diff options
author | Dave Love <fx@gnu.org> | 2001-05-17 19:21:54 +0000 |
---|---|---|
committer | Dave Love <fx@gnu.org> | 2001-05-17 19:21:54 +0000 |
commit | f042e7b9aeb1848f8865988888f96d1247188847 (patch) | |
tree | 24d8e74b7d322f1e7fb8e4aa5beaf7a4e0fed90a /leim | |
parent | f90c23ca3090bd105790f9e0a109f8b61db5b25c (diff) | |
download | emacs-f042e7b9aeb1848f8865988888f96d1247188847.tar.gz |
("TeX"): Renamed from "latin-latex2e".
Language family and indicator changed. Many new translations.
Diffstat (limited to 'leim')
-rw-r--r-- | leim/ChangeLog | 5 | ||||
-rw-r--r-- | leim/quail/latin-ltx.el | 643 |
2 files changed, 637 insertions, 11 deletions
diff --git a/leim/ChangeLog b/leim/ChangeLog index be757c4e2c5..593f54cdc6b 100644 --- a/leim/ChangeLog +++ b/leim/ChangeLog @@ -1,3 +1,8 @@ +2001-05-17 Dave Love <fx@gnu.org> + + * quail/latin-ltx.el ("TeX"): Renamed from "latin-latex2e". + Language family and indicator changed. Many new translations. + 2001-05-17 Gerd Moellmann <gerd@gnu.org> * quail/slovak.el, quail/czech.el: Set guidance to t for czech and diff --git a/leim/quail/latin-ltx.el b/leim/quail/latin-ltx.el index 6a5ae0aecfe..85df5da3745 100644 --- a/leim/quail/latin-ltx.el +++ b/leim/quail/latin-ltx.el @@ -1,9 +1,10 @@ -;;; quail/latin-ltx.el -- Quail package for Latin scripts +;;; quail/latin-ltx.el -- Quail package for TeX-style input -*-coding: iso-2022-7bit-*- ;; Copyright (C) 2001 Electrotechnical Laboratory, JAPAN. ;; Licensed to the Free Software Foundation. +;; Copyright (C) 2001 Free Software Foundation, Inc. -;; Keywords: multilingual, input method, Greek +;; Keywords: multilingual, input, Greek, i18n ;; This file is part of GNU Emacs. @@ -27,9 +28,13 @@ (require 'quail) (quail-define-package - "latin-latex2e" "Latin" "LL" t - "The LaTeX-like input method for Latin characters. -The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported." + "TeX" "UTF-8" "\\" t + "LaTeX-like input method for many characters. +These characters are from the charsets used by the `utf-8' coding +system, including many technical ones. Examples: + \\'a -> ,Aa(B \\`{a} -> ,A`(B + \\pi -> $,1'@(B \\int -> $,1xK(B ^1 -> ,A9(B" + nil t t nil nil nil nil nil nil nil t) (quail-define-rules @@ -40,12 +45,15 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported." ("{\\copyright}" ?,A)(B) ("\\copyright" ?,A)(B) ("$^a$" ?,A*(B) ("\\={}" ?,A/(B) - ("$\\pm$" ?,A1(B) + ("$\\pm$" ?,A1(B) ("\\pm" ?,A1(B) ("$^2$" ?,A2(B) ("$^3$" ?,A3(B) ("\\'{}" ?,A4(B) ("{\\P}" ?,A6(B) ("\\P" ?,A6(B) - ("$\\cdot$" ?,A7(B) + ;; Fixme: Yudit has the equivalent of ("\\cdot" ?$,1z%(B), for U+22C5, DOT + ;; OPERATOR, whereas ,A7(B is MIDDLE DOT. JadeTeX translates both to + ;; \cdot. + ("$\\cdot$" ?,A7(B) ("\\cdot" ?,A7(B) ("\\c{}" ?,A8(B) ("$^1$" ?,A9(B) ("$^o$" ?,A:(B) @@ -78,7 +86,7 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported." ("\\~{O}" ?,AU(B) ("\\~O" ?,AU(B) ("\\\"{O}" ?,AV(B) ("\\\"O" ?,AV(B) ("\\\k{O}" ?$,1"J(B) - ("$\\times$" ?,AW(B) + ("$\\times$" ?,AW(B) ("\\times" ?,AW(B) ("{\\O}" ?,AX(B) ("\\O" ?,AX(B) ("\\`{U}" ?,AY(B) ("\\`U" ?,AY(B) ("\\'{U}" ?,AZ(B) ("\\'U" ?,AZ(B) @@ -115,7 +123,7 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported." ("\\~{o}" ?,Au(B) ("\\~o" ?,Au(B) ("\\\"{o}" ?,Av(B) ("\\\"o" ?,Av(B) ("\\\k{o}" ?$,1"K(B) - ("$\\div$" ?,Aw(B) + ("$\\div$" ?,Aw(B) ("\\div" ?,Aw(B) ("{\\o}" ?,Ax(B) ("\\o" ?,Ax(B) ("\\`{u}" ?,Ay(B) ("\\`u" ?,Ay(B) ("\\'{u}" ?,Az(B) ("\\'u" ?,Az(B) @@ -255,9 +263,9 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported." ("\\'{g}" ?$,1"U(B) ("\\'g" ?$,1"U(B) ("\\`{N}" ?$,1"X(B) ("\\`N" ?$,1"X(B) ("\\`{n}" ?$,1"Y(B) ("\\`n" ?$,1"Y(B) - ("\\'{\\AE}" ?$,1"\(B) ("\\'\\AE") + ("\\'{\\AE}" ?$,1"\(B) ("\\'\\AE" ?$,1"\(B) ("\\'{\\ae}" ?$,1"](B) ("\\'\\ae" ?$,1"](B) - ("\\'{\\O}" ?$,1"^(B) ("\\'\\O") + ("\\'{\\O}" ?$,1"^(B) ("\\'\\O" ?$,1"^(B) ("\\'{\\o}" ?$,1"_(B) ("\\'\\o" ?$,1"_(B) ("\\v{H}" ?$,1"~(B) ("\\vH" ?$,1"~(B) @@ -276,4 +284,617 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported." ("\\.{}" ?$,1$y(B) ("\\~{}" ?$,1$|(B) ("\\H{}" ?$,1$}(B) + + ("\\'" ?$,1%A(B) + ("\\'K" ?$,1mp(B) + ("\\'M" ?$,1m~(B) + ("\\'P" ?$,1n4(B) + ("\\'W" ?$,1nb(B) + ("\\'k" ?$,1mq(B) + ("\\'m" ?$,1m(B) + ("\\'p" ?$,1n5(B) + ("\\'w" ?$,1nc(B) + ("\\," ?$,1rf(B) + ("\\." ?$,1%G(B) + ("\\.B" ?$,1mB(B) + ("\\.D" ?$,1mJ(B) + ("\\.F" ?$,1m^(B) + ("\\.H" ?$,1mb(B) + ("\\.M" ?$,1n (B) + ("\\.N" ?$,1n$(B) + ("\\.P" ?$,1n6(B) + ("\\.R" ?$,1n8(B) + ("\\.S" ?$,1n@(B) + ("\\.T" ?$,1nJ(B) + ("\\.W" ?$,1nf(B) + ("\\.X" ?$,1nj(B) + ("\\.Y" ?$,1nn(B) + ("\\.b" ?$,1mC(B) + ("\\.d" ?$,1mK(B) + ("\\.e" ?$,1 7(B) + ("\\.f" ?$,1m_(B) + ("\\.h" ?$,1mc(B) + ("\\.m" ?$,1n!(B) + ("\\.n" ?$,1n%(B) + ("\\.p" ?$,1n7(B) + ("\\.r" ?$,1n9(B) + ("\\.s" ?$,1nA(B) + ("\\.t" ?$,1nK(B) + ("\\.w" ?$,1ng(B) + ("\\.x" ?$,1nk(B) + ("\\.y" ?$,1no(B) + ("\\/" ?$,1rl(B) + ("\\:" ?$,1re(B) + ("\\;" ?$,1rd(B) + ("\\=" ?$,1%D(B) + ("\\=G" ?$,1m`(B) + ("\\=g" ?$,1ma(B) + + ("^(" ?$,1s}(B) + ("^)" ?$,1s~(B) + ("^+" ?$,1sz(B) + ("^-" ?$,1s{(B) + ("^0" ?$,1sp(B) + ("^1" ?,A9(B) + ("^2" ?,A2(B) + ("^3" ?,A3(B) + ("^4" ?$,1st(B) + ("^5" ?$,1su(B) + ("^6" ?$,1sv(B) + ("^7" ?$,1sw(B) + ("^8" ?$,1sx(B) + ("^9" ?$,1sy(B) + ("^=" ?$,1s|(B) + ("^\\gamma" ?$,1% (B) + ("^h" ?$,1$P(B) + ("^j" ?$,1$R(B) + ("^l" ?$,1%!(B) + ("^n" ?$,1s(B) + ("^o" ?,A:(B) + ("^r" ?$,1$S(B) + ("^s" ?$,1%"(B) + ("^w" ?$,1$W(B) + ("^x" ?$,1%#(B) + ("^y" ?$,1$X(B) + ("^{SM}" ?$,1u`(B) + ("^{TEL}" ?$,1ua(B) + ("^{TM}" ?$,1ub(B) + ("_(" ?$,1t-(B) + ("_)" ?$,1t.(B) + ("_+" ?$,1t*(B) + ("_-" ?$,1t+(B) + ("_0" ?$,1t (B) + ("_1" ?$,1t!(B) + ("_2" ?$,1t"(B) + ("_3" ?$,1t#(B) + ("_4" ?$,1t$(B) + ("_5" ?$,1t%(B) + ("_6" ?$,1t&(B) + ("_7" ?$,1t'(B) + ("_8" ?$,1t((B) + ("_9" ?$,1t)(B) + ("_=" ?$,1t,(B) + + ("\\~" ?$,1%C(B) + ("\\~E" ?$,1o<(B) + ("\\~V" ?$,1n\(B) + ("\\~Y" ?$,1ox(B) + ("\\~e" ?$,1o=(B) + ("\\~v" ?$,1n](B) + ("\\~y" ?$,1oy(B) + + ("\\\"" ?$,1%H(B) + ("\\\"H" ?$,1mf(B) + ("\\\"W" ?$,1nd(B) + ("\\\"X" ?$,1nl(B) + ("\\\"h" ?$,1mg(B) + ("\\\"t" ?$,1nw(B) + ("\\\"w" ?$,1ne(B) + ("\\\"x" ?$,1nm(B) + ("\\^" ?$,1%B(B) + ("\\^Z" ?$,1np(B) + ("\\^z" ?$,1nq(B) + ("\\`" ?$,1%@(B) + ("\\`W" ?$,1n`(B) + ("\\`Y" ?$,1or(B) + ("\\`w" ?$,1na(B) + ("\\`y" ?$,1os(B) + ("\\b" ?$,1%q(B) + ("\\c" ?$,1%g(B) + ("\\c{D}" ?$,1mP(B) + ("\\c{H}" ?$,1mh(B) + ("\\c{d}" ?$,1mQ(B) + ("\\c{h}" ?$,1mi(B) + ("\\d" ?$,1%c(B) + ("\\d{A}" ?$,1o (B) + ("\\d{B}" ?$,1mD(B) + ("\\d{D}" ?$,1mL(B) + ("\\d{E}" ?$,1o8(B) + ("\\d{H}" ?$,1md(B) + ("\\d{I}" ?$,1oJ(B) + ("\\d{K}" ?$,1mr(B) + ("\\d{L}" ?$,1mv(B) + ("\\d{M}" ?$,1n"(B) + ("\\d{N}" ?$,1n&(B) + ("\\d{O}" ?$,1oL(B) + ("\\d{R}" ?$,1n:(B) + ("\\d{S}" ?$,1nB(B) + ("\\d{T}" ?$,1nL(B) + ("\\d{U}" ?$,1od(B) + ("\\d{V}" ?$,1n^(B) + ("\\d{W}" ?$,1nh(B) + ("\\d{Y}" ?$,1ot(B) + ("\\d{Z}" ?$,1nr(B) + ("\\d{a}" ?$,1o!(B) + ("\\d{b}" ?$,1mE(B) + ("\\d{d}" ?$,1mM(B) + ("\\d{e}" ?$,1o9(B) + ("\\d{h}" ?$,1me(B) + ("\\d{i}" ?$,1oK(B) + ("\\d{k}" ?$,1ms(B) + ("\\d{l}" ?$,1mw(B) + ("\\d{m}" ?$,1n#(B) + ("\\d{n}" ?$,1n'(B) + ("\\d{o}" ?$,1oM(B) + ("\\d{r}" ?$,1n;(B) + ("\\d{s}" ?$,1nC(B) + ("\\d{t}" ?$,1nM(B) + ("\\d{u}" ?$,1oe(B) + ("\\d{v}" ?$,1n_(B) + ("\\d{w}" ?$,1ni(B) + ("\\d{y}" ?$,1ou(B) + ("\\d{z}" ?$,1ns(B) + ("\\rq" ?$,1ry(B) + ("\\u" ?$,1%F(B) + ("\\v" ?$,1%L(B) + ("\\v{L}" ?$,1 ](B) + ("\\v{i}" ?$,1"0(B) + ("\\v{j}" ?$,1"P(B) + ("\\v{l}" ?$,1 ^(B) + ("\\yen" ?,A%(B) + + ("\\Box" ?$,2!a(B) + ("\\Bumpeq" ?$,1xn(B) + ("\\Cap" ?$,1z2(B) + ("\\Cup" ?$,1z3(B) + ("\\Delta" ?$,1&t(B) + ("\\Diamond" ?$,2"'(B) + ("\\Downarrow" ?$,1wS(B) + ("\\Gamma" ?$,1&s(B) + ("\\H" ?$,1%K(B) + ("\\H{o}" ?$,1 q(B) + ("\\Im" ?$,1uQ(B) + ("\\Join" ?$,1z((B) + ("\\Lambda" ?$,1&{(B) + ("\\Leftarrow" ?$,1wP(B) + ("\\Leftrightarrow" ?$,1wT(B) + ("\\Ll" ?$,1z8(B) + ("\\Lleftarrow" ?$,1wZ(B) + ("\\Longleftarrow" ?$,1wP(B) + ("\\Longleftrightarrow" ?$,1wT(B) + ("\\Longrightarrow" ?$,1wR(B) + ("\\Lsh" ?$,1w0(B) + ("\\Omega" ?$,1')(B) + ("\\Phi" ?$,1'&(B) + ("\\Pi" ?$,1' (B) + ("\\Psi" ?$,1'((B) + ("\\Re" ?$,1u\(B) + ("\\Rightarrow" ?$,1wR(B) + ("\\Rrightarrow" ?$,1w[(B) + ("\\Rsh" ?$,1w1(B) + ("\\Sigma" ?$,1'#(B) + ("\\Subset" ?$,1z0(B) + ("\\Supset" ?$,1z1(B) + ("\\Theta" ?$,1&x(B) + ("\\Uparrow" ?$,1wQ(B) + ("\\Updownarrow" ?$,1wU(B) + ("\\Upsilon" ?$,1'%(B) + ("\\Vdash" ?$,1yi(B) + ("\\Vert" ?$,1rv(B) + ("\\Vvdash" ?$,1yj(B) + ("\\Xi" ?$,1&~(B) + ("\\aleph" ?$,1uu(B) + ("\\alpha" ?$,1'1(B) + ("\\amalg" ?$,1x0(B) + ("\\angle" ?$,1x@(B) + ("\\approx" ?$,1xh(B) + ("\\approxeq" ?$,1xj(B) + ("\\ast" ?$,1x7(B) + ("\\asymp" ?$,1xm(B) + ("\\backcong" ?$,1xl(B) + ("\\backepsilon" ?$,1x-(B) + ("\\backprime" ?$,1s5(B) + ("\\backsim" ?$,1x](B) + ("\\backsimeq" ?$,1z-(B) + ("\\backslash" ?\\) + ("\\barwedge" ?$,1y|(B) + ("\\because" ?$,1xU(B) + ("\\beta" ?$,1'2(B) + ("\\beth" ?$,1uv(B) + ("\\between" ?$,1y,(B) + ("\\bigcap" ?$,1z"(B) + ("\\bigcirc" ?$,2"O(B) + ("\\bigcup" ?$,1z#(B) + ("\\bigstar" ?$,2"e(B) + ("\\bigtriangledown" ?$,2!}(B) + ("\\bigtriangleup" ?$,2!s(B) + ("\\bigvee" ?$,1z!(B) + ("\\bigwedge" ?$,1z (B) + ("\\blacklozenge" ?$,2%f(B) + ("\\blacksquare" ?$,2!j(B) + ("\\blacktriangle" ?$,2!t(B) + ("\\blacktriangledown" ?$,2!~(B) + ("\\blacktriangleleft" ?$,2""(B) + ("\\blacktriangleright" ?$,2!x(B) + ("\\bot" ?$,1ye(B) + ("\\bowtie" ?$,1z((B) + ("\\boxminus" ?$,1y_(B) + ("\\boxplus" ?$,1y^(B) + ("\\boxtimes" ?$,1y`(B) + ("\\bullet" ?$,1s"(B) + ("\\bumpeq" ?$,1xo(B) + ("\\cap" ?$,1xI(B) + ("\\cdots" ?$,1zO(B) + ("\\centerdot" ?,A7(B) + ("\\checkmark" ?$,2%S(B) + ("\\chi" ?$,1'G(B) + ("\\circ" ?$,2"+(B) + ("\\circeq" ?$,1xw(B) + ("\\circlearrowleft" ?$,1w:(B) + ("\\circlearrowright" ?$,1w;(B) + ("\\circledR" ?,A.(B) + ("\\circledS" ?$,1H(B) + ("\\circledast" ?$,1y[(B) + ("\\circledcirc" ?$,1yZ(B) + ("\\circleddash" ?$,1y](B) + ("\\clubsuit" ?$,2#c(B) + ("\\colon" ?:) + ("\\coloneq" ?$,1xt(B) + ("\\complement" ?$,1x!(B) + ("\\cong" ?$,1xe(B) + ("\\coprod" ?$,1x0(B) + ("\\cup" ?$,1xJ(B) + ("\\curlyeqprec" ?$,1z>(B) + ("\\curlyeqsucc" ?$,1z?(B) + ("\\curlypreceq" ?$,1y<(B) + ("\\curlyvee" ?$,1z.(B) + ("\\curlywedge" ?$,1z/(B) + ("\\curvearrowleft" ?$,1w6(B) + ("\\curvearrowright" ?$,1w7(B) + + ("\\dag" ?$,1s (B) + ("\\dagger" ?$,1s (B) + ("\\daleth" ?$,1ux(B) + ("\\dashv" ?$,1yc(B) + ("\\ddag" ?$,1s!(B) + ("\\ddagger" ?$,1s!(B) + ("\\ddots" ?$,1zQ(B) + ("\\delta" ?$,1'4(B) + ("\\diamond" ?$,1z$(B) + ("\\diamondsuit" ?$,2#b(B) + ("\\digamma" ?$,1'\(B) + ("\\divideontimes" ?$,1z'(B) + ("\\doteq" ?$,1xp(B) + ("\\doteqdot" ?$,1xq(B) + ("\\dotplus" ?$,1x4(B) + ("\\dotsquare" ?$,1ya(B) + ("\\downarrow" ?$,1vs(B) + ("\\downdownarrows" ?$,1wJ(B) + ("\\downleftharpoon" ?$,1wC(B) + ("\\downrightharpoon" ?$,1wB(B) + ("\\ell" ?$,1uS(B) + ("\\emptyset" ?$,1x%(B) + ("\\epsilon" ?$,1'5(B) + ("\\eqcirc" ?$,1xv(B) + ("\\eqcolon" ?$,1xu(B) + ("\\eqslantgtr" ?$,1z=(B) + ("\\eqslantless" ?$,1z<(B) + ("\\equiv" ?$,1y!(B) + ("\\eta" ?$,1'7(B) + ("\\euro" ?$,1tL(B) + ("\\exists" ?$,1x#(B) + ("\\fallingdotseq" ?$,1xr(B) + ("\\flat" ?$,2#m(B) + ("\\forall" ?$,1x (B) + ("\\frac1" ?$,1v?(B) + ("\\frac12" ?,A=(B) + ("\\frac13" ?$,1v3(B) + ("\\frac14" ?,A<(B) + ("\\frac15" ?$,1v5(B) + ("\\frac16" ?$,1v9(B) + ("\\frac18" ?$,1v;(B) + ("\\frac23" ?$,1v4(B) + ("\\frac25" ?$,1v6(B) + ("\\frac34" ?,A>(B) + ("\\frac35" ?$,1v7(B) + ("\\frac38" ?$,1v<(B) + ("\\frac45" ?$,1v8(B) + ("\\frac56" ?$,1v:(B) + ("\\frac58" ?$,1v=(B) + ("\\frac78" ?$,1v>(B) + ("\\frown" ?$,1{"(B) + ("\\gamma" ?$,1'3(B) + ("\\ge" ?$,1y%(B) + ("\\geq" ?$,1y%(B) + ("\\geqq" ?$,1y'(B) + ("\\geqslant" ?$,1y%(B) + ("\\gets" ?$,1vp(B) + ("\\gg" ?$,1y+(B) + ("\\ggg" ?$,1z9(B) + ("\\gimel" ?$,1uw(B) + ("\\gnapprox" ?$,1zG(B) + ("\\gneq" ?$,1y)(B) + ("\\gneqq" ?$,1y)(B) + ("\\gnsim" ?$,1zG(B) + ("\\gtrapprox" ?$,1y3(B) + ("\\gtrdot" ?$,1z7(B) + ("\\gtreqless" ?$,1z;(B) + ("\\gtreqqless" ?$,1z;(B) + ("\\gtrless" ?$,1y7(B) + ("\\gtrsim" ?$,1y3(B) + ("\\gvertneqq" ?$,1y)(B) + ("\\hbar" ?$,1uO(B) + ("\\heartsuit" ?$,2#e(B) + ("\\hookleftarrow" ?$,1w)(B) + ("\\hookrightarrow" ?$,1w*(B) + ("\\iff" ?$,1wT(B) + ("\\imath" ?$,1 Q(B) + ("\\in" ?$,1x((B) + ("\\infty" ?$,1x>(B) + ("\\int" ?$,1xK(B) + ("\\intercal" ?$,1yz(B) + ("\\iota" ?$,1'9(B) + ("\\kappa" ?$,1':(B) + ("\\lambda" ?$,1';(B) + ("\\langle" ?$,1{)(B) + ("\\lbrace" ?{) + ("\\lbrack" ?[) + ("\\lceil" ?$,1zh(B) + ("\\ldots" ?$,1s&(B) + ("\\le" ?$,1y$(B) + ("\\leadsto" ?$,1v}(B) + ("\\leftarrow" ?$,1vp(B) + ("\\leftarrowtail" ?$,1w"(B) + ("\\leftharpoondown" ?$,1w=(B) + ("\\leftharpoonup" ?$,1w<(B) + ("\\leftleftarrows" ?$,1wG(B) + ("\\leftparengtr" ?$,1{)(B) + ("\\leftrightarrow" ?$,1vt(B) + ("\\leftrightarrows" ?$,1wF(B) + ("\\leftrightharpoons" ?$,1wK(B) + ("\\leftrightsquigarrow" ?$,1w-(B) + ("\\leftthreetimes" ?$,1z+(B) + ("\\leq" ?$,1y$(B) + ("\\leqq" ?$,1y&(B) + ("\\leqslant" ?$,1y$(B) + ("\\lessapprox" ?$,1y2(B) + ("\\lessdot" ?$,1z6(B) + ("\\lesseqgtr" ?$,1z:(B) + ("\\lesseqqgtr" ?$,1z:(B) + ("\\lessgtr" ?$,1y6(B) + ("\\lesssim" ?$,1y2(B) + ("\\lfloor" ?$,1zj(B) + ("\\lhd" ?$,2"!(B) + ("\\ll" ?$,1y*(B) + ("\\llcorner" ?$,1z~(B) + ("\\lnapprox" ?$,1zF(B) + ("\\lneq" ?$,1y((B) + ("\\lneqq" ?$,1y((B) + ("\\lnsim" ?$,1zF(B) + ("\\longleftarrow" ?$,1vp(B) + ("\\longleftrightarrow" ?$,1vt(B) + ("\\longmapsto" ?$,1w&(B) + ("\\longrightarrow" ?$,1vr(B) + ("\\looparrowleft" ?$,1w+(B) + ("\\looparrowright" ?$,1w,(B) + ("\\lozenge" ?$,2%g(B) + ("\\lq" ?$,1rx(B) + ("\\lrcorner" ?$,1z(B) + ("\\ltimes" ?$,1z)(B) + ("\\lvertneqq" ?$,1y((B) + ("\\maltese" ?$,2%`(B) + ("\\mapsto" ?$,1w&(B) + ("\\measuredangle" ?$,1xA(B) + ("\\mho" ?$,1ug(B) + ("\\mid" ?$,1xC(B) + ("\\models" ?$,1yg(B) + ("\\mp" ?$,1x3(B) + ("\\multimap" ?$,1yx(B) + ("\\nLeftarrow" ?$,1wM(B) + ("\\nLeftrightarrow" ?$,1wN(B) + ("\\nRightarrow" ?$,1wO(B) + ("\\nVDash" ?$,1yo(B) + ("\\nVdash" ?$,1yn(B) + ("\\nabla" ?$,1x'(B) + ("\\napprox" ?$,1xi(B) + ("\\natural" ?$,2#n(B) + ("\\ncong" ?$,1xg(B) + ("\\ne" ?$,1y (B) + ("\\nearrow" ?$,1vw(B) + ("\\neg" ?,A,(B) + ("\\neq" ?$,1y (B) + ("\\nequiv" ?$,1y"(B) + ("\\newline" ?$,1s((B) + ("\\nexists" ?$,1x$(B) + ("\\ngeq" ?$,1y1(B) + ("\\ngeqq" ?$,1y1(B) + ("\\ngeqslant" ?$,1y1(B) + ("\\ngtr" ?$,1y/(B) + ("\\ni" ?$,1x+(B) + ("\\nleftarrow" ?$,1vz(B) + ("\\nleftrightarrow" ?$,1w.(B) + ("\\nleq" ?$,1y0(B) + ("\\nleqq" ?$,1y0(B) + ("\\nleqslant" ?$,1y0(B) + ("\\nless" ?$,1y.(B) + ("\\nmid" ?$,1xD(B) + ("\\not" ?$,1%x(B) + ("\\notin" ?$,1x)(B) + ("\\nparallel" ?$,1xF(B) + ("\\nprec" ?$,1y@(B) + ("\\npreceq" ?$,1z@(B) + ("\\nrightarrow" ?$,1v{(B) + ("\\nshortmid" ?$,1xD(B) + ("\\nshortparallel" ?$,1xF(B) + ("\\nsim" ?$,1xa(B) + ("\\nsimeq" ?$,1xd(B) + ("\\nsubset" ?$,1yD(B) + ("\\nsubseteq" ?$,1yH(B) + ("\\nsubseteqq" ?$,1yH(B) + ("\\nsucc" ?$,1yA(B) + ("\\nsucceq" ?$,1zA(B) + ("\\nsupset" ?$,1yE(B) + ("\\nsupseteq" ?$,1yI(B) + ("\\nsupseteqq" ?$,1yI(B) + ("\\ntriangleleft" ?$,1zJ(B) + ("\\ntrianglelefteq" ?$,1zL(B) + ("\\ntriangleright" ?$,1zK(B) + ("\\ntrianglerighteq" ?$,1zM(B) + ("\\nu" ?$,1'=(B) + ("\\nvDash" ?$,1ym(B) + ("\\nvdash" ?$,1yl(B) + ("\\nwarrow" ?$,1vv(B) + ("\\odot" ?$,1yY(B) + ("\\oint" ?$,1xN(B) + ("\\omega" ?$,1'I(B) + ("\\ominus" ?$,1yV(B) + ("\\oplus" ?$,1yU(B) + ("\\oslash" ?$,1yX(B) + ("\\otimes" ?$,1yW(B) + ("\\par" ?$,1s)(B) + ("\\parallel" ?$,1xE(B) + ("\\partial" ?$,1x"(B) + ("\\perp" ?$,1ye(B) + ("\\phi" ?$,1'F(B) + ("\\pi" ?$,1'@(B) + ("\\pitchfork" ?$,1z4(B) + ("\\prec" ?$,1y:(B) + ("\\precapprox" ?$,1y>(B) + ("\\preceq" ?$,1y<(B) + ("\\precnapprox" ?$,1zH(B) + ("\\precnsim" ?$,1zH(B) + ("\\precsim" ?$,1y>(B) + ("\\prime" ?$,1s2(B) + ("\\prod" ?$,1x/(B) + ("\\propto" ?$,1x=(B) + ("\\psi" ?$,1'H(B) + ("\\quad" ?$,1ra(B) + ("\\rangle" ?$,1{*(B) + ("\\rbrace" ?}) + ("\\rbrack" ?]) + ("\\rceil" ?$,1zi(B) + ("\\rfloor" ?$,1zk(B) + ("\\rightarrow" ?$,1vr(B) + ("\\rightarrowtail" ?$,1w#(B) + ("\\rightharpoondown" ?$,1wA(B) + ("\\rightharpoonup" ?$,1w@(B) + ("\\rightleftarrows" ?$,1wD(B) + ("\\rightleftharpoons" ?$,1wL(B) + ("\\rightparengtr" ?$,1{*(B) + ("\\rightrightarrows" ?$,1wI(B) + ("\\rightthreetimes" ?$,1z,(B) + ("\\risingdotseq" ?$,1xs(B) + ("\\rtimes" ?$,1z*(B) + ("\\sbs" ?$,3q((B) + ("\\searrow" ?$,1vx(B) + ("\\setminus" ?$,1x6(B) + ("\\sharp" ?$,2#o(B) + ("\\shortmid" ?$,1xC(B) + ("\\shortparallel" ?$,1xE(B) + ("\\sigma" ?$,1'C(B) + ("\\sim" ?$,1x\(B) + ("\\simeq" ?$,1xc(B) + ("\\smallamalg" ?$,1x0(B) + ("\\smallsetminus" ?$,1x6(B) + ("\\smallsmile" ?$,1{#(B) + ("\\smile" ?$,1{#(B) + ("\\spadesuit" ?$,2#`(B) + ("\\sphericalangle" ?$,1xB(B) + ("\\sqcap" ?$,1yS(B) + ("\\sqcup" ?$,1yT(B) + ("\\sqsubset" ?$,1yO(B) + ("\\sqsubseteq" ?$,1yQ(B) + ("\\sqsupset" ?$,1yP(B) + ("\\sqsupseteq" ?$,1yR(B) + ("\\square" ?$,2!a(B) + ("\\squigarrowright" ?$,1w](B) + ("\\star" ?$,1z&(B) + ("\\straightphi" ?$,1'F(B) + ("\\subset" ?$,1yB(B) + ("\\subseteq" ?$,1yF(B) + ("\\subseteqq" ?$,1yF(B) + ("\\subsetneq" ?$,1yJ(B) + ("\\subsetneqq" ?$,1yJ(B) + ("\\succ" ?$,1y;(B) + ("\\succapprox" ?$,1y?(B) + ("\\succcurlyeq" ?$,1y=(B) + ("\\succeq" ?$,1y=(B) + ("\\succnapprox" ?$,1zI(B) + ("\\succnsim" ?$,1zI(B) + ("\\succsim" ?$,1y?(B) + ("\\sum" ?$,1x1(B) + ("\\supset" ?$,1yC(B) + ("\\supseteq" ?$,1yG(B) + ("\\supseteqq" ?$,1yG(B) + ("\\supsetneq" ?$,1yK(B) + ("\\supsetneqq" ?$,1yK(B) + ("\\surd" ?$,1x:(B) + ("\\swarrow" ?$,1vy(B) + ("\\tau" ?$,1'D(B) + ("\\therefore" ?$,1xT(B) + ("\\theta" ?$,1'8(B) + ("\\thickapprox" ?$,1xh(B) + ("\\thicksim" ?$,1x\(B) + ("\\to" ?$,1vr(B) + ("\\top" ?$,1yd(B) + ("\\triangle" ?$,2!u(B) + ("\\triangledown" ?$,2!(B) + ("\\triangleleft" ?$,2"#(B) + ("\\trianglelefteq" ?$,1yt(B) + ("\\triangleq" ?$,1x|(B) + ("\\triangleright" ?$,2!y(B) + ("\\trianglerighteq" ?$,1yu(B) + ("\\twoheadleftarrow" ?$,1v~(B) + ("\\twoheadrightarrow" ?$,1w (B) + ("\\ulcorner" ?$,1z|(B) + ("\\uparrow" ?$,1vq(B) + ("\\updownarrow" ?$,1vu(B) + ("\\upleftharpoon" ?$,1w?(B) + ("\\uplus" ?$,1yN(B) + ("\\uprightharpoon" ?$,1w>(B) + ("\\upsilon" ?$,1'E(B) + ("\\upuparrows" ?$,1wH(B) + ("\\urcorner" ?$,1z}(B) + ("\\u{i}" ?$,1 M(B) + ("\\vDash" ?$,1yh(B) + ("\\varkappa" ?$,1'p(B) + ("\\varphi" ?$,1'U(B) + ("\\varpi" ?$,1'V(B) + ("\\varprime" ?$,1s2(B) + ("\\varpropto" ?$,1x=(B) + ("\\varrho" ?$,1'q(B) + ("\\varsigma" ?$,1'B(B) + ("\\vartheta" ?$,1'Q(B) + ("\\vartriangleleft" ?$,1yr(B) + ("\\vartriangleright" ?$,1ys(B) + ("\\vdash" ?$,1yb(B) + ("\\vdots" ?$,1zN(B) + ("\\vee" ?$,1xH(B) + ("\\veebar" ?$,1y{(B) + ("\\vert" ?|) + ("\\wedge" ?$,1xG(B) + ("\\wp" ?$,1uX(B) + ("\\wr" ?$,1x`(B) + ("\\xi" ?$,1'>(B) + ("\\zeta" ?$,1'6(B) + + ("\\Bbb{N}" ?$,1uU(B) ; AMS commands for blackboard bold + ("\\Bbb{P}" ?$,1uY(B) ; Also sometimes \mathbb. + ("\\Bbb{R}" ?$,1u](B) + ("\\Bbb{Z}" ?$,1ud(B) + ("--" ?$,1rs(B) + ("---" ?$,1rt(B) + ("~" ?\xa0) ; nbsp + ("\\mu" ?$,1'<(B) + ("\\rho" ?$,1'A(B) ) |