summaryrefslogtreecommitdiff
path: root/src/floatfns.c
diff options
context:
space:
mode:
authorPaul Eggert <eggert@cs.ucla.edu>2012-09-09 09:06:33 -0700
committerPaul Eggert <eggert@cs.ucla.edu>2012-09-09 09:06:33 -0700
commitf6196b87e1ceee0d56f2fe6f3aa2b9d1d82c44b0 (patch)
tree3400f2f4898ce1fc39ad437faa5e55714129d30b /src/floatfns.c
parent8ed43f154827121c624a5a93808340618bd8f03f (diff)
downloademacs-f6196b87e1ceee0d56f2fe6f3aa2b9d1d82c44b0.tar.gz
Assume C89 or later for math functions.
This simplifies the code, and makes it a bit smaller and faster, and (most important) makes it easier to clean up signal handling since we can stop worring about floating-point exceptions in library code. That was a problem before C89, but the problem went away many years ago on all practical Emacs targets. * configure.ac (frexp, fmod): Remove checks for these functions, as we now assume them. (FLOAT_CHECK_DOMAIN, HAVE_INVERSE_HYPERBOLIC, NO_MATHERR) (HAVE_EXCEPTION): Remove; no longer needed. * admin/CPP-DEFINES (HAVE_FMOD, HAVE_FREXP, FLOAT_CHECK_DOMAIN) (HAVE_INVERSE_HYPERBOLIC, NO_MATHERR): Remove. * src/data.c, src/image.c, src/lread.c, src/print.c: Don't include <math.h>; no longer needed. * src/data.c, src/floatfns.c (IEEE_FLOATING_POINT): Don't worry that it might be autoconfigured, as that never happens. * src/data.c (fmod): * src/doprnt.c (DBL_MAX_10_EXP): * src/print.c (DBL_DIG): Remove. C89 or later always defines these. * src/floatfns.c (HAVE_MATHERR, FLOAT_CHECK_ERRNO, FLOAT_CHECK_DOMAIN) (in_float, float_error_arg, float_error_arg2, float_error_fn_name) (arith_error, domain_error, domain_error2): Remove all this pre-C89 cruft. Do not include <errno.h> as that's no longer needed -- we simply return what C returns. All uses removed. (IN_FLOAT, IN_FLOAT2): Remove. All uses replaced with the wrapped code. (FLOAT_TO_INT, FLOAT_TO_INT2, range_error, range_error2): Remove. All uses expanded, as these macros are no longer used more than once and are now more trouble than they're worth. (Ftan): Use tan, not sin / cos. (Flogb): Assume C89 frexp. (fmod_float): Assume C89 fmod. (matherr) [HAVE_MATHERR]: Remove; no longer needed. (init_floatfns): Remove. All uses removed.
Diffstat (limited to 'src/floatfns.c')
-rw-r--r--src/floatfns.c435
1 files changed, 83 insertions, 352 deletions
diff --git a/src/floatfns.c b/src/floatfns.c
index dfe063b152f..8a9a9fd0886 100644
--- a/src/floatfns.c
+++ b/src/floatfns.c
@@ -22,26 +22,9 @@ You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
-/* ANSI C requires only these float functions:
+/* C89 requires only these math.h functions:
acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
-
- Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
- Define HAVE_CBRT if you have cbrt.
- Define HAVE_RINT if you have a working rint.
- If you don't define these, then the appropriate routines will be simulated.
-
- Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
- (This should happen automatically.)
-
- Define FLOAT_CHECK_ERRNO if the float library routines set errno.
- This has no effect if HAVE_MATHERR is defined.
-
- Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
- either setting errno, or signaling SIGFPE. Otherwise, domain and
- range checking will happen before calling the float routines. This has
- no effect if HAVE_MATHERR is defined (since matherr will be called when
- a domain error occurs.)
*/
#include <config.h>
@@ -50,15 +33,12 @@ along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
#include "syssignal.h"
#include <float.h>
-/* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
-#ifndef IEEE_FLOATING_POINT
#if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
&& FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
#define IEEE_FLOATING_POINT 1
#else
#define IEEE_FLOATING_POINT 0
#endif
-#endif
#include <math.h>
@@ -67,120 +47,6 @@ along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
extern double logb (double);
#endif /* not HPUX and HAVE_LOGB and no logb macro */
-#if defined (DOMAIN) && defined (SING) && defined (OVERFLOW)
- /* If those are defined, then this is probably a `matherr' machine. */
-# ifndef HAVE_MATHERR
-# define HAVE_MATHERR
-# endif
-#endif
-
-#ifdef NO_MATHERR
-#undef HAVE_MATHERR
-#endif
-
-#ifdef HAVE_MATHERR
-# ifdef FLOAT_CHECK_ERRNO
-# undef FLOAT_CHECK_ERRNO
-# endif
-# ifdef FLOAT_CHECK_DOMAIN
-# undef FLOAT_CHECK_DOMAIN
-# endif
-#endif
-
-#ifndef NO_FLOAT_CHECK_ERRNO
-#define FLOAT_CHECK_ERRNO
-#endif
-
-#ifdef FLOAT_CHECK_ERRNO
-# include <errno.h>
-#endif
-
-/* True while executing in floating point.
- This tells float_error what to do. */
-
-static bool in_float;
-
-/* If an argument is out of range for a mathematical function,
- here is the actual argument value to use in the error message.
- These variables are used only across the floating point library call
- so there is no need to staticpro them. */
-
-static Lisp_Object float_error_arg, float_error_arg2;
-
-static const char *float_error_fn_name;
-
-/* Evaluate the floating point expression D, recording NUM
- as the original argument for error messages.
- D is normally an assignment expression.
- Handle errors which may result in signals or may set errno.
-
- Note that float_error may be declared to return void, so you can't
- just cast the zero after the colon to (void) to make the types
- check properly. */
-
-#ifdef FLOAT_CHECK_ERRNO
-#define IN_FLOAT(d, name, num) \
- do { \
- float_error_arg = num; \
- float_error_fn_name = name; \
- in_float = 1; errno = 0; (d); in_float = 0; \
- switch (errno) { \
- case 0: break; \
- case EDOM: domain_error (float_error_fn_name, float_error_arg); \
- case ERANGE: range_error (float_error_fn_name, float_error_arg); \
- default: arith_error (float_error_fn_name, float_error_arg); \
- } \
- } while (0)
-#define IN_FLOAT2(d, name, num, num2) \
- do { \
- float_error_arg = num; \
- float_error_arg2 = num2; \
- float_error_fn_name = name; \
- in_float = 1; errno = 0; (d); in_float = 0; \
- switch (errno) { \
- case 0: break; \
- case EDOM: domain_error (float_error_fn_name, float_error_arg); \
- case ERANGE: range_error (float_error_fn_name, float_error_arg); \
- default: arith_error (float_error_fn_name, float_error_arg); \
- } \
- } while (0)
-#else
-#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
-#define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
-#endif
-
-/* Convert float to Lisp_Int if it fits, else signal a range error
- using the given arguments. */
-#define FLOAT_TO_INT(x, i, name, num) \
- do \
- { \
- if (FIXNUM_OVERFLOW_P (x)) \
- range_error (name, num); \
- XSETINT (i, (EMACS_INT)(x)); \
- } \
- while (0)
-#define FLOAT_TO_INT2(x, i, name, num1, num2) \
- do \
- { \
- if (FIXNUM_OVERFLOW_P (x)) \
- range_error2 (name, num1, num2); \
- XSETINT (i, (EMACS_INT)(x)); \
- } \
- while (0)
-
-#define arith_error(op,arg) \
- xsignal2 (Qarith_error, build_string ((op)), (arg))
-#define range_error(op,arg) \
- xsignal2 (Qrange_error, build_string ((op)), (arg))
-#define range_error2(op,a1,a2) \
- xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
-#define domain_error(op,arg) \
- xsignal2 (Qdomain_error, build_string ((op)), (arg))
-#ifdef FLOAT_CHECK_DOMAIN
-#define domain_error2(op,a1,a2) \
- xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
-#endif
-
/* Extract a Lisp number as a `double', or signal an error. */
double
@@ -197,27 +63,19 @@ extract_float (Lisp_Object num)
DEFUN ("acos", Facos, Sacos, 1, 1, 0,
doc: /* Return the inverse cosine of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
-#ifdef FLOAT_CHECK_DOMAIN
- if (d > 1.0 || d < -1.0)
- domain_error ("acos", arg);
-#endif
- IN_FLOAT (d = acos (d), "acos", arg);
+ d = acos (d);
return make_float (d);
}
DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
doc: /* Return the inverse sine of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
-#ifdef FLOAT_CHECK_DOMAIN
- if (d > 1.0 || d < -1.0)
- domain_error ("asin", arg);
-#endif
- IN_FLOAT (d = asin (d), "asin", arg);
+ d = asin (d);
return make_float (d);
}
@@ -227,50 +85,44 @@ If only one argument Y is given, return the inverse tangent of Y.
If two arguments Y and X are given, return the inverse tangent of Y
divided by X, i.e. the angle in radians between the vector (X, Y)
and the x-axis. */)
- (register Lisp_Object y, Lisp_Object x)
+ (Lisp_Object y, Lisp_Object x)
{
double d = extract_float (y);
if (NILP (x))
- IN_FLOAT (d = atan (d), "atan", y);
+ d = atan (d);
else
{
double d2 = extract_float (x);
-
- IN_FLOAT2 (d = atan2 (d, d2), "atan", y, x);
+ d = atan2 (d, d2);
}
return make_float (d);
}
DEFUN ("cos", Fcos, Scos, 1, 1, 0,
doc: /* Return the cosine of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
- IN_FLOAT (d = cos (d), "cos", arg);
+ d = cos (d);
return make_float (d);
}
DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
doc: /* Return the sine of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
- IN_FLOAT (d = sin (d), "sin", arg);
+ d = sin (d);
return make_float (d);
}
DEFUN ("tan", Ftan, Stan, 1, 1, 0,
doc: /* Return the tangent of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
-#ifdef FLOAT_CHECK_DOMAIN
- double c = cos (d);
- if (c == 0.0)
- domain_error ("tan", arg);
-#endif
- IN_FLOAT (d = tan (d), "tan", arg);
+ d = tan (d);
return make_float (d);
}
@@ -341,61 +193,61 @@ Returns the floating point value resulting from multiplying SGNFCAND
DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
doc: /* Return the bessel function j0 of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
- IN_FLOAT (d = j0 (d), "bessel-j0", arg);
+ d = j0 (d);
return make_float (d);
}
DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
doc: /* Return the bessel function j1 of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
- IN_FLOAT (d = j1 (d), "bessel-j1", arg);
+ d = j1 (d);
return make_float (d);
}
DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
doc: /* Return the order N bessel function output jn of ARG.
The first arg (the order) is truncated to an integer. */)
- (register Lisp_Object n, Lisp_Object arg)
+ (Lisp_Object n, Lisp_Object arg)
{
int i1 = extract_float (n);
double f2 = extract_float (arg);
- IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
+ f2 = jn (i1, f2);
return make_float (f2);
}
DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
doc: /* Return the bessel function y0 of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
- IN_FLOAT (d = y0 (d), "bessel-y0", arg);
+ d = y0 (d);
return make_float (d);
}
DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
doc: /* Return the bessel function y1 of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
- IN_FLOAT (d = y1 (d), "bessel-y0", arg);
+ d = y1 (d);
return make_float (d);
}
DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
doc: /* Return the order N bessel function output yn of ARG.
The first arg (the order) is truncated to an integer. */)
- (register Lisp_Object n, Lisp_Object arg)
+ (Lisp_Object n, Lisp_Object arg)
{
int i1 = extract_float (n);
double f2 = extract_float (arg);
- IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
+ f2 = yn (i1, f2);
return make_float (f2);
}
@@ -405,43 +257,43 @@ The first arg (the order) is truncated to an integer. */)
DEFUN ("erf", Ferf, Serf, 1, 1, 0,
doc: /* Return the mathematical error function of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
- IN_FLOAT (d = erf (d), "erf", arg);
+ d = erf (d);
return make_float (d);
}
DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
doc: /* Return the complementary error function of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
- IN_FLOAT (d = erfc (d), "erfc", arg);
+ d = erfc (d);
return make_float (d);
}
DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
doc: /* Return the log gamma of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
- IN_FLOAT (d = lgamma (d), "log-gamma", arg);
+ d = lgamma (d);
return make_float (d);
}
DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
doc: /* Return the cube root of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
#ifdef HAVE_CBRT
- IN_FLOAT (d = cbrt (d), "cube-root", arg);
+ d = cbrt (d);
#else
if (d >= 0.0)
- IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
+ d = pow (d, 1.0/3.0);
else
- IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
+ d = -pow (-d, 1.0/3.0);
#endif
return make_float (d);
}
@@ -450,23 +302,16 @@ DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
doc: /* Return the exponential base e of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
-#ifdef FLOAT_CHECK_DOMAIN
- if (d > 709.7827) /* Assume IEEE doubles here */
- range_error ("exp", arg);
- else if (d < -709.0)
- return make_float (0.0);
- else
-#endif
- IN_FLOAT (d = exp (d), "exp", arg);
+ d = exp (d);
return make_float (d);
}
DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
doc: /* Return the exponential ARG1 ** ARG2. */)
- (register Lisp_Object arg1, Lisp_Object arg2)
+ (Lisp_Object arg1, Lisp_Object arg2)
{
double f1, f2, f3;
@@ -495,72 +340,46 @@ DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
}
f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
- /* Really should check for overflow, too */
- if (f1 == 0.0 && f2 == 0.0)
- f1 = 1.0;
-#ifdef FLOAT_CHECK_DOMAIN
- else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor (f2)))
- domain_error2 ("expt", arg1, arg2);
-#endif
- IN_FLOAT2 (f3 = pow (f1, f2), "expt", arg1, arg2);
- /* Check for overflow in the result. */
- if (f1 != 0.0 && f3 == 0.0)
- range_error ("expt", arg1);
+ f3 = pow (f1, f2);
return make_float (f3);
}
DEFUN ("log", Flog, Slog, 1, 2, 0,
doc: /* Return the natural logarithm of ARG.
If the optional argument BASE is given, return log ARG using that base. */)
- (register Lisp_Object arg, Lisp_Object base)
+ (Lisp_Object arg, Lisp_Object base)
{
double d = extract_float (arg);
-#ifdef FLOAT_CHECK_DOMAIN
- if (d <= 0.0)
- domain_error2 ("log", arg, base);
-#endif
if (NILP (base))
- IN_FLOAT (d = log (d), "log", arg);
+ d = log (d);
else
{
double b = extract_float (base);
-#ifdef FLOAT_CHECK_DOMAIN
- if (b <= 0.0 || b == 1.0)
- domain_error2 ("log", arg, base);
-#endif
if (b == 10.0)
- IN_FLOAT2 (d = log10 (d), "log", arg, base);
+ d = log10 (d);
else
- IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
+ d = log (d) / log (b);
}
return make_float (d);
}
DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
doc: /* Return the logarithm base 10 of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
-#ifdef FLOAT_CHECK_DOMAIN
- if (d <= 0.0)
- domain_error ("log10", arg);
-#endif
- IN_FLOAT (d = log10 (d), "log10", arg);
+ d = log10 (d);
return make_float (d);
}
DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
doc: /* Return the square root of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
-#ifdef FLOAT_CHECK_DOMAIN
- if (d < 0.0)
- domain_error ("sqrt", arg);
-#endif
- IN_FLOAT (d = sqrt (d), "sqrt", arg);
+ d = sqrt (d);
return make_float (d);
}
@@ -568,83 +387,55 @@ DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
doc: /* Return the inverse hyperbolic cosine of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
-#ifdef FLOAT_CHECK_DOMAIN
- if (d < 1.0)
- domain_error ("acosh", arg);
-#endif
-#ifdef HAVE_INVERSE_HYPERBOLIC
- IN_FLOAT (d = acosh (d), "acosh", arg);
-#else
- IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
-#endif
+ d = acosh (d);
return make_float (d);
}
DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
doc: /* Return the inverse hyperbolic sine of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
-#ifdef HAVE_INVERSE_HYPERBOLIC
- IN_FLOAT (d = asinh (d), "asinh", arg);
-#else
- IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
-#endif
+ d = asinh (d);
return make_float (d);
}
DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
doc: /* Return the inverse hyperbolic tangent of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
-#ifdef FLOAT_CHECK_DOMAIN
- if (d >= 1.0 || d <= -1.0)
- domain_error ("atanh", arg);
-#endif
-#ifdef HAVE_INVERSE_HYPERBOLIC
- IN_FLOAT (d = atanh (d), "atanh", arg);
-#else
- IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
-#endif
+ d = atanh (d);
return make_float (d);
}
DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
doc: /* Return the hyperbolic cosine of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
-#ifdef FLOAT_CHECK_DOMAIN
- if (d > 710.0 || d < -710.0)
- range_error ("cosh", arg);
-#endif
- IN_FLOAT (d = cosh (d), "cosh", arg);
+ d = cosh (d);
return make_float (d);
}
DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
doc: /* Return the hyperbolic sine of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
-#ifdef FLOAT_CHECK_DOMAIN
- if (d > 710.0 || d < -710.0)
- range_error ("sinh", arg);
-#endif
- IN_FLOAT (d = sinh (d), "sinh", arg);
+ d = sinh (d);
return make_float (d);
}
DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
doc: /* Return the hyperbolic tangent of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
- IN_FLOAT (d = tanh (d), "tanh", arg);
+ d = tanh (d);
return make_float (d);
}
#endif
@@ -689,33 +480,11 @@ This is the same as the exponent of a float. */)
else
{
#ifdef HAVE_LOGB
- IN_FLOAT (value = logb (f), "logb", arg);
+ value = logb (f);
#else
-#ifdef HAVE_FREXP
int ivalue;
- IN_FLOAT (frexp (f, &ivalue), "logb", arg);
+ frexp (f, &ivalue);
value = ivalue - 1;
-#else
- int i;
- double d;
- if (f < 0.0)
- f = -f;
- value = -1;
- while (f < 0.5)
- {
- for (i = 1, d = 0.5; d * d >= f; i += i)
- d *= d;
- f /= d;
- value -= i;
- }
- while (f >= 1.0)
- {
- for (i = 1, d = 2.0; d * d <= f; i += i)
- d *= d;
- f /= d;
- value += i;
- }
-#endif
#endif
}
XSETINT (val, value);
@@ -748,8 +517,10 @@ rounding_driver (Lisp_Object arg, Lisp_Object divisor,
if (! IEEE_FLOATING_POINT && f2 == 0)
xsignal0 (Qarith_error);
- IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
- FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
+ f1 = (*double_round) (f1 / f2);
+ if (FIXNUM_OVERFLOW_P (f1))
+ xsignal3 (Qrange_error, build_string (name), arg, divisor);
+ arg = make_number (f1);
return arg;
}
@@ -765,10 +536,10 @@ rounding_driver (Lisp_Object arg, Lisp_Object divisor,
if (FLOATP (arg))
{
- double d;
-
- IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg);
- FLOAT_TO_INT (d, arg, name, arg);
+ double d = (*double_round) (XFLOAT_DATA (arg));
+ if (FIXNUM_OVERFLOW_P (d))
+ xsignal2 (Qrange_error, build_string (name), arg);
+ arg = make_number (d);
}
return arg;
@@ -885,97 +656,57 @@ fmod_float (Lisp_Object x, Lisp_Object y)
f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
- if (! IEEE_FLOATING_POINT && f2 == 0)
- xsignal0 (Qarith_error);
+ f1 = fmod (f1, f2);
/* If the "remainder" comes out with the wrong sign, fix it. */
- IN_FLOAT2 ((f1 = fmod (f1, f2),
- f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
- "mod", x, y);
+ if (f2 < 0 ? 0 < f1 : f1 < 0)
+ f1 += f2;
+
return make_float (f1);
}
-/* It's not clear these are worth adding. */
-
DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
doc: /* Return the smallest integer no less than ARG, as a float.
\(Round toward +inf.\) */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
- IN_FLOAT (d = ceil (d), "fceiling", arg);
+ d = ceil (d);
return make_float (d);
}
DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
doc: /* Return the largest integer no greater than ARG, as a float.
\(Round towards -inf.\) */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
- IN_FLOAT (d = floor (d), "ffloor", arg);
+ d = floor (d);
return make_float (d);
}
DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
doc: /* Return the nearest integer to ARG, as a float. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
- IN_FLOAT (d = emacs_rint (d), "fround", arg);
+ d = emacs_rint (d);
return make_float (d);
}
DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
doc: /* Truncate a floating point number to an integral float value.
Rounds the value toward zero. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
double d = extract_float (arg);
if (d >= 0.0)
- IN_FLOAT (d = floor (d), "ftruncate", arg);
+ d = floor (d);
else
- IN_FLOAT (d = ceil (d), "ftruncate", arg);
+ d = ceil (d);
return make_float (d);
}
-#ifdef HAVE_MATHERR
-int
-matherr (struct exception *x)
-{
- Lisp_Object args;
- const char *name = x->name;
-
- if (! in_float)
- /* Not called from emacs-lisp float routines; do the default thing. */
- return 0;
- if (!strcmp (x->name, "pow"))
- name = "expt";
-
- args
- = Fcons (build_string (name),
- Fcons (make_float (x->arg1),
- ((!strcmp (name, "log") || !strcmp (name, "pow"))
- ? Fcons (make_float (x->arg2), Qnil)
- : Qnil)));
- switch (x->type)
- {
- case DOMAIN: xsignal (Qdomain_error, args); break;
- case SING: xsignal (Qsingularity_error, args); break;
- case OVERFLOW: xsignal (Qoverflow_error, args); break;
- case UNDERFLOW: xsignal (Qunderflow_error, args); break;
- default: xsignal (Qarith_error, args); break;
- }
- return (1); /* don't set errno or print a message */
-}
-#endif /* HAVE_MATHERR */
-
-void
-init_floatfns (void)
-{
- in_float = 0;
-}
-
void
syms_of_floatfns (void)
{