summaryrefslogtreecommitdiff
path: root/lisp/calc/calc-alg.el
diff options
context:
space:
mode:
authorEli Zaretskii <eliz@gnu.org>2001-11-06 18:59:06 +0000
committerEli Zaretskii <eliz@gnu.org>2001-11-06 18:59:06 +0000
commit136211a997eb94f7dc6f97219052317116e114da (patch)
tree014fd8ffa0fa5c5d81869ec26426fb262471ee23 /lisp/calc/calc-alg.el
parent0ffbbdeb4464b5b0d63e83fe3f8e91674248d84d (diff)
downloademacs-136211a997eb94f7dc6f97219052317116e114da.tar.gz
Initial import of Calc 2.02f.
Diffstat (limited to 'lisp/calc/calc-alg.el')
-rw-r--r--lisp/calc/calc-alg.el1699
1 files changed, 1699 insertions, 0 deletions
diff --git a/lisp/calc/calc-alg.el b/lisp/calc/calc-alg.el
new file mode 100644
index 00000000000..ab34cadbfcf
--- /dev/null
+++ b/lisp/calc/calc-alg.el
@@ -0,0 +1,1699 @@
+;; Calculator for GNU Emacs, part II [calc-alg.el]
+;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
+;; Written by Dave Gillespie, daveg@synaptics.com.
+
+;; This file is part of GNU Emacs.
+
+;; GNU Emacs is distributed in the hope that it will be useful,
+;; but WITHOUT ANY WARRANTY. No author or distributor
+;; accepts responsibility to anyone for the consequences of using it
+;; or for whether it serves any particular purpose or works at all,
+;; unless he says so in writing. Refer to the GNU Emacs General Public
+;; License for full details.
+
+;; Everyone is granted permission to copy, modify and redistribute
+;; GNU Emacs, but only under the conditions described in the
+;; GNU Emacs General Public License. A copy of this license is
+;; supposed to have been given to you along with GNU Emacs so you
+;; can know your rights and responsibilities. It should be in a
+;; file named COPYING. Among other things, the copyright notice
+;; and this notice must be preserved on all copies.
+
+
+
+;; This file is autoloaded from calc-ext.el.
+(require 'calc-ext)
+
+(require 'calc-macs)
+
+(defun calc-Need-calc-alg () nil)
+
+
+;;; Algebra commands.
+
+(defun calc-alg-evaluate (arg)
+ (interactive "p")
+ (calc-slow-wrapper
+ (calc-with-default-simplification
+ (let ((math-simplify-only nil))
+ (calc-modify-simplify-mode arg)
+ (calc-enter-result 1 "dsmp" (calc-top 1)))))
+)
+
+(defun calc-modify-simplify-mode (arg)
+ (if (= (math-abs arg) 2)
+ (setq calc-simplify-mode 'alg)
+ (if (>= (math-abs arg) 3)
+ (setq calc-simplify-mode 'ext)))
+ (if (< arg 0)
+ (setq calc-simplify-mode (list calc-simplify-mode)))
+)
+
+(defun calc-simplify ()
+ (interactive)
+ (calc-slow-wrapper
+ (calc-with-default-simplification
+ (calc-enter-result 1 "simp" (math-simplify (calc-top-n 1)))))
+)
+
+(defun calc-simplify-extended ()
+ (interactive)
+ (calc-slow-wrapper
+ (calc-with-default-simplification
+ (calc-enter-result 1 "esmp" (math-simplify-extended (calc-top-n 1)))))
+)
+
+(defun calc-expand-formula (arg)
+ (interactive "p")
+ (calc-slow-wrapper
+ (calc-with-default-simplification
+ (let ((math-simplify-only nil))
+ (calc-modify-simplify-mode arg)
+ (calc-enter-result 1 "expf"
+ (if (> arg 0)
+ (let ((math-expand-formulas t))
+ (calc-top-n 1))
+ (let ((top (calc-top-n 1)))
+ (or (math-expand-formula top)
+ top)))))))
+)
+
+(defun calc-factor (arg)
+ (interactive "P")
+ (calc-slow-wrapper
+ (calc-unary-op "fctr" (if (calc-is-hyperbolic)
+ 'calcFunc-factors 'calcFunc-factor)
+ arg))
+)
+
+(defun calc-expand (n)
+ (interactive "P")
+ (calc-slow-wrapper
+ (calc-enter-result 1 "expa"
+ (append (list 'calcFunc-expand
+ (calc-top-n 1))
+ (and n (list (prefix-numeric-value n))))))
+)
+
+(defun calc-collect (&optional var)
+ (interactive "sCollect terms involving: ")
+ (calc-slow-wrapper
+ (if (or (equal var "") (equal var "$") (null var))
+ (calc-enter-result 2 "clct" (cons 'calcFunc-collect
+ (calc-top-list-n 2)))
+ (let ((var (math-read-expr var)))
+ (if (eq (car-safe var) 'error)
+ (error "Bad format in expression: %s" (nth 1 var)))
+ (calc-enter-result 1 "clct" (list 'calcFunc-collect
+ (calc-top-n 1)
+ var)))))
+)
+
+(defun calc-apart (arg)
+ (interactive "P")
+ (calc-slow-wrapper
+ (calc-unary-op "aprt" 'calcFunc-apart arg))
+)
+
+(defun calc-normalize-rat (arg)
+ (interactive "P")
+ (calc-slow-wrapper
+ (calc-unary-op "nrat" 'calcFunc-nrat arg))
+)
+
+(defun calc-poly-gcd (arg)
+ (interactive "P")
+ (calc-slow-wrapper
+ (calc-binary-op "pgcd" 'calcFunc-pgcd arg))
+)
+
+(defun calc-poly-div (arg)
+ (interactive "P")
+ (calc-slow-wrapper
+ (setq calc-poly-div-remainder nil)
+ (calc-binary-op "pdiv" 'calcFunc-pdiv arg)
+ (if (and calc-poly-div-remainder (null arg))
+ (progn
+ (calc-clear-command-flag 'clear-message)
+ (calc-record calc-poly-div-remainder "prem")
+ (if (not (Math-zerop calc-poly-div-remainder))
+ (message "(Remainder was %s)"
+ (math-format-flat-expr calc-poly-div-remainder 0))
+ (message "(No remainder)")))))
+)
+
+(defun calc-poly-rem (arg)
+ (interactive "P")
+ (calc-slow-wrapper
+ (calc-binary-op "prem" 'calcFunc-prem arg))
+)
+
+(defun calc-poly-div-rem (arg)
+ (interactive "P")
+ (calc-slow-wrapper
+ (if (calc-is-hyperbolic)
+ (calc-binary-op "pdvr" 'calcFunc-pdivide arg)
+ (calc-binary-op "pdvr" 'calcFunc-pdivrem arg)))
+)
+
+(defun calc-substitute (&optional oldname newname)
+ (interactive "sSubstitute old: ")
+ (calc-slow-wrapper
+ (let (old new (num 1) expr)
+ (if (or (equal oldname "") (equal oldname "$") (null oldname))
+ (setq new (calc-top-n 1)
+ old (calc-top-n 2)
+ expr (calc-top-n 3)
+ num 3)
+ (or newname
+ (progn (calc-unread-command ?\C-a)
+ (setq newname (read-string (concat "Substitute old: "
+ oldname
+ ", new: ")
+ oldname))))
+ (if (or (equal newname "") (equal newname "$") (null newname))
+ (setq new (calc-top-n 1)
+ expr (calc-top-n 2)
+ num 2)
+ (setq new (if (stringp newname) (math-read-expr newname) newname))
+ (if (eq (car-safe new) 'error)
+ (error "Bad format in expression: %s" (nth 1 new)))
+ (setq expr (calc-top-n 1)))
+ (setq old (if (stringp oldname) (math-read-expr oldname) oldname))
+ (if (eq (car-safe old) 'error)
+ (error "Bad format in expression: %s" (nth 1 old)))
+ (or (math-expr-contains expr old)
+ (error "No occurrences found.")))
+ (calc-enter-result num "sbst" (math-expr-subst expr old new))))
+)
+
+
+(defun calc-has-rules (name)
+ (setq name (calc-var-value name))
+ (and (consp name)
+ (memq (car name) '(vec calcFunc-assign calcFunc-condition))
+ name)
+)
+
+(defun math-recompile-eval-rules ()
+ (setq math-eval-rules-cache (and (calc-has-rules 'var-EvalRules)
+ (math-compile-rewrites
+ '(var EvalRules var-EvalRules)))
+ math-eval-rules-cache-other (assq nil math-eval-rules-cache)
+ math-eval-rules-cache-tag (calc-var-value 'var-EvalRules))
+)
+
+
+;;; Try to expand a formula according to its definition.
+(defun math-expand-formula (expr)
+ (and (consp expr)
+ (symbolp (car expr))
+ (or (get (car expr) 'calc-user-defn)
+ (get (car expr) 'math-expandable))
+ (let ((res (let ((math-expand-formulas t))
+ (apply (car expr) (cdr expr)))))
+ (and (not (eq (car-safe res) (car expr)))
+ res)))
+)
+
+
+
+
+;;; True if A comes before B in a canonical ordering of expressions. [P X X]
+(defun math-beforep (a b) ; [Public]
+ (cond ((and (Math-realp a) (Math-realp b))
+ (let ((comp (math-compare a b)))
+ (or (eq comp -1)
+ (and (eq comp 0)
+ (not (equal a b))
+ (> (length (memq (car-safe a)
+ '(bigneg nil bigpos frac float)))
+ (length (memq (car-safe b)
+ '(bigneg nil bigpos frac float))))))))
+ ((equal b '(neg (var inf var-inf))) nil)
+ ((equal a '(neg (var inf var-inf))) t)
+ ((equal a '(var inf var-inf)) nil)
+ ((equal b '(var inf var-inf)) t)
+ ((Math-realp a)
+ (if (and (eq (car-safe b) 'intv) (math-intv-constp b))
+ (if (or (math-beforep a (nth 2 b)) (Math-equal a (nth 2 b)))
+ t
+ nil)
+ t))
+ ((Math-realp b)
+ (if (and (eq (car-safe a) 'intv) (math-intv-constp a))
+ (if (math-beforep (nth 2 a) b)
+ t
+ nil)
+ nil))
+ ((and (eq (car a) 'intv) (eq (car b) 'intv)
+ (math-intv-constp a) (math-intv-constp b))
+ (let ((comp (math-compare (nth 2 a) (nth 2 b))))
+ (cond ((eq comp -1) t)
+ ((eq comp 1) nil)
+ ((and (memq (nth 1 a) '(2 3)) (memq (nth 1 b) '(0 1))) t)
+ ((and (memq (nth 1 a) '(0 1)) (memq (nth 1 b) '(2 3))) nil)
+ ((eq (setq comp (math-compare (nth 3 a) (nth 3 b))) -1) t)
+ ((eq comp 1) nil)
+ ((and (memq (nth 1 a) '(0 2)) (memq (nth 1 b) '(1 3))) t)
+ (t nil))))
+ ((not (eq (not (Math-objectp a)) (not (Math-objectp b))))
+ (Math-objectp a))
+ ((eq (car a) 'var)
+ (if (eq (car b) 'var)
+ (string-lessp (symbol-name (nth 1 a)) (symbol-name (nth 1 b)))
+ (not (Math-numberp b))))
+ ((eq (car b) 'var) (Math-numberp a))
+ ((eq (car a) (car b))
+ (while (and (setq a (cdr a) b (cdr b)) a
+ (equal (car a) (car b))))
+ (and b
+ (or (null a)
+ (math-beforep (car a) (car b)))))
+ (t (string-lessp (symbol-name (car a)) (symbol-name (car b)))))
+)
+
+
+(defun math-simplify-extended (a)
+ (let ((math-living-dangerously t))
+ (math-simplify a))
+)
+(fset 'calcFunc-esimplify (symbol-function 'math-simplify-extended))
+
+(defun math-simplify (top-expr)
+ (let ((math-simplifying t)
+ (top-only (consp calc-simplify-mode))
+ (simp-rules (append (and (calc-has-rules 'var-AlgSimpRules)
+ '((var AlgSimpRules var-AlgSimpRules)))
+ (and math-living-dangerously
+ (calc-has-rules 'var-ExtSimpRules)
+ '((var ExtSimpRules var-ExtSimpRules)))
+ (and math-simplifying-units
+ (calc-has-rules 'var-UnitSimpRules)
+ '((var UnitSimpRules var-UnitSimpRules)))
+ (and math-integrating
+ (calc-has-rules 'var-IntegSimpRules)
+ '((var IntegSimpRules var-IntegSimpRules)))))
+ res)
+ (if top-only
+ (let ((r simp-rules))
+ (setq res (math-simplify-step (math-normalize top-expr))
+ calc-simplify-mode '(nil)
+ top-expr (math-normalize res))
+ (while r
+ (setq top-expr (math-rewrite top-expr (car r)
+ '(neg (var inf var-inf)))
+ r (cdr r))))
+ (calc-with-default-simplification
+ (while (let ((r simp-rules))
+ (setq res (math-normalize top-expr))
+ (while r
+ (setq res (math-rewrite res (car r))
+ r (cdr r)))
+ (not (equal top-expr (setq res (math-simplify-step res)))))
+ (setq top-expr res)))))
+ top-expr
+)
+(fset 'calcFunc-simplify (symbol-function 'math-simplify))
+
+;;; The following has a "bug" in that if any recursive simplifications
+;;; occur only the first handler will be tried; this doesn't really
+;;; matter, since math-simplify-step is iterated to a fixed point anyway.
+(defun math-simplify-step (a)
+ (if (Math-primp a)
+ a
+ (let ((aa (if (or top-only
+ (memq (car a) '(calcFunc-quote calcFunc-condition
+ calcFunc-evalto)))
+ a
+ (cons (car a) (mapcar 'math-simplify-step (cdr a))))))
+ (and (symbolp (car aa))
+ (let ((handler (get (car aa) 'math-simplify)))
+ (and handler
+ (while (and handler
+ (equal (setq aa (or (funcall (car handler) aa)
+ aa))
+ a))
+ (setq handler (cdr handler))))))
+ aa))
+)
+
+
+(defun math-need-std-simps ()
+ ;; Placeholder, to synchronize autoloading.
+)
+
+(math-defsimplify (+ -)
+ (math-simplify-plus))
+
+(defun math-simplify-plus ()
+ (cond ((and (memq (car-safe (nth 1 expr)) '(+ -))
+ (Math-numberp (nth 2 (nth 1 expr)))
+ (not (Math-numberp (nth 2 expr))))
+ (let ((x (nth 2 expr))
+ (op (car expr)))
+ (setcar (cdr (cdr expr)) (nth 2 (nth 1 expr)))
+ (setcar expr (car (nth 1 expr)))
+ (setcar (cdr (cdr (nth 1 expr))) x)
+ (setcar (nth 1 expr) op)))
+ ((and (eq (car expr) '+)
+ (Math-numberp (nth 1 expr))
+ (not (Math-numberp (nth 2 expr))))
+ (let ((x (nth 2 expr)))
+ (setcar (cdr (cdr expr)) (nth 1 expr))
+ (setcar (cdr expr) x))))
+ (let ((aa expr)
+ aaa temp)
+ (while (memq (car-safe (setq aaa (nth 1 aa))) '(+ -))
+ (if (setq temp (math-combine-sum (nth 2 aaa) (nth 2 expr)
+ (eq (car aaa) '-) (eq (car expr) '-) t))
+ (progn
+ (setcar (cdr (cdr expr)) temp)
+ (setcar expr '+)
+ (setcar (cdr (cdr aaa)) 0)))
+ (setq aa (nth 1 aa)))
+ (if (setq temp (math-combine-sum aaa (nth 2 expr)
+ nil (eq (car expr) '-) t))
+ (progn
+ (setcar (cdr (cdr expr)) temp)
+ (setcar expr '+)
+ (setcar (cdr aa) 0)))
+ expr)
+)
+
+(math-defsimplify *
+ (math-simplify-times))
+
+(defun math-simplify-times ()
+ (if (eq (car-safe (nth 2 expr)) '*)
+ (and (math-beforep (nth 1 (nth 2 expr)) (nth 1 expr))
+ (or (math-known-scalarp (nth 1 expr) t)
+ (math-known-scalarp (nth 1 (nth 2 expr)) t))
+ (let ((x (nth 1 expr)))
+ (setcar (cdr expr) (nth 1 (nth 2 expr)))
+ (setcar (cdr (nth 2 expr)) x)))
+ (and (math-beforep (nth 2 expr) (nth 1 expr))
+ (or (math-known-scalarp (nth 1 expr) t)
+ (math-known-scalarp (nth 2 expr) t))
+ (let ((x (nth 2 expr)))
+ (setcar (cdr (cdr expr)) (nth 1 expr))
+ (setcar (cdr expr) x))))
+ (let ((aa expr)
+ aaa temp
+ (safe t) (scalar (math-known-scalarp (nth 1 expr))))
+ (if (and (Math-ratp (nth 1 expr))
+ (setq temp (math-common-constant-factor (nth 2 expr))))
+ (progn
+ (setcar (cdr (cdr expr))
+ (math-cancel-common-factor (nth 2 expr) temp))
+ (setcar (cdr expr) (math-mul (nth 1 expr) temp))))
+ (while (and (eq (car-safe (setq aaa (nth 2 aa))) '*)
+ safe)
+ (if (setq temp (math-combine-prod (nth 1 expr) (nth 1 aaa) nil nil t))
+ (progn
+ (setcar (cdr expr) temp)
+ (setcar (cdr aaa) 1)))
+ (setq safe (or scalar (math-known-scalarp (nth 1 aaa) t))
+ aa (nth 2 aa)))
+ (if (and (setq temp (math-combine-prod aaa (nth 1 expr) nil nil t))
+ safe)
+ (progn
+ (setcar (cdr expr) temp)
+ (setcar (cdr (cdr aa)) 1)))
+ (if (and (eq (car-safe (nth 1 expr)) 'frac)
+ (memq (nth 1 (nth 1 expr)) '(1 -1)))
+ (math-div (math-mul (nth 2 expr) (nth 1 (nth 1 expr)))
+ (nth 2 (nth 1 expr)))
+ expr))
+)
+
+(math-defsimplify /
+ (math-simplify-divide))
+
+(defun math-simplify-divide ()
+ (let ((np (cdr expr))
+ (nover nil)
+ (nn (and (or (eq (car expr) '/) (not (Math-realp (nth 2 expr))))
+ (math-common-constant-factor (nth 2 expr))))
+ n op)
+ (if nn
+ (progn
+ (setq n (and (or (eq (car expr) '/) (not (Math-realp (nth 1 expr))))
+ (math-common-constant-factor (nth 1 expr))))
+ (if (and (eq (car-safe nn) 'frac) (eq (nth 1 nn) 1) (not n))
+ (progn
+ (setcar (cdr expr) (math-mul (nth 2 nn) (nth 1 expr)))
+ (setcar (cdr (cdr expr))
+ (math-cancel-common-factor (nth 2 expr) nn))
+ (if (and (math-negp nn)
+ (setq op (assq (car expr) calc-tweak-eqn-table)))
+ (setcar expr (nth 1 op))))
+ (if (and n (not (eq (setq n (math-frac-gcd n nn)) 1)))
+ (progn
+ (setcar (cdr expr)
+ (math-cancel-common-factor (nth 1 expr) n))
+ (setcar (cdr (cdr expr))
+ (math-cancel-common-factor (nth 2 expr) n))
+ (if (and (math-negp n)
+ (setq op (assq (car expr) calc-tweak-eqn-table)))
+ (setcar expr (nth 1 op))))))))
+ (if (and (eq (car-safe (car np)) '/)
+ (math-known-scalarp (nth 2 expr) t))
+ (progn
+ (setq np (cdr (nth 1 expr)))
+ (while (eq (car-safe (setq n (car np))) '*)
+ (and (math-known-scalarp (nth 2 n) t)
+ (math-simplify-divisor (cdr n) (cdr (cdr expr)) nil t))
+ (setq np (cdr (cdr n))))
+ (math-simplify-divisor np (cdr (cdr expr)) nil t)
+ (setq nover t
+ np (cdr (cdr (nth 1 expr))))))
+ (while (eq (car-safe (setq n (car np))) '*)
+ (and (math-known-scalarp (nth 2 n) t)
+ (math-simplify-divisor (cdr n) (cdr (cdr expr)) nover t))
+ (setq np (cdr (cdr n))))
+ (math-simplify-divisor np (cdr (cdr expr)) nover t)
+ expr)
+)
+
+(defun math-simplify-divisor (np dp nover dover)
+ (cond ((eq (car-safe (car dp)) '/)
+ (math-simplify-divisor np (cdr (car dp)) nover dover)
+ (and (math-known-scalarp (nth 1 (car dp)) t)
+ (math-simplify-divisor np (cdr (cdr (car dp)))
+ nover (not dover))))
+ ((or (or (eq (car expr) '/)
+ (let ((signs (math-possible-signs (car np))))
+ (or (memq signs '(1 4))
+ (and (memq (car expr) '(calcFunc-eq calcFunc-neq))
+ (eq signs 5))
+ math-living-dangerously)))
+ (math-numberp (car np)))
+ (let ((n (car np))
+ d dd temp op
+ (safe t) (scalar (math-known-scalarp n)))
+ (while (and (eq (car-safe (setq d (car dp))) '*)
+ safe)
+ (math-simplify-one-divisor np (cdr d))
+ (setq safe (or scalar (math-known-scalarp (nth 1 d) t))
+ dp (cdr (cdr d))))
+ (if safe
+ (math-simplify-one-divisor np dp)))))
+)
+
+(defun math-simplify-one-divisor (np dp)
+ (if (setq temp (math-combine-prod (car np) (car dp) nover dover t))
+ (progn
+ (and (not (memq (car expr) '(/ calcFunc-eq calcFunc-neq)))
+ (math-known-negp (car dp))
+ (setq op (assq (car expr) calc-tweak-eqn-table))
+ (setcar expr (nth 1 op)))
+ (setcar np (if nover (math-div 1 temp) temp))
+ (setcar dp 1))
+ (and dover (not nover) (eq (car expr) '/)
+ (eq (car-safe (car dp)) 'calcFunc-sqrt)
+ (Math-integerp (nth 1 (car dp)))
+ (progn
+ (setcar np (math-mul (car np)
+ (list 'calcFunc-sqrt (nth 1 (car dp)))))
+ (setcar dp (nth 1 (car dp))))))
+)
+
+(defun math-common-constant-factor (expr)
+ (if (Math-realp expr)
+ (if (Math-ratp expr)
+ (and (not (memq expr '(0 1 -1)))
+ (math-abs expr))
+ (if (math-ratp (setq expr (math-to-simple-fraction expr)))
+ (math-common-constant-factor expr)))
+ (if (memq (car expr) '(+ - cplx sdev))
+ (let ((f1 (math-common-constant-factor (nth 1 expr)))
+ (f2 (math-common-constant-factor (nth 2 expr))))
+ (and f1 f2
+ (not (eq (setq f1 (math-frac-gcd f1 f2)) 1))
+ f1))
+ (if (memq (car expr) '(* polar))
+ (math-common-constant-factor (nth 1 expr))
+ (if (eq (car expr) '/)
+ (or (math-common-constant-factor (nth 1 expr))
+ (and (Math-integerp (nth 2 expr))
+ (list 'frac 1 (math-abs (nth 2 expr)))))))))
+)
+
+(defun math-cancel-common-factor (expr val)
+ (if (memq (car-safe expr) '(+ - cplx sdev))
+ (progn
+ (setcar (cdr expr) (math-cancel-common-factor (nth 1 expr) val))
+ (setcar (cdr (cdr expr)) (math-cancel-common-factor (nth 2 expr) val))
+ expr)
+ (if (eq (car-safe expr) '*)
+ (math-mul (math-cancel-common-factor (nth 1 expr) val) (nth 2 expr))
+ (math-div expr val)))
+)
+
+(defun math-frac-gcd (a b)
+ (if (Math-zerop a)
+ b
+ (if (Math-zerop b)
+ a
+ (if (and (Math-integerp a)
+ (Math-integerp b))
+ (math-gcd a b)
+ (and (Math-integerp a) (setq a (list 'frac a 1)))
+ (and (Math-integerp b) (setq b (list 'frac b 1)))
+ (math-make-frac (math-gcd (nth 1 a) (nth 1 b))
+ (math-gcd (nth 2 a) (nth 2 b))))))
+)
+
+(math-defsimplify %
+ (math-simplify-mod))
+
+(defun math-simplify-mod ()
+ (and (Math-realp (nth 2 expr))
+ (Math-posp (nth 2 expr))
+ (let ((lin (math-is-linear (nth 1 expr)))
+ t1 t2 t3)
+ (or (and lin
+ (or (math-negp (car lin))
+ (not (Math-lessp (car lin) (nth 2 expr))))
+ (list '%
+ (list '+
+ (math-mul (nth 1 lin) (nth 2 lin))
+ (math-mod (car lin) (nth 2 expr)))
+ (nth 2 expr)))
+ (and lin
+ (not (math-equal-int (nth 1 lin) 1))
+ (math-num-integerp (nth 1 lin))
+ (math-num-integerp (nth 2 expr))
+ (setq t1 (calcFunc-gcd (nth 1 lin) (nth 2 expr)))
+ (not (math-equal-int t1 1))
+ (list '*
+ t1
+ (list '%
+ (list '+
+ (math-mul (math-div (nth 1 lin) t1)
+ (nth 2 lin))
+ (let ((calc-prefer-frac t))
+ (math-div (car lin) t1)))
+ (math-div (nth 2 expr) t1))))
+ (and (math-equal-int (nth 2 expr) 1)
+ (math-known-integerp (if lin
+ (math-mul (nth 1 lin) (nth 2 lin))
+ (nth 1 expr)))
+ (if lin (math-mod (car lin) 1) 0)))))
+)
+
+(math-defsimplify (calcFunc-eq calcFunc-neq calcFunc-lt
+ calcFunc-gt calcFunc-leq calcFunc-geq)
+ (if (= (length expr) 3)
+ (math-simplify-ineq)))
+
+(defun math-simplify-ineq ()
+ (let ((np (cdr expr))
+ n)
+ (while (memq (car-safe (setq n (car np))) '(+ -))
+ (math-simplify-add-term (cdr (cdr n)) (cdr (cdr expr))
+ (eq (car n) '-) nil)
+ (setq np (cdr n)))
+ (math-simplify-add-term np (cdr (cdr expr)) nil (eq np (cdr expr)))
+ (math-simplify-divide)
+ (let ((signs (math-possible-signs (cons '- (cdr expr)))))
+ (or (cond ((eq (car expr) 'calcFunc-eq)
+ (or (and (eq signs 2) 1)
+ (and (memq signs '(1 4 5)) 0)))
+ ((eq (car expr) 'calcFunc-neq)
+ (or (and (eq signs 2) 0)
+ (and (memq signs '(1 4 5)) 1)))
+ ((eq (car expr) 'calcFunc-lt)
+ (or (and (eq signs 1) 1)
+ (and (memq signs '(2 4 6)) 0)))
+ ((eq (car expr) 'calcFunc-gt)
+ (or (and (eq signs 4) 1)
+ (and (memq signs '(1 2 3)) 0)))
+ ((eq (car expr) 'calcFunc-leq)
+ (or (and (eq signs 4) 0)
+ (and (memq signs '(1 2 3)) 1)))
+ ((eq (car expr) 'calcFunc-geq)
+ (or (and (eq signs 1) 0)
+ (and (memq signs '(2 4 6)) 1))))
+ expr)))
+)
+
+(defun math-simplify-add-term (np dp minus lplain)
+ (or (math-vectorp (car np))
+ (let ((rplain t)
+ n d dd temp)
+ (while (memq (car-safe (setq n (car np) d (car dp))) '(+ -))
+ (setq rplain nil)
+ (if (setq temp (math-combine-sum n (nth 2 d)
+ minus (eq (car d) '+) t))
+ (if (or lplain (eq (math-looks-negp temp) minus))
+ (progn
+ (setcar np (setq n (if minus (math-neg temp) temp)))
+ (setcar (cdr (cdr d)) 0))
+ (progn
+ (setcar np 0)
+ (setcar (cdr (cdr d)) (setq n (if (eq (car d) '+)
+ (math-neg temp)
+ temp))))))
+ (setq dp (cdr d)))
+ (if (setq temp (math-combine-sum n d minus t t))
+ (if (or lplain
+ (and (not rplain)
+ (eq (math-looks-negp temp) minus)))
+ (progn
+ (setcar np (setq n (if minus (math-neg temp) temp)))
+ (setcar dp 0))
+ (progn
+ (setcar np 0)
+ (setcar dp (setq n (math-neg temp))))))))
+)
+
+(math-defsimplify calcFunc-sin
+ (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
+ (nth 1 (nth 1 expr)))
+ (and (math-looks-negp (nth 1 expr))
+ (math-neg (list 'calcFunc-sin (math-neg (nth 1 expr)))))
+ (and (eq calc-angle-mode 'rad)
+ (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
+ (and n
+ (math-known-sin (car n) (nth 1 n) 120 0))))
+ (and (eq calc-angle-mode 'deg)
+ (let ((n (math-integer-plus (nth 1 expr))))
+ (and n
+ (math-known-sin (car n) (nth 1 n) '(frac 2 3) 0))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
+ (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
+ (math-div (nth 1 (nth 1 expr))
+ (list 'calcFunc-sqrt
+ (math-add 1 (math-sqr (nth 1 (nth 1 expr)))))))
+ (let ((m (math-should-expand-trig (nth 1 expr))))
+ (and m (integerp (car m))
+ (let ((n (car m)) (a (nth 1 m)))
+ (list '+
+ (list '* (list 'calcFunc-sin (list '* (1- n) a))
+ (list 'calcFunc-cos a))
+ (list '* (list 'calcFunc-cos (list '* (1- n) a))
+ (list 'calcFunc-sin a)))))))
+)
+
+(math-defsimplify calcFunc-cos
+ (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
+ (nth 1 (nth 1 expr)))
+ (and (math-looks-negp (nth 1 expr))
+ (list 'calcFunc-cos (math-neg (nth 1 expr))))
+ (and (eq calc-angle-mode 'rad)
+ (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
+ (and n
+ (math-known-sin (car n) (nth 1 n) 120 300))))
+ (and (eq calc-angle-mode 'deg)
+ (let ((n (math-integer-plus (nth 1 expr))))
+ (and n
+ (math-known-sin (car n) (nth 1 n) '(frac 2 3) 300))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
+ (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
+ (math-div 1
+ (list 'calcFunc-sqrt
+ (math-add 1 (math-sqr (nth 1 (nth 1 expr)))))))
+ (let ((m (math-should-expand-trig (nth 1 expr))))
+ (and m (integerp (car m))
+ (let ((n (car m)) (a (nth 1 m)))
+ (list '-
+ (list '* (list 'calcFunc-cos (list '* (1- n) a))
+ (list 'calcFunc-cos a))
+ (list '* (list 'calcFunc-sin (list '* (1- n) a))
+ (list 'calcFunc-sin a)))))))
+)
+
+(defun math-should-expand-trig (x &optional hyperbolic)
+ (let ((m (math-is-multiple x)))
+ (and math-living-dangerously
+ m (or (and (integerp (car m)) (> (car m) 1))
+ (equal (car m) '(frac 1 2)))
+ (or math-integrating
+ (memq (car-safe (nth 1 m))
+ (if hyperbolic
+ '(calcFunc-arcsinh calcFunc-arccosh calcFunc-arctanh)
+ '(calcFunc-arcsin calcFunc-arccos calcFunc-arctan)))
+ (and (eq (car-safe (nth 1 m)) 'calcFunc-ln)
+ (eq hyperbolic 'exp)))
+ m))
+)
+
+(defun math-known-sin (plus n mul off)
+ (setq n (math-mul n mul))
+ (and (math-num-integerp n)
+ (setq n (math-mod (math-add (math-trunc n) off) 240))
+ (if (>= n 120)
+ (and (setq n (math-known-sin plus (- n 120) 1 0))
+ (math-neg n))
+ (if (> n 60)
+ (setq n (- 120 n)))
+ (if (math-zerop plus)
+ (and (or calc-symbolic-mode
+ (memq n '(0 20 60)))
+ (cdr (assq n
+ '( (0 . 0)
+ (10 . (/ (calcFunc-sqrt
+ (- 2 (calcFunc-sqrt 3))) 2))
+ (12 . (/ (- (calcFunc-sqrt 5) 1) 4))
+ (15 . (/ (calcFunc-sqrt
+ (- 2 (calcFunc-sqrt 2))) 2))
+ (20 . (/ 1 2))
+ (24 . (* (^ (/ 1 2) (/ 3 2))
+ (calcFunc-sqrt
+ (- 5 (calcFunc-sqrt 5)))))
+ (30 . (/ (calcFunc-sqrt 2) 2))
+ (36 . (/ (+ (calcFunc-sqrt 5) 1) 4))
+ (40 . (/ (calcFunc-sqrt 3) 2))
+ (45 . (/ (calcFunc-sqrt
+ (+ 2 (calcFunc-sqrt 2))) 2))
+ (48 . (* (^ (/ 1 2) (/ 3 2))
+ (calcFunc-sqrt
+ (+ 5 (calcFunc-sqrt 5)))))
+ (50 . (/ (calcFunc-sqrt
+ (+ 2 (calcFunc-sqrt 3))) 2))
+ (60 . 1)))))
+ (cond ((eq n 0) (math-normalize (list 'calcFunc-sin plus)))
+ ((eq n 60) (math-normalize (list 'calcFunc-cos plus)))
+ (t nil)))))
+)
+
+(math-defsimplify calcFunc-tan
+ (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
+ (nth 1 (nth 1 expr)))
+ (and (math-looks-negp (nth 1 expr))
+ (math-neg (list 'calcFunc-tan (math-neg (nth 1 expr)))))
+ (and (eq calc-angle-mode 'rad)
+ (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
+ (and n
+ (math-known-tan (car n) (nth 1 n) 120))))
+ (and (eq calc-angle-mode 'deg)
+ (let ((n (math-integer-plus (nth 1 expr))))
+ (and n
+ (math-known-tan (car n) (nth 1 n) '(frac 2 3)))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
+ (math-div (nth 1 (nth 1 expr))
+ (list 'calcFunc-sqrt
+ (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
+ (math-div (list 'calcFunc-sqrt
+ (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))
+ (nth 1 (nth 1 expr))))
+ (let ((m (math-should-expand-trig (nth 1 expr))))
+ (and m
+ (if (equal (car m) '(frac 1 2))
+ (math-div (math-sub 1 (list 'calcFunc-cos (nth 1 m)))
+ (list 'calcFunc-sin (nth 1 m)))
+ (math-div (list 'calcFunc-sin (nth 1 expr))
+ (list 'calcFunc-cos (nth 1 expr)))))))
+)
+
+(defun math-known-tan (plus n mul)
+ (setq n (math-mul n mul))
+ (and (math-num-integerp n)
+ (setq n (math-mod (math-trunc n) 120))
+ (if (> n 60)
+ (and (setq n (math-known-tan plus (- 120 n) 1))
+ (math-neg n))
+ (if (math-zerop plus)
+ (and (or calc-symbolic-mode
+ (memq n '(0 30 60)))
+ (cdr (assq n '( (0 . 0)
+ (10 . (- 2 (calcFunc-sqrt 3)))
+ (12 . (calcFunc-sqrt
+ (- 1 (* (/ 2 5) (calcFunc-sqrt 5)))))
+ (15 . (- (calcFunc-sqrt 2) 1))
+ (20 . (/ (calcFunc-sqrt 3) 3))
+ (24 . (calcFunc-sqrt
+ (- 5 (* 2 (calcFunc-sqrt 5)))))
+ (30 . 1)
+ (36 . (calcFunc-sqrt
+ (+ 1 (* (/ 2 5) (calcFunc-sqrt 5)))))
+ (40 . (calcFunc-sqrt 3))
+ (45 . (+ (calcFunc-sqrt 2) 1))
+ (48 . (calcFunc-sqrt
+ (+ 5 (* 2 (calcFunc-sqrt 5)))))
+ (50 . (+ 2 (calcFunc-sqrt 3)))
+ (60 . (var uinf var-uinf))))))
+ (cond ((eq n 0) (math-normalize (list 'calcFunc-tan plus)))
+ ((eq n 60) (math-normalize (list '/ -1
+ (list 'calcFunc-tan plus))))
+ (t nil)))))
+)
+
+(math-defsimplify calcFunc-sinh
+ (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
+ (nth 1 (nth 1 expr)))
+ (and (math-looks-negp (nth 1 expr))
+ (math-neg (list 'calcFunc-sinh (math-neg (nth 1 expr)))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
+ math-living-dangerously
+ (list 'calcFunc-sqrt (math-sub (math-sqr (nth 1 (nth 1 expr))) 1)))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
+ math-living-dangerously
+ (math-div (nth 1 (nth 1 expr))
+ (list 'calcFunc-sqrt
+ (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
+ (let ((m (math-should-expand-trig (nth 1 expr) t)))
+ (and m (integerp (car m))
+ (let ((n (car m)) (a (nth 1 m)))
+ (if (> n 1)
+ (list '+
+ (list '* (list 'calcFunc-sinh (list '* (1- n) a))
+ (list 'calcFunc-cosh a))
+ (list '* (list 'calcFunc-cosh (list '* (1- n) a))
+ (list 'calcFunc-sinh a))))))))
+)
+
+(math-defsimplify calcFunc-cosh
+ (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
+ (nth 1 (nth 1 expr)))
+ (and (math-looks-negp (nth 1 expr))
+ (list 'calcFunc-cosh (math-neg (nth 1 expr))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
+ math-living-dangerously
+ (list 'calcFunc-sqrt (math-add (math-sqr (nth 1 (nth 1 expr))) 1)))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
+ math-living-dangerously
+ (math-div 1
+ (list 'calcFunc-sqrt
+ (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
+ (let ((m (math-should-expand-trig (nth 1 expr) t)))
+ (and m (integerp (car m))
+ (let ((n (car m)) (a (nth 1 m)))
+ (if (> n 1)
+ (list '+
+ (list '* (list 'calcFunc-cosh (list '* (1- n) a))
+ (list 'calcFunc-cosh a))
+ (list '* (list 'calcFunc-sinh (list '* (1- n) a))
+ (list 'calcFunc-sinh a))))))))
+)
+
+(math-defsimplify calcFunc-tanh
+ (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
+ (nth 1 (nth 1 expr)))
+ (and (math-looks-negp (nth 1 expr))
+ (math-neg (list 'calcFunc-tanh (math-neg (nth 1 expr)))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
+ math-living-dangerously
+ (math-div (nth 1 (nth 1 expr))
+ (list 'calcFunc-sqrt
+ (math-add (math-sqr (nth 1 (nth 1 expr))) 1))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
+ math-living-dangerously
+ (math-div (list 'calcFunc-sqrt
+ (math-sub (math-sqr (nth 1 (nth 1 expr))) 1))
+ (nth 1 (nth 1 expr))))
+ (let ((m (math-should-expand-trig (nth 1 expr) t)))
+ (and m
+ (if (equal (car m) '(frac 1 2))
+ (math-div (math-sub (list 'calcFunc-cosh (nth 1 m)) 1)
+ (list 'calcFunc-sinh (nth 1 m)))
+ (math-div (list 'calcFunc-sinh (nth 1 expr))
+ (list 'calcFunc-cosh (nth 1 expr)))))))
+)
+
+(math-defsimplify calcFunc-arcsin
+ (or (and (math-looks-negp (nth 1 expr))
+ (math-neg (list 'calcFunc-arcsin (math-neg (nth 1 expr)))))
+ (and (eq (nth 1 expr) 1)
+ (math-quarter-circle t))
+ (and (equal (nth 1 expr) '(frac 1 2))
+ (math-div (math-half-circle t) 6))
+ (and math-living-dangerously
+ (eq (car-safe (nth 1 expr)) 'calcFunc-sin)
+ (nth 1 (nth 1 expr)))
+ (and math-living-dangerously
+ (eq (car-safe (nth 1 expr)) 'calcFunc-cos)
+ (math-sub (math-quarter-circle t)
+ (nth 1 (nth 1 expr)))))
+)
+
+(math-defsimplify calcFunc-arccos
+ (or (and (eq (nth 1 expr) 0)
+ (math-quarter-circle t))
+ (and (eq (nth 1 expr) -1)
+ (math-half-circle t))
+ (and (equal (nth 1 expr) '(frac 1 2))
+ (math-div (math-half-circle t) 3))
+ (and (equal (nth 1 expr) '(frac -1 2))
+ (math-div (math-mul (math-half-circle t) 2) 3))
+ (and math-living-dangerously
+ (eq (car-safe (nth 1 expr)) 'calcFunc-cos)
+ (nth 1 (nth 1 expr)))
+ (and math-living-dangerously
+ (eq (car-safe (nth 1 expr)) 'calcFunc-sin)
+ (math-sub (math-quarter-circle t)
+ (nth 1 (nth 1 expr)))))
+)
+
+(math-defsimplify calcFunc-arctan
+ (or (and (math-looks-negp (nth 1 expr))
+ (math-neg (list 'calcFunc-arctan (math-neg (nth 1 expr)))))
+ (and (eq (nth 1 expr) 1)
+ (math-div (math-half-circle t) 4))
+ (and math-living-dangerously
+ (eq (car-safe (nth 1 expr)) 'calcFunc-tan)
+ (nth 1 (nth 1 expr))))
+)
+
+(math-defsimplify calcFunc-arcsinh
+ (or (and (math-looks-negp (nth 1 expr))
+ (math-neg (list 'calcFunc-arcsinh (math-neg (nth 1 expr)))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
+ (or math-living-dangerously
+ (math-known-realp (nth 1 (nth 1 expr))))
+ (nth 1 (nth 1 expr))))
+)
+
+(math-defsimplify calcFunc-arccosh
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-cosh)
+ (or math-living-dangerously
+ (math-known-realp (nth 1 (nth 1 expr))))
+ (nth 1 (nth 1 expr)))
+)
+
+(math-defsimplify calcFunc-arctanh
+ (or (and (math-looks-negp (nth 1 expr))
+ (math-neg (list 'calcFunc-arctanh (math-neg (nth 1 expr)))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-tanh)
+ (or math-living-dangerously
+ (math-known-realp (nth 1 (nth 1 expr))))
+ (nth 1 (nth 1 expr))))
+)
+
+(math-defsimplify calcFunc-sqrt
+ (math-simplify-sqrt)
+)
+
+(defun math-simplify-sqrt ()
+ (or (and (eq (car-safe (nth 1 expr)) 'frac)
+ (math-div (list 'calcFunc-sqrt (math-mul (nth 1 (nth 1 expr))
+ (nth 2 (nth 1 expr))))
+ (nth 2 (nth 1 expr))))
+ (let ((fac (if (math-objectp (nth 1 expr))
+ (math-squared-factor (nth 1 expr))
+ (math-common-constant-factor (nth 1 expr)))))
+ (and fac (not (eq fac 1))
+ (math-mul (math-normalize (list 'calcFunc-sqrt fac))
+ (math-normalize
+ (list 'calcFunc-sqrt
+ (math-cancel-common-factor (nth 1 expr) fac))))))
+ (and math-living-dangerously
+ (or (and (eq (car-safe (nth 1 expr)) '-)
+ (math-equal-int (nth 1 (nth 1 expr)) 1)
+ (eq (car-safe (nth 2 (nth 1 expr))) '^)
+ (math-equal-int (nth 2 (nth 2 (nth 1 expr))) 2)
+ (or (and (eq (car-safe (nth 1 (nth 2 (nth 1 expr))))
+ 'calcFunc-sin)
+ (list 'calcFunc-cos
+ (nth 1 (nth 1 (nth 2 (nth 1 expr))))))
+ (and (eq (car-safe (nth 1 (nth 2 (nth 1 expr))))
+ 'calcFunc-cos)
+ (list 'calcFunc-sin
+ (nth 1 (nth 1 (nth 2 (nth 1 expr))))))))
+ (and (eq (car-safe (nth 1 expr)) '-)
+ (math-equal-int (nth 2 (nth 1 expr)) 1)
+ (eq (car-safe (nth 1 (nth 1 expr))) '^)
+ (math-equal-int (nth 2 (nth 1 (nth 1 expr))) 2)
+ (and (eq (car-safe (nth 1 (nth 1 (nth 1 expr))))
+ 'calcFunc-cosh)
+ (list 'calcFunc-sinh
+ (nth 1 (nth 1 (nth 1 (nth 1 expr)))))))
+ (and (eq (car-safe (nth 1 expr)) '+)
+ (let ((a (nth 1 (nth 1 expr)))
+ (b (nth 2 (nth 1 expr))))
+ (and (or (and (math-equal-int a 1)
+ (setq a b b (nth 1 (nth 1 expr))))
+ (math-equal-int b 1))
+ (eq (car-safe a) '^)
+ (math-equal-int (nth 2 a) 2)
+ (or (and (eq (car-safe (nth 1 a)) 'calcFunc-sinh)
+ (list 'calcFunc-cosh (nth 1 (nth 1 a))))
+ (and (eq (car-safe (nth 1 a)) 'calcFunc-tan)
+ (list '/ 1 (list 'calcFunc-cos
+ (nth 1 (nth 1 a)))))))))
+ (and (eq (car-safe (nth 1 expr)) '^)
+ (list '^
+ (nth 1 (nth 1 expr))
+ (math-div (nth 2 (nth 1 expr)) 2)))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-sqrt)
+ (list '^ (nth 1 (nth 1 expr)) (math-div 1 4)))
+ (and (memq (car-safe (nth 1 expr)) '(* /))
+ (list (car (nth 1 expr))
+ (list 'calcFunc-sqrt (nth 1 (nth 1 expr)))
+ (list 'calcFunc-sqrt (nth 2 (nth 1 expr)))))
+ (and (memq (car-safe (nth 1 expr)) '(+ -))
+ (not (math-any-floats (nth 1 expr)))
+ (let ((f (calcFunc-factors (calcFunc-expand
+ (nth 1 expr)))))
+ (and (math-vectorp f)
+ (or (> (length f) 2)
+ (> (nth 2 (nth 1 f)) 1))
+ (let ((out 1) (rest 1) (sums 1) fac pow)
+ (while (setq f (cdr f))
+ (setq fac (nth 1 (car f))
+ pow (nth 2 (car f)))
+ (if (> pow 1)
+ (setq out (math-mul out (math-pow
+ fac (/ pow 2)))
+ pow (% pow 2)))
+ (if (> pow 0)
+ (if (memq (car-safe fac) '(+ -))
+ (setq sums (math-mul-thru sums fac))
+ (setq rest (math-mul rest fac)))))
+ (and (not (and (eq out 1) (memq rest '(1 -1))))
+ (math-mul
+ out
+ (list 'calcFunc-sqrt
+ (math-mul sums rest)))))))))))
+)
+
+;;; Rather than factoring x into primes, just check for the first ten primes.
+(defun math-squared-factor (x)
+ (if (Math-integerp x)
+ (let ((prsqr '(4 9 25 49 121 169 289 361 529 841))
+ (fac 1)
+ res)
+ (while prsqr
+ (if (eq (cdr (setq res (math-idivmod x (car prsqr)))) 0)
+ (setq x (car res)
+ fac (math-mul fac (car prsqr)))
+ (setq prsqr (cdr prsqr))))
+ fac))
+)
+
+(math-defsimplify calcFunc-exp
+ (math-simplify-exp (nth 1 expr))
+)
+
+(defun math-simplify-exp (x)
+ (or (and (eq (car-safe x) 'calcFunc-ln)
+ (nth 1 x))
+ (and math-living-dangerously
+ (or (and (eq (car-safe x) 'calcFunc-arcsinh)
+ (math-add (nth 1 x)
+ (list 'calcFunc-sqrt
+ (math-add (math-sqr (nth 1 x)) 1))))
+ (and (eq (car-safe x) 'calcFunc-arccosh)
+ (math-add (nth 1 x)
+ (list 'calcFunc-sqrt
+ (math-sub (math-sqr (nth 1 x)) 1))))
+ (and (eq (car-safe x) 'calcFunc-arctanh)
+ (math-div (list 'calcFunc-sqrt (math-add 1 (nth 1 x)))
+ (list 'calcFunc-sqrt (math-sub 1 (nth 1 x)))))
+ (let ((m (math-should-expand-trig x 'exp)))
+ (and m (integerp (car m))
+ (list '^ (list 'calcFunc-exp (nth 1 m)) (car m))))))
+ (and calc-symbolic-mode
+ (math-known-imagp x)
+ (let* ((ip (calcFunc-im x))
+ (n (math-linear-in ip '(var pi var-pi)))
+ s c)
+ (and n
+ (setq s (math-known-sin (car n) (nth 1 n) 120 0))
+ (setq c (math-known-sin (car n) (nth 1 n) 120 300))
+ (list '+ c (list '* s '(var i var-i)))))))
+)
+
+(math-defsimplify calcFunc-ln
+ (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-exp)
+ (or math-living-dangerously
+ (math-known-realp (nth 1 (nth 1 expr))))
+ (nth 1 (nth 1 expr)))
+ (and (eq (car-safe (nth 1 expr)) '^)
+ (equal (nth 1 (nth 1 expr)) '(var e var-e))
+ (or math-living-dangerously
+ (math-known-realp (nth 2 (nth 1 expr))))
+ (nth 2 (nth 1 expr)))
+ (and calc-symbolic-mode
+ (math-known-negp (nth 1 expr))
+ (math-add (list 'calcFunc-ln (math-neg (nth 1 expr)))
+ '(var pi var-pi)))
+ (and calc-symbolic-mode
+ (math-known-imagp (nth 1 expr))
+ (let* ((ip (calcFunc-im (nth 1 expr)))
+ (ips (math-possible-signs ip)))
+ (or (and (memq ips '(4 6))
+ (math-add (list 'calcFunc-ln ip)
+ '(/ (* (var pi var-pi) (var i var-i)) 2)))
+ (and (memq ips '(1 3))
+ (math-sub (list 'calcFunc-ln (math-neg ip))
+ '(/ (* (var pi var-pi) (var i var-i)) 2)))))))
+)
+
+(math-defsimplify ^
+ (math-simplify-pow))
+
+(defun math-simplify-pow ()
+ (or (and math-living-dangerously
+ (or (and (eq (car-safe (nth 1 expr)) '^)
+ (list '^
+ (nth 1 (nth 1 expr))
+ (math-mul (nth 2 expr) (nth 2 (nth 1 expr)))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-sqrt)
+ (list '^
+ (nth 1 (nth 1 expr))
+ (math-div (nth 2 expr) 2)))
+ (and (memq (car-safe (nth 1 expr)) '(* /))
+ (list (car (nth 1 expr))
+ (list '^ (nth 1 (nth 1 expr)) (nth 2 expr))
+ (list '^ (nth 2 (nth 1 expr)) (nth 2 expr))))))
+ (and (math-equal-int (nth 1 expr) 10)
+ (eq (car-safe (nth 2 expr)) 'calcFunc-log10)
+ (nth 1 (nth 2 expr)))
+ (and (equal (nth 1 expr) '(var e var-e))
+ (math-simplify-exp (nth 2 expr)))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-exp)
+ (not math-integrating)
+ (list 'calcFunc-exp (math-mul (nth 1 (nth 1 expr)) (nth 2 expr))))
+ (and (equal (nth 1 expr) '(var i var-i))
+ (math-imaginary-i)
+ (math-num-integerp (nth 2 expr))
+ (let ((x (math-mod (math-trunc (nth 2 expr)) 4)))
+ (cond ((eq x 0) 1)
+ ((eq x 1) (nth 1 expr))
+ ((eq x 2) -1)
+ ((eq x 3) (math-neg (nth 1 expr))))))
+ (and math-integrating
+ (integerp (nth 2 expr))
+ (>= (nth 2 expr) 2)
+ (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-cos)
+ (math-mul (math-pow (nth 1 expr) (- (nth 2 expr) 2))
+ (math-sub 1
+ (math-sqr
+ (list 'calcFunc-sin
+ (nth 1 (nth 1 expr)))))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-cosh)
+ (math-mul (math-pow (nth 1 expr) (- (nth 2 expr) 2))
+ (math-add 1
+ (math-sqr
+ (list 'calcFunc-sinh
+ (nth 1 (nth 1 expr)))))))))
+ (and (eq (car-safe (nth 2 expr)) 'frac)
+ (Math-ratp (nth 1 expr))
+ (Math-posp (nth 1 expr))
+ (if (equal (nth 2 expr) '(frac 1 2))
+ (list 'calcFunc-sqrt (nth 1 expr))
+ (let ((flr (math-floor (nth 2 expr))))
+ (and (not (Math-zerop flr))
+ (list '* (list '^ (nth 1 expr) flr)
+ (list '^ (nth 1 expr)
+ (math-sub (nth 2 expr) flr)))))))
+ (and (eq (math-quarter-integer (nth 2 expr)) 2)
+ (let ((temp (math-simplify-sqrt)))
+ (and temp
+ (list '^ temp (math-mul (nth 2 expr) 2))))))
+)
+
+(math-defsimplify calcFunc-log10
+ (and (eq (car-safe (nth 1 expr)) '^)
+ (math-equal-int (nth 1 (nth 1 expr)) 10)
+ (or math-living-dangerously
+ (math-known-realp (nth 2 (nth 1 expr))))
+ (nth 2 (nth 1 expr)))
+)
+
+
+(math-defsimplify calcFunc-erf
+ (or (and (math-looks-negp (nth 1 expr))
+ (math-neg (list 'calcFunc-erf (math-neg (nth 1 expr)))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-conj)
+ (list 'calcFunc-conj (list 'calcFunc-erf (nth 1 (nth 1 expr))))))
+)
+
+(math-defsimplify calcFunc-erfc
+ (or (and (math-looks-negp (nth 1 expr))
+ (math-sub 2 (list 'calcFunc-erfc (math-neg (nth 1 expr)))))
+ (and (eq (car-safe (nth 1 expr)) 'calcFunc-conj)
+ (list 'calcFunc-conj (list 'calcFunc-erfc (nth 1 (nth 1 expr))))))
+)
+
+
+(defun math-linear-in (expr term &optional always)
+ (if (math-expr-contains expr term)
+ (let* ((calc-prefer-frac t)
+ (p (math-is-polynomial expr term 1)))
+ (and (cdr p)
+ p))
+ (and always (list expr 0)))
+)
+
+(defun math-multiple-of (expr term)
+ (let ((p (math-linear-in expr term)))
+ (and p
+ (math-zerop (car p))
+ (nth 1 p)))
+)
+
+(defun math-integer-plus (expr)
+ (cond ((Math-integerp expr)
+ (list 0 expr))
+ ((and (memq (car expr) '(+ -))
+ (Math-integerp (nth 1 expr)))
+ (list (if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr)))
+ (nth 1 expr)))
+ ((and (memq (car expr) '(+ -))
+ (Math-integerp (nth 2 expr)))
+ (list (nth 1 expr)
+ (if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr)))))
+ (t nil)) ; not perfect, but it'll do
+)
+
+(defun math-is-linear (expr &optional always)
+ (let ((offset nil)
+ (coef nil))
+ (if (eq (car-safe expr) '+)
+ (if (Math-objectp (nth 1 expr))
+ (setq offset (nth 1 expr)
+ expr (nth 2 expr))
+ (if (Math-objectp (nth 2 expr))
+ (setq offset (nth 2 expr)
+ expr (nth 1 expr))))
+ (if (eq (car-safe expr) '-)
+ (if (Math-objectp (nth 1 expr))
+ (setq offset (nth 1 expr)
+ expr (math-neg (nth 2 expr)))
+ (if (Math-objectp (nth 2 expr))
+ (setq offset (math-neg (nth 2 expr))
+ expr (nth 1 expr))))))
+ (setq coef (math-is-multiple expr always))
+ (if offset
+ (list offset (or (car coef) 1) (or (nth 1 coef) expr))
+ (if coef
+ (cons 0 coef))))
+)
+
+(defun math-is-multiple (expr &optional always)
+ (or (if (eq (car-safe expr) '*)
+ (if (Math-objectp (nth 1 expr))
+ (list (nth 1 expr) (nth 2 expr)))
+ (if (eq (car-safe expr) '/)
+ (if (and (Math-objectp (nth 1 expr))
+ (not (math-equal-int (nth 1 expr) 1)))
+ (list (nth 1 expr) (math-div 1 (nth 2 expr)))
+ (if (Math-objectp (nth 2 expr))
+ (list (math-div 1 (nth 2 expr)) (nth 1 expr))
+ (let ((res (math-is-multiple (nth 1 expr))))
+ (if res
+ (list (car res)
+ (math-div (nth 2 (nth 1 expr)) (nth 2 expr)))
+ (setq res (math-is-multiple (nth 2 expr)))
+ (if res
+ (list (math-div 1 (car res))
+ (math-div (nth 1 expr)
+ (nth 2 (nth 2 expr)))))))))
+ (if (eq (car-safe expr) 'neg)
+ (list -1 (nth 1 expr)))))
+ (if (Math-objvecp expr)
+ (and (eq always 1)
+ (list expr 1))
+ (and always
+ (list 1 expr))))
+)
+
+(defun calcFunc-lin (expr &optional var)
+ (if var
+ (let ((res (math-linear-in expr var t)))
+ (or res (math-reject-arg expr "Linear term expected"))
+ (list 'vec (car res) (nth 1 res) var))
+ (let ((res (math-is-linear expr t)))
+ (or res (math-reject-arg expr "Linear term expected"))
+ (cons 'vec res)))
+)
+
+(defun calcFunc-linnt (expr &optional var)
+ (if var
+ (let ((res (math-linear-in expr var)))
+ (or res (math-reject-arg expr "Linear term expected"))
+ (list 'vec (car res) (nth 1 res) var))
+ (let ((res (math-is-linear expr)))
+ (or res (math-reject-arg expr "Linear term expected"))
+ (cons 'vec res)))
+)
+
+(defun calcFunc-islin (expr &optional var)
+ (if (and (Math-objvecp expr) (not var))
+ 0
+ (calcFunc-lin expr var)
+ 1)
+)
+
+(defun calcFunc-islinnt (expr &optional var)
+ (if (Math-objvecp expr)
+ 0
+ (calcFunc-linnt expr var)
+ 1)
+)
+
+
+
+
+;;; Simple operations on expressions.
+
+;;; Return number of ocurrences of thing in expr, or nil if none.
+(defun math-expr-contains-count (expr thing)
+ (cond ((equal expr thing) 1)
+ ((Math-primp expr) nil)
+ (t
+ (let ((num 0))
+ (while (setq expr (cdr expr))
+ (setq num (+ num (or (math-expr-contains-count
+ (car expr) thing) 0))))
+ (and (> num 0)
+ num))))
+)
+
+(defun math-expr-contains (expr thing)
+ (cond ((equal expr thing) 1)
+ ((Math-primp expr) nil)
+ (t
+ (while (and (setq expr (cdr expr))
+ (not (math-expr-contains (car expr) thing))))
+ expr))
+)
+
+;;; Return non-nil if any variable of thing occurs in expr.
+(defun math-expr-depends (expr thing)
+ (if (Math-primp thing)
+ (and (eq (car-safe thing) 'var)
+ (math-expr-contains expr thing))
+ (while (and (setq thing (cdr thing))
+ (not (math-expr-depends expr (car thing)))))
+ thing)
+)
+
+;;; Substitute all occurrences of old for new in expr (non-destructive).
+(defun math-expr-subst (expr old new)
+ (math-expr-subst-rec expr)
+)
+(fset 'calcFunc-subst (symbol-function 'math-expr-subst))
+
+(defun math-expr-subst-rec (expr)
+ (cond ((equal expr old) new)
+ ((Math-primp expr) expr)
+ ((memq (car expr) '(calcFunc-deriv
+ calcFunc-tderiv))
+ (if (= (length expr) 2)
+ (if (equal (nth 1 expr) old)
+ (append expr (list new))
+ expr)
+ (list (car expr) (nth 1 expr)
+ (math-expr-subst-rec (nth 2 expr)))))
+ (t
+ (cons (car expr)
+ (mapcar 'math-expr-subst-rec (cdr expr)))))
+)
+
+;;; Various measures of the size of an expression.
+(defun math-expr-weight (expr)
+ (if (Math-primp expr)
+ 1
+ (let ((w 1))
+ (while (setq expr (cdr expr))
+ (setq w (+ w (math-expr-weight (car expr)))))
+ w))
+)
+
+(defun math-expr-height (expr)
+ (if (Math-primp expr)
+ 0
+ (let ((h 0))
+ (while (setq expr (cdr expr))
+ (setq h (max h (math-expr-height (car expr)))))
+ (1+ h)))
+)
+
+
+
+
+;;; Polynomial operations (to support the integrator and solve-for).
+
+(defun calcFunc-collect (expr base)
+ (let ((p (math-is-polynomial expr base 50 t)))
+ (if (cdr p)
+ (math-normalize ; fix selection bug
+ (math-build-polynomial-expr p base))
+ expr))
+)
+
+;;; If expr is of the form "a + bx + cx^2 + ...", return the list (a b c ...),
+;;; else return nil if not in polynomial form. If "loose", coefficients
+;;; may contain x, e.g., sin(x) + cos(x) x^2 is a loose polynomial in x.
+(defun math-is-polynomial (expr var &optional degree loose)
+ (let* ((math-poly-base-variable (if loose
+ (if (eq loose 'gen) var '(var XXX XXX))
+ math-poly-base-variable))
+ (poly (math-is-poly-rec expr math-poly-neg-powers)))
+ (and (or (null degree)
+ (<= (length poly) (1+ degree)))
+ poly))
+)
+
+(defun math-is-poly-rec (expr negpow)
+ (math-poly-simplify
+ (or (cond ((or (equal expr var)
+ (eq (car-safe expr) '^))
+ (let ((pow 1)
+ (expr expr))
+ (or (equal expr var)
+ (setq pow (nth 2 expr)
+ expr (nth 1 expr)))
+ (or (eq math-poly-mult-powers 1)
+ (setq pow (let ((m (math-is-multiple pow 1)))
+ (and (eq (car-safe (car m)) 'cplx)
+ (Math-zerop (nth 1 (car m)))
+ (setq m (list (nth 2 (car m))
+ (math-mul (nth 1 m)
+ '(var i var-i)))))
+ (and (if math-poly-mult-powers
+ (equal math-poly-mult-powers
+ (nth 1 m))
+ (setq math-poly-mult-powers (nth 1 m)))
+ (or (equal expr var)
+ (eq math-poly-mult-powers 1))
+ (car m)))))
+ (if (consp pow)
+ (progn
+ (setq pow (math-to-simple-fraction pow))
+ (and (eq (car-safe pow) 'frac)
+ math-poly-frac-powers
+ (equal expr var)
+ (setq math-poly-frac-powers
+ (calcFunc-lcm math-poly-frac-powers
+ (nth 2 pow))))))
+ (or (memq math-poly-frac-powers '(1 nil))
+ (setq pow (math-mul pow math-poly-frac-powers)))
+ (if (integerp pow)
+ (if (and (= pow 1)
+ (equal expr var))
+ (list 0 1)
+ (if (natnump pow)
+ (let ((p1 (if (equal expr var)
+ (list 0 1)
+ (math-is-poly-rec expr nil)))
+ (n pow)
+ (accum (list 1)))
+ (and p1
+ (or (null degree)
+ (<= (* (1- (length p1)) n) degree))
+ (progn
+ (while (>= n 1)
+ (setq accum (math-poly-mul accum p1)
+ n (1- n)))
+ accum)))
+ (and negpow
+ (math-is-poly-rec expr nil)
+ (setq math-poly-neg-powers
+ (cons (math-pow expr (- pow))
+ math-poly-neg-powers))
+ (list (list '^ expr pow))))))))
+ ((Math-objectp expr)
+ (list expr))
+ ((memq (car expr) '(+ -))
+ (let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
+ (and p1
+ (let ((p2 (math-is-poly-rec (nth 2 expr) negpow)))
+ (and p2
+ (math-poly-mix p1 1 p2
+ (if (eq (car expr) '+) 1 -1)))))))
+ ((eq (car expr) 'neg)
+ (mapcar 'math-neg (math-is-poly-rec (nth 1 expr) negpow)))
+ ((eq (car expr) '*)
+ (let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
+ (and p1
+ (let ((p2 (math-is-poly-rec (nth 2 expr) negpow)))
+ (and p2
+ (or (null degree)
+ (<= (- (+ (length p1) (length p2)) 2) degree))
+ (math-poly-mul p1 p2))))))
+ ((eq (car expr) '/)
+ (and (or (not (math-poly-depends (nth 2 expr) var))
+ (and negpow
+ (math-is-poly-rec (nth 2 expr) nil)
+ (setq math-poly-neg-powers
+ (cons (nth 2 expr) math-poly-neg-powers))))
+ (not (Math-zerop (nth 2 expr)))
+ (let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
+ (mapcar (function (lambda (x) (math-div x (nth 2 expr))))
+ p1))))
+ ((and (eq (car expr) 'calcFunc-exp)
+ (equal var '(var e var-e)))
+ (math-is-poly-rec (list '^ var (nth 1 expr)) negpow))
+ ((and (eq (car expr) 'calcFunc-sqrt)
+ math-poly-frac-powers)
+ (math-is-poly-rec (list '^ (nth 1 expr) '(frac 1 2)) negpow))
+ (t nil))
+ (and (or (not (math-poly-depends expr var))
+ loose)
+ (not (eq (car expr) 'vec))
+ (list expr))))
+)
+
+;;; Check if expr is a polynomial in var; if so, return its degree.
+(defun math-polynomial-p (expr var)
+ (cond ((equal expr var) 1)
+ ((Math-primp expr) 0)
+ ((memq (car expr) '(+ -))
+ (let ((p1 (math-polynomial-p (nth 1 expr) var))
+ p2)
+ (and p1 (setq p2 (math-polynomial-p (nth 2 expr) var))
+ (max p1 p2))))
+ ((eq (car expr) '*)
+ (let ((p1 (math-polynomial-p (nth 1 expr) var))
+ p2)
+ (and p1 (setq p2 (math-polynomial-p (nth 2 expr) var))
+ (+ p1 p2))))
+ ((eq (car expr) 'neg)
+ (math-polynomial-p (nth 1 expr) var))
+ ((and (eq (car expr) '/)
+ (not (math-poly-depends (nth 2 expr) var)))
+ (math-polynomial-p (nth 1 expr) var))
+ ((and (eq (car expr) '^)
+ (natnump (nth 2 expr)))
+ (let ((p1 (math-polynomial-p (nth 1 expr) var)))
+ (and p1 (* p1 (nth 2 expr)))))
+ ((math-poly-depends expr var) nil)
+ (t 0))
+)
+
+(defun math-poly-depends (expr var)
+ (if math-poly-base-variable
+ (math-expr-contains expr math-poly-base-variable)
+ (math-expr-depends expr var))
+)
+
+;;; Find the variable (or sub-expression) which is the base of polynomial expr.
+(defun math-polynomial-base (mpb-top-expr &optional mpb-pred)
+ (or mpb-pred
+ (setq mpb-pred (function (lambda (base) (math-polynomial-p
+ mpb-top-expr base)))))
+ (or (let ((const-ok nil))
+ (math-polynomial-base-rec mpb-top-expr))
+ (let ((const-ok t))
+ (math-polynomial-base-rec mpb-top-expr)))
+)
+
+(defun math-polynomial-base-rec (mpb-expr)
+ (and (not (Math-objvecp mpb-expr))
+ (or (and (memq (car mpb-expr) '(+ - *))
+ (or (math-polynomial-base-rec (nth 1 mpb-expr))
+ (math-polynomial-base-rec (nth 2 mpb-expr))))
+ (and (memq (car mpb-expr) '(/ neg))
+ (math-polynomial-base-rec (nth 1 mpb-expr)))
+ (and (eq (car mpb-expr) '^)
+ (math-polynomial-base-rec (nth 1 mpb-expr)))
+ (and (eq (car mpb-expr) 'calcFunc-exp)
+ (math-polynomial-base-rec '(var e var-e)))
+ (and (or const-ok (math-expr-contains-vars mpb-expr))
+ (funcall mpb-pred mpb-expr)
+ mpb-expr)))
+)
+
+;;; Return non-nil if expr refers to any variables.
+(defun math-expr-contains-vars (expr)
+ (or (eq (car-safe expr) 'var)
+ (and (not (Math-primp expr))
+ (progn
+ (while (and (setq expr (cdr expr))
+ (not (math-expr-contains-vars (car expr)))))
+ expr)))
+)
+
+;;; Simplify a polynomial in list form by stripping off high-end zeros.
+;;; This always leaves the constant part, i.e., nil->nil and nonnil->nonnil.
+(defun math-poly-simplify (p)
+ (and p
+ (if (Math-zerop (nth (1- (length p)) p))
+ (let ((pp (copy-sequence p)))
+ (while (and (cdr pp)
+ (Math-zerop (nth (1- (length pp)) pp)))
+ (setcdr (nthcdr (- (length pp) 2) pp) nil))
+ pp)
+ p))
+)
+
+;;; Compute ac*a + bc*b for polynomials in list form a, b and
+;;; coefficients ac, bc. Result may be unsimplified.
+(defun math-poly-mix (a ac b bc)
+ (and (or a b)
+ (cons (math-add (math-mul (or (car a) 0) ac)
+ (math-mul (or (car b) 0) bc))
+ (math-poly-mix (cdr a) ac (cdr b) bc)))
+)
+
+(defun math-poly-zerop (a)
+ (or (null a)
+ (and (null (cdr a)) (Math-zerop (car a))))
+)
+
+;;; Multiply two polynomials in list form.
+(defun math-poly-mul (a b)
+ (and a b
+ (math-poly-mix b (car a)
+ (math-poly-mul (cdr a) (cons 0 b)) 1))
+)
+
+;;; Build an expression from a polynomial list.
+(defun math-build-polynomial-expr (p var)
+ (if p
+ (if (Math-numberp var)
+ (math-with-extra-prec 1
+ (let* ((rp (reverse p))
+ (accum (car rp)))
+ (while (setq rp (cdr rp))
+ (setq accum (math-add (car rp) (math-mul accum var))))
+ accum))
+ (let* ((rp (reverse p))
+ (n (1- (length rp)))
+ (accum (math-mul (car rp) (math-pow var n)))
+ term)
+ (while (setq rp (cdr rp))
+ (setq n (1- n))
+ (or (math-zerop (car rp))
+ (setq accum (list (if (math-looks-negp (car rp)) '- '+)
+ accum
+ (math-mul (if (math-looks-negp (car rp))
+ (math-neg (car rp))
+ (car rp))
+ (math-pow var n))))))
+ accum))
+ 0)
+)
+
+
+(defun math-to-simple-fraction (f)
+ (or (and (eq (car-safe f) 'float)
+ (or (and (>= (nth 2 f) 0)
+ (math-scale-int (nth 1 f) (nth 2 f)))
+ (and (integerp (nth 1 f))
+ (> (nth 1 f) -1000)
+ (< (nth 1 f) 1000)
+ (math-make-frac (nth 1 f)
+ (math-scale-int 1 (- (nth 2 f)))))))
+ f)
+)
+