summaryrefslogtreecommitdiff
path: root/src/coding.c
diff options
context:
space:
mode:
authorKarl Heuer <kwzh@gnu.org>1997-02-20 07:02:49 +0000
committerKarl Heuer <kwzh@gnu.org>1997-02-20 07:02:49 +0000
commit29ce3607c99f8b6f8c8971ab2768175f3674fcb9 (patch)
treebd6fe5058bf419dd8d69bdc2c13ffbe9c4abfdb8 /src/coding.c
parentd58e6703b3d19cdda2b640b6784ab17b8048cb51 (diff)
downloademacs-29ce3607c99f8b6f8c8971ab2768175f3674fcb9.tar.gz
Initial revision
Diffstat (limited to 'src/coding.c')
-rw-r--r--src/coding.c3520
1 files changed, 3520 insertions, 0 deletions
diff --git a/src/coding.c b/src/coding.c
new file mode 100644
index 00000000000..95bbd26fef9
--- /dev/null
+++ b/src/coding.c
@@ -0,0 +1,3520 @@
+/* Coding system handler (conversion, detection, and etc).
+ Ver.1.0.
+
+ Copyright (C) 1995 Free Software Foundation, Inc.
+ Copyright (C) 1995 Electrotechnical Laboratory, JAPAN.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/*** TABLE OF CONTENTS ***
+
+ 1. Preamble
+ 2. Emacs' internal format handlers
+ 3. ISO2022 handlers
+ 4. Shift-JIS and BIG5 handlers
+ 5. End-of-line handlers
+ 6. C library functions
+ 7. Emacs Lisp library functions
+ 8. Post-amble
+
+*/
+
+/*** GENERAL NOTE on CODING SYSTEM ***
+
+ Coding system is an encoding mechanism of one or more character
+ sets. Here's a list of coding systems which Emacs can handle. When
+ we say "decode", it means converting some other coding system to
+ Emacs' internal format, and when we say "encode", it means
+ converting Emacs' internal format to some other coding system.
+
+ 0. Emacs' internal format
+
+ Emacs itself holds a multi-lingual character in a buffer and a string
+ in a special format. Details are described in the section 2.
+
+ 1. ISO2022
+
+ The most famous coding system for multiple character sets. X's
+ Compound Text, various EUCs (Extended Unix Code), and such coding
+ systems used in Internet communication as ISO-2022-JP are all
+ variants of ISO2022. Details are described in the section 3.
+
+ 2. SJIS (or Shift-JIS or MS-Kanji-Code)
+
+ A coding system to encode character sets: ASCII, JISX0201, and
+ JISX0208. Widely used for PC's in Japan. Details are described in
+ the section 4.
+
+ 3. BIG5
+
+ A coding system to encode character sets: ASCII and Big5. Widely
+ used by Chinese (mainly in Taiwan and Hong Kong). Details are
+ described in the section 4. In this file, when written as "BIG5"
+ (all uppercase), it means the coding system, and when written as
+ "Big5" (capitalized), it means the character set.
+
+ 4. Else
+
+ If a user want to read/write a text encoded in a coding system not
+ listed above, he can supply a decoder and an encoder for it in CCL
+ (Code Conversion Language) programs. Emacs executes the CCL program
+ while reading/writing.
+
+ Emacs represent a coding-system by a Lisp symbol that has a property
+ `coding-system'. But, before actually using the coding-system, the
+ information about it is set in a structure of type `struct
+ coding_system' for rapid processing. See the section 6 for more
+ detail.
+
+*/
+
+/*** GENERAL NOTES on END-OF-LINE FORMAT ***
+
+ How end-of-line of a text is encoded depends on a system. For
+ instance, Unix's format is just one byte of `line-feed' code,
+ whereas DOS's format is two bytes sequence of `carriage-return' and
+ `line-feed' codes. MacOS's format is one byte of `carriage-return'.
+
+ Since how characters in a text is encoded and how end-of-line is
+ encoded is independent, any coding system described above can take
+ any format of end-of-line. So, Emacs has information of format of
+ end-of-line in each coding-system. See the section 6 for more
+ detail.
+
+*/
+
+/*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
+
+ These functions check if a text between SRC and SRC_END is encoded
+ in the coding system category XXX. Each returns an integer value in
+ which appropriate flag bits for the category XXX is set. The flag
+ bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
+ template of these functions. */
+#if 0
+int
+detect_coding_internal (src, src_end)
+ unsigned char *src, *src_end;
+{
+ ...
+}
+#endif
+
+/*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
+
+ These functions decode SRC_BYTES length text at SOURCE encoded in
+ CODING to Emacs' internal format. The resulting text goes to a
+ place pointed by DESTINATION, the length of which should not exceed
+ DST_BYTES. The bytes actually processed is returned as *CONSUMED.
+ The return value is the length of the decoded text. Below is a
+ template of these functions. */
+#if 0
+decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes, consumed)
+ struct coding_system *coding;
+ unsigned char *source, *destination;
+ int src_bytes, dst_bytes;
+ int *consumed;
+{
+ ...
+}
+#endif
+
+/*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
+
+ These functions encode SRC_BYTES length text at SOURCE of Emacs
+ internal format to CODING. The resulting text goes to a place
+ pointed by DESTINATION, the length of which should not exceed
+ DST_BYTES. The bytes actually processed is returned as *CONSUMED.
+ The return value is the length of the encoded text. Below is a
+ template of these functions. */
+#if 0
+encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes, consumed)
+ struct coding_system *coding;
+ unsigned char *source, *destination;
+ int src_bytes, dst_bytes;
+ int *consumed;
+{
+ ...
+}
+#endif
+
+/*** COMMONLY USED MACROS ***/
+
+/* The following three macros ONE_MORE_BYTE, TWO_MORE_BYTES, and
+ THREE_MORE_BYTES safely get one, two, and three bytes from the
+ source text respectively. If there are not enough bytes in the
+ source, they jump to `label_end_of_loop'. The caller should set
+ variables `src' and `src_end' to appropriate areas in advance. */
+
+#define ONE_MORE_BYTE(c1) \
+ do { \
+ if (src < src_end) \
+ c1 = *src++; \
+ else \
+ goto label_end_of_loop; \
+ } while (0)
+
+#define TWO_MORE_BYTES(c1, c2) \
+ do { \
+ if (src + 1 < src_end) \
+ c1 = *src++, c2 = *src++; \
+ else \
+ goto label_end_of_loop; \
+ } while (0)
+
+#define THREE_MORE_BYTES(c1, c2, c3) \
+ do { \
+ if (src + 2 < src_end) \
+ c1 = *src++, c2 = *src++, c3 = *src++; \
+ else \
+ goto label_end_of_loop; \
+ } while (0)
+
+/* The following three macros DECODE_CHARACTER_ASCII,
+ DECODE_CHARACTER_DIMENSION1, and DECODE_CHARACTER_DIMENSION2 put
+ the multi-byte form of a character of each class at the place
+ pointed by `dst'. The caller should set the variable `dst' to
+ point to an appropriate area and the variable `coding' to point to
+ the coding-system of the currently decoding text in advance. */
+
+/* Decode one ASCII character C. */
+
+#define DECODE_CHARACTER_ASCII(c) \
+ do { \
+ if (COMPOSING_P (coding->composing)) \
+ *dst++ = 0xA0, *dst++ = (c) | 0x80; \
+ else \
+ *dst++ = (c); \
+ } while (0)
+
+/* Decode one DIMENSION1 character of which charset is CHARSET and
+ position-code is C. */
+
+#define DECODE_CHARACTER_DIMENSION1(charset, c) \
+ do { \
+ unsigned char leading_code = CHARSET_LEADING_CODE_BASE (charset); \
+ if (COMPOSING_P (coding->composing)) \
+ *dst++ = leading_code + 0x20; \
+ else \
+ *dst++ = leading_code; \
+ if (leading_code = CHARSET_LEADING_CODE_EXT (charset)) \
+ *dst++ = leading_code; \
+ *dst++ = (c) | 0x80; \
+ } while (0)
+
+/* Decode one DIMENSION2 character of which charset is CHARSET and
+ position-codes are C1 and C2. */
+
+#define DECODE_CHARACTER_DIMENSION2(charset, c1, c2) \
+ do { \
+ DECODE_CHARACTER_DIMENSION1 (charset, c1); \
+ *dst++ = (c2) | 0x80; \
+ } while (0)
+
+
+/*** 1. Preamble ***/
+
+#include <stdio.h>
+
+#ifdef emacs
+
+#include <config.h>
+#include "lisp.h"
+#include "buffer.h"
+#include "charset.h"
+#include "ccl.h"
+#include "coding.h"
+#include "window.h"
+
+#else /* not emacs */
+
+#include "mulelib.h"
+
+#endif /* not emacs */
+
+Lisp_Object Qcoding_system, Qeol_type;
+Lisp_Object Qbuffer_file_coding_system;
+Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
+
+extern Lisp_Object Qinsert_file_contents, Qwrite_region;
+Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
+Lisp_Object Qstart_process, Qopen_network_stream;
+Lisp_Object Qtarget_idx;
+
+/* Mnemonic character of each format of end-of-line. */
+int eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
+/* Mnemonic character to indicate format of end-of-line is not yet
+ decided. */
+int eol_mnemonic_undecided;
+
+#ifdef emacs
+
+Lisp_Object Qcoding_system_vector, Qcoding_system_p, Qcoding_system_error;
+
+/* Coding-systems are handed between Emacs Lisp programs and C internal
+ routines by the following three variables. */
+/* Coding-system for reading files and receiving data from process. */
+Lisp_Object Vcoding_system_for_read;
+/* Coding-system for writing files and sending data to process. */
+Lisp_Object Vcoding_system_for_write;
+/* Coding-system actually used in the latest I/O. */
+Lisp_Object Vlast_coding_system_used;
+
+/* Coding-system of what terminal accept for displaying. */
+struct coding_system terminal_coding;
+
+/* Coding-system of what is sent from terminal keyboard. */
+struct coding_system keyboard_coding;
+
+Lisp_Object Vcoding_system_alist;
+
+#endif /* emacs */
+
+Lisp_Object Qcoding_category_index;
+
+/* List of symbols `coding-category-xxx' ordered by priority. */
+Lisp_Object Vcoding_category_list;
+
+/* Table of coding-systems currently assigned to each coding-category. */
+Lisp_Object coding_category_table[CODING_CATEGORY_IDX_MAX];
+
+/* Table of names of symbol for each coding-category. */
+char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
+ "coding-category-internal",
+ "coding-category-sjis",
+ "coding-category-iso-7",
+ "coding-category-iso-8-1",
+ "coding-category-iso-8-2",
+ "coding-category-iso-else",
+ "coding-category-big5",
+ "coding-category-binary"
+};
+
+/* Alist of charsets vs the alternate charsets. */
+Lisp_Object Valternate_charset_table;
+
+/* Alist of charsets vs revision number. */
+Lisp_Object Vcharset_revision_alist;
+
+
+/*** 2. Emacs internal format handlers ***/
+
+/* Emacs' internal format for encoding multiple character sets is a
+ kind of multi-byte encoding, i.e. encoding a character by a sequence
+ of one-byte codes of variable length. ASCII characters and control
+ characters (e.g. `tab', `newline') are represented by one-byte as
+ is. It takes the range 0x00 through 0x7F. The other characters
+ are represented by a sequence of `base leading-code', optional
+ `extended leading-code', and one or two `position-code's. Length
+ of the sequence is decided by the base leading-code. Leading-code
+ takes the range 0x80 through 0x9F, whereas extended leading-code
+ and position-code take the range 0xA0 through 0xFF. See the
+ document of `charset.h' for more detail about leading-code and
+ position-code.
+
+ There's one exception in this rule. Special leading-code
+ `leading-code-composition' denotes that the following several
+ characters should be composed into one character. Leading-codes of
+ components (except for ASCII) are added 0x20. An ASCII character
+ component is represented by a 2-byte sequence of `0xA0' and
+ `ASCII-code + 0x80'. See also the document in `charset.h' for the
+ detail of composite character. Hence, we can summarize the code
+ range as follows:
+
+ --- CODE RANGE of Emacs' internal format ---
+ (character set) (range)
+ ASCII 0x00 .. 0x7F
+ ELSE (1st byte) 0x80 .. 0x9F
+ (rest bytes) 0xA0 .. 0xFF
+ ---------------------------------------------
+
+ */
+
+enum emacs_code_class_type emacs_code_class[256];
+
+/* Go to the next statement only if *SRC is accessible and the code is
+ greater than 0xA0. */
+#define CHECK_CODE_RANGE_A0_FF \
+ do { \
+ if (src >= src_end) \
+ goto label_end_of_switch; \
+ else if (*src++ < 0xA0) \
+ return 0; \
+ } while (0)
+
+/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
+ Check if a text is encoded in Emacs' internal format. If it is,
+ return CODING_CATEGORY_MASK_INTERNAL, else return 0. */
+
+int
+detect_coding_internal (src, src_end)
+ unsigned char *src, *src_end;
+{
+ unsigned char c;
+ int composing = 0;
+
+ while (src < src_end)
+ {
+ c = *src++;
+
+ if (composing)
+ {
+ if (c < 0xA0)
+ composing = 0;
+ else
+ c -= 0x20;
+ }
+
+ switch (emacs_code_class[c])
+ {
+ case EMACS_ascii_code:
+ case EMACS_linefeed_code:
+ break;
+
+ case EMACS_control_code:
+ if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
+ return 0;
+ break;
+
+ case EMACS_invalid_code:
+ return 0;
+
+ case EMACS_leading_code_composition: /* c == 0x80 */
+ if (composing)
+ CHECK_CODE_RANGE_A0_FF;
+ else
+ composing = 1;
+ break;
+
+ case EMACS_leading_code_4:
+ CHECK_CODE_RANGE_A0_FF;
+ /* fall down to check it two more times ... */
+
+ case EMACS_leading_code_3:
+ CHECK_CODE_RANGE_A0_FF;
+ /* fall down to check it one more time ... */
+
+ case EMACS_leading_code_2:
+ CHECK_CODE_RANGE_A0_FF;
+ break;
+
+ default:
+ label_end_of_switch:
+ break;
+ }
+ }
+ return CODING_CATEGORY_MASK_INTERNAL;
+}
+
+
+/*** 3. ISO2022 handlers ***/
+
+/* The following note describes the coding system ISO2022 briefly.
+ Since the intension of this note is to help understanding of the
+ programs in this file, some parts are NOT ACCURATE or OVERLY
+ SIMPLIFIED. For the thorough understanding, please refer to the
+ original document of ISO2022.
+
+ ISO2022 provides many mechanisms to encode several character sets
+ in 7-bit and 8-bit environment. If one choose 7-bite environment,
+ all text is encoded by codes of less than 128. This may make the
+ encoded text a little bit longer, but the text get more stability
+ to pass through several gateways (some of them split MSB off).
+
+ There are two kind of character set: control character set and
+ graphic character set. The former contains control characters such
+ as `newline' and `escape' to provide control functions (control
+ functions are provided also by escape sequence). The latter
+ contains graphic characters such as ' A' and '-'. Emacs recognizes
+ two control character sets and many graphic character sets.
+
+ Graphic character sets are classified into one of the following
+ four classes, DIMENSION1_CHARS94, DIMENSION1_CHARS96,
+ DIMENSION2_CHARS94, DIMENSION2_CHARS96 according to the number of
+ bytes (DIMENSION) and the number of characters in one dimension
+ (CHARS) of the set. In addition, each character set is assigned an
+ identification tag (called "final character" and denoted as <F>
+ here after) which is unique in each class. <F> of each character
+ set is decided by ECMA(*) when it is registered in ISO. Code range
+ of <F> is 0x30..0x7F (0x30..0x3F are for private use only).
+
+ Note (*): ECMA = European Computer Manufacturers Association
+
+ Here are examples of graphic character set [NAME(<F>)]:
+ o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
+ o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
+ o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
+ o DIMENSION2_CHARS96 -- none for the moment
+
+ A code area (1byte=8bits) is divided into 4 areas, C0, GL, C1, and GR.
+ C0 [0x00..0x1F] -- control character plane 0
+ GL [0x20..0x7F] -- graphic character plane 0
+ C1 [0x80..0x9F] -- control character plane 1
+ GR [0xA0..0xFF] -- graphic character plane 1
+
+ A control character set is directly designated and invoked to C0 or
+ C1 by an escape sequence. The most common case is that ISO646's
+ control character set is designated/invoked to C0 and ISO6429's
+ control character set is designated/invoked to C1, and usually
+ these designations/invocations are omitted in a coded text. With
+ 7-bit environment, only C0 can be used, and a control character for
+ C1 is encoded by an appropriate escape sequence to fit in the
+ environment. All control characters for C1 are defined the
+ corresponding escape sequences.
+
+ A graphic character set is at first designated to one of four
+ graphic registers (G0 through G3), then these graphic registers are
+ invoked to GL or GR. These designations and invocations can be
+ done independently. The most common case is that G0 is invoked to
+ GL, G1 is invoked to GR, and ASCII is designated to G0, and usually
+ these invocations and designations are omitted in a coded text.
+ With 7-bit environment, only GL can be used.
+
+ When a graphic character set of CHARS94 is invoked to GL, code 0x20
+ and 0x7F of GL area work as control characters SPACE and DEL
+ respectively, and code 0xA0 and 0xFF of GR area should not be used.
+
+ There are two ways of invocation: locking-shift and single-shift.
+ With locking-shift, the invocation lasts until the next different
+ invocation, whereas with single-shift, the invocation works only
+ for the following character and doesn't affect locking-shift.
+ Invocations are done by the following control characters or escape
+ sequences.
+
+ ----------------------------------------------------------------------
+ function control char escape sequence description
+ ----------------------------------------------------------------------
+ SI (shift-in) 0x0F none invoke G0 to GL
+ SI (shift-out) 0x0E none invoke G1 to GL
+ LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
+ LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
+ SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 into GL
+ SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 into GL
+ ----------------------------------------------------------------------
+ The first four are for locking-shift. Control characters for these
+ functions are defined by macros ISO_CODE_XXX in `coding.h'.
+
+ Designations are done by the following escape sequences.
+ ----------------------------------------------------------------------
+ escape sequence description
+ ----------------------------------------------------------------------
+ ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
+ ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
+ ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
+ ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
+ ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
+ ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
+ ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
+ ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
+ ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
+ ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
+ ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
+ ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
+ ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
+ ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
+ ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
+ ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
+ ----------------------------------------------------------------------
+
+ In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
+ of dimension 1, chars 94, and final character <F>, and etc.
+
+ Note (*): Although these designations are not allowed in ISO2022,
+ Emacs accepts them on decoding, and produces them on encoding
+ CHARS96 character set in a coding system which is characterized as
+ 7-bit environment, non-locking-shift, and non-single-shift.
+
+ Note (**): If <F> is '@', 'A', or 'B', the intermediate character
+ '(' can be omitted. We call this as "short-form" here after.
+
+ Now you may notice that there are a lot of ways for encoding the
+ same multilingual text in ISO2022. Actually, there exist many
+ coding systems such as Compound Text (used in X's inter client
+ communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
+ (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
+ localized platforms), and all of these are variants of ISO2022.
+
+ In addition to the above, Emacs handles two more kinds of escape
+ sequences: ISO6429's direction specification and Emacs' private
+ sequence for specifying character composition.
+
+ ISO6429's direction specification takes the following format:
+ o CSI ']' -- end of the current direction
+ o CSI '0' ']' -- end of the current direction
+ o CSI '1' ']' -- start of left-to-right text
+ o CSI '2' ']' -- start of right-to-left text
+ The control character CSI (0x9B: control sequence introducer) is
+ abbreviated to the escape sequence ESC '[' in 7-bit environment.
+
+ Character composition specification takes the following format:
+ o ESC '0' -- start character composition
+ o ESC '1' -- end character composition
+ Since these are not standard escape sequences of any ISO, the use
+ of them for these meaning is restricted to Emacs only. */
+
+enum iso_code_class_type iso_code_class[256];
+
+/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
+ Check if a text is encoded in ISO2022. If it is, returns an
+ integer in which appropriate flag bits any of:
+ CODING_CATEGORY_MASK_ISO_7
+ CODING_CATEGORY_MASK_ISO_8_1
+ CODING_CATEGORY_MASK_ISO_8_2
+ CODING_CATEGORY_MASK_ISO_ELSE
+ are set. If a code which should never appear in ISO2022 is found,
+ returns 0. */
+
+int
+detect_coding_iso2022 (src, src_end)
+ unsigned char *src, *src_end;
+{
+ unsigned char graphic_register[4];
+ unsigned char c, esc_cntl;
+ int mask = (CODING_CATEGORY_MASK_ISO_7
+ | CODING_CATEGORY_MASK_ISO_8_1
+ | CODING_CATEGORY_MASK_ISO_8_2);
+ /* We may look ahead maximum 3 bytes. */
+ unsigned char *adjusted_src_end = src_end - 3;
+ int i;
+
+ for (i = 0; i < 4; i++)
+ graphic_register[i] = CHARSET_ASCII;
+
+ while (src < adjusted_src_end)
+ {
+ c = *src++;
+ switch (c)
+ {
+ case ISO_CODE_ESC:
+ if (src >= adjusted_src_end)
+ break;
+ c = *src++;
+ if (c == '$')
+ {
+ /* Designation of 2-byte character set. */
+ if (src >= adjusted_src_end)
+ break;
+ c = *src++;
+ }
+ if ((c >= ')' && c <= '+') || (c >= '-' && c <= '/'))
+ /* Designation to graphic register 1, 2, or 3. */
+ mask &= ~CODING_CATEGORY_MASK_ISO_7;
+ else if (c == 'N' || c == 'O' || c == 'n' || c == 'o')
+ return CODING_CATEGORY_MASK_ISO_ELSE;
+ break;
+
+ case ISO_CODE_SI:
+ case ISO_CODE_SO:
+ return CODING_CATEGORY_MASK_ISO_ELSE;
+
+ case ISO_CODE_CSI:
+ case ISO_CODE_SS2:
+ case ISO_CODE_SS3:
+ mask &= ~CODING_CATEGORY_MASK_ISO_7;
+ break;
+
+ default:
+ if (c < 0x80)
+ break;
+ else if (c < 0xA0)
+ return 0;
+ else
+ {
+ int count = 1;
+
+ mask &= ~CODING_CATEGORY_MASK_ISO_7;
+ while (src < adjusted_src_end && *src >= 0xA0)
+ count++, src++;
+ if (count & 1 && src < adjusted_src_end)
+ mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
+ }
+ break;
+ }
+ }
+
+ return mask;
+}
+
+/* Decode a character of which charset is CHARSET and the 1st position
+ code is C1. If dimension of CHARSET 2, the 2nd position code is
+ fetched from SRC and set to C2. If CHARSET is negative, it means
+ that we are decoding ill formed text, and what we can do is just to
+ read C1 as is. */
+
+#define DECODE_ISO_CHARACTER(charset, c1) \
+ do { \
+ if ((charset) >= 0 && CHARSET_DIMENSION (charset) == 2) \
+ ONE_MORE_BYTE (c2); \
+ if (COMPOSING_HEAD_P (coding->composing)) \
+ { \
+ *dst++ = LEADING_CODE_COMPOSITION; \
+ if (COMPOSING_WITH_RULE_P (coding->composing)) \
+ /* To tell composition rules are embeded. */ \
+ *dst++ = 0xFF; \
+ coding->composing += 2; \
+ } \
+ if ((charset) < 0) \
+ *dst++ = c1; \
+ else if ((charset) == CHARSET_ASCII) \
+ DECODE_CHARACTER_ASCII (c1); \
+ else if (CHARSET_DIMENSION (charset) == 1) \
+ DECODE_CHARACTER_DIMENSION1 (charset, c1); \
+ else \
+ DECODE_CHARACTER_DIMENSION2 (charset, c1, c2); \
+ if (COMPOSING_WITH_RULE_P (coding->composing)) \
+ /* To tell a composition rule follows. */ \
+ coding->composing = COMPOSING_WITH_RULE_RULE; \
+ } while (0)
+
+/* Set designation state into CODING. */
+#define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
+ do { \
+ int charset = ISO_CHARSET_TABLE (dimension, chars, final_char); \
+ Lisp_Object temp \
+ = Fassq (CHARSET_SYMBOL (charset), Valternate_charset_table); \
+ if (! NILP (temp)) \
+ charset = get_charset_id (XCONS (temp)->cdr); \
+ if (charset >= 0) \
+ { \
+ if (coding->direction == 1 \
+ && CHARSET_REVERSE_CHARSET (charset) >= 0) \
+ charset = CHARSET_REVERSE_CHARSET (charset); \
+ CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
+ } \
+ } while (0)
+
+/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
+
+int
+decode_coding_iso2022 (coding, source, destination,
+ src_bytes, dst_bytes, consumed)
+ struct coding_system *coding;
+ unsigned char *source, *destination;
+ int src_bytes, dst_bytes;
+ int *consumed;
+{
+ unsigned char *src = source;
+ unsigned char *src_end = source + src_bytes;
+ unsigned char *dst = destination;
+ unsigned char *dst_end = destination + dst_bytes;
+ /* Since the maximum bytes produced by each loop is 7, we subtract 6
+ from DST_END to assure that overflow checking is necessary only
+ at the head of loop. */
+ unsigned char *adjusted_dst_end = dst_end - 6;
+ int charset;
+ /* Charsets invoked to graphic plane 0 and 1 respectively. */
+ int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
+ int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
+
+ while (src < src_end && dst < adjusted_dst_end)
+ {
+ /* SRC_BASE remembers the start position in source in each loop.
+ The loop will be exited when there's not enough source text
+ to analyze long escape sequence or 2-byte code (within macros
+ ONE_MORE_BYTE or TWO_MORE_BYTES). In that case, SRC is reset
+ to SRC_BASE before exiting. */
+ unsigned char *src_base = src;
+ unsigned char c1 = *src++, c2, cmprule;
+
+ switch (iso_code_class [c1])
+ {
+ case ISO_0x20_or_0x7F:
+ if (!coding->composing
+ && (charset0 < 0 || CHARSET_CHARS (charset0) == 94))
+ {
+ /* This is SPACE or DEL. */
+ *dst++ = c1;
+ break;
+ }
+ /* This is a graphic character, we fall down ... */
+
+ case ISO_graphic_plane_0:
+ if (coding->composing == COMPOSING_WITH_RULE_RULE)
+ {
+ /* This is a composition rule. */
+ *dst++ = c1 | 0x80;
+ coding->composing = COMPOSING_WITH_RULE_TAIL;
+ }
+ else
+ DECODE_ISO_CHARACTER (charset0, c1);
+ break;
+
+ case ISO_0xA0_or_0xFF:
+ if (charset1 < 0 || CHARSET_CHARS (charset1) == 94)
+ {
+ /* Invalid code. */
+ *dst++ = c1;
+ break;
+ }
+ /* This is a graphic character, we fall down ... */
+
+ case ISO_graphic_plane_1:
+ DECODE_ISO_CHARACTER (charset1, c1);
+ break;
+
+ case ISO_control_code:
+ /* All ISO2022 control characters in this class have the
+ same representation in Emacs internal format. */
+ *dst++ = c1;
+ break;
+
+ case ISO_carriage_return:
+ if (coding->eol_type == CODING_EOL_CR)
+ {
+ *dst++ = '\n';
+ }
+ else if (coding->eol_type == CODING_EOL_CRLF)
+ {
+ ONE_MORE_BYTE (c1);
+ if (c1 == ISO_CODE_LF)
+ *dst++ = '\n';
+ else
+ {
+ src--;
+ *dst++ = c1;
+ }
+ }
+ else
+ {
+ *dst++ = c1;
+ }
+ break;
+
+ case ISO_shift_out:
+ CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
+ charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
+ break;
+
+ case ISO_shift_in:
+ CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
+ charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
+ break;
+
+ case ISO_single_shift_2_7:
+ case ISO_single_shift_2:
+ /* SS2 is handled as an escape sequence of ESC 'N' */
+ c1 = 'N';
+ goto label_escape_sequence;
+
+ case ISO_single_shift_3:
+ /* SS2 is handled as an escape sequence of ESC 'O' */
+ c1 = 'O';
+ goto label_escape_sequence;
+
+ case ISO_control_sequence_introducer:
+ /* CSI is handled as an escape sequence of ESC '[' ... */
+ c1 = '[';
+ goto label_escape_sequence;
+
+ case ISO_escape:
+ ONE_MORE_BYTE (c1);
+ label_escape_sequence:
+ /* Escape sequences handled by Emacs are invocation,
+ designation, direction specification, and character
+ composition specification. */
+ switch (c1)
+ {
+ case '&': /* revision of following character set */
+ ONE_MORE_BYTE (c1);
+ if (!(c1 >= '@' && c1 <= '~'))
+ {
+ goto label_invalid_escape_sequence;
+ }
+ ONE_MORE_BYTE (c1);
+ if (c1 != ISO_CODE_ESC)
+ {
+ goto label_invalid_escape_sequence;
+ }
+ ONE_MORE_BYTE (c1);
+ goto label_escape_sequence;
+
+ case '$': /* designation of 2-byte character set */
+ ONE_MORE_BYTE (c1);
+ if (c1 >= '@' && c1 <= 'B')
+ { /* designation of JISX0208.1978, GB2312.1980,
+ or JISX0208.1980 */
+ DECODE_DESIGNATION (0, 2, 94, c1);
+ }
+ else if (c1 >= 0x28 && c1 <= 0x2B)
+ { /* designation of DIMENSION2_CHARS94 character set */
+ ONE_MORE_BYTE (c2);
+ DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
+ }
+ else if (c1 >= 0x2C && c1 <= 0x2F)
+ { /* designation of DIMENSION2_CHARS96 character set */
+ ONE_MORE_BYTE (c2);
+ DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
+ }
+ else
+ {
+ goto label_invalid_escape_sequence;
+ }
+ break;
+
+ case 'n': /* invocation of locking-shift-2 */
+ CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
+ break;
+
+ case 'o': /* invocation of locking-shift-3 */
+ CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
+ break;
+
+ case 'N': /* invocation of single-shift-2 */
+ ONE_MORE_BYTE (c1);
+ charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
+ DECODE_ISO_CHARACTER (charset, c1);
+ break;
+
+ case 'O': /* invocation of single-shift-3 */
+ ONE_MORE_BYTE (c1);
+ charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
+ DECODE_ISO_CHARACTER (charset, c1);
+ break;
+
+ case '0': /* start composing without embeded rules */
+ coding->composing = COMPOSING_NO_RULE_HEAD;
+ break;
+
+ case '1': /* end composing */
+ coding->composing = COMPOSING_NO;
+ break;
+
+ case '2': /* start composing with embeded rules */
+ coding->composing = COMPOSING_WITH_RULE_HEAD;
+ break;
+
+ case '[': /* specification of direction */
+ /* For the moment, nested direction is not supported.
+ So, the value of `coding->direction' is 0 or 1: 0
+ means left-to-right, 1 means right-to-left. */
+ ONE_MORE_BYTE (c1);
+ switch (c1)
+ {
+ case ']': /* end of the current direction */
+ coding->direction = 0;
+
+ case '0': /* end of the current direction */
+ case '1': /* start of left-to-right direction */
+ ONE_MORE_BYTE (c1);
+ if (c1 == ']')
+ coding->direction = 0;
+ else
+ goto label_invalid_escape_sequence;
+ break;
+
+ case '2': /* start of right-to-left direction */
+ ONE_MORE_BYTE (c1);
+ if (c1 == ']')
+ coding->direction= 1;
+ else
+ goto label_invalid_escape_sequence;
+ break;
+
+ default:
+ goto label_invalid_escape_sequence;
+ }
+ break;
+
+ default:
+ if (c1 >= 0x28 && c1 <= 0x2B)
+ { /* designation of DIMENSION1_CHARS94 character set */
+ ONE_MORE_BYTE (c2);
+ DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
+ }
+ else if (c1 >= 0x2C && c1 <= 0x2F)
+ { /* designation of DIMENSION1_CHARS96 character set */
+ ONE_MORE_BYTE (c2);
+ DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
+ }
+ else
+ {
+ goto label_invalid_escape_sequence;
+ }
+ }
+ /* We must update these variables now. */
+ charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
+ charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
+ break;
+
+ label_invalid_escape_sequence:
+ {
+ int length = src - src_base;
+
+ bcopy (src_base, dst, length);
+ dst += length;
+ }
+ }
+ continue;
+
+ label_end_of_loop:
+ coding->carryover_size = src - src_base;
+ bcopy (src_base, coding->carryover, coding->carryover_size);
+ src = src_base;
+ break;
+ }
+
+ /* If this is the last block of the text to be decoded, we had
+ better just flush out all remaining codes in the text although
+ they are not valid characters. */
+ if (coding->last_block)
+ {
+ bcopy (src, dst, src_end - src);
+ dst += (src_end - src);
+ src = src_end;
+ }
+ *consumed = src - source;
+ return dst - destination;
+}
+
+/* ISO2022 encoding staffs. */
+
+/*
+ It is not enough to say just "ISO2022" on encoding, but we have to
+ specify more details. In Emacs, each coding-system of ISO2022
+ variant has the following specifications:
+ 1. Initial designation to G0 thru G3.
+ 2. Allows short-form designation?
+ 3. ASCII should be designated to G0 before control characters?
+ 4. ASCII should be designated to G0 at end of line?
+ 5. 7-bit environment or 8-bit environment?
+ 6. Use locking-shift?
+ 7. Use Single-shift?
+ And the following two are only for Japanese:
+ 8. Use ASCII in place of JIS0201-1976-Roman?
+ 9. Use JISX0208-1983 in place of JISX0208-1978?
+ These specifications are encoded in `coding->flags' as flag bits
+ defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
+ detail.
+*/
+
+/* Produce codes (escape sequence) for designating CHARSET to graphic
+ register REG. If <final-char> of CHARSET is '@', 'A', or 'B' and
+ the coding system CODING allows, produce designation sequence of
+ short-form. */
+
+#define ENCODE_DESIGNATION(charset, reg, coding) \
+ do { \
+ unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
+ char *intermediate_char_94 = "()*+"; \
+ char *intermediate_char_96 = ",-./"; \
+ Lisp_Object temp \
+ = Fassq (make_number (charset), Vcharset_revision_alist); \
+ if (! NILP (temp)) \
+ { \
+ *dst++ = ISO_CODE_ESC; \
+ *dst++ = '&'; \
+ *dst++ = XINT (XCONS (temp)->cdr) + '@'; \
+ } \
+ *dst++ = ISO_CODE_ESC; \
+ if (CHARSET_DIMENSION (charset) == 1) \
+ { \
+ if (CHARSET_CHARS (charset) == 94) \
+ *dst++ = (unsigned char) (intermediate_char_94[reg]); \
+ else \
+ *dst++ = (unsigned char) (intermediate_char_96[reg]); \
+ } \
+ else \
+ { \
+ *dst++ = '$'; \
+ if (CHARSET_CHARS (charset) == 94) \
+ { \
+ if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
+ || reg != 0 \
+ || final_char < '@' || final_char > 'B') \
+ *dst++ = (unsigned char) (intermediate_char_94[reg]); \
+ } \
+ else \
+ *dst++ = (unsigned char) (intermediate_char_96[reg]); \
+ } \
+ *dst++ = final_char; \
+ CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
+ } while (0)
+
+/* The following two macros produce codes (control character or escape
+ sequence) for ISO2022 single-shift functions (single-shift-2 and
+ single-shift-3). */
+
+#define ENCODE_SINGLE_SHIFT_2 \
+ do { \
+ if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
+ *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
+ else \
+ *dst++ = ISO_CODE_SS2; \
+ CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
+ } while (0)
+
+#define ENCODE_SINGLE_SHIFT_3 \
+ do { \
+ if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
+ *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
+ else \
+ *dst++ = ISO_CODE_SS3; \
+ CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
+ } while (0)
+
+/* The following four macros produce codes (control character or
+ escape sequence) for ISO2022 locking-shift functions (shift-in,
+ shift-out, locking-shift-2, and locking-shift-3). */
+
+#define ENCODE_SHIFT_IN \
+ do { \
+ *dst++ = ISO_CODE_SI; \
+ CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
+ } while (0)
+
+#define ENCODE_SHIFT_OUT \
+ do { \
+ *dst++ = ISO_CODE_SO; \
+ CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
+ } while (0)
+
+#define ENCODE_LOCKING_SHIFT_2 \
+ do { \
+ *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
+ CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
+ } while (0)
+
+#define ENCODE_LOCKING_SHIFT_3 \
+ do { \
+ *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
+ CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
+ } while (0)
+
+/* Produce codes for a DIMENSION1 character of which character set is
+ CHARSET and position-code is C1. Designation and invocation
+ sequences are also produced in advance if necessary. */
+
+
+#define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
+ do { \
+ if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
+ { \
+ if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
+ *dst++ = c1 & 0x7F; \
+ else \
+ *dst++ = c1 | 0x80; \
+ CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
+ break; \
+ } \
+ else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
+ { \
+ *dst++ = c1 & 0x7F; \
+ break; \
+ } \
+ else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
+ { \
+ *dst++ = c1 | 0x80; \
+ break; \
+ } \
+ else \
+ /* Since CHARSET is not yet invoked to any graphic planes, we \
+ must invoke it, or, at first, designate it to some graphic \
+ register. Then repeat the loop to actually produce the \
+ character. */ \
+ dst = encode_invocation_designation (charset, coding, dst); \
+ } while (1)
+
+/* Produce codes for a DIMENSION2 character of which character set is
+ CHARSET and position-codes are C1 and C2. Designation and
+ invocation codes are also produced in advance if necessary. */
+
+#define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
+ do { \
+ if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
+ { \
+ if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
+ *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
+ else \
+ *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
+ CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
+ break; \
+ } \
+ else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
+ { \
+ *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
+ break; \
+ } \
+ else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
+ { \
+ *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
+ break; \
+ } \
+ else \
+ /* Since CHARSET is not yet invoked to any graphic planes, we \
+ must invoke it, or, at first, designate it to some graphic \
+ register. Then repeat the loop to actually produce the \
+ character. */ \
+ dst = encode_invocation_designation (charset, coding, dst); \
+ } while (1)
+
+/* Produce designation and invocation codes at a place pointed by DST
+ to use CHARSET. The element `spec.iso2022' of *CODING is updated.
+ Return new DST. */
+
+unsigned char *
+encode_invocation_designation (charset, coding, dst)
+ int charset;
+ struct coding_system *coding;
+ unsigned char *dst;
+{
+ int reg; /* graphic register number */
+
+ /* At first, check designations. */
+ for (reg = 0; reg < 4; reg++)
+ if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
+ break;
+
+ if (reg >= 4)
+ {
+ /* CHARSET is not yet designated to any graphic registers. */
+ /* At first check the requested designation. */
+ reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
+ if (reg < 0)
+ /* Since CHARSET requests no special designation, designate to
+ graphic register 0. */
+ reg = 0;
+
+ ENCODE_DESIGNATION (charset, reg, coding);
+ }
+
+ if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
+ && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
+ {
+ /* Since the graphic register REG is not invoked to any graphic
+ planes, invoke it to graphic plane 0. */
+ switch (reg)
+ {
+ case 0: /* graphic register 0 */
+ ENCODE_SHIFT_IN;
+ break;
+
+ case 1: /* graphic register 1 */
+ ENCODE_SHIFT_OUT;
+ break;
+
+ case 2: /* graphic register 2 */
+ if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
+ ENCODE_SINGLE_SHIFT_2;
+ else
+ ENCODE_LOCKING_SHIFT_2;
+ break;
+
+ case 3: /* graphic register 3 */
+ if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
+ ENCODE_SINGLE_SHIFT_3;
+ else
+ ENCODE_LOCKING_SHIFT_3;
+ break;
+ }
+ }
+ return dst;
+}
+
+/* The following two macros produce codes for indicating composition. */
+#define ENCODE_COMPOSITION_NO_RULE_START *dst++ = ISO_CODE_ESC, *dst++ = '0'
+#define ENCODE_COMPOSITION_WITH_RULE_START *dst++ = ISO_CODE_ESC, *dst++ = '2'
+#define ENCODE_COMPOSITION_END *dst++ = ISO_CODE_ESC, *dst++ = '1'
+
+/* The following three macros produce codes for indicating direction
+ of text. */
+#define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
+ do { \
+ if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
+ *dst++ = ISO_CODE_ESC, *dst++ = '['; \
+ else \
+ *dst++ = ISO_CODE_CSI; \
+ } while (0)
+
+#define ENCODE_DIRECTION_R2L \
+ ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '2', *dst++ = ']'
+
+#define ENCODE_DIRECTION_L2R \
+ ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '0', *dst++ = ']'
+
+/* Produce codes for designation and invocation to reset the graphic
+ planes and registers to initial state. */
+#define ENCODE_RESET_PLANE_AND_REGISTER(eol) \
+ do { \
+ int reg; \
+ if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
+ ENCODE_SHIFT_IN; \
+ for (reg = 0; reg < 4; reg++) \
+ { \
+ if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) < 0) \
+ { \
+ if (eol) CODING_SPEC_ISO_DESIGNATION (coding, reg) = -1; \
+ } \
+ else if (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
+ != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg)) \
+ ENCODE_DESIGNATION \
+ (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
+ } \
+ } while (0)
+
+/* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
+
+int
+encode_coding_iso2022 (coding, source, destination,
+ src_bytes, dst_bytes, consumed)
+ struct coding_system *coding;
+ unsigned char *source, *destination;
+ int src_bytes, dst_bytes;
+ int *consumed;
+{
+ unsigned char *src = source;
+ unsigned char *src_end = source + src_bytes;
+ unsigned char *dst = destination;
+ unsigned char *dst_end = destination + dst_bytes;
+ /* Since the maximum bytes produced by each loop is 6, we subtract 5
+ from DST_END to assure overflow checking is necessary only at the
+ head of loop. */
+ unsigned char *adjusted_dst_end = dst_end - 5;
+
+ while (src < src_end && dst < adjusted_dst_end)
+ {
+ /* SRC_BASE remembers the start position in source in each loop.
+ The loop will be exited when there's not enough source text
+ to analyze multi-byte codes (within macros ONE_MORE_BYTE,
+ TWO_MORE_BYTES, and THREE_MORE_BYTES). In that case, SRC is
+ reset to SRC_BASE before exiting. */
+ unsigned char *src_base = src;
+ unsigned char c1 = *src++, c2, c3, c4;
+ int charset;
+
+ /* If we are seeing a component of a composite character, we are
+ seeing a leading-code specially encoded for composition, or a
+ composition rule if composing with rule. We must set C1
+ to a normal leading-code or an ASCII code. If we are not at
+ a composed character, we must reset the composition state. */
+ if (COMPOSING_P (coding->composing))
+ {
+ if (c1 < 0xA0)
+ {
+ /* We are not in a composite character any longer. */
+ coding->composing = COMPOSING_NO;
+ ENCODE_COMPOSITION_END;
+ }
+ else
+ {
+ if (coding->composing == COMPOSING_WITH_RULE_RULE)
+ {
+ *dst++ = c1 & 0x7F;
+ coding->composing = COMPOSING_WITH_RULE_HEAD;
+ continue;
+ }
+ else if (coding->composing == COMPOSING_WITH_RULE_HEAD)
+ coding->composing = COMPOSING_WITH_RULE_RULE;
+ if (c1 == 0xA0)
+ {
+ /* This is an ASCII component. */
+ ONE_MORE_BYTE (c1);
+ c1 &= 0x7F;
+ }
+ else
+ /* This is a leading-code of non ASCII component. */
+ c1 -= 0x20;
+ }
+ }
+
+ /* Now encode one character. C1 is a control character, an
+ ASCII character, or a leading-code of multi-byte character. */
+ switch (emacs_code_class[c1])
+ {
+ case EMACS_ascii_code:
+ ENCODE_ISO_CHARACTER_DIMENSION1 (CHARSET_ASCII, c1);
+ break;
+
+ case EMACS_control_code:
+ if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
+ ENCODE_RESET_PLANE_AND_REGISTER (0);
+ *dst++ = c1;
+ break;
+
+ case EMACS_carriage_return_code:
+ if (!coding->selective)
+ {
+ if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
+ ENCODE_RESET_PLANE_AND_REGISTER (0);
+ *dst++ = c1;
+ break;
+ }
+ /* fall down to treat '\r' as '\n' ... */
+
+ case EMACS_linefeed_code:
+ if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
+ ENCODE_RESET_PLANE_AND_REGISTER (1);
+ if (coding->eol_type == CODING_EOL_LF
+ || coding->eol_type == CODING_EOL_AUTOMATIC)
+ *dst++ = ISO_CODE_LF;
+ else if (coding->eol_type == CODING_EOL_CRLF)
+ *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
+ else
+ *dst++ = ISO_CODE_CR;
+ break;
+
+ case EMACS_leading_code_2:
+ ONE_MORE_BYTE (c2);
+ ENCODE_ISO_CHARACTER_DIMENSION1 (c1, c2);
+ break;
+
+ case EMACS_leading_code_3:
+ TWO_MORE_BYTES (c2, c3);
+ if (c1 < LEADING_CODE_PRIVATE_11)
+ ENCODE_ISO_CHARACTER_DIMENSION2 (c1, c2, c3);
+ else
+ ENCODE_ISO_CHARACTER_DIMENSION1 (c2, c3);
+ break;
+
+ case EMACS_leading_code_4:
+ THREE_MORE_BYTES (c2, c3, c4);
+ ENCODE_ISO_CHARACTER_DIMENSION2 (c2, c3, c4);
+ break;
+
+ case EMACS_leading_code_composition:
+ ONE_MORE_BYTE (c1);
+ if (c1 == 0xFF)
+ {
+ coding->composing = COMPOSING_WITH_RULE_HEAD;
+ ENCODE_COMPOSITION_WITH_RULE_START;
+ }
+ else
+ {
+ /* Rewind one byte because it is a character code of
+ composition elements. */
+ src--;
+ coding->composing = COMPOSING_NO_RULE_HEAD;
+ ENCODE_COMPOSITION_NO_RULE_START;
+ }
+ break;
+
+ case EMACS_invalid_code:
+ *dst++ = c1;
+ break;
+ }
+ continue;
+ label_end_of_loop:
+ coding->carryover_size = src - src_base;
+ bcopy (src_base, coding->carryover, coding->carryover_size);
+ src = src_base;
+ break;
+ }
+
+ /* If this is the last block of the text to be encoded, we must
+ reset the state of graphic planes and registers to initial one.
+ In addition, we had better just flush out all remaining codes in
+ the text although they are not valid characters. */
+ if (coding->last_block)
+ {
+ ENCODE_RESET_PLANE_AND_REGISTER (1);
+ bcopy(src, dst, src_end - src);
+ dst += (src_end - src);
+ src = src_end;
+ }
+ *consumed = src - source;
+ return dst - destination;
+}
+
+
+/*** 4. SJIS and BIG5 handlers ***/
+
+/* Although SJIS and BIG5 are not ISO's coding system, They are used
+ quite widely. So, for the moment, Emacs supports them in the bare
+ C code. But, in the future, they may be supported only by CCL. */
+
+/* SJIS is a coding system encoding three character sets: ASCII, right
+ half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
+ as is. A character of charset katakana-jisx0201 is encoded by
+ "position-code + 0x80". A character of charset japanese-jisx0208
+ is encoded in 2-byte but two position-codes are divided and shifted
+ so that it fit in the range below.
+
+ --- CODE RANGE of SJIS ---
+ (character set) (range)
+ ASCII 0x00 .. 0x7F
+ KATAKANA-JISX0201 0xA0 .. 0xDF
+ JISX0208 (1st byte) 0x80 .. 0x9F and 0xE0 .. 0xFF
+ (2nd byte) 0x40 .. 0xFF
+ -------------------------------
+
+*/
+
+/* BIG5 is a coding system encoding two character sets: ASCII and
+ Big5. An ASCII character is encoded as is. Big5 is a two-byte
+ character set and is encoded in two-byte.
+
+ --- CODE RANGE of BIG5 ---
+ (character set) (range)
+ ASCII 0x00 .. 0x7F
+ Big5 (1st byte) 0xA1 .. 0xFE
+ (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
+ --------------------------
+
+ Since the number of characters in Big5 is larger than maximum
+ characters in Emacs' charset (96x96), it can't be handled as one
+ charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
+ and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
+ contains frequently used characters and the latter contains less
+ frequently used characters. */
+
+/* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
+ are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
+ C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal
+ format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
+
+/* Number of Big5 characters which have the same code in 1st byte. */
+#define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
+
+#define DECODE_BIG5(b1, b2, charset, c1, c2) \
+ do { \
+ unsigned int temp \
+ = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
+ if (b1 < 0xC9) \
+ charset = charset_big5_1; \
+ else \
+ { \
+ charset = charset_big5_2; \
+ temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
+ } \
+ c1 = temp / (0xFF - 0xA1) + 0x21; \
+ c2 = temp % (0xFF - 0xA1) + 0x21; \
+ } while (0)
+
+#define ENCODE_BIG5(charset, c1, c2, b1, b2) \
+ do { \
+ unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
+ if (charset == charset_big5_2) \
+ temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
+ b1 = temp / BIG5_SAME_ROW + 0xA1; \
+ b2 = temp % BIG5_SAME_ROW; \
+ b2 += b2 < 0x3F ? 0x40 : 0x62; \
+ } while (0)
+
+/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
+ Check if a text is encoded in SJIS. If it is, return
+ CODING_CATEGORY_MASK_SJIS, else return 0. */
+
+int
+detect_coding_sjis (src, src_end)
+ unsigned char *src, *src_end;
+{
+ unsigned char c;
+
+ while (src < src_end)
+ {
+ c = *src++;
+ if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
+ return 0;
+ if ((c >= 0x80 && c < 0xA0) || c >= 0xE0)
+ {
+ if (src < src_end && *src++ < 0x40)
+ return 0;
+ }
+ }
+ return CODING_CATEGORY_MASK_SJIS;
+}
+
+/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
+ Check if a text is encoded in BIG5. If it is, return
+ CODING_CATEGORY_MASK_BIG5, else return 0. */
+
+int
+detect_coding_big5 (src, src_end)
+ unsigned char *src, *src_end;
+{
+ unsigned char c;
+
+ while (src < src_end)
+ {
+ c = *src++;
+ if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
+ return 0;
+ if (c >= 0xA1)
+ {
+ if (src >= src_end)
+ break;
+ c = *src++;
+ if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
+ return 0;
+ }
+ }
+ return CODING_CATEGORY_MASK_BIG5;
+}
+
+/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
+ If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
+
+int
+decode_coding_sjis_big5 (coding, source, destination,
+ src_bytes, dst_bytes, consumed, sjis_p)
+ struct coding_system *coding;
+ unsigned char *source, *destination;
+ int src_bytes, dst_bytes;
+ int *consumed;
+ int sjis_p;
+{
+ unsigned char *src = source;
+ unsigned char *src_end = source + src_bytes;
+ unsigned char *dst = destination;
+ unsigned char *dst_end = destination + dst_bytes;
+ /* Since the maximum bytes produced by each loop is 4, we subtract 3
+ from DST_END to assure overflow checking is necessary only at the
+ head of loop. */
+ unsigned char *adjusted_dst_end = dst_end - 3;
+
+ while (src < src_end && dst < adjusted_dst_end)
+ {
+ /* SRC_BASE remembers the start position in source in each loop.
+ The loop will be exited when there's not enough source text
+ to analyze two-byte character (within macro ONE_MORE_BYTE).
+ In that case, SRC is reset to SRC_BASE before exiting. */
+ unsigned char *src_base = src;
+ unsigned char c1 = *src++, c2, c3, c4;
+
+ if (c1 == '\r')
+ {
+ if (coding->eol_type == CODING_EOL_CRLF)
+ {
+ ONE_MORE_BYTE (c2);
+ if (c2 == '\n')
+ *dst++ = c2;
+ else
+ /* To process C2 again, SRC is subtracted by 1. */
+ *dst++ = c1, src--;
+ }
+ else
+ *dst++ = c1;
+ }
+ else if (c1 < 0x80)
+ *dst++ = c1;
+ else if (c1 < 0xA0 || c1 >= 0xE0)
+ {
+ /* SJIS -> JISX0208, BIG5 -> Big5 (only if 0xE0 <= c1 < 0xFF) */
+ if (sjis_p)
+ {
+ ONE_MORE_BYTE (c2);
+ DECODE_SJIS (c1, c2, c3, c4);
+ DECODE_CHARACTER_DIMENSION2 (charset_jisx0208, c3, c4);
+ }
+ else if (c1 >= 0xE0 && c1 < 0xFF)
+ {
+ int charset;
+
+ ONE_MORE_BYTE (c2);
+ DECODE_BIG5 (c1, c2, charset, c3, c4);
+ DECODE_CHARACTER_DIMENSION2 (charset, c3, c4);
+ }
+ else /* Invalid code */
+ *dst++ = c1;
+ }
+ else
+ {
+ /* SJIS -> JISX0201-Kana, BIG5 -> Big5 */
+ if (sjis_p)
+ DECODE_CHARACTER_DIMENSION1 (charset_katakana_jisx0201, c1);
+ else
+ {
+ int charset;
+
+ ONE_MORE_BYTE (c2);
+ DECODE_BIG5 (c1, c2, charset, c3, c4);
+ DECODE_CHARACTER_DIMENSION2 (charset, c3, c4);
+ }
+ }
+ continue;
+
+ label_end_of_loop:
+ coding->carryover_size = src - src_base;
+ bcopy (src_base, coding->carryover, coding->carryover_size);
+ src = src_base;
+ break;
+ }
+
+ *consumed = src - source;
+ return dst - destination;
+}
+
+/* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
+ This function can encode `charset_ascii', `charset_katakana_jisx0201',
+ `charset_jisx0208', `charset_big5_1', and `charset_big5-2'. We are
+ sure that all these charsets are registered as official charset
+ (i.e. do not have extended leading-codes). Characters of other
+ charsets are produced without any encoding. If SJIS_P is 1, encode
+ SJIS text, else encode BIG5 text. */
+
+int
+encode_coding_sjis_big5 (coding, source, destination,
+ src_bytes, dst_bytes, consumed, sjis_p)
+ struct coding_system *coding;
+ unsigned char *source, *destination;
+ int src_bytes, dst_bytes;
+ int *consumed;
+ int sjis_p;
+{
+ unsigned char *src = source;
+ unsigned char *src_end = source + src_bytes;
+ unsigned char *dst = destination;
+ unsigned char *dst_end = destination + dst_bytes;
+ /* Since the maximum bytes produced by each loop is 2, we subtract 1
+ from DST_END to assure overflow checking is necessary only at the
+ head of loop. */
+ unsigned char *adjusted_dst_end = dst_end - 1;
+
+ while (src < src_end && dst < adjusted_dst_end)
+ {
+ /* SRC_BASE remembers the start position in source in each loop.
+ The loop will be exited when there's not enough source text
+ to analyze multi-byte codes (within macros ONE_MORE_BYTE and
+ TWO_MORE_BYTES). In that case, SRC is reset to SRC_BASE
+ before exiting. */
+ unsigned char *src_base = src;
+ unsigned char c1 = *src++, c2, c3, c4;
+
+ if (coding->composing)
+ {
+ if (c1 == 0xA0)
+ {
+ ONE_MORE_BYTE (c1);
+ c1 &= 0x7F;
+ }
+ else if (c1 >= 0xA0)
+ c1 -= 0x20;
+ else
+ coding->composing = 0;
+ }
+
+ switch (emacs_code_class[c1])
+ {
+ case EMACS_ascii_code:
+ case EMACS_control_code:
+ *dst++ = c1;
+ break;
+
+ case EMACS_carriage_return_code:
+ if (!coding->selective)
+ {
+ *dst++ = c1;
+ break;
+ }
+ /* fall down to treat '\r' as '\n' ... */
+
+ case EMACS_linefeed_code:
+ if (coding->eol_type == CODING_EOL_LF
+ || coding->eol_type == CODING_EOL_AUTOMATIC)
+ *dst++ = '\n';
+ else if (coding->eol_type == CODING_EOL_CRLF)
+ *dst++ = '\r', *dst++ = '\n';
+ else
+ *dst++ = '\r';
+ break;
+
+ case EMACS_leading_code_2:
+ ONE_MORE_BYTE (c2);
+ if (sjis_p && c1 == charset_katakana_jisx0201)
+ *dst++ = c2;
+ else
+ *dst++ = c1, *dst++ = c2;
+ break;
+
+ case EMACS_leading_code_3:
+ TWO_MORE_BYTES (c2, c3);
+ c2 &= 0x7F, c3 &= 0x7F;
+ if (sjis_p && c1 == charset_jisx0208)
+ {
+ unsigned char s1, s2;
+
+ ENCODE_SJIS (c2, c3, s1, s2);
+ *dst++ = s1, *dst++ = s2;
+ }
+ else if (!sjis_p && (c1 == charset_big5_1 || c1 == charset_big5_2))
+ {
+ unsigned char b1, b2;
+
+ ENCODE_BIG5 (c1, c2, c3, b1, b2);
+ *dst++ = b1, *dst++ = b2;
+ }
+ else
+ *dst++ = c1, *dst++ = c2, *dst++ = c3;
+ break;
+
+ case EMACS_leading_code_4:
+ THREE_MORE_BYTES (c2, c3, c4);
+ *dst++ = c1, *dst++ = c2, *dst++ = c3, *dst++ = c4;
+ break;
+
+ case EMACS_leading_code_composition:
+ coding->composing = 1;
+ break;
+
+ default: /* i.e. case EMACS_invalid_code: */
+ *dst++ = c1;
+ }
+ continue;
+
+ label_end_of_loop:
+ coding->carryover_size = src - src_base;
+ bcopy (src_base, coding->carryover, coding->carryover_size);
+ src = src_base;
+ break;
+ }
+
+ *consumed = src - source;
+ return dst - destination;
+}
+
+
+/*** 5. End-of-line handlers ***/
+
+/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
+ This function is called only when `coding->eol_type' is
+ CODING_EOL_CRLF or CODING_EOL_CR. */
+
+decode_eol (coding, source, destination, src_bytes, dst_bytes, consumed)
+ struct coding_system *coding;
+ unsigned char *source, *destination;
+ int src_bytes, dst_bytes;
+ int *consumed;
+{
+ unsigned char *src = source;
+ unsigned char *src_end = source + src_bytes;
+ unsigned char *dst = destination;
+ unsigned char *dst_end = destination + dst_bytes;
+ int produced;
+
+ switch (coding->eol_type)
+ {
+ case CODING_EOL_CRLF:
+ {
+ /* Since the maximum bytes produced by each loop is 2, we
+ subtract 1 from DST_END to assure overflow checking is
+ necessary only at the head of loop. */
+ unsigned char *adjusted_dst_end = dst_end - 1;
+
+ while (src < src_end && dst < adjusted_dst_end)
+ {
+ unsigned char *src_base = src;
+ unsigned char c = *src++;
+ if (c == '\r')
+ {
+ ONE_MORE_BYTE (c);
+ if (c != '\n')
+ *dst++ = '\r';
+
+ }
+ else
+ *dst++ = c;
+ continue;
+
+ label_end_of_loop:
+ coding->carryover_size = src - src_base;
+ bcopy (src_base, coding->carryover, coding->carryover_size);
+ src = src_base;
+ break;
+ }
+ *consumed = src - source;
+ produced = dst - destination;
+ break;
+ }
+
+ case CODING_EOL_CR:
+ produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
+ bcopy (source, destination, produced);
+ dst_end = destination + produced;
+ while (dst < dst_end)
+ if (*dst++ == '\r') dst[-1] = '\n';
+ *consumed = produced;
+ break;
+
+ default: /* i.e. case: CODING_EOL_LF */
+ produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
+ bcopy (source, destination, produced);
+ *consumed = produced;
+ break;
+ }
+
+ return produced;
+}
+
+/* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
+ format of end-of-line according to `coding->eol_type'. If
+ `coding->selective' is 1, code '\r' in source text also means
+ end-of-line. */
+
+encode_eol (coding, source, destination, src_bytes, dst_bytes, consumed)
+ struct coding_system *coding;
+ unsigned char *source, *destination;
+ int src_bytes, dst_bytes;
+ int *consumed;
+{
+ unsigned char *src = source;
+ unsigned char *dst = destination;
+ int produced;
+
+ if (src_bytes <= 0)
+ return 0;
+
+ switch (coding->eol_type)
+ {
+ case CODING_EOL_LF:
+ case CODING_EOL_AUTOMATIC:
+ produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
+ bcopy (source, destination, produced);
+ if (coding->selective)
+ {
+ int i = produced;
+ while (i--)
+ if (*dst++ == '\r') dst[-1] = '\n';
+ }
+ *consumed = produced;
+
+ case CODING_EOL_CRLF:
+ {
+ unsigned char c;
+ unsigned char *src_end = source + src_bytes;
+ unsigned char *dst_end = destination + dst_bytes;
+ /* Since the maximum bytes produced by each loop is 2, we
+ subtract 1 from DST_END to assure overflow checking is
+ necessary only at the head of loop. */
+ unsigned char *adjusted_dst_end = dst_end - 1;
+
+ while (src < src_end && dst < adjusted_dst_end)
+ {
+ c = *src++;
+ if (c == '\n' || (c == '\r' && coding->selective))
+ *dst++ = '\r', *dst++ = '\n';
+ else
+ *dst++ = c;
+ }
+ produced = dst - destination;
+ *consumed = src - source;
+ break;
+ }
+
+ default: /* i.e. case CODING_EOL_CR: */
+ produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
+ bcopy (source, destination, produced);
+ {
+ int i = produced;
+ while (i--)
+ if (*dst++ == '\n') dst[-1] = '\r';
+ }
+ *consumed = produced;
+ }
+
+ return produced;
+}
+
+
+/*** 6. C library functions ***/
+
+/* In Emacs Lisp, coding system is represented by a Lisp symbol which
+ has a property `coding-system'. The value of this property is a
+ vector of length 5 (called as coding-vector). Among elements of
+ this vector, the first (element[0]) and the fifth (element[4])
+ carry important information for decoding/encoding. Before
+ decoding/encoding, this information should be set in fields of a
+ structure of type `coding_system'.
+
+ A value of property `coding-system' can be a symbol of another
+ subsidiary coding-system. In that case, Emacs gets coding-vector
+ from that symbol.
+
+ `element[0]' contains information to be set in `coding->type'. The
+ value and its meaning is as follows:
+
+ 0 -- coding_system_internal
+ 1 -- coding_system_sjis
+ 2 -- coding_system_iso2022
+ 3 -- coding_system_big5
+ 4 -- coding_system_ccl
+ nil -- coding_system_no_conversion
+ t -- coding_system_automatic
+
+ `element[4]' contains information to be set in `coding->flags' and
+ `coding->spec'. The meaning varies by `coding->type'.
+
+ If `coding->type' is `coding_type_iso2022', element[4] is a vector
+ of length 32 (of which the first 13 sub-elements are used now).
+ Meanings of these sub-elements are:
+
+ sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
+ If the value is an integer of valid charset, the charset is
+ assumed to be designated to graphic register N initially.
+
+ If the value is minus, it is a minus value of charset which
+ reserves graphic register N, which means that the charset is
+ not designated initially but should be designated to graphic
+ register N just before encoding a character in that charset.
+
+ If the value is nil, graphic register N is never used on
+ encoding.
+
+ sub-element[N] where N is 4 through 11: to be set in `coding->flags'
+ Each value takes t or nil. See the section ISO2022 of
+ `coding.h' for more information.
+
+ If `coding->type' is `coding_type_big5', element[4] is t to denote
+ BIG5-ETen or nil to denote BIG5-HKU.
+
+ If `coding->type' takes the other value, element[4] is ignored.
+
+ Emacs Lisp's coding system also carries information about format of
+ end-of-line in a value of property `eol-type'. If the value is
+ integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
+ means CODING_EOL_CR. If it is not integer, it should be a vector
+ of subsidiary coding systems of which property `eol-type' has one
+ of above values.
+
+*/
+
+/* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
+ and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
+ is setup so that no conversion is necessary and return -1, else
+ return 0. */
+
+int
+setup_coding_system (coding_system_symbol, coding)
+ Lisp_Object coding_system_symbol;
+ struct coding_system *coding;
+{
+ Lisp_Object coding_system_vector = Qnil;
+ Lisp_Object type, eol_type;
+
+ /* At first, set several fields default values. */
+ coding->require_flushing = 0;
+ coding->last_block = 0;
+ coding->selective = 0;
+ coding->composing = 0;
+ coding->direction = 0;
+ coding->carryover_size = 0;
+ coding->symbol = Qnil;
+ coding->post_read_conversion = coding->pre_write_conversion = Qnil;
+
+ /* Get value of property `coding-system'. If it is a Lisp symbol
+ pointing another coding system, fetch its property until we get a
+ vector. */
+ while (!NILP (coding_system_symbol))
+ {
+ coding->symbol = coding_system_symbol;
+ if (NILP (coding->post_read_conversion))
+ coding->post_read_conversion = Fget (coding_system_symbol,
+ Qpost_read_conversion);
+ if (NILP (coding->pre_write_conversion))
+ coding->pre_write_conversion = Fget (coding_system_symbol,
+ Qpre_write_conversion);
+
+ coding_system_vector = Fget (coding_system_symbol, Qcoding_system);
+ if (VECTORP (coding_system_vector))
+ break;
+ coding_system_symbol = coding_system_vector;
+ }
+ Vlast_coding_system_used = coding->symbol;
+
+ if (!VECTORP (coding_system_vector)
+ || XVECTOR (coding_system_vector)->size != 5)
+ goto label_invalid_coding_system;
+
+ /* Get value of property `eol-type' by searching from the root
+ coding-system. */
+ coding_system_symbol = coding->symbol;
+ eol_type = Qnil;
+ while (SYMBOLP (coding_system_symbol) && !NILP (coding_system_symbol))
+ {
+ eol_type = Fget (coding_system_symbol, Qeol_type);
+ if (!NILP (eol_type))
+ break;
+ coding_system_symbol = Fget (coding_system_symbol, Qcoding_system);
+ }
+
+ if (VECTORP (eol_type))
+ coding->eol_type = CODING_EOL_AUTOMATIC;
+ else if (XFASTINT (eol_type) == 1)
+ coding->eol_type = CODING_EOL_CRLF;
+ else if (XFASTINT (eol_type) == 2)
+ coding->eol_type = CODING_EOL_CR;
+ else
+ coding->eol_type = CODING_EOL_LF;
+
+ type = XVECTOR (coding_system_vector)->contents[0];
+ switch (XFASTINT (type))
+ {
+ case 0:
+ coding->type = coding_type_internal;
+ break;
+
+ case 1:
+ coding->type = coding_type_sjis;
+ break;
+
+ case 2:
+ coding->type = coding_type_iso2022;
+ {
+ Lisp_Object val = XVECTOR (coding_system_vector)->contents[4];
+ Lisp_Object *flags;
+ int i, charset, default_reg_bits = 0;
+
+ if (!VECTORP (val) || XVECTOR (val)->size != 32)
+ goto label_invalid_coding_system;
+
+ flags = XVECTOR (val)->contents;
+ coding->flags
+ = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
+ | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
+ | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
+ | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
+ | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
+ | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
+ | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
+ | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
+ | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION));
+
+ /* Invoke graphic register 0 to plane 0. */
+ CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
+ /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
+ CODING_SPEC_ISO_INVOCATION (coding, 1)
+ = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
+ /* Not single shifting at first. */
+ CODING_SPEC_ISO_SINGLE_SHIFTING(coding) = 0;
+
+ /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
+ FLAGS[REG] can be one of below:
+ integer CHARSET: CHARSET occupies register I,
+ t: designate nothing to REG initially, but can be used
+ by any charsets,
+ list of integer, nil, or t: designate the first
+ element (if integer) to REG initially, the remaining
+ elements (if integer) is designated to REG on request,
+ if an element is t, REG can be used by any charset,
+ nil: REG is never used. */
+ for (charset = 0; charset < MAX_CHARSET; charset++)
+ CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = -1;
+ for (i = 0; i < 4; i++)
+ {
+ if (INTEGERP (flags[i])
+ && (charset = XINT (flags[i]), CHARSET_VALID_P (charset)))
+ {
+ CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
+ CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
+ }
+ else if (EQ (flags[i], Qt))
+ {
+ CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
+ default_reg_bits |= 1 << i;
+ }
+ else if (CONSP (flags[i]))
+ {
+ Lisp_Object tail = flags[i];
+
+ if (INTEGERP (XCONS (tail)->car)
+ && (charset = XINT (XCONS (tail)->car),
+ CHARSET_VALID_P (charset)))
+ {
+ CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
+ CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
+ }
+ else
+ CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
+ tail = XCONS (tail)->cdr;
+ while (CONSP (tail))
+ {
+ if (INTEGERP (XCONS (tail)->car)
+ && (charset = XINT (XCONS (tail)->car),
+ CHARSET_VALID_P (charset)))
+ CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
+ = i;
+ else if (EQ (XCONS (tail)->car, Qt))
+ default_reg_bits |= 1 << i;
+ tail = XCONS (tail)->cdr;
+ }
+ }
+ else
+ CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
+
+ CODING_SPEC_ISO_DESIGNATION (coding, i)
+ = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
+ }
+
+ if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
+ {
+ /* REG 1 can be used only by locking shift in 7-bit env. */
+ if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
+ default_reg_bits &= ~2;
+ if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
+ /* Without any shifting, only REG 0 and 1 can be used. */
+ default_reg_bits &= 3;
+ }
+
+ for (charset = 0; charset < MAX_CHARSET; charset++)
+ if (CHARSET_VALID_P (charset)
+ && CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) < 0)
+ {
+ /* We have not yet decided where to designate CHARSET. */
+ int reg_bits = default_reg_bits;
+
+ if (CHARSET_CHARS (charset) == 96)
+ /* A charset of CHARS96 can't be designated to REG 0. */
+ reg_bits &= ~1;
+
+ if (reg_bits)
+ /* There exist some default graphic register. */
+ CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
+ = (reg_bits & 1
+ ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
+ else
+ /* We anyway have to designate CHARSET to somewhere. */
+ CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
+ = (CHARSET_CHARS (charset) == 94
+ ? 0
+ : ((coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT
+ || ! coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
+ ? 1
+ : (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT
+ ? 2 : 0)));
+ }
+ }
+ coding->require_flushing = 1;
+ break;
+
+ case 3:
+ coding->type = coding_type_big5;
+ coding->flags
+ = (NILP (XVECTOR (coding_system_vector)->contents[4])
+ ? CODING_FLAG_BIG5_HKU
+ : CODING_FLAG_BIG5_ETEN);
+ break;
+
+ case 4:
+ coding->type = coding_type_ccl;
+ {
+ Lisp_Object val = XVECTOR (coding_system_vector)->contents[4];
+ if (CONSP (val)
+ && VECTORP (XCONS (val)->car)
+ && VECTORP (XCONS (val)->cdr))
+ {
+ setup_ccl_program (&(coding->spec.ccl.decoder), XCONS (val)->car);
+ setup_ccl_program (&(coding->spec.ccl.encoder), XCONS (val)->cdr);
+ }
+ else
+ goto label_invalid_coding_system;
+ }
+ coding->require_flushing = 1;
+ break;
+
+ default:
+ if (EQ (type, Qt))
+ coding->type = coding_type_automatic;
+ else
+ coding->type = coding_type_no_conversion;
+ break;
+ }
+ return 0;
+
+ label_invalid_coding_system:
+ coding->type = coding_type_no_conversion;
+ return -1;
+}
+
+/* Emacs has a mechanism to automatically detect a coding system if it
+ is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
+ it's impossible to distinguish some coding systems accurately
+ because they use the same range of codes. So, at first, coding
+ systems are categorized into 7, those are:
+
+ o coding-category-internal
+
+ The category for a coding system which has the same code range
+ as Emacs' internal format. Assigned the coding-system (Lisp
+ symbol) `coding-system-internal' by default.
+
+ o coding-category-sjis
+
+ The category for a coding system which has the same code range
+ as SJIS. Assigned the coding-system (Lisp
+ symbol) `coding-system-sjis' by default.
+
+ o coding-category-iso-7
+
+ The category for a coding system which has the same code range
+ as ISO2022 of 7-bit environment. Assigned the coding-system
+ (Lisp symbol) `coding-system-junet' by default.
+
+ o coding-category-iso-8-1
+
+ The category for a coding system which has the same code range
+ as ISO2022 of 8-bit environment and graphic plane 1 used only
+ for DIMENSION1 charset. Assigned the coding-system (Lisp
+ symbol) `coding-system-ctext' by default.
+
+ o coding-category-iso-8-2
+
+ The category for a coding system which has the same code range
+ as ISO2022 of 8-bit environment and graphic plane 1 used only
+ for DIMENSION2 charset. Assigned the coding-system (Lisp
+ symbol) `coding-system-euc-japan' by default.
+
+ o coding-category-iso-else
+
+ The category for a coding system which has the same code range
+ as ISO2022 but not belongs to any of the above three
+ categories. Assigned the coding-system (Lisp symbol)
+ `coding-system-iso-2022-ss2-7' by default.
+
+ o coding-category-big5
+
+ The category for a coding system which has the same code range
+ as BIG5. Assigned the coding-system (Lisp symbol)
+ `coding-system-big5' by default.
+
+ o coding-category-binary
+
+ The category for a coding system not categorized in any of the
+ above. Assigned the coding-system (Lisp symbol)
+ `coding-system-noconv' by default.
+
+ Each of them is a Lisp symbol and the value is an actual
+ `coding-system's (this is also a Lisp symbol) assigned by a user.
+ What Emacs does actually is to detect a category of coding system.
+ Then, it uses a `coding-system' assigned to it. If Emacs can't
+ decide only one possible category, it selects a category of the
+ highest priority. Priorities of categories are also specified by a
+ user in a Lisp variable `coding-category-list'.
+
+*/
+
+/* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
+ If it detects possible coding systems, return an integer in which
+ appropriate flag bits are set. Flag bits are defined by macros
+ CODING_CATEGORY_MASK_XXX in `coding.h'. */
+
+int
+detect_coding_mask (src, src_bytes)
+ unsigned char *src;
+ int src_bytes;
+{
+ register unsigned char c;
+ unsigned char *src_end = src + src_bytes;
+ int mask;
+
+ /* At first, skip all ASCII characters and control characters except
+ for three ISO2022 specific control characters. */
+ while (src < src_end)
+ {
+ c = *src;
+ if (c >= 0x80
+ || (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO))
+ break;
+ src++;
+ }
+
+ if (src >= src_end)
+ /* We found nothing other than ASCII. There's nothing to do. */
+ return CODING_CATEGORY_MASK_ANY;
+
+ /* The text seems to be encoded in some multilingual coding system.
+ Now, try to find in which coding system the text is encoded. */
+ if (c < 0x80)
+ /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
+ /* C is an ISO2022 specific control code of C0. */
+ mask = detect_coding_iso2022 (src, src_end);
+
+ else if (c == ISO_CODE_SS2 || c == ISO_CODE_SS3 || c == ISO_CODE_CSI)
+ /* C is an ISO2022 specific control code of C1,
+ or the first byte of SJIS's 2-byte character code,
+ or a leading code of Emacs. */
+ mask = (detect_coding_iso2022 (src, src_end)
+ | detect_coding_sjis (src, src_end)
+ | detect_coding_internal (src, src_end));
+
+ else if (c < 0xA0)
+ /* C is the first byte of SJIS character code,
+ or a leading-code of Emacs. */
+ mask = (detect_coding_sjis (src, src_end)
+ | detect_coding_internal (src, src_end));
+
+ else
+ /* C is a character of ISO2022 in graphic plane right,
+ or a SJIS's 1-byte character code (i.e. JISX0201),
+ or the first byte of BIG5's 2-byte code. */
+ mask = (detect_coding_iso2022 (src, src_end)
+ | detect_coding_sjis (src, src_end)
+ | detect_coding_big5 (src, src_end));
+
+ return mask;
+}
+
+/* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
+ The information of the detected coding system is set in CODING. */
+
+void
+detect_coding (coding, src, src_bytes)
+ struct coding_system *coding;
+ unsigned char *src;
+ int src_bytes;
+{
+ int mask = detect_coding_mask (src, src_bytes);
+ int idx;
+
+ if (mask == CODING_CATEGORY_MASK_ANY)
+ /* We found nothing other than ASCII. There's nothing to do. */
+ return;
+
+ if (!mask)
+ /* The source text seems to be encoded in unknown coding system.
+ Emacs regards the category of such a kind of coding system as
+ `coding-category-binary'. We assume that a user has assigned
+ an appropriate coding system for a `coding-category-binary'. */
+ idx = CODING_CATEGORY_IDX_BINARY;
+ else
+ {
+ /* We found some plausible coding systems. Let's use a coding
+ system of the highest priority. */
+ Lisp_Object val = Vcoding_category_list;
+
+ if (CONSP (val))
+ while (!NILP (val))
+ {
+ idx = XFASTINT (Fget (XCONS (val)->car, Qcoding_category_index));
+ if ((idx < CODING_CATEGORY_IDX_MAX) && (mask & (1 << idx)))
+ break;
+ val = XCONS (val)->cdr;
+ }
+ else
+ val = Qnil;
+
+ if (NILP (val))
+ {
+ /* For unknown reason, `Vcoding_category_list' contains none
+ of found categories. Let's use any of them. */
+ for (idx = 0; idx < CODING_CATEGORY_IDX_MAX; idx++)
+ if (mask & (1 << idx))
+ break;
+ }
+ }
+ setup_coding_system (XSYMBOL (coding_category_table[idx])->value, coding);
+}
+
+/* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
+ is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
+ CODING_EOL_CR, and CODING_EOL_AUTOMATIC. */
+
+int
+detect_eol_type (src, src_bytes)
+ unsigned char *src;
+ int src_bytes;
+{
+ unsigned char *src_end = src + src_bytes;
+ unsigned char c;
+
+ while (src < src_end)
+ {
+ c = *src++;
+ if (c == '\n')
+ return CODING_EOL_LF;
+ else if (c == '\r')
+ {
+ if (src < src_end && *src == '\n')
+ return CODING_EOL_CRLF;
+ else
+ return CODING_EOL_CR;
+ }
+ }
+ return CODING_EOL_AUTOMATIC;
+}
+
+/* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
+ is encoded. If it detects an appropriate format of end-of-line, it
+ sets the information in *CODING. */
+
+void
+detect_eol (coding, src, src_bytes)
+ struct coding_system *coding;
+ unsigned char *src;
+ int src_bytes;
+{
+ Lisp_Object val;
+ int eol_type = detect_eol_type (src, src_bytes);
+
+ if (eol_type == CODING_EOL_AUTOMATIC)
+ /* We found no end-of-line in the source text. */
+ return;
+
+ val = Fget (coding->symbol, Qeol_type);
+ if (VECTORP (val) && XVECTOR (val)->size == 3)
+ setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
+}
+
+/* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
+ decoding, it may detect coding system and format of end-of-line if
+ those are not yet decided. */
+
+int
+decode_coding (coding, source, destination, src_bytes, dst_bytes, consumed)
+ struct coding_system *coding;
+ unsigned char *source, *destination;
+ int src_bytes, dst_bytes;
+ int *consumed;
+{
+ int produced;
+
+ if (src_bytes <= 0)
+ {
+ *consumed = 0;
+ return 0;
+ }
+
+ if (coding->type == coding_type_automatic)
+ detect_coding (coding, source, src_bytes);
+
+ if (coding->eol_type == CODING_EOL_AUTOMATIC)
+ detect_eol (coding, source, src_bytes);
+
+ coding->carryover_size = 0;
+ switch (coding->type)
+ {
+ case coding_type_no_conversion:
+ label_no_conversion:
+ produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
+ bcopy (source, destination, produced);
+ *consumed = produced;
+ break;
+
+ case coding_type_internal:
+ case coding_type_automatic:
+ if (coding->eol_type == CODING_EOL_LF
+ || coding->eol_type == CODING_EOL_AUTOMATIC)
+ goto label_no_conversion;
+ produced = decode_eol (coding, source, destination,
+ src_bytes, dst_bytes, consumed);
+ break;
+
+ case coding_type_sjis:
+ produced = decode_coding_sjis_big5 (coding, source, destination,
+ src_bytes, dst_bytes, consumed,
+ 1);
+ break;
+
+ case coding_type_iso2022:
+ produced = decode_coding_iso2022 (coding, source, destination,
+ src_bytes, dst_bytes, consumed);
+ break;
+
+ case coding_type_big5:
+ produced = decode_coding_sjis_big5 (coding, source, destination,
+ src_bytes, dst_bytes, consumed,
+ 0);
+ break;
+
+ case coding_type_ccl:
+ produced = ccl_driver (&coding->spec.ccl.decoder, source, destination,
+ src_bytes, dst_bytes, consumed);
+ break;
+ }
+
+ return produced;
+}
+
+/* See "GENERAL NOTES about `encode_coding_XXX ()' functions". */
+
+int
+encode_coding (coding, source, destination, src_bytes, dst_bytes, consumed)
+ struct coding_system *coding;
+ unsigned char *source, *destination;
+ int src_bytes, dst_bytes;
+ int *consumed;
+{
+ int produced;
+
+ coding->carryover_size = 0;
+ switch (coding->type)
+ {
+ case coding_type_no_conversion:
+ label_no_conversion:
+ produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
+ if (produced > 0)
+ {
+ bcopy (source, destination, produced);
+ if (coding->selective)
+ {
+ unsigned char *p = destination, *pend = destination + produced;
+ while (p < pend)
+ if (*p++ = '\015') p[-1] = '\n';
+ }
+ }
+ *consumed = produced;
+ break;
+
+ case coding_type_internal:
+ case coding_type_automatic:
+ if (coding->eol_type == CODING_EOL_LF
+ || coding->eol_type == CODING_EOL_AUTOMATIC)
+ goto label_no_conversion;
+ produced = encode_eol (coding, source, destination,
+ src_bytes, dst_bytes, consumed);
+ break;
+
+ case coding_type_sjis:
+ produced = encode_coding_sjis_big5 (coding, source, destination,
+ src_bytes, dst_bytes, consumed,
+ 1);
+ break;
+
+ case coding_type_iso2022:
+ produced = encode_coding_iso2022 (coding, source, destination,
+ src_bytes, dst_bytes, consumed);
+ break;
+
+ case coding_type_big5:
+ produced = encode_coding_sjis_big5 (coding, source, destination,
+ src_bytes, dst_bytes, consumed,
+ 0);
+ break;
+
+ case coding_type_ccl:
+ produced = ccl_driver (&coding->spec.ccl.encoder, source, destination,
+ src_bytes, dst_bytes, consumed);
+ break;
+ }
+
+ return produced;
+}
+
+#define CONVERSION_BUFFER_EXTRA_ROOM 256
+
+/* Return maximum size (bytes) of a buffer enough for decoding
+ SRC_BYTES of text encoded in CODING. */
+
+int
+decoding_buffer_size (coding, src_bytes)
+ struct coding_system *coding;
+ int src_bytes;
+{
+ int magnification;
+
+ if (coding->type == coding_type_iso2022)
+ magnification = 3;
+ else if (coding->type == coding_type_ccl)
+ magnification = coding->spec.ccl.decoder.buf_magnification;
+ else
+ magnification = 2;
+
+ return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
+}
+
+/* Return maximum size (bytes) of a buffer enough for encoding
+ SRC_BYTES of text to CODING. */
+
+int
+encoding_buffer_size (coding, src_bytes)
+ struct coding_system *coding;
+ int src_bytes;
+{
+ int magnification;
+
+ if (coding->type == coding_type_ccl)
+ magnification = coding->spec.ccl.encoder.buf_magnification;
+ else
+ magnification = 3;
+
+ return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
+}
+
+#ifndef MINIMUM_CONVERSION_BUFFER_SIZE
+#define MINIMUM_CONVERSION_BUFFER_SIZE 1024
+#endif
+
+char *conversion_buffer;
+int conversion_buffer_size;
+
+/* Return a pointer to a SIZE bytes of buffer to be used for encoding
+ or decoding. Sufficient memory is allocated automatically. If we
+ run out of memory, return NULL. */
+
+char *
+get_conversion_buffer (size)
+ int size;
+{
+ if (size > conversion_buffer_size)
+ {
+ char *buf;
+ int real_size = conversion_buffer_size * 2;
+
+ while (real_size < size) real_size *= 2;
+ buf = (char *) xmalloc (real_size);
+ xfree (conversion_buffer);
+ conversion_buffer = buf;
+ conversion_buffer_size = real_size;
+ }
+ return conversion_buffer;
+}
+
+
+#ifdef emacs
+/*** 7. Emacs Lisp library functions ***/
+
+DEFUN ("coding-system-vector", Fcoding_system_vector, Scoding_system_vector,
+ 1, 1, 0,
+ "Return coding-vector of CODING-SYSTEM.\n\
+If CODING-SYSTEM is not a valid coding-system, return nil.")
+ (obj)
+ Lisp_Object obj;
+{
+ while (SYMBOLP (obj) && !NILP (obj))
+ obj = Fget (obj, Qcoding_system);
+ return ((NILP (obj) || !VECTORP (obj) || XVECTOR (obj)->size != 5)
+ ? Qnil : obj);
+}
+
+DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
+ "Return t if OBJECT is nil or a coding-system.\n\
+See document of make-coding-system for coding-system object.")
+ (obj)
+ Lisp_Object obj;
+{
+ return ((NILP (obj) || !NILP (Fcoding_system_vector (obj))) ? Qt : Qnil);
+}
+
+DEFUN ("read-non-nil-coding-system",
+ Fread_non_nil_coding_system, Sread_non_nil_coding_system, 1, 1, 0,
+ "Read a coding-system from the minibuffer, prompting with string PROMPT.")
+ (prompt)
+ Lisp_Object prompt;
+{
+ return Fintern (Fcompleting_read (prompt, Vobarray, Qcoding_system_vector,
+ Qt, Qnil, Qnil),
+ Qnil);
+}
+
+DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 1, 0,
+ "Read a coding-system or nil from the minibuffer, prompting with string PROMPT.")
+ (prompt)
+ Lisp_Object prompt;
+{
+ return Fintern (Fcompleting_read (prompt, Vobarray, Qcoding_system_p,
+ Qt, Qnil, Qnil),
+ Qnil);
+}
+
+DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
+ 1, 1, 0,
+ "Check validity of CODING-SYSTEM.\n\
+If valid, return CODING-SYSTEM, else `coding-system-error' is signaled.\n\
+CODING-SYSTEM is valid if it is a symbol and has \"coding-system\" property.\n\
+The value of property should be a vector of length 5.")
+ (coding_system)
+ Lisp_Object coding_system;
+{
+ CHECK_SYMBOL (coding_system, 0);
+ if (!NILP (Fcoding_system_p (coding_system)))
+ return coding_system;
+ while (1)
+ Fsignal (Qcoding_system_error, coding_system);
+}
+
+DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
+ 2, 2, 0,
+ "Detect coding-system of the text in the region between START and END.\n\
+Return a list of possible coding-systems ordered by priority.\n\
+If only ASCII characters are found, it returns `coding-system-automatic'\n\
+ or its subsidiary coding-system according to a detected end-of-line format.")
+ (b, e)
+ Lisp_Object b, e;
+{
+ int coding_mask, eol_type;
+ Lisp_Object val;
+ int beg, end;
+
+ validate_region (&b, &e);
+ beg = XINT (b), end = XINT (e);
+ if (beg < GPT && end >= GPT) move_gap (end);
+
+ coding_mask = detect_coding_mask (POS_ADDR (beg), end - beg);
+ eol_type = detect_eol_type (POS_ADDR (beg), end - beg);
+
+ if (coding_mask == CODING_CATEGORY_MASK_ANY)
+ {
+ val = intern ("coding-system-automatic");
+ if (eol_type != CODING_EOL_AUTOMATIC)
+ {
+ Lisp_Object val2 = Fget (val, Qeol_type);
+ if (VECTORP (val2))
+ val = XVECTOR (val2)->contents[eol_type];
+ }
+ }
+ else
+ {
+ Lisp_Object val2;
+
+ /* At first, gather possible coding-systems in VAL in a reverse
+ order. */
+ val = Qnil;
+ for (val2 = Vcoding_category_list;
+ !NILP (val2);
+ val2 = XCONS (val2)->cdr)
+ {
+ int idx
+ = XFASTINT (Fget (XCONS (val2)->car, Qcoding_category_index));
+ if (coding_mask & (1 << idx))
+ val = Fcons (Fsymbol_value (XCONS (val2)->car), val);
+ }
+
+ /* Then, change the order of the list, while getting subsidiary
+ coding-systems. */
+ val2 = val;
+ val = Qnil;
+ for (; !NILP (val2); val2 = XCONS (val2)->cdr)
+ {
+ if (eol_type == CODING_EOL_AUTOMATIC)
+ val = Fcons (XCONS (val2)->car, val);
+ else
+ {
+ Lisp_Object val3 = Fget (XCONS (val2)->car, Qeol_type);
+ if (VECTORP (val3))
+ val = Fcons (XVECTOR (val3)->contents[eol_type], val);
+ else
+ val = Fcons (XCONS (val2)->car, val);
+ }
+ }
+ }
+
+ return val;
+}
+
+/* Scan text in the region between *BEGP and *ENDP, skip characters
+ which we never have to encode to (iff ENCODEP is 1) or decode from
+ coding system CODING at the head and tail, then set BEGP and ENDP
+ to the addresses of start and end of the text we actually convert. */
+
+void
+shrink_conversion_area (begp, endp, coding, encodep)
+ unsigned char **begp, **endp;
+ struct coding_system *coding;
+ int encodep;
+{
+ register unsigned char *beg_addr = *begp, *end_addr = *endp;
+
+ if (coding->eol_type != CODING_EOL_LF
+ && coding->eol_type != CODING_EOL_AUTOMATIC)
+ /* Since we anyway have to convert end-of-line format, it is not
+ worth skipping at most 100 bytes or so. */
+ return;
+
+ if (encodep) /* for encoding */
+ {
+ switch (coding->type)
+ {
+ case coding_type_no_conversion:
+ case coding_type_internal:
+ case coding_type_automatic:
+ /* We need no conversion. */
+ *begp = *endp;
+ return;
+ case coding_type_ccl:
+ /* We can't skip any data. */
+ return;
+ default:
+ /* We can skip all ASCII characters at the head and tail. */
+ while (beg_addr < end_addr && *beg_addr < 0x80) beg_addr++;
+ while (beg_addr < end_addr && *(end_addr - 1) < 0x80) end_addr--;
+ break;
+ }
+ }
+ else /* for decoding */
+ {
+ switch (coding->type)
+ {
+ case coding_type_no_conversion:
+ /* We need no conversion. */
+ *begp = *endp;
+ return;
+ case coding_type_internal:
+ if (coding->eol_type == CODING_EOL_LF)
+ {
+ /* We need no conversion. */
+ *begp = *endp;
+ return;
+ }
+ /* We can skip all but carriage-return. */
+ while (beg_addr < end_addr && *beg_addr != '\r') beg_addr++;
+ while (beg_addr < end_addr && *(end_addr - 1) != '\r') end_addr--;
+ break;
+ case coding_type_sjis:
+ case coding_type_big5:
+ /* We can skip all ASCII characters at the head. */
+ while (beg_addr < end_addr && *beg_addr < 0x80) beg_addr++;
+ /* We can skip all ASCII characters at the tail except for
+ the second byte of SJIS or BIG5 code. */
+ while (beg_addr < end_addr && *(end_addr - 1) < 0x80) end_addr--;
+ if (end_addr != *endp)
+ end_addr++;
+ break;
+ case coding_type_ccl:
+ /* We can't skip any data. */
+ return;
+ default: /* i.e. case coding_type_iso2022: */
+ {
+ unsigned char c;
+
+ /* We can skip all ASCII characters except for a few
+ control codes at the head. */
+ while (beg_addr < end_addr && (c = *beg_addr) < 0x80
+ && c != ISO_CODE_CR && c != ISO_CODE_SO
+ && c != ISO_CODE_SI && c != ISO_CODE_ESC)
+ beg_addr++;
+ }
+ break;
+ }
+ }
+ *begp = beg_addr;
+ *endp = end_addr;
+ return;
+}
+
+/* Encode to (iff ENCODEP is 1) or decode form coding system CODING a
+ text between B and E. B and E are buffer position. */
+
+Lisp_Object
+code_convert_region (b, e, coding, encodep)
+ Lisp_Object b, e;
+ struct coding_system *coding;
+ int encodep;
+{
+ int beg, end, len, consumed, produced;
+ char *buf;
+ unsigned char *begp, *endp;
+ int pos = PT;
+
+ validate_region (&b, &e);
+ beg = XINT (b), end = XINT (e);
+ if (beg < GPT && end >= GPT)
+ move_gap (end);
+
+ if (encodep && !NILP (coding->pre_write_conversion))
+ {
+ /* We must call a pre-conversion function which may put a new
+ text to be converted in a new buffer. */
+ struct buffer *old = current_buffer, *new;
+
+ TEMP_SET_PT (beg);
+ call2 (coding->pre_write_conversion, b, e);
+ if (old != current_buffer)
+ {
+ /* Replace the original text by the text just generated. */
+ len = ZV - BEGV;
+ new = current_buffer;
+ set_buffer_internal (old);
+ del_range (beg, end);
+ insert_from_buffer (new, 1, len, 0);
+ end = beg + len;
+ }
+ }
+
+ /* We may be able to shrink the conversion region. */
+ begp = POS_ADDR (beg); endp = begp + (end - beg);
+ shrink_conversion_area (&begp, &endp, coding, encodep);
+
+ if (begp == endp)
+ /* We need no conversion. */
+ len = end - beg;
+ else
+ {
+ beg += begp - POS_ADDR (beg);
+ end = beg + (endp - begp);
+
+ if (encodep)
+ len = encoding_buffer_size (coding, end - beg);
+ else
+ len = decoding_buffer_size (coding, end - beg);
+ buf = get_conversion_buffer (len);
+
+ coding->last_block = 1;
+ produced = (encodep
+ ? encode_coding (coding, POS_ADDR (beg), buf, end - beg, len,
+ &consumed)
+ : decode_coding (coding, POS_ADDR (beg), buf, end - beg, len,
+ &consumed));
+
+ len = produced + (beg - XINT (b)) + (XINT (e) - end);
+
+ TEMP_SET_PT (beg);
+ insert (buf, produced);
+ del_range (PT, PT + end - beg);
+ if (pos >= end)
+ pos = PT + (pos - end);
+ else if (pos > beg)
+ pos = beg;
+ TEMP_SET_PT (pos);
+ }
+
+ if (!encodep && !NILP (coding->post_read_conversion))
+ {
+ /* We must call a post-conversion function which may alter
+ the text just converted. */
+ Lisp_Object insval;
+
+ beg = XINT (b);
+ TEMP_SET_PT (beg);
+ insval = call1 (coding->post_read_conversion, make_number (len));
+ CHECK_NUMBER (insval, 0);
+ len = XINT (insval);
+ }
+
+ return make_number (len);
+}
+
+Lisp_Object
+code_convert_string (str, coding, encodep)
+ Lisp_Object str;
+ struct coding_system *coding;
+ int encodep;
+{
+ int len, consumed, produced;
+ char *buf;
+ unsigned char *begp, *endp;
+ int head_skip, tail_skip;
+ struct gcpro gcpro1;
+
+ if (encodep && !NILP (coding->pre_write_conversion)
+ || !encodep && !NILP (coding->post_read_conversion))
+ {
+ /* Since we have to call Lisp functions which assume target text
+ is in a buffer, after setting a temporary buffer, call
+ code_convert_region. */
+ int count = specpdl_ptr - specpdl;
+ int len = XSTRING (str)->size;
+ Lisp_Object result;
+ struct buffer *old = current_buffer;
+
+ record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
+ temp_output_buffer_setup (" *code-converting-work*");
+ set_buffer_internal (XBUFFER (Vstandard_output));
+ insert_from_string (str, 0, len, 0);
+ code_convert_region (make_number (BEGV), make_number (ZV),
+ coding, encodep);
+ result = make_buffer_string (BEGV, ZV, 0);
+ set_buffer_internal (old);
+ return unbind_to (count, result);
+ }
+
+ /* We may be able to shrink the conversion region. */
+ begp = XSTRING (str)->data;
+ endp = begp + XSTRING (str)->size;
+ shrink_conversion_area (&begp, &endp, coding, encodep);
+
+ if (begp == endp)
+ /* We need no conversion. */
+ return str;
+
+ head_skip = begp - XSTRING (str)->data;
+ tail_skip = XSTRING (str)->size - head_skip - (endp - begp);
+
+ GCPRO1 (str);
+
+ if (encodep)
+ len = encoding_buffer_size (coding, endp - begp);
+ else
+ len = decoding_buffer_size (coding, endp - begp);
+ buf = get_conversion_buffer (len + head_skip + tail_skip);
+
+ bcopy (XSTRING (str)->data, buf, head_skip);
+ coding->last_block = 1;
+ produced = (encodep
+ ? encode_coding (coding, XSTRING (str)->data + head_skip,
+ buf + head_skip, endp - begp, len, &consumed)
+ : decode_coding (coding, XSTRING (str)->data + head_skip,
+ buf + head_skip, endp - begp, len, &consumed));
+ bcopy (XSTRING (str)->data + head_skip + (endp - begp),
+ buf + head_skip + produced,
+ tail_skip);
+
+ UNGCPRO;
+
+ return make_string (buf, head_skip + produced + tail_skip);
+}
+
+DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
+ 3, 3, 0,
+ "Decode the text between START and END which is encoded in CODING-SYSTEM.\n\
+Return length of decoded text.")
+ (b, e, coding_system)
+ Lisp_Object b, e, coding_system;
+{
+ struct coding_system coding;
+
+ CHECK_NUMBER_COERCE_MARKER (b, 0);
+ CHECK_NUMBER_COERCE_MARKER (e, 1);
+ CHECK_SYMBOL (coding_system, 2);
+
+ if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
+ error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data);
+
+ return code_convert_region (b, e, &coding, 0);
+}
+
+DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
+ 3, 3, 0,
+ "Encode the text between START and END to CODING-SYSTEM.\n\
+Return length of encoded text.")
+ (b, e, coding_system)
+ Lisp_Object b, e, coding_system;
+{
+ struct coding_system coding;
+
+ CHECK_NUMBER_COERCE_MARKER (b, 0);
+ CHECK_NUMBER_COERCE_MARKER (e, 1);
+ CHECK_SYMBOL (coding_system, 2);
+
+ if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
+ error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data);
+
+ return code_convert_region (b, e, &coding, 1);
+}
+
+DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
+ 2, 2, 0,
+ "Decode STRING which is encoded in CODING-SYSTEM, and return the result.")
+ (string, coding_system)
+ Lisp_Object string, coding_system;
+{
+ struct coding_system coding;
+
+ CHECK_STRING (string, 0);
+ CHECK_SYMBOL (coding_system, 1);
+
+ if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
+ error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data);
+
+ return code_convert_string (string, &coding, 0);
+}
+
+DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
+ 2, 2, 0,
+ "Encode STRING to CODING-SYSTEM, and return the result.")
+ (string, coding_system)
+ Lisp_Object string, coding_system;
+{
+ struct coding_system coding;
+
+ CHECK_STRING (string, 0);
+ CHECK_SYMBOL (coding_system, 1);
+
+ if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
+ error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data);
+
+ return code_convert_string (string, &coding, 1);
+}
+
+DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
+ "Decode a JISX0208 character of SJIS coding-system-sjis.\n\
+CODE is the character code in SJIS.\n\
+Return the corresponding character.")
+ (code)
+ Lisp_Object code;
+{
+ unsigned char c1, c2, s1, s2;
+ Lisp_Object val;
+
+ CHECK_NUMBER (code, 0);
+ s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
+ DECODE_SJIS (s1, s2, c1, c2);
+ XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset_jisx0208, c1, c2));
+ return val;
+}
+
+DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
+ "Encode a JISX0208 character CHAR to SJIS coding-system.\n\
+Return the corresponding character code in SJIS.")
+ (ch)
+ Lisp_Object ch;
+{
+ int charset;
+ unsigned char c1, c2, s1, s2;
+ Lisp_Object val;
+
+ CHECK_NUMBER (ch, 0);
+ SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
+ if (charset == charset_jisx0208)
+ {
+ ENCODE_SJIS (c1, c2, s1, s2);
+ XSETFASTINT (val, ((int)s1 << 8) | s2);
+ }
+ else
+ XSETFASTINT (val, 0);
+ return val;
+}
+
+DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
+ "Decode a Big5 character CODE of BIG5 coding-system.\n\
+CODE is the character code in BIG5.\n\
+Return the corresponding character.")
+ (code)
+ Lisp_Object code;
+{
+ int charset;
+ unsigned char b1, b2, c1, c2;
+ Lisp_Object val;
+
+ CHECK_NUMBER (code, 0);
+ b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
+ DECODE_BIG5 (b1, b2, charset, c1, c2);
+ XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset, c1, c2));
+ return val;
+}
+
+DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
+ "Encode the Big5 character CHAR to BIG5 coding-system.\n\
+Return the corresponding character code in Big5.")
+ (ch)
+ Lisp_Object ch;
+{
+ int charset;
+ unsigned char c1, c2, b1, b2;
+ Lisp_Object val;
+
+ CHECK_NUMBER (ch, 0);
+ SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
+ if (charset == charset_big5_1 || charset == charset_big5_2)
+ {
+ ENCODE_BIG5 (charset, c1, c2, b1, b2);
+ XSETFASTINT (val, ((int)b1 << 8) | b2);
+ }
+ else
+ XSETFASTINT (val, 0);
+ return val;
+}
+
+DEFUN ("set-terminal-coding-system",
+ Fset_terminal_coding_system, Sset_terminal_coding_system, 1, 1,
+ "zCoding-system for terminal display: ",
+ "Set coding-system of your terminal to CODING-SYSTEM.\n\
+All outputs to terminal are encoded to this coding-system.")
+ (coding_system)
+ Lisp_Object coding_system;
+{
+ CHECK_SYMBOL (coding_system, 0);
+ setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
+ update_mode_lines++;
+ if (!NILP (Finteractive_p ()))
+ Fredraw_display ();
+ return Qnil;
+}
+
+DEFUN ("terminal-coding-system",
+ Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
+ "Return coding-system of your terminal.")
+ ()
+{
+ return terminal_coding.symbol;
+}
+
+DEFUN ("set-keyboard-coding-system",
+ Fset_keyboard_coding_system, Sset_keyboard_coding_system, 1, 1,
+ "zCoding-system for keyboard input: ",
+ "Set coding-system of what is sent from terminal keyboard to CODING-SYSTEM.\n\
+All inputs from terminal are decoded from this coding-system.")
+ (coding_system)
+ Lisp_Object coding_system;
+{
+ CHECK_SYMBOL (coding_system, 0);
+ setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
+ return Qnil;
+}
+
+DEFUN ("keyboard-coding-system",
+ Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
+ "Return coding-system of what is sent from terminal keyboard.")
+ ()
+{
+ return keyboard_coding.symbol;
+}
+
+
+DEFUN ("find-coding-system", Ffind_coding_system, Sfind_coding_system,
+ 1, MANY, 0,
+ "Return a cons of coding systems for I/O primitive OPERATION.\n\
+Remaining arguments are for OPERATION.\n\
+OPERATION is one of the following Emacs I/O primitives:\n\
+ For file I/O, insert-file-contents or write-region.\n\
+ For process I/O, call-process, call-process-region, or start-process.\n\
+ For network I/O, open-network-stream.\n\
+For each OPERATION, TARGET is selected from the arguments as below:\n\
+ For file I/O, TARGET is a file name.\n\
+ For process I/O, TARGET is a process name.\n\
+ For network I/O, TARGET is a service name or a port number\n\
+\n\
+The return value is a cons of coding systems for decoding and encoding\n\
+registered in nested alist `coding-system-alist' (which see) at a slot\n\
+corresponding to OPERATION and TARGET.
+If a function symbol is at the slot, return a result of the function call.\n\
+The function is called with one argument, a list of all the arguments.")
+ (nargs, args)
+ int nargs;
+ Lisp_Object *args;
+{
+ Lisp_Object operation, target_idx, target, val;
+ register Lisp_Object chain;
+
+ if (nargs < 2)
+ error ("Too few arguments");
+ operation = args[0];
+ if (!SYMBOLP (operation)
+ || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
+ error ("Invalid first arguement");
+ if (nargs < 1 + XINT (target_idx))
+ error ("Too few arguments for operation: %s",
+ XSYMBOL (operation)->name->data);
+ target = args[XINT (target_idx) + 1];
+ if (!(STRINGP (target)
+ || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
+ error ("Invalid %dth argument", XINT (target_idx) + 1);
+
+ chain = Fassq (operation, Vcoding_system_alist);
+ if (NILP (chain))
+ return Qnil;
+
+ for (chain = XCONS (chain)->cdr; CONSP (chain); chain = XCONS (chain)->cdr)
+ {
+ Lisp_Object elt = XCONS (chain)->car;
+
+ if (CONSP (elt)
+ && ((STRINGP (target)
+ && STRINGP (XCONS (elt)->car)
+ && fast_string_match (XCONS (elt)->car, target) >= 0)
+ || (INTEGERP (target) && EQ (target, XCONS (elt)->car))))
+ return (CONSP (val = XCONS (elt)->cdr)
+ ? val
+ : ((SYMBOLP (val) && Fboundp (val)
+ ? call2 (val, Flist (nargs, args))
+ : Qnil)));
+ }
+ return Qnil;
+}
+
+#endif /* emacs */
+
+
+/*** 8. Post-amble ***/
+
+init_coding_once ()
+{
+ int i;
+
+ /* Emacs internal format specific initialize routine. */
+ for (i = 0; i <= 0x20; i++)
+ emacs_code_class[i] = EMACS_control_code;
+ emacs_code_class[0x0A] = EMACS_linefeed_code;
+ emacs_code_class[0x0D] = EMACS_carriage_return_code;
+ for (i = 0x21 ; i < 0x7F; i++)
+ emacs_code_class[i] = EMACS_ascii_code;
+ emacs_code_class[0x7F] = EMACS_control_code;
+ emacs_code_class[0x80] = EMACS_leading_code_composition;
+ for (i = 0x81; i < 0xFF; i++)
+ emacs_code_class[i] = EMACS_invalid_code;
+ emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
+ emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
+ emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
+ emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
+
+ /* ISO2022 specific initialize routine. */
+ for (i = 0; i < 0x20; i++)
+ iso_code_class[i] = ISO_control_code;
+ for (i = 0x21; i < 0x7F; i++)
+ iso_code_class[i] = ISO_graphic_plane_0;
+ for (i = 0x80; i < 0xA0; i++)
+ iso_code_class[i] = ISO_control_code;
+ for (i = 0xA1; i < 0xFF; i++)
+ iso_code_class[i] = ISO_graphic_plane_1;
+ iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
+ iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
+ iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
+ iso_code_class[ISO_CODE_SO] = ISO_shift_out;
+ iso_code_class[ISO_CODE_SI] = ISO_shift_in;
+ iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
+ iso_code_class[ISO_CODE_ESC] = ISO_escape;
+ iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
+ iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
+ iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
+
+ Qcoding_system = intern ("coding-system");
+ staticpro (&Qcoding_system);
+
+ Qeol_type = intern ("eol-type");
+ staticpro (&Qeol_type);
+
+ Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
+ staticpro (&Qbuffer_file_coding_system);
+
+ Qpost_read_conversion = intern ("post-read-conversion");
+ staticpro (&Qpost_read_conversion);
+
+ Qpre_write_conversion = intern ("pre-write-conversion");
+ staticpro (&Qpre_write_conversion);
+
+ Qcoding_system_vector = intern ("coding-system-vector");
+ staticpro (&Qcoding_system_vector);
+
+ Qcoding_system_p = intern ("coding-system-p");
+ staticpro (&Qcoding_system_p);
+
+ Qcoding_system_error = intern ("coding-system-error");
+ staticpro (&Qcoding_system_error);
+
+ Fput (Qcoding_system_error, Qerror_conditions,
+ Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
+ Fput (Qcoding_system_error, Qerror_message,
+ build_string ("Coding-system error"));
+
+ Qcoding_category_index = intern ("coding-category-index");
+ staticpro (&Qcoding_category_index);
+
+ {
+ int i;
+ for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
+ {
+ coding_category_table[i] = intern (coding_category_name[i]);
+ staticpro (&coding_category_table[i]);
+ Fput (coding_category_table[i], Qcoding_category_index,
+ make_number (i));
+ }
+ }
+
+ conversion_buffer_size = MINIMUM_CONVERSION_BUFFER_SIZE;
+ conversion_buffer = (char *) xmalloc (MINIMUM_CONVERSION_BUFFER_SIZE);
+
+ setup_coding_system (Qnil, &keyboard_coding);
+ setup_coding_system (Qnil, &terminal_coding);
+}
+
+#ifdef emacs
+
+syms_of_coding ()
+{
+ Qtarget_idx = intern ("target-idx");
+ staticpro (&Qtarget_idx);
+
+ Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
+ Fput (Qwrite_region, Qtarget_idx, make_number (2));
+
+ Qcall_process = intern ("call-process");
+ staticpro (&Qcall_process);
+ Fput (Qcall_process, Qtarget_idx, make_number (0));
+
+ Qcall_process_region = intern ("call-process-region");
+ staticpro (&Qcall_process_region);
+ Fput (Qcall_process_region, Qtarget_idx, make_number (2));
+
+ Qstart_process = intern ("start-process");
+ staticpro (&Qstart_process);
+ Fput (Qstart_process, Qtarget_idx, make_number (2));
+
+ Qopen_network_stream = intern ("open-network-stream");
+ staticpro (&Qopen_network_stream);
+ Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
+
+ defsubr (&Scoding_system_vector);
+ defsubr (&Scoding_system_p);
+ defsubr (&Sread_coding_system);
+ defsubr (&Sread_non_nil_coding_system);
+ defsubr (&Scheck_coding_system);
+ defsubr (&Sdetect_coding_region);
+ defsubr (&Sdecode_coding_region);
+ defsubr (&Sencode_coding_region);
+ defsubr (&Sdecode_coding_string);
+ defsubr (&Sencode_coding_string);
+ defsubr (&Sdecode_sjis_char);
+ defsubr (&Sencode_sjis_char);
+ defsubr (&Sdecode_big5_char);
+ defsubr (&Sencode_big5_char);
+ defsubr (&Sset_terminal_coding_system);
+ defsubr (&Sterminal_coding_system);
+ defsubr (&Sset_keyboard_coding_system);
+ defsubr (&Skeyboard_coding_system);
+ defsubr (&Sfind_coding_system);
+
+ DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
+ "List of coding-categories (symbols) ordered by priority.");
+ {
+ int i;
+
+ Vcoding_category_list = Qnil;
+ for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
+ Vcoding_category_list
+ = Fcons (coding_category_table[i], Vcoding_category_list);
+ }
+
+ DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
+ "A variable of internal use only.\n\
+If the value is a coding system, it is used for decoding on read operation.\n\
+If not, an appropriate element in `coding-system-alist' (which see) is used.");
+ Vcoding_system_for_read = Qnil;
+
+ DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
+ "A variable of internal use only.\n\
+If the value is a coding system, it is used for encoding on write operation.\n\
+If not, an appropriate element in `coding-system-alist' (which see) is used.");
+ Vcoding_system_for_write = Qnil;
+
+ DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
+ "Coding-system used in the latest file or process I/O.");
+ Vlast_coding_system_used = Qnil;
+
+ DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
+ "Nested alist to decide a coding system for a specific I/O operation.\n\
+The format is ((OPERATION . ((REGEXP . CODING-SYSTEMS) ...)) ...).\n\
+
+OPERATION is one of the following Emacs I/O primitives:\n\
+ For file I/O, insert-file-contents and write-region.\n\
+ For process I/O, call-process, call-process-region, and start-process.\n\
+ For network I/O, open-network-stream.\n\
+In addition, for process I/O, `process-argument' can be specified for\n\
+encoding arguments of the process.\n\
+\n\
+REGEXP is a regular expression matching a target of OPERATION, where\n\
+target is a file name for file I/O operations, a process name for\n\
+process I/O operations, or a service name for network I/O\n\
+operations. REGEXP might be a port number for network I/O operation.\n\
+\n\
+CODING-SYSTEMS is a cons of coding systems to encode and decode\n\
+character code on OPERATION, or a function symbol returning the cons.\n\
+See the documentation of `find-coding-system' for more detail.");
+ Vcoding_system_alist = Qnil;
+
+ DEFVAR_INT ("eol-mnemonic-unix", &eol_mnemonic_unix,
+ "Mnemonic character indicating UNIX-like end-of-line format (i.e. LF) .");
+ eol_mnemonic_unix = '.';
+
+ DEFVAR_INT ("eol-mnemonic-dos", &eol_mnemonic_dos,
+ "Mnemonic character indicating DOS-like end-of-line format (i.e. CRLF).");
+ eol_mnemonic_dos = ':';
+
+ DEFVAR_INT ("eol-mnemonic-mac", &eol_mnemonic_mac,
+ "Mnemonic character indicating MAC-like end-of-line format (i.e. CR).");
+ eol_mnemonic_mac = '\'';
+
+ DEFVAR_INT ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
+ "Mnemonic character indicating end-of-line format is not yet decided.");
+ eol_mnemonic_undecided = '-';
+
+ DEFVAR_LISP ("alternate-charset-table", &Valternate_charset_table,
+ "Alist of charsets vs the alternate charsets.\n\
+While decoding, if a charset (car part of an element) is found,\n\
+decode it as the alternate charset (cdr part of the element).");
+ Valternate_charset_table = Qnil;
+
+ DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
+ "Alist of charsets vs revision numbers.\n\
+While encoding, if a charset (car part of an element) is found,\n\
+designate it with the escape sequence identifing revision (cdr part of the element).");
+ Vcharset_revision_alist = Qnil;
+}
+
+#endif /* emacs */