivative-1 + (function (lambda (x) (math-div 2 + (math-mul (list 'calcFunc-exp + (math-sqr x)) + (if calc-symbolic-mode + '(calcFunc-sqrt + (var pi var-pi)) + (math-sqrt-pi))))))) + +(put 'calcFunc-erfc\' 'math-derivative-1 + (function (lambda (x) (math-div -2 + (math-mul (list 'calcFunc-exp + (math-sqr x)) + (if calc-symbolic-mode + '(calcFunc-sqrt + (var pi var-pi)) + (math-sqrt-pi))))))) + +(put 'calcFunc-besJ\'2 'math-derivative-2 + (function (lambda (v z) (math-div (math-sub (list 'calcFunc-besJ + (math-add v -1) + z) + (list 'calcFunc-besJ + (math-add v 1) + z)) + 2)))) + +(put 'calcFunc-besY\'2 'math-derivative-2 + (function (lambda (v z) (math-div (math-sub (list 'calcFunc-besY + (math-add v -1) + z) + (list 'calcFunc-besY + (math-add v 1) + z)) + 2)))) + +(put 'calcFunc-sum 'math-derivative-n + (function + (lambda (expr) + (if (math-expr-contains (cons 'vec (cdr (cdr expr))) deriv-var) + (throw 'math-deriv nil) + (cons 'calcFunc-sum + (cons (math-derivative (nth 1 expr)) + (cdr (cdr expr)))))))) + +(put 'calcFunc-prod 'math-derivative-n + (function + (lambda (expr) + (if (math-expr-contains (cons 'vec (cdr (cdr expr))) deriv-var) + (throw 'math-deriv nil) + (math-mul expr + (cons 'calcFunc-sum + (cons (math-div (math-derivative (nth 1 expr)) + (nth 1 expr)) + (cdr (cdr expr))))))))) + +(put 'calcFunc-integ 'math-derivative-n + (function + (lambda (expr) + (if (= (length expr) 3) + (if (equal (nth 2 expr) deriv-var) + (nth 1 expr) + (math-normalize + (list 'calcFunc-integ + (math-derivative (nth 1 expr)) + (nth 2 expr)))) + (if (= (length expr) 5) + (let ((lower (math-expr-subst (nth 1 expr) (nth 2 expr) + (nth 3 expr))) + (upper (math-expr-subst (nth 1 expr) (nth 2 expr) + (nth 4 expr)))) + (math-add (math-sub (math-mul upper + (math-derivative (nth 4 expr))) + (math-mul lower + (math-derivative (nth 3 expr)))) + (if (equal (nth 2 expr) deriv-var) + 0 + (math-normalize + (list 'calcFunc-integ + (math-derivative (nth 1 expr)) (nth 2 expr) + (nth 3 expr) (nth 4 expr))))))))))) + +(put 'calcFunc-if 'math-derivative-n + (function + (lambda (expr) + (and (= (length expr) 4) + (list 'calcFunc-if (nth 1 expr) + (math-derivative (nth 2 expr)) + (math-derivative (nth 3 expr))))))) + +(put 'calcFunc-subscr 'math-derivative-n + (function + (lambda (expr) + (and (= (length expr) 3) + (list 'calcFunc-subscr (nth 1 expr) + (math-derivative (nth 2 expr))))))) + + + + + +(setq math-integ-var '(var X ---)) +(setq math-integ-var-2 '(var Y ---)) +(setq math-integ-vars (list 'f math-integ-var math-integ-var-2)) +(setq math-integ-var-list (list math-integ-var)) +(setq math-integ-var-list-list (list math-integ-var-list)) + +(defmacro math-tracing-integral (&rest parts) + (list 'and + 'trace-buffer + (list 'save-excursion + '(set-buffer trace-buffer) + '(goto-char (point-max)) + (list 'and + '(bolp) + '(insert (make-string (- math-integral-limit + math-integ-level) 32) + (format "%2d " math-integ-depth) + (make-string math-integ-level 32))) + ;;(list 'condition-case 'err + (cons 'insert parts) + ;; '(error (insert (prin1-to-string err)))) + '(sit-for 0))) +) + +;;; The following wrapper caches results and avoids infinite recursion. +;;; Each cache entry is: ( A B ) Integral of A is B; +;;; ( A N ) Integral of A failed at level N; +;;; ( A busy ) Currently working on integral of A; +;;; ( A parts ) Currently working, integ-by-parts; +;;; ( A parts2 ) Currently working, integ-by-parts; +;;; ( A cancelled ) Ignore this cache entry; +;;; ( A [B] ) Same result as for cur-record = B. +(defun math-integral (expr &optional simplify same-as-above) + (let* ((simp cur-record) + (cur-record (assoc expr math-integral-cache)) + (math-integ-depth (1+ math-integ-depth)) + (val 'cancelled)) + (math-tracing-integral "Integrating " + (math-format-value expr 1000) + "...\n") + (and cur-record + (progn + (math-tracing-integral "Found " + (math-format-value (nth 1 cur-record) 1000)) + (and (consp (nth 1 cur-record)) + (math-replace-integral-parts cur-record)) + (math-tracing-integral " => " + (math-format-value (nth 1 cur-record) 1000) + "\n"))) + (or (and cur-record + (not (eq (nth 1 cur-record) 'cancelled)) + (or (not (integerp (nth 1 cur-record))) + (>= (nth 1 cur-record) math-integ-level))) + (and (math-integral-contains-parts expr) + (progn + (setq val nil) + t)) + (unwind-protect + (progn + (let (math-integ-msg) + (if (eq calc-display-working-message 'lots) + (progn + (calc-set-command-flag 'clear-message) + (setq math-integ-msg (format + "Working... Integrating %s" + (math-format-flat-expr expr 0))) + (message math-integ-msg))) + (if cur-record + (setcar (cdr cur-record) + (if same-as-above (vector simp) 'busy)) + (setq cur-record + (list expr (if same-as-above (vector simp) 'busy)) + math-integral-cache (cons cur-record + math-integral-cache))) + (if (eq simplify 'yes) + (progn + (math-tracing-integral "Simplifying...") + (setq simp (math-simplify expr)) + (setq val (if (equal simp expr) + (progn + (math-tracing-integral " no change\n") + (math-do-integral expr)) + (math-tracing-integral " simplified\n") + (math-integral simp 'no t)))) + (or (setq val (math-do-integral expr)) + (eq simplify 'no) + (let ((simp (math-simplify expr))) + (or (equal simp expr) + (progn + (math-tracing-integral "Trying again after " + "simplification...\n") + (setq val (math-integral simp 'no t)))))))) + (if (eq calc-display-working-message 'lots) + (message math-integ-msg))) + (setcar (cdr cur-record) (or val + (if (or math-enable-subst + (not math-any-substs)) + math-integ-level + 'cancelled))))) + (setq val cur-record) + (while (vectorp (nth 1 val)) + (setq val (aref (nth 1 val) 0))) + (setq val (if (memq (nth 1 val) '(parts parts2)) + (progn + (setcar (cdr val) 'parts2) + (list 'var 'PARTS val)) + (and (consp (nth 1 val)) + (nth 1 val)))) + (math-tracing-integral "Integral of " + (math-format-value expr 1000) + " is " + (math-format-value val 1000) + "\n") + val) +) +(defvar math-integral-cache nil) +(defvar math-integral-cache-state nil) + +(defun math-integral-contains-parts (expr) + (if (Math-primp expr) + (and (eq (car-safe expr) 'var) + (eq (nth 1 expr) 'PARTS) + (listp (nth 2 expr))) + (while (and (setq expr (cdr expr)) + (not (math-integral-contains-parts (car expr))))) + expr) +) + +(defun math-replace-integral-parts (expr) + (or (Math-primp expr) + (while (setq expr (cdr expr)) + (and (consp (car expr)) + (if (eq (car (car expr)) 'var) + (and (eq (nth 1 (car expr)) 'PARTS) + (consp (nth 2 (car expr))) + (if (listp (nth 1 (nth 2 (car expr)))) + (progn + (setcar expr (nth 1 (nth 2 (car expr)))) + (math-replace-integral-parts (cons 'foo expr))) + (setcar (cdr cur-record) 'cancelled))) + (math-replace-integral-parts (car expr)))))) +) + +(defun math-do-integral (expr) + (let (t1 t2) + (or (cond ((not (math-expr-contains expr math-integ-var)) + (math-mul expr math-integ-var)) + ((equal expr math-integ-var) + (math-div (math-sqr expr) 2)) + ((eq (car expr) '+) + (and (setq t1 (math-integral (nth 1 expr))) + (setq t2 (math-integral (nth 2 expr))) + (math-add t1 t2))) + ((eq (car expr) '-) + (and (setq t1 (math-integral (nth 1 expr))) + (setq t2 (math-integral (nth 2 expr))) + (math-sub t1 t2))) + ((eq (car expr) 'neg) + (and (setq t1 (math-integral (nth 1 expr))) + (math-neg t1))) + ((eq (car expr) '*) + (cond ((not (math-expr-contains (nth 1 expr) math-integ-var)) + (and (setq t1 (math-integral (nth 2 expr))) + (math-mul (nth 1 expr) t1))) + ((not (math-expr-contains (nth 2 expr) math-integ-var)) + (and (setq t1 (math-integral (nth 1 expr))) + (math-mul t1 (nth 2 expr)))) + ((memq (car-safe (nth 1 expr)) '(+ -)) + (math-integral (list (car (nth 1 expr)) + (math-mul (nth 1 (nth 1 expr)) + (nth 2 expr)) + (math-mul (nth 2 (nth 1 expr)) + (nth 2 expr))) + 'yes t)) + ((memq (car-safe (nth 2 expr)) '(+ -)) + (math-integral (list (car (nth 2 expr)) + (math-mul (nth 1 (nth 2 expr)) + (nth 1 expr)) + (math-mul (nth 2 (nth 2 expr)) + (nth 1 expr))) + 'yes t)))) + ((eq (car expr) '/) + (cond ((and (not (math-expr-contains (nth 1 expr) + math-integ-var)) + (not (math-equal-int (nth 1 expr) 1))) + (and (setq t1 (math-integral (math-div 1 (nth 2 expr)))) + (math-mul (nth 1 expr) t1))) + ((not (math-expr-contains (nth 2 expr) math-integ-var)) + (and (setq t1 (math-integral (nth 1 expr))) + (math-div t1 (nth 2 expr)))) + ((and (eq (car-safe (nth 1 expr)) '*) + (not (math-expr-contains (nth 1 (nth 1 expr)) + math-integ-var))) + (and (setq t1 (math-integral + (math-div (nth 2 (nth 1 expr)) + (nth 2 expr)))) + (math-mul t1 (nth 1 (nth 1 expr))))) + ((and (eq (car-safe (nth 1 expr)) '*) + (not (math-expr-contains (nth 2 (nth 1 expr)) + math-integ-var))) + (and (setq t1 (math-integral + (math-div (nth 1 (nth 1 expr)) + (nth 2 expr)))) + (math-mul t1 (nth 2 (nth 1 expr))))) + ((and (eq (car-safe (nth 2 expr)) '*) + (not (math-expr-contains (nth 1 (nth 2 expr)) + math-integ-var))) + (and (setq t1 (math-integral + (math-div (nth 1 expr) + (nth 2 (nth 2 expr))))) + (math-div t1 (nth 1 (nth 2 expr))))) + ((and (eq (car-safe (nth 2 expr)) '*) + (not (math-expr-contains (nth 2 (nth 2 expr)) + math-integ-var))) + (and (setq t1 (math-integral + (math-div (nth 1 expr) + (nth 1 (nth 2 expr))))) + (math-div t1 (nth 2 (nth 2 expr))))) + ((eq (car-safe (nth 2 expr)) 'calcFunc-exp) + (math-integral + (math-mul (nth 1 expr) + (list 'calcFunc-exp + (math-neg (nth 1 (nth 2 expr))))))))) + ((eq (car expr) '^) + (cond ((not (math-expr-contains (nth 1 expr) math-integ-var)) + (or (and (setq t1 (math-is-polynomial (nth 2 expr) + math-integ-var 1)) + (math-div expr + (math-mul (nth 1 t1) + (math-normalize + (list 'calcFunc-ln + (nth 1 expr)))))) + (math-integral + (list 'calcFunc-exp + (math-mul (nth 2 expr) + (math-normalize + (list 'calcFunc-ln + (nth 1 expr))))) + 'yes t))) + ((not (math-expr-contains (nth 2 expr) math-integ-var)) + (if (and (integerp (nth 2 expr)) (< (nth 2 expr) 0)) + (math-integral + (list '/ 1 (math-pow (nth 1 expr) (- (nth 2 expr)))) + nil t) + (or (and (setq t1 (math-is-polynomial (nth 1 expr) + math-integ-var + 1)) + (setq t2 (math-add (nth 2 expr) 1)) + (math-div (math-pow (nth 1 expr) t2) + (math-mul t2 (nth 1 t1)))) + (and (Math-negp (nth 2 expr)) + (math-integral + (math-div 1 + (math-pow (nth 1 expr) + (math-neg + (nth 2 expr)))) + nil t)) + nil)))))) + + ;; Integral of a polynomial. + (and (setq t1 (math-is-polynomial expr math-integ-var 20)) + (let ((accum 0) + (n 1)) + (while t1 + (if (setq accum (math-add accum + (math-div (math-mul (car t1) + (math-pow + math-integ-var + n)) + n)) + t1 (cdr t1)) + (setq n (1+ n)))) + accum)) + + ;; Try looking it up! + (cond ((= (length expr) 2) + (and (symbolp (car expr)) + (setq t1 (get (car expr) 'math-integral)) + (progn + (while (and t1 + (not (setq t2 (funcall (car t1) + (nth 1 expr))))) + (setq t1 (cdr t1))) + (and t2 (math-normalize t2))))) + ((= (length expr) 3) + (and (symbolp (car expr)) + (setq t1 (get (car expr) 'math-integral-2)) + (progn + (while (and t1 + (not (setq t2 (funcall (car t1) + (nth 1 expr) + (nth 2 expr))))) + (setq t1 (cdr t1))) + (and t2 (math-normalize t2)))))) + + ;; Integral of a rational function. + (and (math-ratpoly-p expr math-integ-var) + (setq t1 (calcFunc-apart expr math-integ-var)) + (not (equal t1 expr)) + (math-integral t1)) + + ;; Try user-defined integration rules. + (and has-rules + (let ((math-old-integ (symbol-function 'calcFunc-integ)) + (input (list 'calcFunc-integtry expr math-integ-var)) + res part) + (unwind-protect + (progn + (fset 'calcFunc-integ 'math-sub-integration) + (setq res (math-rewrite input + '(var IntegRules var-IntegRules) + 1)) + (fset 'calcFunc-integ math-old-integ) + (and (not (equal res input)) + (if (setq part (math-expr-calls + res '(calcFunc-integsubst))) + (and (memq (length part) '(3 4 5)) + (let ((parts (mapcar + (function + (lambda (x) + (math-expr-subst + x (nth 2 part) + math-integ-var))) + (cdr part)))) + (math-integrate-by-substitution + expr (car parts) t + (or (nth 2 parts) + (list 'calcFunc-integfailed + math-integ-var)) + (nth 3 parts)))) + (if (not (math-expr-calls res + '(calcFunc-integtry + calcFunc-integfailed))) + res)))) + (fset 'calcFunc-integ math-old-integ)))) + + ;; See if the function is a symbolic derivative. + (and (string-match "'" (symbol-name (car expr))) + (let ((name (symbol-name (car expr))) + (p expr) (n 0) (which nil) (bad nil)) + (while (setq n (1+ n) p (cdr p)) + (if (equal (car p) math-integ-var) + (if which (setq bad t) (setq which n)) + (if (math-expr-contains (car p) math-integ-var) + (setq bad t)))) + (and which (not bad) + (let ((prime (if (= which 1) "'" (format "'%d" which)))) + (and (string-match (concat prime "\\('['0-9]*\\|$\\)") + name) + (cons (intern + (concat + (substring name 0 (match-beginning 0)) + (substring name (+ (match-beginning 0) + (length prime))))) + (cdr expr))))))) + + ;; Try transformation methods (parts, substitutions). + (and (> math-integ-level 0) + (math-do-integral-methods expr)) + + ;; Try expanding the function's definition. + (let ((res (math-expand-formula expr))) + (and res + (math-integral res))))) +) + +(defun math-sub-integration (expr &rest rest) + (or (if (or (not rest) + (and (< math-integ-level math-integral-limit) + (eq (car rest) math-integ-var))) + (math-integral expr) + (let ((res (apply math-old-integ expr rest))) + (and (or (= math-integ-level math-integral-limit) + (not (math-expr-calls res 'calcFunc-integ))) + res))) + (list 'calcFunc-integfailed expr)) +) + +(defun math-do-integral-methods (expr) + (let ((so-far math-integ-var-list-list) + rat-in) + + ;; Integration by substitution, for various likely sub-expressions. + ;; (In first pass, we look only for sub-exprs that are linear in X.) + (or (if math-enable-subst + (math-integ-try-substitutions expr) + (math-integ-try-linear-substitutions expr)) + + ;; If function has sines and cosines, try tan(x/2) substitution. + (and (let ((p (setq rat-in (math-expr-rational-in expr)))) + (while (and p + (memq (car (car p)) '(calcFunc-sin + calcFunc-cos + calcFunc-tan)) + (equal (nth 1 (car p)) math-integ-var)) + (setq p (cdr p))) + (null p)) + (or (and (math-integ-parts-easy expr) + (math-integ-try-parts expr t)) + (math-integrate-by-good-substitution + expr (list 'calcFunc-tan (math-div math-integ-var 2))))) + + ;; If function has sinh and cosh, try tanh(x/2) substitution. + (and (let ((p rat-in)) + (while (and p + (memq (car (car p)) '(calcFunc-sinh + calcFunc-cosh + calcFunc-tanh + calcFunc-exp)) + (equal (nth 1 (car p)) math-integ-var)) + (setq p (cdr p))) + (null p)) + (or (and (math-integ-parts-easy expr) + (math-integ-try-parts expr t)) + (math-integrate-by-good-substitution + expr (list 'calcFunc-tanh (math-div math-integ-var 2))))) + + ;; If function has square roots, try sin, tan, or sec substitution. + (and (let ((p rat-in)) + (setq t1 nil) + (while (and p + (or (equal (car p) math-integ-var) + (and (eq (car (car p)) 'calcFunc-sqrt) + (setq t1 (math-is-polynomial + (nth 1 (setq t2 (car p))) + math-integ-var 2))))) + (setq p (cdr p))) + (and (null p) t1)) + (if (cdr (cdr t1)) + (if (math-guess-if-neg (nth 2 t1)) + (let* ((c (math-sqrt (math-neg (nth 2 t1)))) + (d (math-div (nth 1 t1) (math-mul -2 c))) + (a (math-sqrt (math-add (car t1) (math-sqr d))))) + (math-integrate-by-good-substitution + expr (list 'calcFunc-arcsin + (math-div-thru + (math-add (math-mul c math-integ-var) d) + a)))) + (let* ((c (math-sqrt (nth 2 t1))) + (d (math-div (nth 1 t1) (math-mul 2 c))) + (aa (math-sub (car t1) (math-sqr d)))) + (if (and nil (not (and (eq d 0) (eq c 1)))) + (math-integrate-by-good-substitution + expr (math-add (math-mul c math-integ-var) d)) + (if (math-guess-if-neg aa) + (math-integrate-by-good-substitution + expr (list 'calcFunc-arccosh + (math-div-thru + (math-add (math-mul c math-integ-var) + d) + (math-sqrt (math-neg aa))))) + (math-integrate-by-good-substitution + expr (list 'calcFunc-arcsinh + (math-div-thru + (math-add (math-mul c math-integ-var) + d) + (math-sqrt aa)))))))) + (math-integrate-by-good-substitution expr t2)) ) + + ;; Try integration by parts. + (math-integ-try-parts expr) + + ;; Give up. + nil)) +) + +(defun math-integ-parts-easy (expr) + (cond ((Math-primp expr) t) + ((memq (car expr) '(+ - *)) + (and (math-integ-parts-easy (nth 1 expr)) + (math-integ-parts-easy (nth 2 expr)))) + ((eq (car expr) '/) + (and (math-integ-parts-easy (nth 1 expr)) + (math-atomic-factorp (nth 2 expr)))) + ((eq (car expr) '^) + (and (natnump (nth 2 expr)) + (math-integ-parts-easy (nth 1 expr)))) + ((eq (car expr) 'neg) + (math-integ-parts-easy (nth 1 expr))) + (t t)) +) + +(defun math-integ-try-parts (expr &optional math-good-parts) + ;; Integration by parts: + ;; integ(f(x) g(x),x) = f(x) h(x) - integ(h(x) f'(x),x) + ;; where h(x) = integ(g(x),x). + (or (let ((exp (calcFunc-expand expr))) + (and (not (equal exp expr)) + (math-integral exp))) + (and (eq (car expr) '*) + (let ((first-bad (or (math-polynomial-p (nth 1 expr) + math-integ-var) + (equal (nth 2 expr) math-prev-parts-v)))) + (or (and first-bad ; so try this one first + (math-integrate-by-parts (nth 1 expr) (nth 2 expr))) + (math-integrate-by-parts (nth 2 expr) (nth 1 expr)) + (and (not first-bad) + (math-integrate-by-parts (nth 1 expr) (nth 2 expr)))))) + (and (eq (car expr) '/) + (math-expr-contains (nth 1 expr) math-integ-var) + (let ((recip (math-div 1 (nth 2 expr)))) + (or (math-integrate-by-parts (nth 1 expr) recip) + (math-integrate-by-parts recip (nth 1 expr))))) + (and (eq (car expr) '^) + (math-integrate-by-parts (math-pow (nth 1 expr) + (math-sub (nth 2 expr) 1)) + (nth 1 expr)))) +) + +(defun math-integrate-by-parts (u vprime) + (let ((math-integ-level (if (or math-good-parts + (math-polynomial-p u math-integ-var)) + math-integ-level + (1- math-integ-level))) + (math-doing-parts t) + v temp) + (and (>= math-integ-level 0) + (unwind-protect + (progn + (setcar (cdr cur-record) 'parts) + (math-tracing-integral "Integrating by parts, u = " + (math-format-value u 1000) + ", v' = " + (math-format-value vprime 1000) + "\n") + (and (setq v (math-integral vprime)) + (setq temp (calcFunc-deriv u math-integ-var nil t)) + (setq temp (let ((math-prev-parts-v v)) + (math-integral (math-mul v temp) 'yes))) + (setq temp (math-sub (math-mul u v) temp)) + (if (eq (nth 1 cur-record) 'parts) + (calcFunc-expand temp) + (setq v (list 'var 'PARTS cur-record) + var-thing (list 'vec (math-sub v temp) v) + temp (let (calc-next-why) + (math-solve-for (math-sub v temp) 0 v nil))) + (and temp (not (integerp temp)) + (math-simplify-extended temp))))) + (setcar (cdr cur-record) 'busy)))) +) + +;;; This tries two different formulations, hoping the algebraic simplifier +;;; will be strong enough to handle at least one. +(defun math-integrate-by-substitution (expr u &optional user uinv uinvprime) + (and (> math-integ-level 0) + (let ((math-integ-level (max (- math-integ-level 2) 0))) + (math-integrate-by-good-substitution expr u user uinv uinvprime))) +) + +(defun math-integrate-by-good-substitution (expr u &optional user + uinv uinvprime) + (let ((math-living-dangerously t) + deriv temp) + (and (setq uinv (if uinv + (math-expr-subst uinv math-integ-var + math-integ-var-2) + (let (calc-next-why) + (math-solve-for u + math-integ-var-2 + math-integ-var nil)))) + (progn + (math-tracing-integral "Integrating by substitution, u = " + (math-format-value u 1000) + "\n") + (or (and (setq deriv (calcFunc-deriv u + math-integ-var nil + (not user))) + (setq temp (math-integral (math-expr-subst + (math-expr-subst + (math-expr-subst + (math-div expr deriv) + u + math-integ-var-2) + math-integ-var + uinv) + math-integ-var-2 + math-integ-var) + 'yes))) + (and (setq deriv (or uinvprime + (calcFunc-deriv uinv + math-integ-var-2 + math-integ-var + (not user)))) + (setq temp (math-integral (math-mul + (math-expr-subst + (math-expr-subst + (math-expr-subst + expr + u + math-integ-var-2) + math-integ-var + uinv) + math-integ-var-2 + math-integ-var) + deriv) + 'yes))))) + (math-simplify-extended + (math-expr-subst temp math-integ-var u)))) +) + +;;; Look for substitutions of the form u = a x + b. +(defun math-integ-try-linear-substitutions (sub-expr) + (and (not (Math-primp sub-expr)) + (or (and (not (memq (car sub-expr) '(+ - * / neg))) + (not (and (eq (car sub-expr) '^) + (integerp (nth 2 sub-expr)))) + (math-expr-contains sub-expr math-integ-var) + (let ((res nil)) + (while (and (setq sub-expr (cdr sub-expr)) + (or (not (math-linear-in (car sub-expr) + math-integ-var)) + (assoc (car sub-expr) so-far) + (progn + (setq so-far (cons (list (car sub-expr)) + so-far)) + (not (setq res + (math-integrate-by-substitution + expr (car sub-expr)))))))) + res)) + (let ((res nil)) + (while (and (setq sub-expr (cdr sub-expr)) + (not (setq res (math-integ-try-linear-substitutions + (car sub-expr)))))) + res))) +) + +;;; Recursively try different substitutions based on various sub-expressions. +(defun math-integ-try-substitutions (sub-expr &optional allow-rat) + (and (not (Math-primp sub-expr)) + (not (assoc sub-expr so-far)) + (math-expr-contains sub-expr math-integ-var) + (or (and (if (and (not (memq (car sub-expr) '(+ - * / neg))) + (not (and (eq (car sub-expr) '^) + (integerp (nth 2 sub-expr))))) + (setq allow-rat t) + (prog1 allow-rat (setq allow-rat nil))) + (not (eq sub-expr expr)) + (or (math-integrate-by-substitution expr sub-expr) + (and (eq (car sub-expr) '^) + (integerp (nth 2 sub-expr)) + (< (nth 2 sub-expr) 0) + (math-integ-try-substitutions + (math-pow (nth 1 sub-expr) (- (nth 2 sub-expr))) + t)))) + (let ((res nil)) + (setq so-far (cons (list sub-expr) so-far)) + (while (and (setq sub-expr (cdr sub-expr)) + (not (setq res (math-integ-try-substitutions + (car sub-expr) allow-rat))))) + res))) +) + +(defun math-expr-rational-in (expr) + (let ((parts nil)) + (math-expr-rational-in-rec expr) + (mapcar 'car parts)) +) + +(defun math-expr-rational-in-rec (expr) + (cond ((Math-primp expr) + (and (equal expr math-integ-var) + (not (assoc expr parts)) + (setq parts (cons (list expr) parts)))) + ((or (memq (car expr) '(+ - * / neg)) + (and (eq (car expr) '^) (integerp (nth 2 expr)))) + (math-expr-rational-in-rec (nth 1 expr)) + (and (nth 2 expr) (math-expr-rational-in-rec (nth 2 expr)))) + ((and (eq (car expr) '^) + (eq (math-quarter-integer (nth 2 expr)) 2)) + (math-expr-rational-in-rec (list 'calcFunc-sqrt (nth 1 expr)))) + (t + (and (not (assoc expr parts)) + (math-expr-contains expr math-integ-var) + (setq parts (cons (list expr) parts))))) +) + +(defun math-expr-calls (expr funcs &optional arg-contains) + (if (consp expr) + (if (or (memq (car expr) funcs) + (and (eq (car expr) '^) (eq (car funcs) 'calcFunc-sqrt) + (eq (math-quarter-integer (nth 2 expr)) 2))) + (and (or (not arg-contains) + (math-expr-contains expr arg-contains)) + expr) + (and (not (Math-primp expr)) + (let ((res nil)) + (while (and (setq expr (cdr expr)) + (not (setq res (math-expr-calls + (car expr) funcs arg-contains))))) + res)))) +) + +(defun math-fix-const-terms (expr except-vars) + (cond ((not (math-expr-depends expr except-vars)) 0) + ((Math-primp expr) expr) + ((eq (car expr) '+) + (math-add (math-fix-const-terms (nth 1 expr) except-vars) + (math-fix-const-terms (nth 2 expr) except-vars))) + ((eq (car expr) '-) + (math-sub (math-fix-const-terms (nth 1 expr) except-vars) + (math-fix-const-terms (nth 2 expr) except-vars))) + (t expr)) +) + +;; Command for debugging the Calculator's symbolic integrator. +(defun calc-dump-integral-cache (&optional arg) + (interactive "P") + (let ((buf (current-buffer))) + (unwind-protect + (let ((p math-integral-cache) + cur-record) + (display-buffer (get-buffer-create "*Integral Cache*")) + (set-buffer (get-buffer "*Integral Cache*")) + (erase-buffer) + (while p + (setq cur-record (car p)) + (or arg (math-replace-integral-parts cur-record)) + (insert (math-format-flat-expr (car cur-record) 0) + " --> " + (if (symbolp (nth 1 cur-record)) + (concat "(" (symbol-name (nth 1 cur-record)) ")") + (math-format-flat-expr (nth 1 cur-record) 0)) + "\n") + (setq p (cdr p))) + (goto-char (point-min))) + (set-buffer buf))) +) + +(defun math-try-integral (expr) + (let ((math-integ-level math-integral-limit) + (math-integ-depth 0) + (math-integ-msg "Working...done") + (cur-record nil) ; a technicality + (math-integrating t) + (calc-prefer-frac t) + (calc-symbolic-mode t) + (has-rules (calc-has-rules 'var-IntegRules))) + (or (math-integral expr 'yes) + (and math-any-substs + (setq math-enable-subst t) + (math-integral expr 'yes)) + (and (> math-max-integral-limit math-integral-limit) + (setq math-integral-limit math-max-integral-limit + math-integ-level math-integral-limit) + (math-integral expr 'yes)))) +) + +(defun calcFunc-integ (expr var &optional low high) + (cond + ;; Do these even if the parts turn out not to be integrable. + ((eq (car-safe expr) '+) + (math-add (calcFunc-integ (nth 1 expr) var low high) + (calcFunc-integ (nth 2 expr) var low high))) + ((eq (car-safe expr) '-) + (math-sub (calcFunc-integ (nth 1 expr) var low high) + (calcFunc-integ (nth 2 expr) var low high))) + ((eq (car-safe expr) 'neg) + (math-neg (calcFunc-integ (nth 1 expr) var low high))) + ((and (eq (car-safe expr) '*) + (not (math-expr-contains (nth 1 expr) var))) + (math-mul (nth 1 expr) (calcFunc-integ (nth 2 expr) var low high))) + ((and (eq (car-safe expr) '*) + (not (math-expr-contains (nth 2 expr) var))) + (math-mul (calcFunc-integ (nth 1 expr) var low high) (nth 2 expr))) + ((and (eq (car-safe expr) '/) + (not (math-expr-contains (nth 1 expr) var)) + (not (math-equal-int (nth 1 expr) 1))) + (math-mul (nth 1 expr) + (calcFunc-integ (math-div 1 (nth 2 expr)) var low high))) + ((and (eq (car-safe expr) '/) + (not (math-expr-contains (nth 2 expr) var))) + (math-div (calcFunc-integ (nth 1 expr) var low high) (nth 2 expr))) + ((and (eq (car-safe expr) '/) + (eq (car-safe (nth 1 expr)) '*) + (not (math-expr-contains (nth 1 (nth 1 expr)) var))) + (math-mul (nth 1 (nth 1 expr)) + (calcFunc-integ (math-div (nth 2 (nth 1 expr)) (nth 2 expr)) + var low high))) + ((and (eq (car-safe expr) '/) + (eq (car-safe (nth 1 expr)) '*) + (not (math-expr-contains (nth 2 (nth 1 expr)) var))) + (math-mul (nth 2 (nth 1 expr)) + (calcFunc-integ (math-div (nth 1 (nth 1 expr)) (nth 2 expr)) + var low high))) + ((and (eq (car-safe expr) '/) + (eq (car-safe (nth 2 expr)) '*) + (not (math-expr-contains (nth 1 (nth 2 expr)) var))) + (math-div (calcFunc-integ (math-div (nth 1 expr) (nth 2 (nth 2 expr))) + var low high) + (nth 1 (nth 2 expr)))) + ((and (eq (car-safe expr) '/) + (eq (car-safe (nth 2 expr)) '*) + (not (math-expr-contains (nth 2 (nth 2 expr)) var))) + (math-div (calcFunc-integ (math-div (nth 1 expr) (nth 1 (nth 2 expr))) + var low high) + (nth 2 (nth 2 expr)))) + ((eq (car-safe expr) 'vec) + (cons 'vec (mapcar (function (lambda (x) (calcFunc-integ x var low high))) + (cdr expr)))) + (t + (let ((state (list calc-angle-mode + ;;calc-symbolic-mode + ;;calc-prefer-frac + calc-internal-prec + (calc-var-value 'var-IntegRules) + (calc-var-value 'var-IntegSimpRules)))) + (or (equal state math-integral-cache-state) + (setq math-integral-cache-state state + math-integral-cache nil))) + (let* ((math-max-integral-limit (or (and (boundp 'var-IntegLimit) + (natnump var-IntegLimit) + var-IntegLimit) + 3)) + (math-integral-limit 1) + (sexpr (math-expr-subst expr var math-integ-var)) + (trace-buffer (get-buffer "*Trace*")) + (calc-language (if (eq calc-language 'big) nil calc-language)) + (math-any-substs t) + (math-enable-subst nil) + (math-prev-parts-v nil) + (math-doing-parts nil) + (math-good-parts nil) + (res + (if trace-buffer + (let ((calcbuf (current-buffer)) + (calcwin (selected-window))) + (unwind-protect + (progn + (if (get-buffer-window trace-buffer) + (select-window (get-buffer-window trace-buffer))) + (set-buffer trace-buffer) + (goto-char (point-max)) + (or (assq 'scroll-stop (buffer-local-variables)) + (progn + (make-local-variable 'scroll-step) + (setq scroll-step 3))) + (insert "\n\n\n") + (set-buffer calcbuf) + (math-try-integral sexpr)) + (select-window calcwin) + (set-buffer calcbuf))) + (math-try-integral sexpr)))) + (if res + (progn + (if (calc-has-rules 'var-IntegAfterRules) + (setq res (math-rewrite res '(var IntegAfterRules + var-IntegAfterRules)))) + (math-simplify + (if (and low high) + (math-sub (math-expr-subst res math-integ-var high) + (math-expr-subst res math-integ-var low)) + (setq res (math-fix-const-terms res math-integ-vars)) + (if low + (math-expr-subst res math-integ-var low) + (math-expr-subst res math-integ-var var))))) + (append (list 'calcFunc-integ expr var) + (and low (list low)) + (and high (list high))))))) +) + + +(math-defintegral calcFunc-inv + (math-integral (math-div 1 u))) + +(math-defintegral calcFunc-conj + (let ((int (math-integral u))) + (and int + (list 'calcFunc-conj int)))) + +(math-defintegral calcFunc-deg + (let ((int (math-integral u))) + (and int + (list 'calcFunc-deg int)))) + +(math-defintegral calcFunc-rad + (let ((int (math-integral u))) + (and int + (list 'calcFunc-rad int)))) + +(math-defintegral calcFunc-re + (let ((int (math-integral u))) + (and int + (list 'calcFunc-re int)))) + +(math-defintegral calcFunc-im + (let ((int (math-integral u))) + (and int + (list 'calcFunc-im int)))) + +(math-defintegral calcFunc-sqrt + (and (equal u math-integ-var) + (math-mul '(frac 2 3) + (list 'calcFunc-sqrt (math-pow u 3))))) + +(math-defintegral calcFunc-exp + (or (and (equal u math-integ-var) + (list 'calcFunc-exp u)) + (let ((p (math-is-polynomial u math-integ-var 2))) + (and (nth 2 p) + (let ((sqa (math-sqrt (math-neg (nth 2 p))))) + (math-div + (math-mul + (math-mul (math-div (list 'calcFunc-sqrt '(var pi var-pi)) + sqa) + (math-normalize + (list 'calcFunc-exp + (math-div (math-sub (math-mul (car p) + (nth 2 p)) + (math-div + (math-sqr (nth 1 p)) + 4)) + (nth 2 p))))) + (list 'calcFunc-erf + (math-sub (math-mul sqa math-integ-var) + (math-div (nth 1 p) (math-mul 2 sqa))))) + 2)))))) + +(math-defintegral calcFunc-ln + (or (and (equal u math-integ-var) + (math-sub (math-mul u (list 'calcFunc-ln u)) u)) + (and (eq (car u) '*) + (math-integral (math-add (list 'calcFunc-ln (nth 1 u)) + (list 'calcFunc-ln (nth 2 u))))) + (and (eq (car u) '/) + (math-integral (math-sub (list 'calcFunc-ln (nth 1 u)) + (list 'calcFunc-ln (nth 2 u))))) + (and (eq (car u) '^) + (math-integral (math-mul (nth 2 u) + (list 'calcFunc-ln (nth 1 u))))))) + +(math-defintegral calcFunc-log10 + (and (equal u math-integ-var) + (math-sub (math-mul u (list 'calcFunc-ln u)) + (math-div u (list 'calcFunc-ln 10))))) + +(math-defintegral-2 calcFunc-log + (math-integral (math-div (list 'calcFunc-ln u) + (list 'calcFunc-ln v)))) + +(math-defintegral calcFunc-sin + (or (and (equal u math-integ-var) + (math-neg (math-from-radians-2 (list 'calcFunc-cos u)))) + (and (nth 2 (math-is-polynomial u math-integ-var 2)) + (math-integral (math-to-exponentials (list 'calcFunc-sin u)))))) + +(math-defintegral calcFunc-cos + (or (and (equal u math-integ-var) + (math-from-radians-2 (list 'calcFunc-sin u))) + (and (nth 2 (math-is-polynomial u math-integ-var 2)) + (math-integral (math-to-exponentials (list 'calcFunc-cos u)))))) + +(math-defintegral calcFunc-tan + (and (equal u math-integ-var) + (math-neg (math-from-radians-2 + (list 'calcFunc-ln (list 'calcFunc-cos u)))))) + +(math-defintegral calcFunc-arcsin + (and (equal u math-integ-var) + (math-add (math-mul u (list 'calcFunc-arcsin u)) + (math-from-radians-2 + (list 'calcFunc-sqrt (math-sub 1 (math-sqr u))))))) + +(math-defintegral calcFunc-arccos + (and (equal u math-integ-var) + (math-sub (math-mul u (list 'calcFunc-arccos u)) + (math-from-radians-2 + (list 'calcFunc-sqrt (math-sub 1 (math-sqr u))))))) + +(math-defintegral calcFunc-arctan + (and (equal u math-integ-var) + (math-sub (math-mul u (list 'calcFunc-arctan u)) + (math-from-radians-2 + (math-div (list 'calcFunc-ln (math-add 1 (math-sqr u))) + 2))))) + +(math-defintegral calcFunc-sinh + (and (equal u math-integ-var) + (list 'calcFunc-cosh u))) + +(math-defintegral calcFunc-cosh + (and (equal u math-integ-var) + (list 'calcFunc-sinh u))) + +(math-defintegral calcFunc-tanh + (and (equal u math-integ-var) + (list 'calcFunc-ln (list 'calcFunc-cosh u)))) + +(math-defintegral calcFunc-arcsinh + (and (equal u math-integ-var) + (math-sub (math-mul u (list 'calcFunc-arcsinh u)) + (list 'calcFunc-sqrt (math-add (math-sqr u) 1))))) + +(math-defintegral calcFunc-arccosh + (and (equal u math-integ-var) + (math-sub (math-mul u (list 'calcFunc-arccosh u)) + (list 'calcFunc-sqrt (math-sub 1 (math-sqr u)))))) + +(math-defintegral calcFunc-arctanh + (and (equal u math-integ-var) + (math-sub (math-mul u (list 'calcFunc-arctan u)) + (math-div (list 'calcFunc-ln + (math-add 1 (math-sqr u))) + 2)))) + +;;; (Ax + B) / (ax^2 + bx + c)^n forms. +(math-defintegral-2 / + (math-integral-rational-funcs u v)) + +(defun math-integral-rational-funcs (u v) + (let ((pu (math-is-polynomial u math-integ-var 1)) + (vpow 1) pv) + (and pu + (catch 'int-rat + (if (and (eq (car-safe v) '^) (natnump (nth 2 v))) + (setq vpow (nth 2 v) + v (nth 1 v))) + (and (setq pv (math-is-polynomial v math-integ-var 2)) + (let ((int (math-mul-thru + (car pu) + (math-integral-q02 (car pv) (nth 1 pv) + (nth 2 pv) v vpow)))) + (if (cdr pu) + (setq int (math-add int + (math-mul-thru + (nth 1 pu) + (math-integral-q12 + (car pv) (nth 1 pv) + (nth 2 pv) v vpow))))) + int)))))) + +(defun math-integral-q12 (a b c v vpow) + (let (q) + (cond ((not c) + (cond ((= vpow 1) + (math-sub (math-div math-integ-var b) + (math-mul (math-div a (math-sqr b)) + (list 'calcFunc-ln v)))) + ((= vpow 2) + (math-div (math-add (list 'calcFunc-ln v) + (math-div a v)) + (math-sqr b))) + (t + (let ((nm1 (math-sub vpow 1)) + (nm2 (math-sub vpow 2))) + (math-div (math-sub + (math-div a (math-mul nm1 (math-pow v nm1))) + (math-div 1 (math-mul nm2 (math-pow v nm2)))) + (math-sqr b)))))) + ((math-zerop + (setq q (math-sub (math-mul 4 (math-mul a c)) (math-sqr b)))) + (let ((part (math-div b (math-mul 2 c)))) + (math-mul-thru (math-pow c vpow) + (math-integral-q12 part 1 nil + (math-add math-integ-var part) + (* vpow 2))))) + ((= vpow 1) + (and (math-ratp q) (math-negp q) + (let ((calc-symbolic-mode t)) + (math-ratp (math-sqrt (math-neg q)))) + (throw 'int-rat nil)) ; should have used calcFunc-apart first + (math-sub (math-div (list 'calcFunc-ln v) (math-mul 2 c)) + (math-mul-thru (math-div b (math-mul 2 c)) + (math-integral-q02 a b c v 1)))) + (t + (let ((n (1- vpow))) + (math-sub (math-neg (math-div + (math-add (math-mul b math-integ-var) + (math-mul 2 a)) + (math-mul n (math-mul q (math-pow v n))))) + (math-mul-thru (math-div (math-mul b (1- (* 2 n))) + (math-mul n q)) + (math-integral-q02 a b c v n))))))) +) + +(defun math-integral-q02 (a b c v vpow) + (let (q rq part) + (cond ((not c) + (cond ((= vpow 1) + (math-div (list 'calcFunc-ln v) b)) + (t + (math-div (math-pow v (- 1 vpow)) + (math-mul (- 1 vpow) b))))) + ((math-zerop + (setq q (math-sub (math-mul 4 (math-mul a c)) (math-sqr b)))) + (let ((part (math-div b (math-mul 2 c)))) + (math-mul-thru (math-pow c vpow) + (math-integral-q02 part 1 nil + (math-add math-integ-var part) + (* vpow 2))))) + ((progn + (setq part (math-add (math-mul 2 (math-mul c math-integ-var)) b)) + (> vpow 1)) + (let ((n (1- vpow))) + (math-add (math-div part (math-mul n (math-mul q (math-pow v n)))) + (math-mul-thru (math-div (math-mul (- (* 4 n) 2) c) + (math-mul n q)) + (math-integral-q02 a b c v n))))) + ((math-guess-if-neg q) + (setq rq (list 'calcFunc-sqrt (math-neg q))) + ;;(math-div-thru (list 'calcFunc-ln + ;; (math-div (math-sub part rq) + ;; (math-add part rq))) + ;; rq) + (math-div (math-mul -2 (list 'calcFunc-arctanh + (math-div part rq))) + rq)) + (t + (setq rq (list 'calcFunc-sqrt q)) + (math-div (math-mul 2 (math-to-radians-2 + (list 'calcFunc-arctan + (math-div part rq)))) + rq)))) +) + + +(math-defintegral calcFunc-erf + (and (equal u math-integ-var) + (math-add (math-mul u (list 'calcFunc-erf u)) + (math-div 1 (math-mul (list 'calcFunc-exp (math-sqr u)) + (list 'calcFunc-sqrt + '(var pi var-pi))))))) + +(math-defintegral calcFunc-erfc + (and (equal u math-integ-var) + (math-sub (math-mul u (list 'calcFunc-erfc u)) + (math-div 1 (math-mul (list 'calcFunc-exp (math-sqr u)) + (list 'calcFunc-sqrt + '(var pi var-pi))))))) + + + + +(defun calcFunc-table (expr var &optional low high step) + (or low (setq low '(neg (var inf var-inf)) high '(var inf var-inf))) + (or high (setq high low low 1)) + (and (or (math-infinitep low) (math-infinitep high)) + (not step) + (math-scan-for-limits expr)) + (and step (math-zerop step) (math-reject-arg step 'nonzerop)) + (let ((known (+ (if (Math-objectp low) 1 0) + (if (Math-objectp high) 1 0) + (if (or (null step) (Math-objectp step)) 1 0))) + (count '(var inf var-inf)) + vec) + (or (= known 2) ; handy optimization + (equal high '(var inf var-inf)) + (progn + (setq count (math-div (math-sub high low) (or step 1))) + (or (Math-objectp count) + (setq count (math-simplify count))) + (if (Math-messy-integerp count) + (setq count (math-trunc count))))) + (if (Math-negp count) + (setq count -1)) + (if (integerp count) + (let ((var-DUMMY nil) + (vec math-tabulate-initial) + (math-working-step-2 (1+ count)) + (math-working-step 0)) + (setq expr (math-evaluate-expr + (math-expr-subst expr var '(var DUMMY var-DUMMY)))) + (while (>= count 0) + (setq math-working-step (1+ math-working-step) + var-DUMMY low + vec (cond ((eq math-tabulate-function 'calcFunc-sum) + (math-add vec (math-evaluate-expr expr))) + ((eq math-tabulate-function 'calcFunc-prod) + (math-mul vec (math-evaluate-expr expr))) + (t + (cons (math-evaluate-expr expr) vec))) + low (math-add low (or step 1)) + count (1- count))) + (if math-tabulate-function + vec + (cons 'vec (nreverse vec)))) + (if (Math-integerp count) + (calc-record-why 'fixnump high) + (if (Math-num-integerp low) + (if (Math-num-integerp high) + (calc-record-why 'integerp step) + (calc-record-why 'integerp high)) + (calc-record-why 'integerp low))) + (append (list (or math-tabulate-function 'calcFunc-table) + expr var) + (and (not (and (equal low '(neg (var inf var-inf))) + (equal high '(var inf var-inf)))) + (list low high)) + (and step (list step))))) +) + +(setq math-tabulate-initial nil) +(setq math-tabulate-function nil) + +(defun math-scan-for-limits (x) + (cond ((Math-primp x)) + ((and (eq (car x) 'calcFunc-subscr) + (Math-vectorp (nth 1 x)) + (math-expr-contains (nth 2 x) var)) + (let* ((calc-next-why nil) + (low-val (math-solve-for (nth 2 x) 1 var nil)) + (high-val (math-solve-for (nth 2 x) (1- (length (nth 1 x))) + var nil)) + temp) + (and low-val (math-realp low-val) + high-val (math-realp high-val)) + (and (Math-lessp high-val low-val) + (setq temp low-val low-val high-val high-val temp)) + (setq low (math-max low (math-ceiling low-val)) + high (math-min high (math-floor high-val))))) + (t + (while (setq x (cdr x)) + (math-scan-for-limits (car x))))) +) + + +(defun calcFunc-sum (expr var &optional low high step) + (if math-disable-sums (math-reject-arg)) + (let* ((res (let* ((calc-internal-prec (+ calc-internal-prec 2))) + (math-sum-rec expr var low high step))) + (math-disable-sums t)) + (math-normalize res)) +) +(setq math-disable-sums nil) + +(defun math-sum-rec (expr var &optional low high step) + (or low (setq low '(neg (var inf var-inf)) high '(var inf var-inf))) + (and low (not high) (setq high low low 1)) + (let (t1 t2 val) + (setq val + (cond + ((not (math-expr-contains expr var)) + (math-mul expr (math-add (math-div (math-sub high low) (or step 1)) + 1))) + ((and step (not (math-equal-int step 1))) + (if (math-negp step) + (math-sum-rec expr var high low (math-neg step)) + (let ((lo (math-simplify (math-div low step)))) + (if (math-known-num-integerp lo) + (math-sum-rec (math-normalize + (math-expr-subst expr var + (math-mul step var))) + var lo (math-simplify (math-div high step))) + (math-sum-rec (math-normalize + (math-expr-subst expr var + (math-add (math-mul step var) + low))) + var 0 + (math-simplify (math-div (math-sub high low) + step))))))) + ((memq (setq t1 (math-compare low high)) '(0 1)) + (if (eq t1 0) + (math-expr-subst expr var low) + 0)) + ((setq t1 (math-is-polynomial expr var 20)) + (let ((poly nil) + (n 0)) + (while t1 + (setq poly (math-poly-mix poly 1 + (math-sum-integer-power n) (car t1)) + n (1+ n) + t1 (cdr t1))) + (setq n (math-build-polynomial-expr poly high)) + (if (memq low '(0 1)) + n + (math-sub n (math-build-polynomial-expr poly + (math-sub low 1)))))) + ((and (memq (car expr) '(+ -)) + (setq t1 (math-sum-rec (nth 1 expr) var low high) + t2 (math-sum-rec (nth 2 expr) var low high)) + (not (and (math-expr-calls t1 '(calcFunc-sum)) + (math-expr-calls t2 '(calcFunc-sum))))) + (list (car expr) t1 t2)) + ((and (eq (car expr) '*) + (setq t1 (math-sum-const-factors expr var))) + (math-mul (car t1) (math-sum-rec (cdr t1) var low high))) + ((and (eq (car expr) '*) (memq (car-safe (nth 1 expr)) '(+ -))) + (math-sum-rec (math-add-or-sub (math-mul (nth 1 (nth 1 expr)) + (nth 2 expr)) + (math-mul (nth 2 (nth 1 expr)) + (nth 2 expr)) + nil (eq (car (nth 1 expr)) '-)) + var low high)) + ((and (eq (car expr) '*) (memq (car-safe (nth 2 expr)) '(+ -))) + (math-sum-rec (math-add-or-sub (math-mul (nth 1 expr) + (nth 1 (nth 2 expr))) + (math-mul (nth 1 expr) + (nth 2 (nth 2 expr))) + nil (eq (car (nth 2 expr)) '-)) + var low high)) + ((and (eq (car expr) '/) + (not (math-primp (nth 1 expr))) + (setq t1 (math-sum-const-factors (nth 1 expr) var))) + (math-mul (car t1) + (math-sum-rec (math-div (cdr t1) (nth 2 expr)) + var low high))) + ((and (eq (car expr) '/) + (setq t1 (math-sum-const-factors (nth 2 expr) var))) + (math-div (math-sum-rec (math-div (nth 1 expr) (cdr t1)) + var low high) + (car t1))) + ((eq (car expr) 'neg) + (math-neg (math-sum-rec (nth 1 expr) var low high))) + ((and (eq (car expr) '^) + (not (math-expr-contains (nth 1 expr) var)) + (setq t1 (math-is-polynomial (nth 2 expr) var 1))) + (let ((x (math-pow (nth 1 expr) (nth 1 t1)))) + (math-div (math-mul (math-sub (math-pow x (math-add 1 high)) + (math-pow x low)) + (math-pow (nth 1 expr) (car t1))) + (math-sub x 1)))) + ((and (setq t1 (math-to-exponentials expr)) + (setq t1 (math-sum-rec t1 var low high)) + (not (math-expr-calls t1 '(calcFunc-sum)))) + (math-to-exps t1)) + ((memq (car expr) '(calcFunc-ln calcFunc-log10)) + (list (car expr) (calcFunc-prod (nth 1 expr) var low high))) + ((and (eq (car expr) 'calcFunc-log) + (= (length expr) 3) + (not (math-expr-contains (nth 2 expr) var))) + (list 'calcFunc-log + (calcFunc-prod (nth 1 expr) var low high) + (nth 2 expr))))) + (if (equal val '(var nan var-nan)) (setq val nil)) + (or val + (let* ((math-tabulate-initial 0) + (math-tabulate-function 'calcFunc-sum)) + (calcFunc-table expr var low high)))) +) + +(defun calcFunc-asum (expr var low &optional high step no-mul-flag) + (or high (setq high low low 1)) + (if (and step (not (math-equal-int step 1))) + (if (math-negp step) + (math-mul (math-pow -1 low) + (calcFunc-asum expr var high low (math-neg step) t)) + (let ((lo (math-simplify (math-div low step)))) + (if (math-num-integerp lo) + (calcFunc-asum (math-normalize + (math-expr-subst expr var + (math-mul step var))) + var lo (math-simplify (math-div high step))) + (calcFunc-asum (math-normalize + (math-expr-subst expr var + (math-add (math-mul step var) + low))) + var 0 + (math-simplify (math-div (math-sub high low) + step)))))) + (math-mul (if no-mul-flag 1 (math-pow -1 low)) + (calcFunc-sum (math-mul (math-pow -1 var) expr) var low high))) +) + +(defun math-sum-const-factors (expr var) + (let ((const nil) + (not-const nil) + (p expr)) + (while (eq (car-safe p) '*) + (if (math-expr-contains (nth 1 p) var) + (setq not-const (cons (nth 1 p) not-const)) + (setq const (cons (nth 1 p) const))) + (setq p (nth 2 p))) + (if (math-expr-contains p var) + (setq not-const (cons p not-const)) + (setq const (cons p const))) + (and const + (cons (let ((temp (car const))) + (while (setq const (cdr const)) + (setq temp (list '* (car const) temp))) + temp) + (let ((temp (or (car not-const) 1))) + (while (setq not-const (cdr not-const)) + (setq temp (list '* (car not-const) temp))) + temp)))) +) + +;; Following is from CRC Math Tables, 27th ed, pp. 52-53. +(defun math-sum-integer-power (pow) + (let ((calc-prefer-frac t) + (n (length math-sum-int-pow-cache))) + (while (<= n pow) + (let* ((new (list 0 0)) + (lin new) + (pp (cdr (nth (1- n) math-sum-int-pow-cache))) + (p 2) + (sum 0) + q) + (while pp + (setq q (math-div (car pp) p) + new (cons (math-mul q n) new) + sum (math-add sum q) + p (1+ p) + pp (cdr pp))) + (setcar lin (math-sub 1 (math-mul n sum))) + (setq math-sum-int-pow-cache + (nconc math-sum-int-pow-cache (list (nreverse new))) + n (1+ n)))) + (nth pow math-sum-int-pow-cache)) +) +(setq math-sum-int-pow-cache (list '(0 1))) + +(defun math-to-exponentials (expr) + (and (consp expr) + (= (length expr) 2) + (let ((x (nth 1 expr)) + (pi (if calc-symbolic-mode '(var pi var-pi) (math-pi))) + (i (if calc-symbolic-mode '(var i var-i) '(cplx 0 1)))) + (cond ((eq (car expr) 'calcFunc-exp) + (list '^ '(var e var-e) x)) + ((eq (car expr) 'calcFunc-sin) + (or (eq calc-angle-mode 'rad) + (setq x (list '/ (list '* x pi) 180))) + (list '/ (list '- + (list '^ '(var e var-e) (list '* x i)) + (list '^ '(var e var-e) + (list 'neg (list '* x i)))) + (list '* 2 i))) + ((eq (car expr) 'calcFunc-cos) + (or (eq calc-angle-mode 'rad) + (setq x (list '/ (list '* x pi) 180))) + (list '/ (list '+ + (list '^ '(var e var-e) + (list '* x i)) + (list '^ '(var e var-e) + (list 'neg (list '* x i)))) + 2)) + ((eq (car expr) 'calcFunc-sinh) + (list '/ (list '- + (list '^ '(var e var-e) x) + (list '^ '(var e var-e) (list 'neg x))) + 2)) + ((eq (car expr) 'calcFunc-cosh) + (list '/ (list '+ + (list '^ '(var e var-e) x) + (list '^ '(var e var-e) (list 'neg x))) + 2)) + (t nil)))) +) + +(defun math-to-exps (expr) + (cond (calc-symbolic-mode expr) + ((Math-primp expr) + (if (equal expr '(var e var-e)) (math-e) expr)) + ((and (eq (car expr) '^) + (equal (nth 1 expr) '(var e var-e))) + (list 'calcFunc-exp (nth 2 expr))) + (t + (cons (car expr) (mapcar 'math-to-exps (cdr expr))))) +) + + +(defun calcFunc-prod (expr var &optional low high step) + (if math-disable-prods (math-reject-arg)) + (let* ((res (let* ((calc-internal-prec (+ calc-internal-prec 2))) + (math-prod-rec expr var low high step))) + (math-disable-prods t)) + (math-normalize res)) +) +(setq math-disable-prods nil) + +(defun math-prod-rec (expr var &optional low high step) + (or low (setq low '(neg (var inf var-inf)) high '(var inf var-inf))) + (and low (not high) (setq high '(var inf var-inf))) + (let (t1 t2 t3 val) + (setq val + (cond + ((not (math-expr-contains expr var)) + (math-pow expr (math-add (math-div (math-sub high low) (or step 1)) + 1))) + ((and step (not (math-equal-int step 1))) + (if (math-negp step) + (math-prod-rec expr var high low (math-neg step)) + (let ((lo (math-simplify (math-div low step)))) + (if (math-known-num-integerp lo) + (math-prod-rec (math-normalize + (math-expr-subst expr var + (math-mul step var))) + var lo (math-simplify (math-div high step))) + (math-prod-rec (math-normalize + (math-expr-subst expr var + (math-add (math-mul step + var) + low))) + var 0 + (math-simplify (math-div (math-sub high low) + step))))))) + ((and (memq (car expr) '(* /)) + (setq t1 (math-prod-rec (nth 1 expr) var low high) + t2 (math-prod-rec (nth 2 expr) var low high)) + (not (and (math-expr-calls t1 '(calcFunc-prod)) + (math-expr-calls t2 '(calcFunc-prod))))) + (list (car expr) t1 t2)) + ((and (eq (car expr) '^) + (not (math-expr-contains (nth 2 expr) var))) + (math-pow (math-prod-rec (nth 1 expr) var low high) + (nth 2 expr))) + ((and (eq (car expr) '^) + (not (math-expr-contains (nth 1 expr) var))) + (math-pow (nth 1 expr) + (calcFunc-sum (nth 2 expr) var low high))) + ((eq (car expr) 'sqrt) + (math-normalize (list 'calcFunc-sqrt + (list 'calcFunc-prod (nth 1 expr) + var low high)))) + ((eq (car expr) 'neg) + (math-mul (math-pow -1 (math-add (math-sub high low) 1)) + (math-prod-rec (nth 1 expr) var low high))) + ((eq (car expr) 'calcFunc-exp) + (list 'calcFunc-exp (calcFunc-sum (nth 1 expr) var low high))) + ((and (setq t1 (math-is-polynomial expr var 1)) + (setq t2 + (cond + ((or (and (math-equal-int (nth 1 t1) 1) + (setq low (math-simplify + (math-add low (car t1))) + high (math-simplify + (math-add high (car t1))))) + (and (math-equal-int (nth 1 t1) -1) + (setq t2 low + low (math-simplify + (math-sub (car t1) high)) + high (math-simplify + (math-sub (car t1) t2))))) + (if (or (math-zerop low) (math-zerop high)) + 0 + (if (and (or (math-negp low) (math-negp high)) + (or (math-num-integerp low) + (math-num-integerp high))) + (if (math-posp high) + 0 + (math-mul (math-pow -1 + (math-add + (math-add low high) 1)) + (list '/ + (list 'calcFunc-fact + (math-neg low)) + (list 'calcFunc-fact + (math-sub -1 high))))) + (list '/ + (list 'calcFunc-fact high) + (list 'calcFunc-fact (math-sub low 1)))))) + ((and (or (and (math-equal-int (nth 1 t1) 2) + (setq t2 (math-simplify + (math-add (math-mul low 2) + (car t1))) + t3 (math-simplify + (math-add (math-mul high 2) + (car t1))))) + (and (math-equal-int (nth 1 t1) -2) + (setq t2 (math-simplify + (math-sub (car t1) + (math-mul high 2))) + t3 (math-simplify + (math-sub (car t1) + (math-mul low + 2)))))) + (or (math-integerp t2) + (and (math-messy-integerp t2) + (setq t2 (math-trunc t2))) + (math-integerp t3) + (and (math-messy-integerp t3) + (setq t3 (math-trunc t3))))) + (if (or (math-zerop t2) (math-zerop t3)) + 0 + (if (or (math-evenp t2) (math-evenp t3)) + (if (or (math-negp t2) (math-negp t3)) + (if (math-posp high) + 0 + (list '/ + (list 'calcFunc-dfact + (math-neg t2)) + (list 'calcFunc-dfact + (math-sub -2 t3)))) + (list '/ + (list 'calcFunc-dfact t3) + (list 'calcFunc-dfact + (math-sub t2 2)))) + (if (math-negp t3) + (list '* + (list '^ -1 + (list '/ (list '- (list '- t2 t3) + 2) + 2)) + (list '/ + (list 'calcFunc-dfact + (math-neg t2)) + (list 'calcFunc-dfact + (math-sub -2 t3)))) + (if (math-posp t2) + (list '/ + (list 'calcFunc-dfact t3) + (list 'calcFunc-dfact + (math-sub t2 2))) + nil)))))))) + t2))) + (if (equal val '(var nan var-nan)) (setq val nil)) + (or val + (let* ((math-tabulate-initial 1) + (math-tabulate-function 'calcFunc-prod)) + (calcFunc-table expr var low high)))) +) + + + + +;;; Attempt to reduce lhs = rhs to solve-var = rhs', where solve-var appears +;;; in lhs but not in rhs or rhs'; return rhs'. +;;; Uses global values: solve-*. +(defun math-try-solve-for (lhs rhs &optional sign no-poly) + (let (t1 t2 t3) + (cond ((equal lhs solve-var) + (setq math-solve-sign sign) + (if (eq solve-full 'all) + (let ((vec (list 'vec (math-evaluate-expr rhs))) + newvec var p) + (while math-solve-ranges + (setq p (car math-solve-ranges) + var (car p) + newvec (list 'vec)) + (while (setq p (cdr p)) + (setq newvec (nconc newvec + (cdr (math-expr-subst + vec var (car p)))))) + (setq vec newvec + math-solve-ranges (cdr math-solve-ranges))) + (math-normalize vec)) + rhs)) + ((Math-primp lhs) + nil) + ((and (eq (car lhs) '-) + (eq (car-safe (nth 1 lhs)) (car-safe (nth 2 lhs))) + (Math-zerop rhs) + (= (length (nth 1 lhs)) 2) + (= (length (nth 2 lhs)) 2) + (setq t1 (get (car (nth 1 lhs)) 'math-inverse)) + (setq t2 (funcall t1 '(var SOLVEDUM SOLVEDUM))) + (eq (math-expr-contains-count t2 '(var SOLVEDUM SOLVEDUM)) 1) + (setq t3 (math-solve-above-dummy t2)) + (setq t1 (math-try-solve-for (math-sub (nth 1 (nth 1 lhs)) + (math-expr-subst + t2 t3 + (nth 1 (nth 2 lhs)))) + 0))) + t1) + ((eq (car lhs) 'neg) + (math-try-solve-for (nth 1 lhs) (math-neg rhs) + (and sign (- sign)))) + ((and (not (eq solve-full 't)) (math-try-solve-prod))) + ((and (not no-poly) + (setq t2 (math-decompose-poly lhs solve-var 15 rhs))) + (setq t1 (cdr (nth 1 t2)) + t1 (let ((math-solve-ranges math-solve-ranges)) + (cond ((= (length t1) 5) + (apply 'math-solve-quartic (car t2) t1)) + ((= (length t1) 4) + (apply 'math-solve-cubic (car t2) t1)) + ((= (length t1) 3) + (apply 'math-solve-quadratic (car t2) t1)) + ((= (length t1) 2) + (apply 'math-solve-linear (car t2) sign t1)) + (solve-full + (math-poly-all-roots (car t2) t1)) + (calc-symbolic-mode nil) + (t + (math-try-solve-for + (car t2) + (math-poly-any-root (reverse t1) 0 t) + nil t))))) + (if t1 + (if (eq (nth 2 t2) 1) + t1 + (math-solve-prod t1 (math-try-solve-for (nth 2 t2) 0 nil t))) + (calc-record-why "*Unable to find a symbolic solution") + nil)) + ((and (math-solve-find-root-term lhs nil) + (eq (math-expr-contains-count lhs t1) 1)) ; just in case + (math-try-solve-for (math-simplify + (math-sub (if (or t3 (math-evenp t2)) + (math-pow t1 t2) + (math-neg (math-pow t1 t2))) + (math-expand-power + (math-sub (math-normalize + (math-expr-subst + lhs t1 0)) + rhs) + t2 solve-var))) + 0)) + ((eq (car lhs) '+) + (cond ((not (math-expr-contains (nth 1 lhs) solve-var)) + (math-try-solve-for (nth 2 lhs) + (math-sub rhs (nth 1 lhs)) + sign)) + ((not (math-expr-contains (nth 2 lhs) solve-var)) + (math-try-solve-for (nth 1 lhs) + (math-sub rhs (nth 2 lhs)) + sign)))) + ((eq (car lhs) 'calcFunc-eq) + (math-try-solve-for (math-sub (nth 1 lhs) (nth 2 lhs)) + rhs sign no-poly)) + ((eq (car lhs) '-) + (cond ((or (and (eq (car-safe (nth 1 lhs)) 'calcFunc-sin) + (eq (car-safe (nth 2 lhs)) 'calcFunc-cos)) + (and (eq (car-safe (nth 1 lhs)) 'calcFunc-cos) + (eq (car-safe (nth 2 lhs)) 'calcFunc-sin))) + (math-try-solve-for (math-sub (nth 1 lhs) + (list (car (nth 1 lhs)) + (math-sub + (math-quarter-circle t) + (nth 1 (nth 2 lhs))))) + rhs)) + ((not (math-expr-contains (nth 1 lhs) solve-var)) + (math-try-solve-for (nth 2 lhs) + (math-sub (nth 1 lhs) rhs) + (and sign (- sign)))) + ((not (math-expr-contains (nth 2 lhs) solve-var)) + (math-try-solve-for (nth 1 lhs) + (math-add rhs (nth 2 lhs)) + sign)))) + ((and (eq solve-full 't) (math-try-solve-prod))) + ((and (eq (car lhs) '%) + (not (math-expr-contains (nth 2 lhs) solve-var))) + (math-try-solve-for (nth 1 lhs) (math-add rhs + (math-solve-get-int + (nth 2 lhs))))) + ((eq (car lhs) 'calcFunc-log) + (cond ((not (math-expr-contains (nth 2 lhs) solve-var)) + (math-try-solve-for (nth 1 lhs) (math-pow (nth 2 lhs) rhs))) + ((not (math-expr-contains (nth 1 lhs) solve-var)) + (math-try-solve-for (nth 2 lhs) (math-pow + (nth 1 lhs) + (math-div 1 rhs)))))) + ((and (= (length lhs) 2) + (symbolp (car lhs)) + (setq t1 (get (car lhs) 'math-inverse)) + (setq t2 (funcall t1 rhs))) + (setq t1 (get (car lhs) 'math-inverse-sign)) + (math-try-solve-for (nth 1 lhs) (math-normalize t2) + (and sign t1 + (if (integerp t1) + (* t1 sign) + (funcall t1 lhs sign))))) + ((and (symbolp (car lhs)) + (setq t1 (get (car lhs) 'math-inverse-n)) + (setq t2 (funcall t1 lhs rhs))) + t2) + ((setq t1 (math-expand-formula lhs)) + (math-try-solve-for t1 rhs sign)) + (t + (calc-record-why "*No inverse known" lhs) + nil))) +) + +(setq math-solve-ranges nil) + +(defun math-try-solve-prod () + (cond ((eq (car lhs) '*) + (cond ((not (math-expr-contains (nth 1 lhs) solve-var)) + (math-try-solve-for (nth 2 lhs) + (math-div rhs (nth 1 lhs)) + (math-solve-sign sign (nth 1 lhs)))) + ((not (math-expr-contains (nth 2 lhs) solve-var)) + (math-try-solve-for (nth 1 lhs) + (math-div rhs (nth 2 lhs)) + (math-solve-sign sign (nth 2 lhs)))) + ((Math-zerop rhs) + (math-solve-prod (let ((math-solve-ranges math-solve-ranges)) + (math-try-solve-for (nth 2 lhs) 0)) + (math-try-solve-for (nth 1 lhs) 0))))) + ((eq (car lhs) '/) + (cond ((not (math-expr-contains (nth 1 lhs) solve-var)) + (math-try-solve-for (nth 2 lhs) + (math-div (nth 1 lhs) rhs) + (math-solve-sign sign (nth 1 lhs)))) + ((not (math-expr-contains (nth 2 lhs) solve-var)) + (math-try-solve-for (nth 1 lhs) + (math-mul rhs (nth 2 lhs)) + (math-solve-sign sign (nth 2 lhs)))) + ((setq t1 (math-try-solve-for (math-sub (nth 1 lhs) + (math-mul (nth 2 lhs) + rhs)) + 0)) + t1))) + ((eq (car lhs) '^) + (cond ((not (math-expr-contains (nth 1 lhs) solve-var)) + (math-try-solve-for + (nth 2 lhs) + (math-add (math-normalize + (list 'calcFunc-log rhs (nth 1 lhs))) + (math-div + (math-mul 2 + (math-mul '(var pi var-pi) + (math-solve-get-int + '(var i var-i)))) + (math-normalize + (list 'calcFunc-ln (nth 1 lhs))))))) + ((not (math-expr-contains (nth 2 lhs) solve-var)) + (cond ((and (integerp (nth 2 lhs)) + (>= (nth 2 lhs) 2) + (setq t1 (math-integer-log2 (nth 2 lhs)))) + (setq t2 rhs) + (if (and (eq solve-full t) + (math-known-realp (nth 1 lhs))) + (progn + (while (>= (setq t1 (1- t1)) 0) + (setq t2 (list 'calcFunc-sqrt t2))) + (setq t2 (math-solve-get-sign t2))) + (while (>= (setq t1 (1- t1)) 0) + (setq t2 (math-solve-get-sign + (math-normalize + (list 'calcFunc-sqrt t2)))))) + (math-try-solve-for + (nth 1 lhs) + (math-normalize t2))) + ((math-looks-negp (nth 2 lhs)) + (math-try-solve-for + (list '^ (nth 1 lhs) (math-neg (nth 2 lhs))) + (math-div 1 rhs))) + ((and (eq solve-full t) + (Math-integerp (nth 2 lhs)) + (math-known-realp (nth 1 lhs))) + (setq t1 (math-normalize + (list 'calcFunc-nroot rhs (nth 2 lhs)))) + (if (math-evenp (nth 2 lhs)) + (setq t1 (math-solve-get-sign t1))) + (math-try-solve-for + (nth 1 lhs) t1 + (and sign + (math-oddp (nth 2 lhs)) + (math-solve-sign sign (nth 2 lhs))))) + (t (math-try-solve-for + (nth 1 lhs) + (math-mul + (math-normalize + (list 'calcFunc-exp + (if (Math-realp (nth 2 lhs)) + (math-div (math-mul + '(var pi var-pi) + (math-solve-get-int + '(var i var-i) + (and (integerp (nth 2 lhs)) + (math-abs + (nth 2 lhs))))) + (math-div (nth 2 lhs) 2)) + (math-div (math-mul + 2 + (math-mul + '(var pi var-pi) + (math-solve-get-int + '(var i var-i) + (and (integerp (nth 2 lhs)) + (math-abs + (nth 2 lhs)))))) + (nth 2 lhs))))) + (math-normalize + (list 'calcFunc-nroot + rhs + (nth 2 lhs)))) + (and sign + (math-oddp (nth 2 lhs)) + (math-solve-sign sign (nth 2 lhs))))))))) + (t nil)) +) + +(defun math-solve-prod (lsoln rsoln) + (cond ((null lsoln) + rsoln) + ((null rsoln) + lsoln) + ((eq solve-full 'all) + (cons 'vec (append (cdr lsoln) (cdr rsoln)))) + (solve-full + (list 'calcFunc-if + (list 'calcFunc-gt (math-solve-get-sign 1) 0) + lsoln + rsoln)) + (t lsoln)) +) + +;;; This deals with negative, fractional, and symbolic powers of "x". +(defun math-solve-poly-funny-powers (sub-rhs) ; uses "t1", "t2" + (setq t1 lhs) + (let ((pp math-poly-neg-powers) + fac) + (while pp + (setq fac (math-pow (car pp) (or math-poly-mult-powers 1)) + t1 (math-mul t1 fac) + rhs (math-mul rhs fac) + pp (cdr pp)))) + (if sub-rhs (setq t1 (math-sub t1 rhs))) + (let ((math-poly-neg-powers nil)) + (setq t2 (math-mul (or math-poly-mult-powers 1) + (let ((calc-prefer-frac t)) + (math-div 1 math-poly-frac-powers))) + t1 (math-is-polynomial (math-simplify (calcFunc-expand t1)) b 50))) +) + +;;; This converts "a x^8 + b x^5 + c x^2" to "(a (x^3)^2 + b (x^3) + c) * x^2". +(defun math-solve-crunch-poly (max-degree) ; uses "t1", "t3" + (let ((count 0)) + (while (and t1 (Math-zerop (car t1))) + (setq t1 (cdr t1) + count (1+ count))) + (and t1 + (let* ((degree (1- (length t1))) + (scale degree)) + (while (and (> scale 1) (= (car t3) 1)) + (and (= (% degree scale) 0) + (let ((p t1) + (n 0) + (new-t1 nil) + (okay t)) + (while (and p okay) + (if (= (% n scale) 0) + (setq new-t1 (nconc new-t1 (list (car p)))) + (or (Math-zerop (car p)) + (setq okay nil))) + (setq p (cdr p) + n (1+ n))) + (if okay + (setq t3 (cons scale (cdr t3)) + t1 new-t1)))) + (setq scale (1- scale))) + (setq t3 (list (math-mul (car t3) t2) (math-mul count t2))) + (<= (1- (length t1)) max-degree)))) +) + +(defun calcFunc-poly (expr var &optional degree) + (if degree + (or (natnump degree) (math-reject-arg degree 'fixnatnump)) + (setq degree 50)) + (let ((p (math-is-polynomial expr var degree 'gen))) + (if p + (if (equal p '(0)) + (list 'vec) + (cons 'vec p)) + (math-reject-arg expr "Expected a polynomial"))) +) + +(defun calcFunc-gpoly (expr var &optional degree) + (if degree + (or (natnump degree) (math-reject-arg degree 'fixnatnump)) + (setq degree 50)) + (let* ((math-poly-base-variable var) + (d (math-decompose-poly expr var degree nil))) + (if d + (cons 'vec d) + (math-reject-arg expr "Expected a polynomial"))) +) + +(defun math-decompose-poly (lhs solve-var degree sub-rhs) + (let ((rhs (or sub-rhs 1)) + t1 t2 t3) + (setq t2 (math-polynomial-base + lhs + (function + (lambda (b) + (let ((math-poly-neg-powers '(1)) + (math-poly-mult-powers nil) + (math-poly-frac-powers 1) + (math-poly-exp-base t)) + (and (not (equal b lhs)) + (or (not (memq (car-safe b) '(+ -))) sub-rhs) + (setq t3 '(1 0) t2 1 + t1 (math-is-polynomial lhs b 50)) + (if (and (equal math-poly-neg-powers '(1)) + (memq math-poly-mult-powers '(nil 1)) + (eq math-poly-frac-powers 1) + sub-rhs) + (setq t1 (cons (math-sub (car t1) rhs) + (cdr t1))) + (math-solve-poly-funny-powers sub-rhs)) + (math-solve-crunch-poly degree) + (or (math-expr-contains b solve-var) + (math-expr-contains (car t3) solve-var)))))))) + (if t2 + (list (math-pow t2 (car t3)) + (cons 'vec t1) + (if sub-rhs + (math-pow t2 (nth 1 t3)) + (math-div (math-pow t2 (nth 1 t3)) rhs))))) +) + +(defun math-solve-linear (var sign b a) + (math-try-solve-for var + (math-div (math-neg b) a) + (math-solve-sign sign a) + t) +) + +(defun math-solve-quadratic (var c b a) + (math-try-solve-for + var + (if (math-looks-evenp b) + (let ((halfb (math-div b 2))) + (math-div + (math-add + (math-neg halfb) + (math-solve-get-sign + (math-normalize + (list 'calcFunc-sqrt + (math-add (math-sqr halfb) + (math-mul (math-neg c) a)))))) + a)) + (math-div + (math-add + (math-neg b) + (math-solve-get-sign + (math-normalize + (list 'calcFunc-sqrt + (math-add (math-sqr b) + (math-mul 4 (math-mul (math-neg c) a))))))) + (math-mul 2 a))) + nil t) +) + +(defun math-solve-cubic (var d c b a) + (let* ((p (math-div b a)) + (q (math-div c a)) + (r (math-div d a)) + (psqr (math-sqr p)) + (aa (math-sub q (math-div psqr 3))) + (bb (math-add r + (math-div (math-sub (math-mul 2 (math-mul psqr p)) + (math-mul 9 (math-mul p q))) + 27))) + m) + (if (Math-zerop aa) + (math-try-solve-for (math-pow (math-add var (math-div p 3)) 3) + (math-neg bb) nil t) + (if (Math-zerop bb) + (math-try-solve-for + (math-mul (math-add var (math-div p 3)) + (math-add (math-sqr (math-add var (math-div p 3))) + aa)) + 0 nil t) + (setq m (math-mul 2 (list 'calcFunc-sqrt (math-div aa -3)))) + (math-try-solve-for + var + (math-sub + (math-normalize + (math-mul + m + (list 'calcFunc-cos + (math-div + (math-sub (list 'calcFunc-arccos + (math-div (math-mul 3 bb) + (math-mul aa m))) + (math-mul 2 + (math-mul + (math-add 1 (math-solve-get-int + 1 3)) + (math-half-circle + calc-symbolic-mode)))) + 3)))) + (math-div p 3)) + nil t)))) +) + +(defun math-solve-quartic (var d c b a aa) + (setq a (math-div a aa)) + (setq b (math-div b aa)) + (setq c (math-div c aa)) + (setq d (math-div d aa)) + (math-try-solve-for + var + (let* ((asqr (math-sqr a)) + (asqr4 (math-div asqr 4)) + (y (let ((solve-full nil) + calc-next-why) + (math-solve-cubic solve-var + (math-sub (math-sub + (math-mul 4 (math-mul b d)) + (math-mul asqr d)) + (math-sqr c)) + (math-sub (math-mul a c) + (math-mul 4 d)) + (math-neg b) + 1))) + (rsqr (math-add (math-sub asqr4 b) y)) + (r (list 'calcFunc-sqrt rsqr)) + (sign1 (math-solve-get-sign 1)) + (de (list 'calcFunc-sqrt + (math-add + (math-sub (math-mul 3 asqr4) + (math-mul 2 b)) + (if (Math-zerop rsqr) + (math-mul + 2 + (math-mul sign1 + (list 'calcFunc-sqrt + (math-sub (math-sqr y) + (math-mul 4 d))))) + (math-sub + (math-mul sign1 + (math-div + (math-sub (math-sub + (math-mul 4 (math-mul a b)) + (math-mul 8 c)) + (math-mul asqr a)) + (math-mul 4 r))) + rsqr)))))) + (math-normalize + (math-sub (math-add (math-mul sign1 (math-div r 2)) + (math-solve-get-sign (math-div de 2))) + (math-div a 4)))) + nil t) +) + +(defun math-poly-all-roots (var p &optional math-factoring) + (catch 'ouch + (let* ((math-symbolic-solve calc-symbolic-mode) + (roots nil) + (deg (1- (length p))) + (orig-p (reverse p)) + (math-int-coefs nil) + (math-int-scale nil) + (math-double-roots nil) + (math-int-factors nil) + (math-int-threshold nil) + (pp p)) + ;; If rational coefficients, look for exact rational factors. + (while (and pp (Math-ratp (car pp))) + (setq pp (cdr pp))) + (if pp + (if (or math-factoring math-symbolic-solve) + (throw 'ouch nil)) + (let ((lead (car orig-p)) + (calc-prefer-frac t) + (scale (apply 'math-lcm-denoms p))) + (setq math-int-scale (math-abs (math-mul scale lead)) + math-int-threshold (math-div '(float 5 -2) math-int-scale) + math-int-coefs (cdr (math-div (cons 'vec orig-p) lead))))) + (if (> deg 4) + (let ((calc-prefer-frac nil) + (calc-symbolic-mode nil) + (pp p) + (def-p (copy-sequence orig-p))) + (while pp + (if (Math-numberp (car pp)) + (setq pp (cdr pp)) + (throw 'ouch nil))) + (while (> deg (if math-symbolic-solve 2 4)) + (let* ((x (math-poly-any-root def-p '(float 0 0) nil)) + b c pp) + (if (and (eq (car-safe x) 'cplx) + (math-nearly-zerop (nth 2 x) (nth 1 x))) + (setq x (calcFunc-re x))) + (or math-factoring + (setq roots (cons x roots))) + (or (math-numberp x) + (setq x (math-evaluate-expr x))) + (setq pp def-p + b (car def-p)) + (while (setq pp (cdr pp)) + (setq c (car pp)) + (setcar pp b) + (setq b (math-add (math-mul x b) c))) + (setq def-p (cdr def-p) + deg (1- deg)))) + (setq p (reverse def-p)))) + (if (> deg 1) + (let ((solve-var '(var DUMMY var-DUMMY)) + (math-solve-sign nil) + (math-solve-ranges nil) + (solve-full 'all)) + (if (= (length p) (length math-int-coefs)) + (setq p (reverse math-int-coefs))) + (setq roots (append (cdr (apply (cond ((= deg 2) + 'math-solve-quadratic) + ((= deg 3) + 'math-solve-cubic) + (t + 'math-solve-quartic)) + solve-var p)) + roots))) + (if (> deg 0) + (setq roots (cons (math-div (math-neg (car p)) (nth 1 p)) + roots)))) + (if math-factoring + (progn + (while roots + (math-poly-integer-root (car roots)) + (setq roots (cdr roots))) + (list math-int-factors (nreverse math-int-coefs) math-int-scale)) + (let ((vec nil) res) + (while roots + (let ((root (car roots)) + (solve-full (and solve-full 'all))) + (if (math-floatp root) + (setq root (math-poly-any-root orig-p root t))) + (setq vec (append vec + (cdr (or (math-try-solve-for var root nil t) + (throw 'ouch nil)))))) + (setq roots (cdr roots))) + (setq vec (cons 'vec (nreverse vec))) + (if math-symbolic-solve + (setq vec (math-normalize vec))) + (if (eq solve-full t) + (list 'calcFunc-subscr + vec + (math-solve-get-int 1 (1- (length orig-p)) 1)) + vec))))) +) +(setq math-symbolic-solve nil) + +(defun math-lcm-denoms (&rest fracs) + (let ((den 1)) + (while fracs + (if (eq (car-safe (car fracs)) 'frac) + (setq den (calcFunc-lcm den (nth 2 (car fracs))))) + (setq fracs (cdr fracs))) + den) +) + +(defun math-poly-any-root (p x polish) ; p is a reverse poly coeff list + (let* ((newt (if (math-zerop x) + (math-poly-newton-root + p '(cplx (float 123 -6) (float 1 -4)) 4) + (math-poly-newton-root p x 4))) + (res (if (math-zerop (cdr newt)) + (car newt) + (if (and (math-lessp (cdr newt) '(float 1 -3)) (not polish)) + (setq newt (math-poly-newton-root p (car newt) 30))) + (if (math-zerop (cdr newt)) + (car newt) + (math-poly-laguerre-root p x polish))))) + (and math-symbolic-solve (math-floatp res) + (throw 'ouch nil)) + res) +) + +(defun math-poly-newton-root (p x iters) + (let* ((calc-prefer-frac nil) + (calc-symbolic-mode nil) + (try-integer math-int-coefs) + (dx x) b d) + (while (and (> (setq iters (1- iters)) 0) + (let ((pp p)) + (math-working "newton" x) + (setq b (car p) + d 0) + (while (setq pp (cdr pp)) + (setq d (math-add (math-mul x d) b) + b (math-add (math-mul x b) (car pp)))) + (not (math-zerop d))) + (progn + (setq dx (math-div b d) + x (math-sub x dx)) + (if try-integer + (let ((adx (math-abs-approx dx))) + (and (math-lessp adx math-int-threshold) + (let ((iroot (math-poly-integer-root x))) + (if iroot + (setq x iroot dx 0) + (setq try-integer nil)))))) + (or (not (or (eq dx 0) + (math-nearly-zerop dx (math-abs-approx x)))) + (progn (setq dx 0) nil))))) + (cons x (if (math-zerop x) + 1 (math-div (math-abs-approx dx) (math-abs-approx x))))) +) + +(defun math-poly-integer-root (x) + (and (math-lessp (calcFunc-xpon (math-abs-approx x)) calc-internal-prec) + math-int-coefs + (let* ((calc-prefer-frac t) + (xre (calcFunc-re x)) + (xim (calcFunc-im x)) + (xresq (math-sqr xre)) + (ximsq (math-sqr xim))) + (if (math-lessp ximsq (calcFunc-scf xresq -1)) + ;; Look for linear factor + (let* ((rnd (math-div (math-round (math-mul xre math-int-scale)) + math-int-scale)) + (icp math-int-coefs) + (rem (car icp)) + (newcoef nil)) + (while (setq icp (cdr icp)) + (setq newcoef (cons rem newcoef) + rem (math-add (car icp) + (math-mul rem rnd)))) + (and (math-zerop rem) + (progn + (setq math-int-coefs (nreverse newcoef) + math-int-factors (cons (list (math-neg rnd)) + math-int-factors)) + rnd))) + ;; Look for irreducible quadratic factor + (let* ((rnd1 (math-div (math-round + (math-mul xre (math-mul -2 math-int-scale))) + math-int-scale)) + (sqscale (math-sqr math-int-scale)) + (rnd0 (math-div (math-round (math-mul (math-add xresq ximsq) + sqscale)) + sqscale)) + (rem1 (car math-int-coefs)) + (icp (cdr math-int-coefs)) + (rem0 (car icp)) + (newcoef nil) + (found (assoc (list rnd0 rnd1 (math-posp xim)) + math-double-roots)) + this) + (if found + (setq math-double-roots (delq found math-double-roots) + rem0 0 rem1 0) + (while (setq icp (cdr icp)) + (setq this rem1 + newcoef (cons rem1 newcoef) + rem1 (math-sub rem0 (math-mul this rnd1)) + rem0 (math-sub (car icp) (math-mul this rnd0))))) + (and (math-zerop rem0) + (math-zerop rem1) + (let ((aa (math-div rnd1 -2))) + (or found (setq math-int-coefs (reverse newcoef) + math-double-roots (cons (list + (list + rnd0 rnd1 + (math-negp xim))) + math-double-roots) + math-int-factors (cons (cons rnd0 rnd1) + math-int-factors))) + (math-add aa + (let ((calc-symbolic-mode math-symbolic-solve)) + (math-mul (math-sqrt (math-sub (math-sqr aa) + rnd0)) + (if (math-negp xim) -1 1)))))))))) +) +(setq math-int-coefs nil) + +;;; The following routine is from Numerical Recipes, section 9.5. +(defun math-poly-laguerre-root (p x polish) + (let* ((calc-prefer-frac nil) + (calc-symbolic-mode nil) + (iters 0) + (m (1- (length p))) + (try-newt (not polish)) + (tried-newt nil) + b d f x1 dx dxold) + (while + (and (or (< (setq iters (1+ iters)) 50) + (math-reject-arg x "*Laguerre's method failed to converge")) + (let ((err (math-abs-approx (car p))) + (abx (math-abs-approx x)) + (pp p)) + (setq b (car p) + d 0 f 0) + (while (setq pp (cdr pp)) + (setq f (math-add (math-mul x f) d) + d (math-add (math-mul x d) b) + b (math-add (math-mul x b) (car pp)) + err (math-add (math-abs-approx b) (math-mul abx err)))) + (math-lessp (calcFunc-scf err (- -2 calc-internal-prec)) + (math-abs-approx b))) + (or (not (math-zerop d)) + (not (math-zerop f)) + (progn + (setq x (math-pow (math-neg b) (list 'frac 1 m))) + nil)) + (let* ((g (math-div d b)) + (g2 (math-sqr g)) + (h (math-sub g2 (math-mul 2 (math-div f b)))) + (sq (math-sqrt + (math-mul (1- m) (math-sub (math-mul m h) g2)))) + (gp (math-add g sq)) + (gm (math-sub g sq))) + (if (math-lessp (calcFunc-abssqr gp) (calcFunc-abssqr gm)) + (setq gp gm)) + (setq dx (math-div m gp) + x1 (math-sub x dx)) + (if (and try-newt + (math-lessp (math-abs-approx dx) + (calcFunc-scf (math-abs-approx x) -3))) + (let ((newt (math-poly-newton-root p x1 7))) + (setq tried-newt t + try-newt nil) + (if (math-zerop (cdr newt)) + (setq x (car newt) x1 x) + (if (math-lessp (cdr newt) '(float 1 -6)) + (let ((newt2 (math-poly-newton-root + p (car newt) 20))) + (if (math-zerop (cdr newt2)) + (setq x (car newt2) x1 x) + (setq x (car newt)))))))) + (not (or (eq x x1) + (math-nearly-equal x x1)))) + (let ((cdx (math-abs-approx dx))) + (setq x x1 + tried-newt nil) + (prog1 + (or (<= iters 6) + (math-lessp cdx dxold) + (progn + (if polish + (let ((digs (calcFunc-xpon + (math-div (math-abs-approx x) cdx)))) + (calc-record-why + "*Could not attain full precision") + (if (natnump digs) + (let ((calc-internal-prec (max 3 digs))) + (setq x (math-normalize x)))))) + nil)) + (setq dxold cdx))) + (or polish + (math-lessp (calcFunc-scf (math-abs-approx x) + (- calc-internal-prec)) + dxold)))) + (or (and (math-floatp x) + (math-poly-integer-root x)) + x)) +) + +(defun math-solve-above-dummy (x) + (and (not (Math-primp x)) + (if (and (equal (nth 1 x) '(var SOLVEDUM SOLVEDUM)) + (= (length x) 2)) + x + (let ((res nil)) + (while (and (setq x (cdr x)) + (not (setq res (math-solve-above-dummy (car x)))))) + res))) +) + +(defun math-solve-find-root-term (x neg) ; sets "t2", "t3" + (if (math-solve-find-root-in-prod x) + (setq t3 neg + t1 x) + (and (memq (car-safe x) '(+ -)) + (or (math-solve-find-root-term (nth 1 x) neg) + (math-solve-find-root-term (nth 2 x) + (if (eq (car x) '-) (not neg) neg))))) +) + +(defun math-solve-find-root-in-prod (x) + (and (consp x) + (math-expr-contains x solve-var) + (or (and (eq (car x) 'calcFunc-sqrt) + (setq t2 2)) + (and (eq (car x) '^) + (or (and (memq (math-quarter-integer (nth 2 x)) '(1 2 3)) + (setq t2 2)) + (and (eq (car-safe (nth 2 x)) 'frac) + (eq (nth 2 (nth 2 x)) 3) + (setq t2 3)))) + (and (memq (car x) '(* /)) + (or (and (not (math-expr-contains (nth 1 x) solve-var)) + (math-solve-find-root-in-prod (nth 2 x))) + (and (not (math-expr-contains (nth 2 x) solve-var)) + (math-solve-find-root-in-prod (nth 1 x))))))) +) + + +(defun math-solve-system (exprs solve-vars solve-full) + (setq exprs (mapcar 'list (if (Math-vectorp exprs) + (cdr exprs) + (list exprs))) + solve-vars (if (Math-vectorp solve-vars) + (cdr solve-vars) + (list solve-vars))) + (or (let ((math-solve-simplifying nil)) + (math-solve-system-rec exprs solve-vars nil)) + (let ((math-solve-simplifying t)) + (math-solve-system-rec exprs solve-vars nil))) +) + +;;; The following backtracking solver works by choosing a variable +;;; and equation, and trying to solve the equation for the variable. +;;; If it succeeds it calls itself recursively with that variable and +;;; equation removed from their respective lists, and with the solution +;;; added to solns as well as being substituted into all existing +;;; equations. The algorithm terminates when any solution path +;;; manages to remove all the variables from var-list. + +;;; To support calcFunc-roots, entries in eqn-list and solns are +;;; actually lists of equations. + +(defun math-solve-system-rec (eqn-list var-list solns) + (if var-list + (let ((v var-list) + (res nil)) + + ;; Try each variable in turn. + (while + (and + v + (let* ((vv (car v)) + (e eqn-list) + (elim (eq (car-safe vv) 'calcFunc-elim))) + (if elim + (setq vv (nth 1 vv))) + + ;; Try each equation in turn. + (while + (and + e + (let ((e2 (car e)) + (eprev nil) + res2) + (setq res nil) + + ;; Try to solve for vv the list of equations e2. + (while (and e2 + (setq res2 (or (and (eq (car e2) eprev) + res2) + (math-solve-for (car e2) 0 vv + solve-full)))) + (setq eprev (car e2) + res (cons (if (eq solve-full 'all) + (cdr res2) + (list res2)) + res) + e2 (cdr e2))) + (if e2 + (setq res nil) + + ;; Found a solution. Now try other variables. + (setq res (nreverse res) + res (math-solve-system-rec + (mapcar + 'math-solve-system-subst + (delq (car e) + (copy-sequence eqn-list))) + (delq (car v) (copy-sequence var-list)) + (let ((math-solve-simplifying nil) + (s (mapcar + (function + (lambda (x) + (cons + (car x) + (math-solve-system-subst + (cdr x))))) + solns))) + (if elim + s + (cons (cons vv (apply 'append res)) + s))))) + (not res)))) + (setq e (cdr e))) + (not res))) + (setq v (cdr v))) + res) + + ;; Eliminated all variables, so now put solution into the proper format. + (setq solns (sort solns + (function + (lambda (x y) + (not (memq (car x) (memq (car y) solve-vars))))))) + (if (eq solve-full 'all) + (math-transpose + (math-normalize + (cons 'vec + (if solns + (mapcar (function (lambda (x) (cons 'vec (cdr x)))) solns) + (mapcar (function (lambda (x) (cons 'vec x))) eqn-list))))) + (math-normalize + (cons 'vec + (if solns + (mapcar (function (lambda (x) (cons 'calcFunc-eq x))) solns) + (mapcar 'car eqn-list)))))) +) + +(defun math-solve-system-subst (x) ; uses "res" and "v" + (let ((accum nil) + (res2 res)) + (while x + (setq accum (nconc accum + (mapcar (function + (lambda (r) + (if math-solve-simplifying + (math-simplify + (math-expr-subst (car x) vv r)) + (math-expr-subst (car x) vv r)))) + (car res2))) + x (cdr x) + res2 (cdr res2))) + accum) +) + + +(defun math-get-from-counter (name) + (let ((ctr (assq name calc-command-flags))) + (if ctr + (setcdr ctr (1+ (cdr ctr))) + (setq ctr (cons name 1) + calc-command-flags (cons ctr calc-command-flags))) + (cdr ctr)) +) + +(defun math-solve-get-sign (val) + (setq val (math-simplify val)) + (if (and (eq (car-safe val) '*) + (Math-numberp (nth 1 val))) + (list '* (nth 1 val) (math-solve-get-sign (nth 2 val))) + (and (eq (car-safe val) 'calcFunc-sqrt) + (eq (car-safe (nth 1 val)) '^) + (setq val (math-normalize (list '^ + (nth 1 (nth 1 val)) + (math-div (nth 2 (nth 1 val)) 2))))) + (if solve-full + (if (and (calc-var-value 'var-GenCount) + (Math-natnump var-GenCount) + (not (eq solve-full 'all))) + (prog1 + (math-mul (list 'calcFunc-as var-GenCount) val) + (setq var-GenCount (math-add var-GenCount 1)) + (calc-refresh-evaltos 'var-GenCount)) + (let* ((var (concat "s" (math-get-from-counter 'solve-sign))) + (var2 (list 'var (intern var) (intern (concat "var-" var))))) + (if (eq solve-full 'all) + (setq math-solve-ranges (cons (list var2 1 -1) + math-solve-ranges))) + (math-mul var2 val))) + (calc-record-why "*Choosing positive solution") + val)) +) + +(defun math-solve-get-int (val &optional range first) + (if solve-full + (if (and (calc-var-value 'var-GenCount) + (Math-natnump var-GenCount) + (not (eq solve-full 'all))) + (prog1 + (math-mul val (list 'calcFunc-an var-GenCount)) + (setq var-GenCount (math-add var-GenCount 1)) + (calc-refresh-evaltos 'var-GenCount)) + (let* ((var (concat "n" (math-get-from-counter 'solve-int))) + (var2 (list 'var (intern var) (intern (concat "var-" var))))) + (if (and range (eq solve-full 'all)) + (setq math-solve-ranges (cons (cons var2 + (cdr (calcFunc-index + range (or first 0)))) + math-solve-ranges))) + (math-mul val var2))) + (calc-record-why "*Choosing 0 for arbitrary integer in solution") + 0) +) + +(defun math-solve-sign (sign expr) + (and sign + (let ((s1 (math-possible-signs expr))) + (cond ((memq s1 '(4 6)) + sign) + ((memq s1 '(1 3)) + (- sign))))) +) + +(defun math-looks-evenp (expr) + (if (Math-integerp expr) + (math-evenp expr) + (if (memq (car expr) '(* /)) + (math-looks-evenp (nth 1 expr)))) +) + +(defun math-solve-for (lhs rhs solve-var solve-full &optional sign) + (if (math-expr-contains rhs solve-var) + (math-solve-for (math-sub lhs rhs) 0 solve-var solve-full) + (and (math-expr-contains lhs solve-var) + (math-with-extra-prec 1 + (let* ((math-poly-base-variable solve-var) + (res (math-try-solve-for lhs rhs sign))) + (if (and (eq solve-full 'all) + (math-known-realp solve-var)) + (let ((old-len (length res)) + new-len) + (setq res (delq nil + (mapcar (function + (lambda (x) + (and (not (memq (car-safe x) + '(cplx polar))) + x))) + res)) + new-len (length res)) + (if (< new-len old-len) + (calc-record-why (if (= new-len 1) + "*All solutions were complex" + (format + "*Omitted %d complex solutions" + (- old-len new-len))))))) + res)))) +) + +(defun math-solve-eqn (expr var full) + (if (memq (car-safe expr) '(calcFunc-neq calcFunc-lt calcFunc-gt + calcFunc-leq calcFunc-geq)) + (let ((res (math-solve-for (cons '- (cdr expr)) + 0 var full + (if (eq (car expr) 'calcFunc-neq) nil 1)))) + (and res + (if (eq math-solve-sign 1) + (list (car expr) var res) + (if (eq math-solve-sign -1) + (list (car expr) res var) + (or (eq (car expr) 'calcFunc-neq) + (calc-record-why + "*Can't determine direction of inequality")) + (and (memq (car expr) '(calcFunc-neq calcFunc-lt calcFunc-gt)) + (list 'calcFunc-neq var res)))))) + (let ((res (math-solve-for expr 0 var full))) + (and res + (list 'calcFunc-eq var res)))) +) + +(defun math-reject-solution (expr var func) + (if (math-expr-contains expr var) + (or (equal (car calc-next-why) '(* "Unable to find a symbolic solution")) + (calc-record-why "*Unable to find a solution"))) + (list func expr var) +) + +(defun calcFunc-solve (expr var) + (or (if (or (Math-vectorp expr) (Math-vectorp var)) + (math-solve-system expr var nil) + (math-solve-eqn expr var nil)) + (math-reject-solution expr var 'calcFunc-solve)) +) + +(defun calcFunc-fsolve (expr var) + (or (if (or (Math-vectorp expr) (Math-vectorp var)) + (math-solve-system expr var t) + (math-solve-eqn expr var t)) + (math-reject-solution expr var 'calcFunc-fsolve)) +) + +(defun calcFunc-roots (expr var) + (let ((math-solve-ranges nil)) + (or (if (or (Math-vectorp expr) (Math-vectorp var)) + (math-solve-system expr var 'all) + (math-solve-for expr 0 var 'all)) + (math-reject-solution expr var 'calcFunc-roots))) +) + +(defun calcFunc-finv (expr var) + (let ((res (math-solve-for expr math-integ-var var nil))) + (if res + (math-normalize (math-expr-subst res math-integ-var var)) + (math-reject-solution expr var 'calcFunc-finv))) +) + +(defun calcFunc-ffinv (expr var) + (let ((res (math-solve-for expr math-integ-var var t))) + (if res + (math-normalize (math-expr-subst res math-integ-var var)) + (math-reject-solution expr var 'calcFunc-finv))) +) + + +(put 'calcFunc-inv 'math-inverse + (function (lambda (x) (math-div 1 x)))) +(put 'calcFunc-inv 'math-inverse-sign -1) + +(put 'calcFunc-sqrt 'math-inverse + (function (lambda (x) (math-sqr x)))) + +(put 'calcFunc-conj 'math-inverse + (function (lambda (x) (list 'calcFunc-conj x)))) + +(put 'calcFunc-abs 'math-inverse + (function (lambda (x) (math-solve-get-sign x)))) + +(put 'calcFunc-deg 'math-inverse + (function (lambda (x) (list 'calcFunc-rad x)))) +(put 'calcFunc-deg 'math-inverse-sign 1) + +(put 'calcFunc-rad 'math-inverse + (function (lambda (x) (list 'calcFunc-deg x)))) +(put 'calcFunc-rad 'math-inverse-sign 1) + +(put 'calcFunc-ln 'math-inverse + (function (lambda (x) (list 'calcFunc-exp x)))) +(put 'calcFunc-ln 'math-inverse-sign 1) + +(put 'calcFunc-log10 'math-inverse + (function (lambda (x) (list 'calcFunc-exp10 x)))) +(put 'calcFunc-log10 'math-inverse-sign 1) + +(put 'calcFunc-lnp1 'math-inverse + (function (lambda (x) (list 'calcFunc-expm1 x)))) +(put 'calcFunc-lnp1 'math-inverse-sign 1) + +(put 'calcFunc-exp 'math-inverse + (function (lambda (x) (math-add (math-normalize (list 'calcFunc-ln x)) + (math-mul 2 + (math-mul '(var pi var-pi) + (math-solve-get-int + '(var i var-i)))))))) +(put 'calcFunc-exp 'math-inverse-sign 1) + +(put 'calcFunc-expm1 'math-inverse + (function (lambda (x) (math-add (math-normalize (list 'calcFunc-lnp1 x)) + (math-mul 2 + (math-mul '(var pi var-pi) + (math-solve-get-int + '(var i var-i)))))))) +(put 'calcFunc-expm1 'math-inverse-sign 1) + +(put 'calcFunc-sin 'math-inverse + (function (lambda (x) (let ((n (math-solve-get-int 1))) + (math-add (math-mul (math-normalize + (list 'calcFunc-arcsin x)) + (math-pow -1 n)) + (math-mul (math-half-circle t) + n)))))) + +(put 'calcFunc-cos 'math-inverse + (function (lambda (x) (math-add (math-solve-get-sign + (math-normalize + (list 'calcFunc-arccos x))) + (math-solve-get-int + (math-full-circle t)))))) + +(put 'calcFunc-tan 'math-inverse + (function (lambda (x) (math-add (math-normalize (list 'calcFunc-arctan x)) + (math-solve-get-int + (math-half-circle t)))))) + +(put 'calcFunc-arcsin 'math-inverse + (function (lambda (x) (math-normalize (list 'calcFunc-sin x))))) + +(put 'calcFunc-arccos 'math-inverse + (function (lambda (x) (math-normalize (list 'calcFunc-cos x))))) + +(put 'calcFunc-arctan 'math-inverse + (function (lambda (x) (math-normalize (list 'calcFunc-tan x))))) + +(put 'calcFunc-sinh 'math-inverse + (function (lambda (x) (let ((n (math-solve-get-int 1))) + (math-add (math-mul (math-normalize + (list 'calcFunc-arcsinh x)) + (math-pow -1 n)) + (math-mul (math-half-circle t) + (math-mul + '(var i var-i) + n))))))) +(put 'calcFunc-sinh 'math-inverse-sign 1) + +(put 'calcFunc-cosh 'math-inverse + (function (lambda (x) (math-add (math-solve-get-sign + (math-normalize + (list 'calcFunc-arccosh x))) + (math-mul (math-full-circle t) + (math-solve-get-int + '(var i var-i))))))) + +(put 'calcFunc-tanh 'math-inverse + (function (lambda (x) (math-add (math-normalize + (list 'calcFunc-arctanh x)) + (math-mul (math-half-circle t) + (math-solve-get-int + '(var i var-i))))))) +(put 'calcFunc-tanh 'math-inverse-sign 1) + +(put 'calcFunc-arcsinh 'math-inverse + (function (lambda (x) (math-normalize (list 'calcFunc-sinh x))))) +(put 'calcFunc-arcsinh 'math-inverse-sign 1) + +(put 'calcFunc-arccosh 'math-inverse + (function (lambda (x) (math-normalize (list 'calcFunc-cosh x))))) + +(put 'calcFunc-arctanh 'math-inverse + (function (lambda (x) (math-normalize (list 'calcFunc-tanh x))))) +(put 'calcFunc-arctanh 'math-inverse-sign 1) + + + +(defun calcFunc-taylor (expr var num) + (let ((x0 0) (v var)) + (if (memq (car-safe var) '(+ - calcFunc-eq)) + (setq x0 (if (eq (car var) '+) (math-neg (nth 2 var)) (nth 2 var)) + v (nth 1 var))) + (or (and (eq (car-safe v) 'var) + (math-expr-contains expr v) + (natnump num) + (let ((accum (math-expr-subst expr v x0)) + (var2 (if (eq (car var) 'calcFunc-eq) + (cons '- (cdr var)) + var)) + (n 0) + (nfac 1) + (fprime expr)) + (while (and (<= (setq n (1+ n)) num) + (setq fprime (calcFunc-deriv fprime v nil t))) + (setq fprime (math-simplify fprime) + nfac (math-mul nfac n) + accum (math-add accum + (math-div (math-mul (math-pow var2 n) + (math-expr-subst + fprime v x0)) + nfac)))) + (and fprime + (math-normalize accum)))) + (list 'calcFunc-taylor expr var num))) +) + + + + |