diff options
author | Eli Zaretskii <eliz@gnu.org> | 2001-11-06 18:59:06 +0000 |
---|---|---|
committer | Eli Zaretskii <eliz@gnu.org> | 2001-11-06 18:59:06 +0000 |
commit | 136211a997eb94f7dc6f97219052317116e114da (patch) | |
tree | 014fd8ffa0fa5c5d81869ec26426fb262471ee23 /lisp/calc/calc-alg.el | |
parent | 0ffbbdeb4464b5b0d63e83fe3f8e91674248d84d (diff) | |
download | emacs-136211a997eb94f7dc6f97219052317116e114da.tar.gz |
Initial import of Calc 2.02f.
Diffstat (limited to 'lisp/calc/calc-alg.el')
-rw-r--r-- | lisp/calc/calc-alg.el | 1699 |
1 files changed, 1699 insertions, 0 deletions
diff --git a/lisp/calc/calc-alg.el b/lisp/calc/calc-alg.el new file mode 100644 index 00000000000..ab34cadbfcf --- /dev/null +++ b/lisp/calc/calc-alg.el @@ -0,0 +1,1699 @@ +;; Calculator for GNU Emacs, part II [calc-alg.el] +;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc. +;; Written by Dave Gillespie, daveg@synaptics.com. + +;; This file is part of GNU Emacs. + +;; GNU Emacs is distributed in the hope that it will be useful, +;; but WITHOUT ANY WARRANTY. No author or distributor +;; accepts responsibility to anyone for the consequences of using it +;; or for whether it serves any particular purpose or works at all, +;; unless he says so in writing. Refer to the GNU Emacs General Public +;; License for full details. + +;; Everyone is granted permission to copy, modify and redistribute +;; GNU Emacs, but only under the conditions described in the +;; GNU Emacs General Public License. A copy of this license is +;; supposed to have been given to you along with GNU Emacs so you +;; can know your rights and responsibilities. It should be in a +;; file named COPYING. Among other things, the copyright notice +;; and this notice must be preserved on all copies. + + + +;; This file is autoloaded from calc-ext.el. +(require 'calc-ext) + +(require 'calc-macs) + +(defun calc-Need-calc-alg () nil) + + +;;; Algebra commands. + +(defun calc-alg-evaluate (arg) + (interactive "p") + (calc-slow-wrapper + (calc-with-default-simplification + (let ((math-simplify-only nil)) + (calc-modify-simplify-mode arg) + (calc-enter-result 1 "dsmp" (calc-top 1))))) +) + +(defun calc-modify-simplify-mode (arg) + (if (= (math-abs arg) 2) + (setq calc-simplify-mode 'alg) + (if (>= (math-abs arg) 3) + (setq calc-simplify-mode 'ext))) + (if (< arg 0) + (setq calc-simplify-mode (list calc-simplify-mode))) +) + +(defun calc-simplify () + (interactive) + (calc-slow-wrapper + (calc-with-default-simplification + (calc-enter-result 1 "simp" (math-simplify (calc-top-n 1))))) +) + +(defun calc-simplify-extended () + (interactive) + (calc-slow-wrapper + (calc-with-default-simplification + (calc-enter-result 1 "esmp" (math-simplify-extended (calc-top-n 1))))) +) + +(defun calc-expand-formula (arg) + (interactive "p") + (calc-slow-wrapper + (calc-with-default-simplification + (let ((math-simplify-only nil)) + (calc-modify-simplify-mode arg) + (calc-enter-result 1 "expf" + (if (> arg 0) + (let ((math-expand-formulas t)) + (calc-top-n 1)) + (let ((top (calc-top-n 1))) + (or (math-expand-formula top) + top))))))) +) + +(defun calc-factor (arg) + (interactive "P") + (calc-slow-wrapper + (calc-unary-op "fctr" (if (calc-is-hyperbolic) + 'calcFunc-factors 'calcFunc-factor) + arg)) +) + +(defun calc-expand (n) + (interactive "P") + (calc-slow-wrapper + (calc-enter-result 1 "expa" + (append (list 'calcFunc-expand + (calc-top-n 1)) + (and n (list (prefix-numeric-value n)))))) +) + +(defun calc-collect (&optional var) + (interactive "sCollect terms involving: ") + (calc-slow-wrapper + (if (or (equal var "") (equal var "$") (null var)) + (calc-enter-result 2 "clct" (cons 'calcFunc-collect + (calc-top-list-n 2))) + (let ((var (math-read-expr var))) + (if (eq (car-safe var) 'error) + (error "Bad format in expression: %s" (nth 1 var))) + (calc-enter-result 1 "clct" (list 'calcFunc-collect + (calc-top-n 1) + var))))) +) + +(defun calc-apart (arg) + (interactive "P") + (calc-slow-wrapper + (calc-unary-op "aprt" 'calcFunc-apart arg)) +) + +(defun calc-normalize-rat (arg) + (interactive "P") + (calc-slow-wrapper + (calc-unary-op "nrat" 'calcFunc-nrat arg)) +) + +(defun calc-poly-gcd (arg) + (interactive "P") + (calc-slow-wrapper + (calc-binary-op "pgcd" 'calcFunc-pgcd arg)) +) + +(defun calc-poly-div (arg) + (interactive "P") + (calc-slow-wrapper + (setq calc-poly-div-remainder nil) + (calc-binary-op "pdiv" 'calcFunc-pdiv arg) + (if (and calc-poly-div-remainder (null arg)) + (progn + (calc-clear-command-flag 'clear-message) + (calc-record calc-poly-div-remainder "prem") + (if (not (Math-zerop calc-poly-div-remainder)) + (message "(Remainder was %s)" + (math-format-flat-expr calc-poly-div-remainder 0)) + (message "(No remainder)"))))) +) + +(defun calc-poly-rem (arg) + (interactive "P") + (calc-slow-wrapper + (calc-binary-op "prem" 'calcFunc-prem arg)) +) + +(defun calc-poly-div-rem (arg) + (interactive "P") + (calc-slow-wrapper + (if (calc-is-hyperbolic) + (calc-binary-op "pdvr" 'calcFunc-pdivide arg) + (calc-binary-op "pdvr" 'calcFunc-pdivrem arg))) +) + +(defun calc-substitute (&optional oldname newname) + (interactive "sSubstitute old: ") + (calc-slow-wrapper + (let (old new (num 1) expr) + (if (or (equal oldname "") (equal oldname "$") (null oldname)) + (setq new (calc-top-n 1) + old (calc-top-n 2) + expr (calc-top-n 3) + num 3) + (or newname + (progn (calc-unread-command ?\C-a) + (setq newname (read-string (concat "Substitute old: " + oldname + ", new: ") + oldname)))) + (if (or (equal newname "") (equal newname "$") (null newname)) + (setq new (calc-top-n 1) + expr (calc-top-n 2) + num 2) + (setq new (if (stringp newname) (math-read-expr newname) newname)) + (if (eq (car-safe new) 'error) + (error "Bad format in expression: %s" (nth 1 new))) + (setq expr (calc-top-n 1))) + (setq old (if (stringp oldname) (math-read-expr oldname) oldname)) + (if (eq (car-safe old) 'error) + (error "Bad format in expression: %s" (nth 1 old))) + (or (math-expr-contains expr old) + (error "No occurrences found."))) + (calc-enter-result num "sbst" (math-expr-subst expr old new)))) +) + + +(defun calc-has-rules (name) + (setq name (calc-var-value name)) + (and (consp name) + (memq (car name) '(vec calcFunc-assign calcFunc-condition)) + name) +) + +(defun math-recompile-eval-rules () + (setq math-eval-rules-cache (and (calc-has-rules 'var-EvalRules) + (math-compile-rewrites + '(var EvalRules var-EvalRules))) + math-eval-rules-cache-other (assq nil math-eval-rules-cache) + math-eval-rules-cache-tag (calc-var-value 'var-EvalRules)) +) + + +;;; Try to expand a formula according to its definition. +(defun math-expand-formula (expr) + (and (consp expr) + (symbolp (car expr)) + (or (get (car expr) 'calc-user-defn) + (get (car expr) 'math-expandable)) + (let ((res (let ((math-expand-formulas t)) + (apply (car expr) (cdr expr))))) + (and (not (eq (car-safe res) (car expr))) + res))) +) + + + + +;;; True if A comes before B in a canonical ordering of expressions. [P X X] +(defun math-beforep (a b) ; [Public] + (cond ((and (Math-realp a) (Math-realp b)) + (let ((comp (math-compare a b))) + (or (eq comp -1) + (and (eq comp 0) + (not (equal a b)) + (> (length (memq (car-safe a) + '(bigneg nil bigpos frac float))) + (length (memq (car-safe b) + '(bigneg nil bigpos frac float)))))))) + ((equal b '(neg (var inf var-inf))) nil) + ((equal a '(neg (var inf var-inf))) t) + ((equal a '(var inf var-inf)) nil) + ((equal b '(var inf var-inf)) t) + ((Math-realp a) + (if (and (eq (car-safe b) 'intv) (math-intv-constp b)) + (if (or (math-beforep a (nth 2 b)) (Math-equal a (nth 2 b))) + t + nil) + t)) + ((Math-realp b) + (if (and (eq (car-safe a) 'intv) (math-intv-constp a)) + (if (math-beforep (nth 2 a) b) + t + nil) + nil)) + ((and (eq (car a) 'intv) (eq (car b) 'intv) + (math-intv-constp a) (math-intv-constp b)) + (let ((comp (math-compare (nth 2 a) (nth 2 b)))) + (cond ((eq comp -1) t) + ((eq comp 1) nil) + ((and (memq (nth 1 a) '(2 3)) (memq (nth 1 b) '(0 1))) t) + ((and (memq (nth 1 a) '(0 1)) (memq (nth 1 b) '(2 3))) nil) + ((eq (setq comp (math-compare (nth 3 a) (nth 3 b))) -1) t) + ((eq comp 1) nil) + ((and (memq (nth 1 a) '(0 2)) (memq (nth 1 b) '(1 3))) t) + (t nil)))) + ((not (eq (not (Math-objectp a)) (not (Math-objectp b)))) + (Math-objectp a)) + ((eq (car a) 'var) + (if (eq (car b) 'var) + (string-lessp (symbol-name (nth 1 a)) (symbol-name (nth 1 b))) + (not (Math-numberp b)))) + ((eq (car b) 'var) (Math-numberp a)) + ((eq (car a) (car b)) + (while (and (setq a (cdr a) b (cdr b)) a + (equal (car a) (car b)))) + (and b + (or (null a) + (math-beforep (car a) (car b))))) + (t (string-lessp (symbol-name (car a)) (symbol-name (car b))))) +) + + +(defun math-simplify-extended (a) + (let ((math-living-dangerously t)) + (math-simplify a)) +) +(fset 'calcFunc-esimplify (symbol-function 'math-simplify-extended)) + +(defun math-simplify (top-expr) + (let ((math-simplifying t) + (top-only (consp calc-simplify-mode)) + (simp-rules (append (and (calc-has-rules 'var-AlgSimpRules) + '((var AlgSimpRules var-AlgSimpRules))) + (and math-living-dangerously + (calc-has-rules 'var-ExtSimpRules) + '((var ExtSimpRules var-ExtSimpRules))) + (and math-simplifying-units + (calc-has-rules 'var-UnitSimpRules) + '((var UnitSimpRules var-UnitSimpRules))) + (and math-integrating + (calc-has-rules 'var-IntegSimpRules) + '((var IntegSimpRules var-IntegSimpRules))))) + res) + (if top-only + (let ((r simp-rules)) + (setq res (math-simplify-step (math-normalize top-expr)) + calc-simplify-mode '(nil) + top-expr (math-normalize res)) + (while r + (setq top-expr (math-rewrite top-expr (car r) + '(neg (var inf var-inf))) + r (cdr r)))) + (calc-with-default-simplification + (while (let ((r simp-rules)) + (setq res (math-normalize top-expr)) + (while r + (setq res (math-rewrite res (car r)) + r (cdr r))) + (not (equal top-expr (setq res (math-simplify-step res))))) + (setq top-expr res))))) + top-expr +) +(fset 'calcFunc-simplify (symbol-function 'math-simplify)) + +;;; The following has a "bug" in that if any recursive simplifications +;;; occur only the first handler will be tried; this doesn't really +;;; matter, since math-simplify-step is iterated to a fixed point anyway. +(defun math-simplify-step (a) + (if (Math-primp a) + a + (let ((aa (if (or top-only + (memq (car a) '(calcFunc-quote calcFunc-condition + calcFunc-evalto))) + a + (cons (car a) (mapcar 'math-simplify-step (cdr a)))))) + (and (symbolp (car aa)) + (let ((handler (get (car aa) 'math-simplify))) + (and handler + (while (and handler + (equal (setq aa (or (funcall (car handler) aa) + aa)) + a)) + (setq handler (cdr handler)))))) + aa)) +) + + +(defun math-need-std-simps () + ;; Placeholder, to synchronize autoloading. +) + +(math-defsimplify (+ -) + (math-simplify-plus)) + +(defun math-simplify-plus () + (cond ((and (memq (car-safe (nth 1 expr)) '(+ -)) + (Math-numberp (nth 2 (nth 1 expr))) + (not (Math-numberp (nth 2 expr)))) + (let ((x (nth 2 expr)) + (op (car expr))) + (setcar (cdr (cdr expr)) (nth 2 (nth 1 expr))) + (setcar expr (car (nth 1 expr))) + (setcar (cdr (cdr (nth 1 expr))) x) + (setcar (nth 1 expr) op))) + ((and (eq (car expr) '+) + (Math-numberp (nth 1 expr)) + (not (Math-numberp (nth 2 expr)))) + (let ((x (nth 2 expr))) + (setcar (cdr (cdr expr)) (nth 1 expr)) + (setcar (cdr expr) x)))) + (let ((aa expr) + aaa temp) + (while (memq (car-safe (setq aaa (nth 1 aa))) '(+ -)) + (if (setq temp (math-combine-sum (nth 2 aaa) (nth 2 expr) + (eq (car aaa) '-) (eq (car expr) '-) t)) + (progn + (setcar (cdr (cdr expr)) temp) + (setcar expr '+) + (setcar (cdr (cdr aaa)) 0))) + (setq aa (nth 1 aa))) + (if (setq temp (math-combine-sum aaa (nth 2 expr) + nil (eq (car expr) '-) t)) + (progn + (setcar (cdr (cdr expr)) temp) + (setcar expr '+) + (setcar (cdr aa) 0))) + expr) +) + +(math-defsimplify * + (math-simplify-times)) + +(defun math-simplify-times () + (if (eq (car-safe (nth 2 expr)) '*) + (and (math-beforep (nth 1 (nth 2 expr)) (nth 1 expr)) + (or (math-known-scalarp (nth 1 expr) t) + (math-known-scalarp (nth 1 (nth 2 expr)) t)) + (let ((x (nth 1 expr))) + (setcar (cdr expr) (nth 1 (nth 2 expr))) + (setcar (cdr (nth 2 expr)) x))) + (and (math-beforep (nth 2 expr) (nth 1 expr)) + (or (math-known-scalarp (nth 1 expr) t) + (math-known-scalarp (nth 2 expr) t)) + (let ((x (nth 2 expr))) + (setcar (cdr (cdr expr)) (nth 1 expr)) + (setcar (cdr expr) x)))) + (let ((aa expr) + aaa temp + (safe t) (scalar (math-known-scalarp (nth 1 expr)))) + (if (and (Math-ratp (nth 1 expr)) + (setq temp (math-common-constant-factor (nth 2 expr)))) + (progn + (setcar (cdr (cdr expr)) + (math-cancel-common-factor (nth 2 expr) temp)) + (setcar (cdr expr) (math-mul (nth 1 expr) temp)))) + (while (and (eq (car-safe (setq aaa (nth 2 aa))) '*) + safe) + (if (setq temp (math-combine-prod (nth 1 expr) (nth 1 aaa) nil nil t)) + (progn + (setcar (cdr expr) temp) + (setcar (cdr aaa) 1))) + (setq safe (or scalar (math-known-scalarp (nth 1 aaa) t)) + aa (nth 2 aa))) + (if (and (setq temp (math-combine-prod aaa (nth 1 expr) nil nil t)) + safe) + (progn + (setcar (cdr expr) temp) + (setcar (cdr (cdr aa)) 1))) + (if (and (eq (car-safe (nth 1 expr)) 'frac) + (memq (nth 1 (nth 1 expr)) '(1 -1))) + (math-div (math-mul (nth 2 expr) (nth 1 (nth 1 expr))) + (nth 2 (nth 1 expr))) + expr)) +) + +(math-defsimplify / + (math-simplify-divide)) + +(defun math-simplify-divide () + (let ((np (cdr expr)) + (nover nil) + (nn (and (or (eq (car expr) '/) (not (Math-realp (nth 2 expr)))) + (math-common-constant-factor (nth 2 expr)))) + n op) + (if nn + (progn + (setq n (and (or (eq (car expr) '/) (not (Math-realp (nth 1 expr)))) + (math-common-constant-factor (nth 1 expr)))) + (if (and (eq (car-safe nn) 'frac) (eq (nth 1 nn) 1) (not n)) + (progn + (setcar (cdr expr) (math-mul (nth 2 nn) (nth 1 expr))) + (setcar (cdr (cdr expr)) + (math-cancel-common-factor (nth 2 expr) nn)) + (if (and (math-negp nn) + (setq op (assq (car expr) calc-tweak-eqn-table))) + (setcar expr (nth 1 op)))) + (if (and n (not (eq (setq n (math-frac-gcd n nn)) 1))) + (progn + (setcar (cdr expr) + (math-cancel-common-factor (nth 1 expr) n)) + (setcar (cdr (cdr expr)) + (math-cancel-common-factor (nth 2 expr) n)) + (if (and (math-negp n) + (setq op (assq (car expr) calc-tweak-eqn-table))) + (setcar expr (nth 1 op)))))))) + (if (and (eq (car-safe (car np)) '/) + (math-known-scalarp (nth 2 expr) t)) + (progn + (setq np (cdr (nth 1 expr))) + (while (eq (car-safe (setq n (car np))) '*) + (and (math-known-scalarp (nth 2 n) t) + (math-simplify-divisor (cdr n) (cdr (cdr expr)) nil t)) + (setq np (cdr (cdr n)))) + (math-simplify-divisor np (cdr (cdr expr)) nil t) + (setq nover t + np (cdr (cdr (nth 1 expr)))))) + (while (eq (car-safe (setq n (car np))) '*) + (and (math-known-scalarp (nth 2 n) t) + (math-simplify-divisor (cdr n) (cdr (cdr expr)) nover t)) + (setq np (cdr (cdr n)))) + (math-simplify-divisor np (cdr (cdr expr)) nover t) + expr) +) + +(defun math-simplify-divisor (np dp nover dover) + (cond ((eq (car-safe (car dp)) '/) + (math-simplify-divisor np (cdr (car dp)) nover dover) + (and (math-known-scalarp (nth 1 (car dp)) t) + (math-simplify-divisor np (cdr (cdr (car dp))) + nover (not dover)))) + ((or (or (eq (car expr) '/) + (let ((signs (math-possible-signs (car np)))) + (or (memq signs '(1 4)) + (and (memq (car expr) '(calcFunc-eq calcFunc-neq)) + (eq signs 5)) + math-living-dangerously))) + (math-numberp (car np))) + (let ((n (car np)) + d dd temp op + (safe t) (scalar (math-known-scalarp n))) + (while (and (eq (car-safe (setq d (car dp))) '*) + safe) + (math-simplify-one-divisor np (cdr d)) + (setq safe (or scalar (math-known-scalarp (nth 1 d) t)) + dp (cdr (cdr d)))) + (if safe + (math-simplify-one-divisor np dp))))) +) + +(defun math-simplify-one-divisor (np dp) + (if (setq temp (math-combine-prod (car np) (car dp) nover dover t)) + (progn + (and (not (memq (car expr) '(/ calcFunc-eq calcFunc-neq))) + (math-known-negp (car dp)) + (setq op (assq (car expr) calc-tweak-eqn-table)) + (setcar expr (nth 1 op))) + (setcar np (if nover (math-div 1 temp) temp)) + (setcar dp 1)) + (and dover (not nover) (eq (car expr) '/) + (eq (car-safe (car dp)) 'calcFunc-sqrt) + (Math-integerp (nth 1 (car dp))) + (progn + (setcar np (math-mul (car np) + (list 'calcFunc-sqrt (nth 1 (car dp))))) + (setcar dp (nth 1 (car dp)))))) +) + +(defun math-common-constant-factor (expr) + (if (Math-realp expr) + (if (Math-ratp expr) + (and (not (memq expr '(0 1 -1))) + (math-abs expr)) + (if (math-ratp (setq expr (math-to-simple-fraction expr))) + (math-common-constant-factor expr))) + (if (memq (car expr) '(+ - cplx sdev)) + (let ((f1 (math-common-constant-factor (nth 1 expr))) + (f2 (math-common-constant-factor (nth 2 expr)))) + (and f1 f2 + (not (eq (setq f1 (math-frac-gcd f1 f2)) 1)) + f1)) + (if (memq (car expr) '(* polar)) + (math-common-constant-factor (nth 1 expr)) + (if (eq (car expr) '/) + (or (math-common-constant-factor (nth 1 expr)) + (and (Math-integerp (nth 2 expr)) + (list 'frac 1 (math-abs (nth 2 expr))))))))) +) + +(defun math-cancel-common-factor (expr val) + (if (memq (car-safe expr) '(+ - cplx sdev)) + (progn + (setcar (cdr expr) (math-cancel-common-factor (nth 1 expr) val)) + (setcar (cdr (cdr expr)) (math-cancel-common-factor (nth 2 expr) val)) + expr) + (if (eq (car-safe expr) '*) + (math-mul (math-cancel-common-factor (nth 1 expr) val) (nth 2 expr)) + (math-div expr val))) +) + +(defun math-frac-gcd (a b) + (if (Math-zerop a) + b + (if (Math-zerop b) + a + (if (and (Math-integerp a) + (Math-integerp b)) + (math-gcd a b) + (and (Math-integerp a) (setq a (list 'frac a 1))) + (and (Math-integerp b) (setq b (list 'frac b 1))) + (math-make-frac (math-gcd (nth 1 a) (nth 1 b)) + (math-gcd (nth 2 a) (nth 2 b)))))) +) + +(math-defsimplify % + (math-simplify-mod)) + +(defun math-simplify-mod () + (and (Math-realp (nth 2 expr)) + (Math-posp (nth 2 expr)) + (let ((lin (math-is-linear (nth 1 expr))) + t1 t2 t3) + (or (and lin + (or (math-negp (car lin)) + (not (Math-lessp (car lin) (nth 2 expr)))) + (list '% + (list '+ + (math-mul (nth 1 lin) (nth 2 lin)) + (math-mod (car lin) (nth 2 expr))) + (nth 2 expr))) + (and lin + (not (math-equal-int (nth 1 lin) 1)) + (math-num-integerp (nth 1 lin)) + (math-num-integerp (nth 2 expr)) + (setq t1 (calcFunc-gcd (nth 1 lin) (nth 2 expr))) + (not (math-equal-int t1 1)) + (list '* + t1 + (list '% + (list '+ + (math-mul (math-div (nth 1 lin) t1) + (nth 2 lin)) + (let ((calc-prefer-frac t)) + (math-div (car lin) t1))) + (math-div (nth 2 expr) t1)))) + (and (math-equal-int (nth 2 expr) 1) + (math-known-integerp (if lin + (math-mul (nth 1 lin) (nth 2 lin)) + (nth 1 expr))) + (if lin (math-mod (car lin) 1) 0))))) +) + +(math-defsimplify (calcFunc-eq calcFunc-neq calcFunc-lt + calcFunc-gt calcFunc-leq calcFunc-geq) + (if (= (length expr) 3) + (math-simplify-ineq))) + +(defun math-simplify-ineq () + (let ((np (cdr expr)) + n) + (while (memq (car-safe (setq n (car np))) '(+ -)) + (math-simplify-add-term (cdr (cdr n)) (cdr (cdr expr)) + (eq (car n) '-) nil) + (setq np (cdr n))) + (math-simplify-add-term np (cdr (cdr expr)) nil (eq np (cdr expr))) + (math-simplify-divide) + (let ((signs (math-possible-signs (cons '- (cdr expr))))) + (or (cond ((eq (car expr) 'calcFunc-eq) + (or (and (eq signs 2) 1) + (and (memq signs '(1 4 5)) 0))) + ((eq (car expr) 'calcFunc-neq) + (or (and (eq signs 2) 0) + (and (memq signs '(1 4 5)) 1))) + ((eq (car expr) 'calcFunc-lt) + (or (and (eq signs 1) 1) + (and (memq signs '(2 4 6)) 0))) + ((eq (car expr) 'calcFunc-gt) + (or (and (eq signs 4) 1) + (and (memq signs '(1 2 3)) 0))) + ((eq (car expr) 'calcFunc-leq) + (or (and (eq signs 4) 0) + (and (memq signs '(1 2 3)) 1))) + ((eq (car expr) 'calcFunc-geq) + (or (and (eq signs 1) 0) + (and (memq signs '(2 4 6)) 1)))) + expr))) +) + +(defun math-simplify-add-term (np dp minus lplain) + (or (math-vectorp (car np)) + (let ((rplain t) + n d dd temp) + (while (memq (car-safe (setq n (car np) d (car dp))) '(+ -)) + (setq rplain nil) + (if (setq temp (math-combine-sum n (nth 2 d) + minus (eq (car d) '+) t)) + (if (or lplain (eq (math-looks-negp temp) minus)) + (progn + (setcar np (setq n (if minus (math-neg temp) temp))) + (setcar (cdr (cdr d)) 0)) + (progn + (setcar np 0) + (setcar (cdr (cdr d)) (setq n (if (eq (car d) '+) + (math-neg temp) + temp)))))) + (setq dp (cdr d))) + (if (setq temp (math-combine-sum n d minus t t)) + (if (or lplain + (and (not rplain) + (eq (math-looks-negp temp) minus))) + (progn + (setcar np (setq n (if minus (math-neg temp) temp))) + (setcar dp 0)) + (progn + (setcar np 0) + (setcar dp (setq n (math-neg temp)))))))) +) + +(math-defsimplify calcFunc-sin + (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin) + (nth 1 (nth 1 expr))) + (and (math-looks-negp (nth 1 expr)) + (math-neg (list 'calcFunc-sin (math-neg (nth 1 expr))))) + (and (eq calc-angle-mode 'rad) + (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi)))) + (and n + (math-known-sin (car n) (nth 1 n) 120 0)))) + (and (eq calc-angle-mode 'deg) + (let ((n (math-integer-plus (nth 1 expr)))) + (and n + (math-known-sin (car n) (nth 1 n) '(frac 2 3) 0)))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos) + (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan) + (math-div (nth 1 (nth 1 expr)) + (list 'calcFunc-sqrt + (math-add 1 (math-sqr (nth 1 (nth 1 expr))))))) + (let ((m (math-should-expand-trig (nth 1 expr)))) + (and m (integerp (car m)) + (let ((n (car m)) (a (nth 1 m))) + (list '+ + (list '* (list 'calcFunc-sin (list '* (1- n) a)) + (list 'calcFunc-cos a)) + (list '* (list 'calcFunc-cos (list '* (1- n) a)) + (list 'calcFunc-sin a))))))) +) + +(math-defsimplify calcFunc-cos + (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos) + (nth 1 (nth 1 expr))) + (and (math-looks-negp (nth 1 expr)) + (list 'calcFunc-cos (math-neg (nth 1 expr)))) + (and (eq calc-angle-mode 'rad) + (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi)))) + (and n + (math-known-sin (car n) (nth 1 n) 120 300)))) + (and (eq calc-angle-mode 'deg) + (let ((n (math-integer-plus (nth 1 expr)))) + (and n + (math-known-sin (car n) (nth 1 n) '(frac 2 3) 300)))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin) + (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan) + (math-div 1 + (list 'calcFunc-sqrt + (math-add 1 (math-sqr (nth 1 (nth 1 expr))))))) + (let ((m (math-should-expand-trig (nth 1 expr)))) + (and m (integerp (car m)) + (let ((n (car m)) (a (nth 1 m))) + (list '- + (list '* (list 'calcFunc-cos (list '* (1- n) a)) + (list 'calcFunc-cos a)) + (list '* (list 'calcFunc-sin (list '* (1- n) a)) + (list 'calcFunc-sin a))))))) +) + +(defun math-should-expand-trig (x &optional hyperbolic) + (let ((m (math-is-multiple x))) + (and math-living-dangerously + m (or (and (integerp (car m)) (> (car m) 1)) + (equal (car m) '(frac 1 2))) + (or math-integrating + (memq (car-safe (nth 1 m)) + (if hyperbolic + '(calcFunc-arcsinh calcFunc-arccosh calcFunc-arctanh) + '(calcFunc-arcsin calcFunc-arccos calcFunc-arctan))) + (and (eq (car-safe (nth 1 m)) 'calcFunc-ln) + (eq hyperbolic 'exp))) + m)) +) + +(defun math-known-sin (plus n mul off) + (setq n (math-mul n mul)) + (and (math-num-integerp n) + (setq n (math-mod (math-add (math-trunc n) off) 240)) + (if (>= n 120) + (and (setq n (math-known-sin plus (- n 120) 1 0)) + (math-neg n)) + (if (> n 60) + (setq n (- 120 n))) + (if (math-zerop plus) + (and (or calc-symbolic-mode + (memq n '(0 20 60))) + (cdr (assq n + '( (0 . 0) + (10 . (/ (calcFunc-sqrt + (- 2 (calcFunc-sqrt 3))) 2)) + (12 . (/ (- (calcFunc-sqrt 5) 1) 4)) + (15 . (/ (calcFunc-sqrt + (- 2 (calcFunc-sqrt 2))) 2)) + (20 . (/ 1 2)) + (24 . (* (^ (/ 1 2) (/ 3 2)) + (calcFunc-sqrt + (- 5 (calcFunc-sqrt 5))))) + (30 . (/ (calcFunc-sqrt 2) 2)) + (36 . (/ (+ (calcFunc-sqrt 5) 1) 4)) + (40 . (/ (calcFunc-sqrt 3) 2)) + (45 . (/ (calcFunc-sqrt + (+ 2 (calcFunc-sqrt 2))) 2)) + (48 . (* (^ (/ 1 2) (/ 3 2)) + (calcFunc-sqrt + (+ 5 (calcFunc-sqrt 5))))) + (50 . (/ (calcFunc-sqrt + (+ 2 (calcFunc-sqrt 3))) 2)) + (60 . 1))))) + (cond ((eq n 0) (math-normalize (list 'calcFunc-sin plus))) + ((eq n 60) (math-normalize (list 'calcFunc-cos plus))) + (t nil))))) +) + +(math-defsimplify calcFunc-tan + (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan) + (nth 1 (nth 1 expr))) + (and (math-looks-negp (nth 1 expr)) + (math-neg (list 'calcFunc-tan (math-neg (nth 1 expr))))) + (and (eq calc-angle-mode 'rad) + (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi)))) + (and n + (math-known-tan (car n) (nth 1 n) 120)))) + (and (eq calc-angle-mode 'deg) + (let ((n (math-integer-plus (nth 1 expr)))) + (and n + (math-known-tan (car n) (nth 1 n) '(frac 2 3))))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin) + (math-div (nth 1 (nth 1 expr)) + (list 'calcFunc-sqrt + (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos) + (math-div (list 'calcFunc-sqrt + (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))) + (nth 1 (nth 1 expr)))) + (let ((m (math-should-expand-trig (nth 1 expr)))) + (and m + (if (equal (car m) '(frac 1 2)) + (math-div (math-sub 1 (list 'calcFunc-cos (nth 1 m))) + (list 'calcFunc-sin (nth 1 m))) + (math-div (list 'calcFunc-sin (nth 1 expr)) + (list 'calcFunc-cos (nth 1 expr))))))) +) + +(defun math-known-tan (plus n mul) + (setq n (math-mul n mul)) + (and (math-num-integerp n) + (setq n (math-mod (math-trunc n) 120)) + (if (> n 60) + (and (setq n (math-known-tan plus (- 120 n) 1)) + (math-neg n)) + (if (math-zerop plus) + (and (or calc-symbolic-mode + (memq n '(0 30 60))) + (cdr (assq n '( (0 . 0) + (10 . (- 2 (calcFunc-sqrt 3))) + (12 . (calcFunc-sqrt + (- 1 (* (/ 2 5) (calcFunc-sqrt 5))))) + (15 . (- (calcFunc-sqrt 2) 1)) + (20 . (/ (calcFunc-sqrt 3) 3)) + (24 . (calcFunc-sqrt + (- 5 (* 2 (calcFunc-sqrt 5))))) + (30 . 1) + (36 . (calcFunc-sqrt + (+ 1 (* (/ 2 5) (calcFunc-sqrt 5))))) + (40 . (calcFunc-sqrt 3)) + (45 . (+ (calcFunc-sqrt 2) 1)) + (48 . (calcFunc-sqrt + (+ 5 (* 2 (calcFunc-sqrt 5))))) + (50 . (+ 2 (calcFunc-sqrt 3))) + (60 . (var uinf var-uinf)))))) + (cond ((eq n 0) (math-normalize (list 'calcFunc-tan plus))) + ((eq n 60) (math-normalize (list '/ -1 + (list 'calcFunc-tan plus)))) + (t nil))))) +) + +(math-defsimplify calcFunc-sinh + (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh) + (nth 1 (nth 1 expr))) + (and (math-looks-negp (nth 1 expr)) + (math-neg (list 'calcFunc-sinh (math-neg (nth 1 expr))))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh) + math-living-dangerously + (list 'calcFunc-sqrt (math-sub (math-sqr (nth 1 (nth 1 expr))) 1))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh) + math-living-dangerously + (math-div (nth 1 (nth 1 expr)) + (list 'calcFunc-sqrt + (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))) + (let ((m (math-should-expand-trig (nth 1 expr) t))) + (and m (integerp (car m)) + (let ((n (car m)) (a (nth 1 m))) + (if (> n 1) + (list '+ + (list '* (list 'calcFunc-sinh (list '* (1- n) a)) + (list 'calcFunc-cosh a)) + (list '* (list 'calcFunc-cosh (list '* (1- n) a)) + (list 'calcFunc-sinh a)))))))) +) + +(math-defsimplify calcFunc-cosh + (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh) + (nth 1 (nth 1 expr))) + (and (math-looks-negp (nth 1 expr)) + (list 'calcFunc-cosh (math-neg (nth 1 expr)))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh) + math-living-dangerously + (list 'calcFunc-sqrt (math-add (math-sqr (nth 1 (nth 1 expr))) 1))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh) + math-living-dangerously + (math-div 1 + (list 'calcFunc-sqrt + (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))) + (let ((m (math-should-expand-trig (nth 1 expr) t))) + (and m (integerp (car m)) + (let ((n (car m)) (a (nth 1 m))) + (if (> n 1) + (list '+ + (list '* (list 'calcFunc-cosh (list '* (1- n) a)) + (list 'calcFunc-cosh a)) + (list '* (list 'calcFunc-sinh (list '* (1- n) a)) + (list 'calcFunc-sinh a)))))))) +) + +(math-defsimplify calcFunc-tanh + (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh) + (nth 1 (nth 1 expr))) + (and (math-looks-negp (nth 1 expr)) + (math-neg (list 'calcFunc-tanh (math-neg (nth 1 expr))))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh) + math-living-dangerously + (math-div (nth 1 (nth 1 expr)) + (list 'calcFunc-sqrt + (math-add (math-sqr (nth 1 (nth 1 expr))) 1)))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh) + math-living-dangerously + (math-div (list 'calcFunc-sqrt + (math-sub (math-sqr (nth 1 (nth 1 expr))) 1)) + (nth 1 (nth 1 expr)))) + (let ((m (math-should-expand-trig (nth 1 expr) t))) + (and m + (if (equal (car m) '(frac 1 2)) + (math-div (math-sub (list 'calcFunc-cosh (nth 1 m)) 1) + (list 'calcFunc-sinh (nth 1 m))) + (math-div (list 'calcFunc-sinh (nth 1 expr)) + (list 'calcFunc-cosh (nth 1 expr))))))) +) + +(math-defsimplify calcFunc-arcsin + (or (and (math-looks-negp (nth 1 expr)) + (math-neg (list 'calcFunc-arcsin (math-neg (nth 1 expr))))) + (and (eq (nth 1 expr) 1) + (math-quarter-circle t)) + (and (equal (nth 1 expr) '(frac 1 2)) + (math-div (math-half-circle t) 6)) + (and math-living-dangerously + (eq (car-safe (nth 1 expr)) 'calcFunc-sin) + (nth 1 (nth 1 expr))) + (and math-living-dangerously + (eq (car-safe (nth 1 expr)) 'calcFunc-cos) + (math-sub (math-quarter-circle t) + (nth 1 (nth 1 expr))))) +) + +(math-defsimplify calcFunc-arccos + (or (and (eq (nth 1 expr) 0) + (math-quarter-circle t)) + (and (eq (nth 1 expr) -1) + (math-half-circle t)) + (and (equal (nth 1 expr) '(frac 1 2)) + (math-div (math-half-circle t) 3)) + (and (equal (nth 1 expr) '(frac -1 2)) + (math-div (math-mul (math-half-circle t) 2) 3)) + (and math-living-dangerously + (eq (car-safe (nth 1 expr)) 'calcFunc-cos) + (nth 1 (nth 1 expr))) + (and math-living-dangerously + (eq (car-safe (nth 1 expr)) 'calcFunc-sin) + (math-sub (math-quarter-circle t) + (nth 1 (nth 1 expr))))) +) + +(math-defsimplify calcFunc-arctan + (or (and (math-looks-negp (nth 1 expr)) + (math-neg (list 'calcFunc-arctan (math-neg (nth 1 expr))))) + (and (eq (nth 1 expr) 1) + (math-div (math-half-circle t) 4)) + (and math-living-dangerously + (eq (car-safe (nth 1 expr)) 'calcFunc-tan) + (nth 1 (nth 1 expr)))) +) + +(math-defsimplify calcFunc-arcsinh + (or (and (math-looks-negp (nth 1 expr)) + (math-neg (list 'calcFunc-arcsinh (math-neg (nth 1 expr))))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh) + (or math-living-dangerously + (math-known-realp (nth 1 (nth 1 expr)))) + (nth 1 (nth 1 expr)))) +) + +(math-defsimplify calcFunc-arccosh + (and (eq (car-safe (nth 1 expr)) 'calcFunc-cosh) + (or math-living-dangerously + (math-known-realp (nth 1 (nth 1 expr)))) + (nth 1 (nth 1 expr))) +) + +(math-defsimplify calcFunc-arctanh + (or (and (math-looks-negp (nth 1 expr)) + (math-neg (list 'calcFunc-arctanh (math-neg (nth 1 expr))))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-tanh) + (or math-living-dangerously + (math-known-realp (nth 1 (nth 1 expr)))) + (nth 1 (nth 1 expr)))) +) + +(math-defsimplify calcFunc-sqrt + (math-simplify-sqrt) +) + +(defun math-simplify-sqrt () + (or (and (eq (car-safe (nth 1 expr)) 'frac) + (math-div (list 'calcFunc-sqrt (math-mul (nth 1 (nth 1 expr)) + (nth 2 (nth 1 expr)))) + (nth 2 (nth 1 expr)))) + (let ((fac (if (math-objectp (nth 1 expr)) + (math-squared-factor (nth 1 expr)) + (math-common-constant-factor (nth 1 expr))))) + (and fac (not (eq fac 1)) + (math-mul (math-normalize (list 'calcFunc-sqrt fac)) + (math-normalize + (list 'calcFunc-sqrt + (math-cancel-common-factor (nth 1 expr) fac)))))) + (and math-living-dangerously + (or (and (eq (car-safe (nth 1 expr)) '-) + (math-equal-int (nth 1 (nth 1 expr)) 1) + (eq (car-safe (nth 2 (nth 1 expr))) '^) + (math-equal-int (nth 2 (nth 2 (nth 1 expr))) 2) + (or (and (eq (car-safe (nth 1 (nth 2 (nth 1 expr)))) + 'calcFunc-sin) + (list 'calcFunc-cos + (nth 1 (nth 1 (nth 2 (nth 1 expr)))))) + (and (eq (car-safe (nth 1 (nth 2 (nth 1 expr)))) + 'calcFunc-cos) + (list 'calcFunc-sin + (nth 1 (nth 1 (nth 2 (nth 1 expr)))))))) + (and (eq (car-safe (nth 1 expr)) '-) + (math-equal-int (nth 2 (nth 1 expr)) 1) + (eq (car-safe (nth 1 (nth 1 expr))) '^) + (math-equal-int (nth 2 (nth 1 (nth 1 expr))) 2) + (and (eq (car-safe (nth 1 (nth 1 (nth 1 expr)))) + 'calcFunc-cosh) + (list 'calcFunc-sinh + (nth 1 (nth 1 (nth 1 (nth 1 expr))))))) + (and (eq (car-safe (nth 1 expr)) '+) + (let ((a (nth 1 (nth 1 expr))) + (b (nth 2 (nth 1 expr)))) + (and (or (and (math-equal-int a 1) + (setq a b b (nth 1 (nth 1 expr)))) + (math-equal-int b 1)) + (eq (car-safe a) '^) + (math-equal-int (nth 2 a) 2) + (or (and (eq (car-safe (nth 1 a)) 'calcFunc-sinh) + (list 'calcFunc-cosh (nth 1 (nth 1 a)))) + (and (eq (car-safe (nth 1 a)) 'calcFunc-tan) + (list '/ 1 (list 'calcFunc-cos + (nth 1 (nth 1 a))))))))) + (and (eq (car-safe (nth 1 expr)) '^) + (list '^ + (nth 1 (nth 1 expr)) + (math-div (nth 2 (nth 1 expr)) 2))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-sqrt) + (list '^ (nth 1 (nth 1 expr)) (math-div 1 4))) + (and (memq (car-safe (nth 1 expr)) '(* /)) + (list (car (nth 1 expr)) + (list 'calcFunc-sqrt (nth 1 (nth 1 expr))) + (list 'calcFunc-sqrt (nth 2 (nth 1 expr))))) + (and (memq (car-safe (nth 1 expr)) '(+ -)) + (not (math-any-floats (nth 1 expr))) + (let ((f (calcFunc-factors (calcFunc-expand + (nth 1 expr))))) + (and (math-vectorp f) + (or (> (length f) 2) + (> (nth 2 (nth 1 f)) 1)) + (let ((out 1) (rest 1) (sums 1) fac pow) + (while (setq f (cdr f)) + (setq fac (nth 1 (car f)) + pow (nth 2 (car f))) + (if (> pow 1) + (setq out (math-mul out (math-pow + fac (/ pow 2))) + pow (% pow 2))) + (if (> pow 0) + (if (memq (car-safe fac) '(+ -)) + (setq sums (math-mul-thru sums fac)) + (setq rest (math-mul rest fac))))) + (and (not (and (eq out 1) (memq rest '(1 -1)))) + (math-mul + out + (list 'calcFunc-sqrt + (math-mul sums rest))))))))))) +) + +;;; Rather than factoring x into primes, just check for the first ten primes. +(defun math-squared-factor (x) + (if (Math-integerp x) + (let ((prsqr '(4 9 25 49 121 169 289 361 529 841)) + (fac 1) + res) + (while prsqr + (if (eq (cdr (setq res (math-idivmod x (car prsqr)))) 0) + (setq x (car res) + fac (math-mul fac (car prsqr))) + (setq prsqr (cdr prsqr)))) + fac)) +) + +(math-defsimplify calcFunc-exp + (math-simplify-exp (nth 1 expr)) +) + +(defun math-simplify-exp (x) + (or (and (eq (car-safe x) 'calcFunc-ln) + (nth 1 x)) + (and math-living-dangerously + (or (and (eq (car-safe x) 'calcFunc-arcsinh) + (math-add (nth 1 x) + (list 'calcFunc-sqrt + (math-add (math-sqr (nth 1 x)) 1)))) + (and (eq (car-safe x) 'calcFunc-arccosh) + (math-add (nth 1 x) + (list 'calcFunc-sqrt + (math-sub (math-sqr (nth 1 x)) 1)))) + (and (eq (car-safe x) 'calcFunc-arctanh) + (math-div (list 'calcFunc-sqrt (math-add 1 (nth 1 x))) + (list 'calcFunc-sqrt (math-sub 1 (nth 1 x))))) + (let ((m (math-should-expand-trig x 'exp))) + (and m (integerp (car m)) + (list '^ (list 'calcFunc-exp (nth 1 m)) (car m)))))) + (and calc-symbolic-mode + (math-known-imagp x) + (let* ((ip (calcFunc-im x)) + (n (math-linear-in ip '(var pi var-pi))) + s c) + (and n + (setq s (math-known-sin (car n) (nth 1 n) 120 0)) + (setq c (math-known-sin (car n) (nth 1 n) 120 300)) + (list '+ c (list '* s '(var i var-i))))))) +) + +(math-defsimplify calcFunc-ln + (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-exp) + (or math-living-dangerously + (math-known-realp (nth 1 (nth 1 expr)))) + (nth 1 (nth 1 expr))) + (and (eq (car-safe (nth 1 expr)) '^) + (equal (nth 1 (nth 1 expr)) '(var e var-e)) + (or math-living-dangerously + (math-known-realp (nth 2 (nth 1 expr)))) + (nth 2 (nth 1 expr))) + (and calc-symbolic-mode + (math-known-negp (nth 1 expr)) + (math-add (list 'calcFunc-ln (math-neg (nth 1 expr))) + '(var pi var-pi))) + (and calc-symbolic-mode + (math-known-imagp (nth 1 expr)) + (let* ((ip (calcFunc-im (nth 1 expr))) + (ips (math-possible-signs ip))) + (or (and (memq ips '(4 6)) + (math-add (list 'calcFunc-ln ip) + '(/ (* (var pi var-pi) (var i var-i)) 2))) + (and (memq ips '(1 3)) + (math-sub (list 'calcFunc-ln (math-neg ip)) + '(/ (* (var pi var-pi) (var i var-i)) 2))))))) +) + +(math-defsimplify ^ + (math-simplify-pow)) + +(defun math-simplify-pow () + (or (and math-living-dangerously + (or (and (eq (car-safe (nth 1 expr)) '^) + (list '^ + (nth 1 (nth 1 expr)) + (math-mul (nth 2 expr) (nth 2 (nth 1 expr))))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-sqrt) + (list '^ + (nth 1 (nth 1 expr)) + (math-div (nth 2 expr) 2))) + (and (memq (car-safe (nth 1 expr)) '(* /)) + (list (car (nth 1 expr)) + (list '^ (nth 1 (nth 1 expr)) (nth 2 expr)) + (list '^ (nth 2 (nth 1 expr)) (nth 2 expr)))))) + (and (math-equal-int (nth 1 expr) 10) + (eq (car-safe (nth 2 expr)) 'calcFunc-log10) + (nth 1 (nth 2 expr))) + (and (equal (nth 1 expr) '(var e var-e)) + (math-simplify-exp (nth 2 expr))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-exp) + (not math-integrating) + (list 'calcFunc-exp (math-mul (nth 1 (nth 1 expr)) (nth 2 expr)))) + (and (equal (nth 1 expr) '(var i var-i)) + (math-imaginary-i) + (math-num-integerp (nth 2 expr)) + (let ((x (math-mod (math-trunc (nth 2 expr)) 4))) + (cond ((eq x 0) 1) + ((eq x 1) (nth 1 expr)) + ((eq x 2) -1) + ((eq x 3) (math-neg (nth 1 expr)))))) + (and math-integrating + (integerp (nth 2 expr)) + (>= (nth 2 expr) 2) + (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-cos) + (math-mul (math-pow (nth 1 expr) (- (nth 2 expr) 2)) + (math-sub 1 + (math-sqr + (list 'calcFunc-sin + (nth 1 (nth 1 expr))))))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-cosh) + (math-mul (math-pow (nth 1 expr) (- (nth 2 expr) 2)) + (math-add 1 + (math-sqr + (list 'calcFunc-sinh + (nth 1 (nth 1 expr))))))))) + (and (eq (car-safe (nth 2 expr)) 'frac) + (Math-ratp (nth 1 expr)) + (Math-posp (nth 1 expr)) + (if (equal (nth 2 expr) '(frac 1 2)) + (list 'calcFunc-sqrt (nth 1 expr)) + (let ((flr (math-floor (nth 2 expr)))) + (and (not (Math-zerop flr)) + (list '* (list '^ (nth 1 expr) flr) + (list '^ (nth 1 expr) + (math-sub (nth 2 expr) flr))))))) + (and (eq (math-quarter-integer (nth 2 expr)) 2) + (let ((temp (math-simplify-sqrt))) + (and temp + (list '^ temp (math-mul (nth 2 expr) 2)))))) +) + +(math-defsimplify calcFunc-log10 + (and (eq (car-safe (nth 1 expr)) '^) + (math-equal-int (nth 1 (nth 1 expr)) 10) + (or math-living-dangerously + (math-known-realp (nth 2 (nth 1 expr)))) + (nth 2 (nth 1 expr))) +) + + +(math-defsimplify calcFunc-erf + (or (and (math-looks-negp (nth 1 expr)) + (math-neg (list 'calcFunc-erf (math-neg (nth 1 expr))))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-conj) + (list 'calcFunc-conj (list 'calcFunc-erf (nth 1 (nth 1 expr)))))) +) + +(math-defsimplify calcFunc-erfc + (or (and (math-looks-negp (nth 1 expr)) + (math-sub 2 (list 'calcFunc-erfc (math-neg (nth 1 expr))))) + (and (eq (car-safe (nth 1 expr)) 'calcFunc-conj) + (list 'calcFunc-conj (list 'calcFunc-erfc (nth 1 (nth 1 expr)))))) +) + + +(defun math-linear-in (expr term &optional always) + (if (math-expr-contains expr term) + (let* ((calc-prefer-frac t) + (p (math-is-polynomial expr term 1))) + (and (cdr p) + p)) + (and always (list expr 0))) +) + +(defun math-multiple-of (expr term) + (let ((p (math-linear-in expr term))) + (and p + (math-zerop (car p)) + (nth 1 p))) +) + +(defun math-integer-plus (expr) + (cond ((Math-integerp expr) + (list 0 expr)) + ((and (memq (car expr) '(+ -)) + (Math-integerp (nth 1 expr))) + (list (if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr))) + (nth 1 expr))) + ((and (memq (car expr) '(+ -)) + (Math-integerp (nth 2 expr))) + (list (nth 1 expr) + (if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr))))) + (t nil)) ; not perfect, but it'll do +) + +(defun math-is-linear (expr &optional always) + (let ((offset nil) + (coef nil)) + (if (eq (car-safe expr) '+) + (if (Math-objectp (nth 1 expr)) + (setq offset (nth 1 expr) + expr (nth 2 expr)) + (if (Math-objectp (nth 2 expr)) + (setq offset (nth 2 expr) + expr (nth 1 expr)))) + (if (eq (car-safe expr) '-) + (if (Math-objectp (nth 1 expr)) + (setq offset (nth 1 expr) + expr (math-neg (nth 2 expr))) + (if (Math-objectp (nth 2 expr)) + (setq offset (math-neg (nth 2 expr)) + expr (nth 1 expr)))))) + (setq coef (math-is-multiple expr always)) + (if offset + (list offset (or (car coef) 1) (or (nth 1 coef) expr)) + (if coef + (cons 0 coef)))) +) + +(defun math-is-multiple (expr &optional always) + (or (if (eq (car-safe expr) '*) + (if (Math-objectp (nth 1 expr)) + (list (nth 1 expr) (nth 2 expr))) + (if (eq (car-safe expr) '/) + (if (and (Math-objectp (nth 1 expr)) + (not (math-equal-int (nth 1 expr) 1))) + (list (nth 1 expr) (math-div 1 (nth 2 expr))) + (if (Math-objectp (nth 2 expr)) + (list (math-div 1 (nth 2 expr)) (nth 1 expr)) + (let ((res (math-is-multiple (nth 1 expr)))) + (if res + (list (car res) + (math-div (nth 2 (nth 1 expr)) (nth 2 expr))) + (setq res (math-is-multiple (nth 2 expr))) + (if res + (list (math-div 1 (car res)) + (math-div (nth 1 expr) + (nth 2 (nth 2 expr))))))))) + (if (eq (car-safe expr) 'neg) + (list -1 (nth 1 expr))))) + (if (Math-objvecp expr) + (and (eq always 1) + (list expr 1)) + (and always + (list 1 expr)))) +) + +(defun calcFunc-lin (expr &optional var) + (if var + (let ((res (math-linear-in expr var t))) + (or res (math-reject-arg expr "Linear term expected")) + (list 'vec (car res) (nth 1 res) var)) + (let ((res (math-is-linear expr t))) + (or res (math-reject-arg expr "Linear term expected")) + (cons 'vec res))) +) + +(defun calcFunc-linnt (expr &optional var) + (if var + (let ((res (math-linear-in expr var))) + (or res (math-reject-arg expr "Linear term expected")) + (list 'vec (car res) (nth 1 res) var)) + (let ((res (math-is-linear expr))) + (or res (math-reject-arg expr "Linear term expected")) + (cons 'vec res))) +) + +(defun calcFunc-islin (expr &optional var) + (if (and (Math-objvecp expr) (not var)) + 0 + (calcFunc-lin expr var) + 1) +) + +(defun calcFunc-islinnt (expr &optional var) + (if (Math-objvecp expr) + 0 + (calcFunc-linnt expr var) + 1) +) + + + + +;;; Simple operations on expressions. + +;;; Return number of ocurrences of thing in expr, or nil if none. +(defun math-expr-contains-count (expr thing) + (cond ((equal expr thing) 1) + ((Math-primp expr) nil) + (t + (let ((num 0)) + (while (setq expr (cdr expr)) + (setq num (+ num (or (math-expr-contains-count + (car expr) thing) 0)))) + (and (> num 0) + num)))) +) + +(defun math-expr-contains (expr thing) + (cond ((equal expr thing) 1) + ((Math-primp expr) nil) + (t + (while (and (setq expr (cdr expr)) + (not (math-expr-contains (car expr) thing)))) + expr)) +) + +;;; Return non-nil if any variable of thing occurs in expr. +(defun math-expr-depends (expr thing) + (if (Math-primp thing) + (and (eq (car-safe thing) 'var) + (math-expr-contains expr thing)) + (while (and (setq thing (cdr thing)) + (not (math-expr-depends expr (car thing))))) + thing) +) + +;;; Substitute all occurrences of old for new in expr (non-destructive). +(defun math-expr-subst (expr old new) + (math-expr-subst-rec expr) +) +(fset 'calcFunc-subst (symbol-function 'math-expr-subst)) + +(defun math-expr-subst-rec (expr) + (cond ((equal expr old) new) + ((Math-primp expr) expr) + ((memq (car expr) '(calcFunc-deriv + calcFunc-tderiv)) + (if (= (length expr) 2) + (if (equal (nth 1 expr) old) + (append expr (list new)) + expr) + (list (car expr) (nth 1 expr) + (math-expr-subst-rec (nth 2 expr))))) + (t + (cons (car expr) + (mapcar 'math-expr-subst-rec (cdr expr))))) +) + +;;; Various measures of the size of an expression. +(defun math-expr-weight (expr) + (if (Math-primp expr) + 1 + (let ((w 1)) + (while (setq expr (cdr expr)) + (setq w (+ w (math-expr-weight (car expr))))) + w)) +) + +(defun math-expr-height (expr) + (if (Math-primp expr) + 0 + (let ((h 0)) + (while (setq expr (cdr expr)) + (setq h (max h (math-expr-height (car expr))))) + (1+ h))) +) + + + + +;;; Polynomial operations (to support the integrator and solve-for). + +(defun calcFunc-collect (expr base) + (let ((p (math-is-polynomial expr base 50 t))) + (if (cdr p) + (math-normalize ; fix selection bug + (math-build-polynomial-expr p base)) + expr)) +) + +;;; If expr is of the form "a + bx + cx^2 + ...", return the list (a b c ...), +;;; else return nil if not in polynomial form. If "loose", coefficients +;;; may contain x, e.g., sin(x) + cos(x) x^2 is a loose polynomial in x. +(defun math-is-polynomial (expr var &optional degree loose) + (let* ((math-poly-base-variable (if loose + (if (eq loose 'gen) var '(var XXX XXX)) + math-poly-base-variable)) + (poly (math-is-poly-rec expr math-poly-neg-powers))) + (and (or (null degree) + (<= (length poly) (1+ degree))) + poly)) +) + +(defun math-is-poly-rec (expr negpow) + (math-poly-simplify + (or (cond ((or (equal expr var) + (eq (car-safe expr) '^)) + (let ((pow 1) + (expr expr)) + (or (equal expr var) + (setq pow (nth 2 expr) + expr (nth 1 expr))) + (or (eq math-poly-mult-powers 1) + (setq pow (let ((m (math-is-multiple pow 1))) + (and (eq (car-safe (car m)) 'cplx) + (Math-zerop (nth 1 (car m))) + (setq m (list (nth 2 (car m)) + (math-mul (nth 1 m) + '(var i var-i))))) + (and (if math-poly-mult-powers + (equal math-poly-mult-powers + (nth 1 m)) + (setq math-poly-mult-powers (nth 1 m))) + (or (equal expr var) + (eq math-poly-mult-powers 1)) + (car m))))) + (if (consp pow) + (progn + (setq pow (math-to-simple-fraction pow)) + (and (eq (car-safe pow) 'frac) + math-poly-frac-powers + (equal expr var) + (setq math-poly-frac-powers + (calcFunc-lcm math-poly-frac-powers + (nth 2 pow)))))) + (or (memq math-poly-frac-powers '(1 nil)) + (setq pow (math-mul pow math-poly-frac-powers))) + (if (integerp pow) + (if (and (= pow 1) + (equal expr var)) + (list 0 1) + (if (natnump pow) + (let ((p1 (if (equal expr var) + (list 0 1) + (math-is-poly-rec expr nil))) + (n pow) + (accum (list 1))) + (and p1 + (or (null degree) + (<= (* (1- (length p1)) n) degree)) + (progn + (while (>= n 1) + (setq accum (math-poly-mul accum p1) + n (1- n))) + accum))) + (and negpow + (math-is-poly-rec expr nil) + (setq math-poly-neg-powers + (cons (math-pow expr (- pow)) + math-poly-neg-powers)) + (list (list '^ expr pow)))))))) + ((Math-objectp expr) + (list expr)) + ((memq (car expr) '(+ -)) + (let ((p1 (math-is-poly-rec (nth 1 expr) negpow))) + (and p1 + (let ((p2 (math-is-poly-rec (nth 2 expr) negpow))) + (and p2 + (math-poly-mix p1 1 p2 + (if (eq (car expr) '+) 1 -1))))))) + ((eq (car expr) 'neg) + (mapcar 'math-neg (math-is-poly-rec (nth 1 expr) negpow))) + ((eq (car expr) '*) + (let ((p1 (math-is-poly-rec (nth 1 expr) negpow))) + (and p1 + (let ((p2 (math-is-poly-rec (nth 2 expr) negpow))) + (and p2 + (or (null degree) + (<= (- (+ (length p1) (length p2)) 2) degree)) + (math-poly-mul p1 p2)))))) + ((eq (car expr) '/) + (and (or (not (math-poly-depends (nth 2 expr) var)) + (and negpow + (math-is-poly-rec (nth 2 expr) nil) + (setq math-poly-neg-powers + (cons (nth 2 expr) math-poly-neg-powers)))) + (not (Math-zerop (nth 2 expr))) + (let ((p1 (math-is-poly-rec (nth 1 expr) negpow))) + (mapcar (function (lambda (x) (math-div x (nth 2 expr)))) + p1)))) + ((and (eq (car expr) 'calcFunc-exp) + (equal var '(var e var-e))) + (math-is-poly-rec (list '^ var (nth 1 expr)) negpow)) + ((and (eq (car expr) 'calcFunc-sqrt) + math-poly-frac-powers) + (math-is-poly-rec (list '^ (nth 1 expr) '(frac 1 2)) negpow)) + (t nil)) + (and (or (not (math-poly-depends expr var)) + loose) + (not (eq (car expr) 'vec)) + (list expr)))) +) + +;;; Check if expr is a polynomial in var; if so, return its degree. +(defun math-polynomial-p (expr var) + (cond ((equal expr var) 1) + ((Math-primp expr) 0) + ((memq (car expr) '(+ -)) + (let ((p1 (math-polynomial-p (nth 1 expr) var)) + p2) + (and p1 (setq p2 (math-polynomial-p (nth 2 expr) var)) + (max p1 p2)))) + ((eq (car expr) '*) + (let ((p1 (math-polynomial-p (nth 1 expr) var)) + p2) + (and p1 (setq p2 (math-polynomial-p (nth 2 expr) var)) + (+ p1 p2)))) + ((eq (car expr) 'neg) + (math-polynomial-p (nth 1 expr) var)) + ((and (eq (car expr) '/) + (not (math-poly-depends (nth 2 expr) var))) + (math-polynomial-p (nth 1 expr) var)) + ((and (eq (car expr) '^) + (natnump (nth 2 expr))) + (let ((p1 (math-polynomial-p (nth 1 expr) var))) + (and p1 (* p1 (nth 2 expr))))) + ((math-poly-depends expr var) nil) + (t 0)) +) + +(defun math-poly-depends (expr var) + (if math-poly-base-variable + (math-expr-contains expr math-poly-base-variable) + (math-expr-depends expr var)) +) + +;;; Find the variable (or sub-expression) which is the base of polynomial expr. +(defun math-polynomial-base (mpb-top-expr &optional mpb-pred) + (or mpb-pred + (setq mpb-pred (function (lambda (base) (math-polynomial-p + mpb-top-expr base))))) + (or (let ((const-ok nil)) + (math-polynomial-base-rec mpb-top-expr)) + (let ((const-ok t)) + (math-polynomial-base-rec mpb-top-expr))) +) + +(defun math-polynomial-base-rec (mpb-expr) + (and (not (Math-objvecp mpb-expr)) + (or (and (memq (car mpb-expr) '(+ - *)) + (or (math-polynomial-base-rec (nth 1 mpb-expr)) + (math-polynomial-base-rec (nth 2 mpb-expr)))) + (and (memq (car mpb-expr) '(/ neg)) + (math-polynomial-base-rec (nth 1 mpb-expr))) + (and (eq (car mpb-expr) '^) + (math-polynomial-base-rec (nth 1 mpb-expr))) + (and (eq (car mpb-expr) 'calcFunc-exp) + (math-polynomial-base-rec '(var e var-e))) + (and (or const-ok (math-expr-contains-vars mpb-expr)) + (funcall mpb-pred mpb-expr) + mpb-expr))) +) + +;;; Return non-nil if expr refers to any variables. +(defun math-expr-contains-vars (expr) + (or (eq (car-safe expr) 'var) + (and (not (Math-primp expr)) + (progn + (while (and (setq expr (cdr expr)) + (not (math-expr-contains-vars (car expr))))) + expr))) +) + +;;; Simplify a polynomial in list form by stripping off high-end zeros. +;;; This always leaves the constant part, i.e., nil->nil and nonnil->nonnil. +(defun math-poly-simplify (p) + (and p + (if (Math-zerop (nth (1- (length p)) p)) + (let ((pp (copy-sequence p))) + (while (and (cdr pp) + (Math-zerop (nth (1- (length pp)) pp))) + (setcdr (nthcdr (- (length pp) 2) pp) nil)) + pp) + p)) +) + +;;; Compute ac*a + bc*b for polynomials in list form a, b and +;;; coefficients ac, bc. Result may be unsimplified. +(defun math-poly-mix (a ac b bc) + (and (or a b) + (cons (math-add (math-mul (or (car a) 0) ac) + (math-mul (or (car b) 0) bc)) + (math-poly-mix (cdr a) ac (cdr b) bc))) +) + +(defun math-poly-zerop (a) + (or (null a) + (and (null (cdr a)) (Math-zerop (car a)))) +) + +;;; Multiply two polynomials in list form. +(defun math-poly-mul (a b) + (and a b + (math-poly-mix b (car a) + (math-poly-mul (cdr a) (cons 0 b)) 1)) +) + +;;; Build an expression from a polynomial list. +(defun math-build-polynomial-expr (p var) + (if p + (if (Math-numberp var) + (math-with-extra-prec 1 + (let* ((rp (reverse p)) + (accum (car rp))) + (while (setq rp (cdr rp)) + (setq accum (math-add (car rp) (math-mul accum var)))) + accum)) + (let* ((rp (reverse p)) + (n (1- (length rp))) + (accum (math-mul (car rp) (math-pow var n))) + term) + (while (setq rp (cdr rp)) + (setq n (1- n)) + (or (math-zerop (car rp)) + (setq accum (list (if (math-looks-negp (car rp)) '- '+) + accum + (math-mul (if (math-looks-negp (car rp)) + (math-neg (car rp)) + (car rp)) + (math-pow var n)))))) + accum)) + 0) +) + + +(defun math-to-simple-fraction (f) + (or (and (eq (car-safe f) 'float) + (or (and (>= (nth 2 f) 0) + (math-scale-int (nth 1 f) (nth 2 f))) + (and (integerp (nth 1 f)) + (> (nth 1 f) -1000) + (< (nth 1 f) 1000) + (math-make-frac (nth 1 f) + (math-scale-int 1 (- (nth 2 f))))))) + f) +) + |