diff options
author | Richard M. Stallman <rms@gnu.org> | 1995-01-02 06:51:21 +0000 |
---|---|---|
committer | Richard M. Stallman <rms@gnu.org> | 1995-01-02 06:51:21 +0000 |
commit | 86581154e50d6ac34b1798458abedb1172ea7116 (patch) | |
tree | c3a8292754824d972e2f180756c2bbcabb5f58b5 /lispref | |
parent | ea79e90c510e68eff743b5f99c4de7e2c812b72c (diff) | |
download | emacs-86581154e50d6ac34b1798458abedb1172ea7116.tar.gz |
Integers now at least 28 bits.
Diffstat (limited to 'lispref')
-rw-r--r-- | lispref/numbers.texi | 142 |
1 files changed, 72 insertions, 70 deletions
diff --git a/lispref/numbers.texi b/lispref/numbers.texi index b083d73c4aa..dec1af1c93f 100644 --- a/lispref/numbers.texi +++ b/lispref/numbers.texi @@ -39,23 +39,22 @@ where Emacs does not support them. @section Integer Basics The range of values for an integer depends on the machine. The -range is @minus{}8388608 to 8388607 (24 bits; i.e., +range is @minus{}8388608 to 8388607 (28 bits; i.e., @ifinfo --2**23 +-2**27 @end ifinfo @tex -$-2^{23}$ +$-2^{27}$ @end tex to @ifinfo -2**23 - 1) +2**27 - 1) @end ifinfo @tex -$2^{23}-1$) +$2^{27}-1$) @end tex -on most machines, but on others it is @minus{}16777216 to 16777215 (25 -bits), or @minus{}33554432 to 33554431 (26 bits). Many examples in this -chapter assume an integer has 24 bits. +on most machines, but some machines may have a wider range. Many +examples in this chapter assume an integer has 28 bits. @cindex overflow The Lisp reader reads an integer as a sequence of digits with optional @@ -66,7 +65,7 @@ initial sign and optional final period. 1. ; @r{The integer 1.} +1 ; @r{Also the integer 1.} -1 ; @r{The integer @minus{}1.} - 16777217 ; @r{Also the integer 1, due to overflow.} + 268435457 ; @r{Also the integer 1, due to overflow.} 0 ; @r{The integer 0.} -0 ; @r{The integer 0.} @end example @@ -75,10 +74,10 @@ initial sign and optional final period. bitwise operators (@pxref{Bitwise Operations}), it is often helpful to view the numbers in their binary form. - In 24-bit binary, the decimal integer 5 looks like this: + In 28-bit binary, the decimal integer 5 looks like this: @example -0000 0000 0000 0000 0000 0101 +0000 0000 0000 0000 0000 0000 0101 @end example @noindent @@ -88,12 +87,12 @@ between groups of 8 bits, to make the binary integer easier to read.) The integer @minus{}1 looks like this: @example -1111 1111 1111 1111 1111 1111 +1111 1111 1111 1111 1111 1111 1111 @end example @noindent @cindex two's complement -@minus{}1 is represented as 24 ones. (This is called @dfn{two's +@minus{}1 is represented as 28 ones. (This is called @dfn{two's complement} notation.) The negative integer, @minus{}5, is creating by subtracting 4 from @@ -101,24 +100,24 @@ complement} notation.) @minus{}5 looks like this: @example -1111 1111 1111 1111 1111 1011 +1111 1111 1111 1111 1111 1111 1011 @end example In this implementation, the largest 24-bit binary integer is the -decimal integer 8,388,607. In binary, it looks like this: +decimal integer 134,217,727. In binary, it looks like this: @example -0111 1111 1111 1111 1111 1111 +0111 1111 1111 1111 1111 1111 1111 @end example Since the arithmetic functions do not check whether integers go -outside their range, when you add 1 to 8,388,607, the value is the -negative integer @minus{}8,388,608: +outside their range, when you add 1 to 134,217,727, the value is the +negative integer @minus{}134,217,728: @example -(+ 1 8388607) - @result{} -8388608 - @result{} 1000 0000 0000 0000 0000 0000 +(+ 1 134217727) + @result{} -134217728 + @result{} 1000 0000 0000 0000 0000 0000 0000 @end example Many of the following functions accept markers for arguments as well @@ -651,12 +650,12 @@ produces @minus{}2 on a 24-bit machine: @result{} -2 @end example -In binary, in the 24-bit implementation, the argument looks like this: +In binary, in the 28-bit implementation, the argument looks like this: @example @group -;; @r{Decimal 8,388,607} -0111 1111 1111 1111 1111 1111 +;; @r{Decimal 134.217,727} +0111 1111 1111 1111 1111 1111 1111 @end group @end example @@ -666,7 +665,7 @@ which becomes the following when left shifted: @example @group ;; @r{Decimal @minus{}2} -1111 1111 1111 1111 1111 1110 +1111 1111 1111 1111 1111 1111 1110 @end group @end example @@ -724,9 +723,9 @@ looks like this: @group (ash -6 -1) @result{} -3 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.} -1111 1111 1111 1111 1111 1010 +1111 1111 1111 1111 1111 1111 1010 @result{} -1111 1111 1111 1111 1111 1101 +1111 1111 1111 1111 1111 1111 1101 @end group @end example @@ -735,11 +734,11 @@ In contrast, shifting the pattern of bits one place to the right with @example @group -(lsh -6 -1) @result{} 8388605 -;; @r{Decimal @minus{}6 becomes decimal 8,388,605.} -1111 1111 1111 1111 1111 1010 +(lsh -6 -1) @result{} 134217725 +;; @r{Decimal @minus{}6 becomes decimal 134,217,725.} +1111 1111 1111 1111 1111 1111 1010 @result{} -0111 1111 1111 1111 1111 1101 +0111 1111 1111 1111 1111 1111 1101 @end group @end example @@ -749,34 +748,34 @@ Here are other examples: @c with smallbook but not with regular book! --rjc 16mar92 @smallexample @group - ; @r{ 24-bit binary values} + ; @r{ 28-bit binary values} -(lsh 5 2) ; 5 = @r{0000 0000 0000 0000 0000 0101} - @result{} 20 ; = @r{0000 0000 0000 0000 0001 0100} +(lsh 5 2) ; 5 = @r{0000 0000 0000 0000 0000 0000 0101} + @result{} 20 ; = @r{0000 0000 0000 0000 0000 0001 0100} @end group @group (ash 5 2) @result{} 20 -(lsh -5 2) ; -5 = @r{1111 1111 1111 1111 1111 1011} - @result{} -20 ; = @r{1111 1111 1111 1111 1110 1100} +(lsh -5 2) ; -5 = @r{1111 1111 1111 1111 1111 1111 1011} + @result{} -20 ; = @r{1111 1111 1111 1111 1111 1110 1100} (ash -5 2) @result{} -20 @end group @group -(lsh 5 -2) ; 5 = @r{0000 0000 0000 0000 0000 0101} - @result{} 1 ; = @r{0000 0000 0000 0000 0000 0001} +(lsh 5 -2) ; 5 = @r{0000 0000 0000 0000 0000 0000 0101} + @result{} 1 ; = @r{0000 0000 0000 0000 0000 0000 0001} @end group @group (ash 5 -2) @result{} 1 @end group @group -(lsh -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1011} - @result{} 4194302 ; = @r{0011 1111 1111 1111 1111 1110} +(lsh -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1111 1011} + @result{} 4194302 ; = @r{0011 1111 1111 1111 1111 1111 1110} @end group @group -(ash -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1011} - @result{} -2 ; = @r{1111 1111 1111 1111 1111 1110} +(ash -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1111 1011} + @result{} -2 ; = @r{1111 1111 1111 1111 1111 1111 1110} @end group @end smallexample @end defun @@ -813,23 +812,23 @@ because its binary representation consists entirely of ones. If @smallexample @group - ; @r{ 24-bit binary values} + ; @r{ 28-bit binary values} -(logand 14 13) ; 14 = @r{0000 0000 0000 0000 0000 1110} - ; 13 = @r{0000 0000 0000 0000 0000 1101} - @result{} 12 ; 12 = @r{0000 0000 0000 0000 0000 1100} +(logand 14 13) ; 14 = @r{0000 0000 0000 0000 0000 0000 1110} + ; 13 = @r{0000 0000 0000 0000 0000 0000 1101} + @result{} 12 ; 12 = @r{0000 0000 0000 0000 0000 0000 1100} @end group @group -(logand 14 13 4) ; 14 = @r{0000 0000 0000 0000 0000 1110} - ; 13 = @r{0000 0000 0000 0000 0000 1101} - ; 4 = @r{0000 0000 0000 0000 0000 0100} - @result{} 4 ; 4 = @r{0000 0000 0000 0000 0000 0100} +(logand 14 13 4) ; 14 = @r{0000 0000 0000 0000 0000 0000 1110} + ; 13 = @r{0000 0000 0000 0000 0000 0000 1101} + ; 4 = @r{0000 0000 0000 0000 0000 0000 0100} + @result{} 4 ; 4 = @r{0000 0000 0000 0000 0000 0000 0100} @end group @group (logand) - @result{} -1 ; -1 = @r{1111 1111 1111 1111 1111 1111} + @result{} -1 ; -1 = @r{1111 1111 1111 1111 1111 1111 1111} @end group @end smallexample @end defun @@ -845,18 +844,18 @@ passed just one argument, it returns that argument. @smallexample @group - ; @r{ 24-bit binary values} + ; @r{ 28-bit binary values} -(logior 12 5) ; 12 = @r{0000 0000 0000 0000 0000 1100} - ; 5 = @r{0000 0000 0000 0000 0000 0101} - @result{} 13 ; 13 = @r{0000 0000 0000 0000 0000 1101} +(logior 12 5) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100} + ; 5 = @r{0000 0000 0000 0000 0000 0000 0101} + @result{} 13 ; 13 = @r{0000 0000 0000 0000 0000 0000 1101} @end group @group -(logior 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 1100} - ; 5 = @r{0000 0000 0000 0000 0000 0101} - ; 7 = @r{0000 0000 0000 0000 0000 0111} - @result{} 15 ; 15 = @r{0000 0000 0000 0000 0000 1111} +(logior 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100} + ; 5 = @r{0000 0000 0000 0000 0000 0000 0101} + ; 7 = @r{0000 0000 0000 0000 0000 0000 0111} + @result{} 15 ; 15 = @r{0000 0000 0000 0000 0000 0000 1111} @end group @end smallexample @end defun @@ -872,18 +871,18 @@ result is 0, which is an identity element for this operation. If @smallexample @group - ; @r{ 24-bit binary values} + ; @r{ 28-bit binary values} -(logxor 12 5) ; 12 = @r{0000 0000 0000 0000 0000 1100} - ; 5 = @r{0000 0000 0000 0000 0000 0101} - @result{} 9 ; 9 = @r{0000 0000 0000 0000 0000 1001} +(logxor 12 5) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100} + ; 5 = @r{0000 0000 0000 0000 0000 0000 0101} + @result{} 9 ; 9 = @r{0000 0000 0000 0000 0000 0000 1001} @end group @group -(logxor 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 1100} - ; 5 = @r{0000 0000 0000 0000 0000 0101} - ; 7 = @r{0000 0000 0000 0000 0000 0111} - @result{} 14 ; 14 = @r{0000 0000 0000 0000 0000 1110} +(logxor 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100} + ; 5 = @r{0000 0000 0000 0000 0000 0000 0101} + ; 7 = @r{0000 0000 0000 0000 0000 0000 0111} + @result{} 14 ; 14 = @r{0000 0000 0000 0000 0000 0000 1110} @end group @end smallexample @end defun @@ -898,9 +897,9 @@ bit is one in the result if, and only if, the @var{n}th bit is zero in @example (lognot 5) @result{} -6 -;; 5 = @r{0000 0000 0000 0000 0000 0101} +;; 5 = @r{0000 0000 0000 0000 0000 0000 0101} ;; @r{becomes} -;; -6 = @r{1111 1111 1111 1111 1111 1010} +;; -6 = @r{1111 1111 1111 1111 1111 1111 1010} @end example @end defun @@ -970,7 +969,10 @@ This function returns the logarithm of @var{arg}, with base 10. If @end defun @defun expt x y -This function returns @var{x} raised to power @var{y}. +This function returns @var{x} raised to power @var{y}. If both +arguments are integers and @var{y} is positive, the result is an +integer; in this case, it is truncated to fit the range of possible +integer values. @end defun @defun sqrt arg |