summaryrefslogtreecommitdiff
path: root/leim
diff options
context:
space:
mode:
authorDave Love <fx@gnu.org>2001-05-17 19:21:54 +0000
committerDave Love <fx@gnu.org>2001-05-17 19:21:54 +0000
commitf042e7b9aeb1848f8865988888f96d1247188847 (patch)
tree24d8e74b7d322f1e7fb8e4aa5beaf7a4e0fed90a /leim
parentf90c23ca3090bd105790f9e0a109f8b61db5b25c (diff)
downloademacs-f042e7b9aeb1848f8865988888f96d1247188847.tar.gz
("TeX"): Renamed from "latin-latex2e".
Language family and indicator changed. Many new translations.
Diffstat (limited to 'leim')
-rw-r--r--leim/ChangeLog5
-rw-r--r--leim/quail/latin-ltx.el643
2 files changed, 637 insertions, 11 deletions
diff --git a/leim/ChangeLog b/leim/ChangeLog
index be757c4e2c5..593f54cdc6b 100644
--- a/leim/ChangeLog
+++ b/leim/ChangeLog
@@ -1,3 +1,8 @@
+2001-05-17 Dave Love <fx@gnu.org>
+
+ * quail/latin-ltx.el ("TeX"): Renamed from "latin-latex2e".
+ Language family and indicator changed. Many new translations.
+
2001-05-17 Gerd Moellmann <gerd@gnu.org>
* quail/slovak.el, quail/czech.el: Set guidance to t for czech and
diff --git a/leim/quail/latin-ltx.el b/leim/quail/latin-ltx.el
index 6a5ae0aecfe..85df5da3745 100644
--- a/leim/quail/latin-ltx.el
+++ b/leim/quail/latin-ltx.el
@@ -1,9 +1,10 @@
-;;; quail/latin-ltx.el -- Quail package for Latin scripts
+;;; quail/latin-ltx.el -- Quail package for TeX-style input -*-coding: iso-2022-7bit-*-
;; Copyright (C) 2001 Electrotechnical Laboratory, JAPAN.
;; Licensed to the Free Software Foundation.
+;; Copyright (C) 2001 Free Software Foundation, Inc.
-;; Keywords: multilingual, input method, Greek
+;; Keywords: multilingual, input, Greek, i18n
;; This file is part of GNU Emacs.
@@ -27,9 +28,13 @@
(require 'quail)
(quail-define-package
- "latin-latex2e" "Latin" "LL" t
- "The LaTeX-like input method for Latin characters.
-The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported."
+ "TeX" "UTF-8" "\\" t
+ "LaTeX-like input method for many characters.
+These characters are from the charsets used by the `utf-8' coding
+system, including many technical ones. Examples:
+ \\'a -> ,Aa(B \\`{a} -> ,A`(B
+ \\pi -> $,1'@(B \\int -> $,1xK(B ^1 -> ,A9(B"
+
nil t t nil nil nil nil nil nil nil t)
(quail-define-rules
@@ -40,12 +45,15 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported."
("{\\copyright}" ?,A)(B) ("\\copyright" ?,A)(B)
("$^a$" ?,A*(B)
("\\={}" ?,A/(B)
- ("$\\pm$" ?,A1(B)
+ ("$\\pm$" ?,A1(B) ("\\pm" ?,A1(B)
("$^2$" ?,A2(B)
("$^3$" ?,A3(B)
("\\'{}" ?,A4(B)
("{\\P}" ?,A6(B) ("\\P" ?,A6(B)
- ("$\\cdot$" ?,A7(B)
+ ;; Fixme: Yudit has the equivalent of ("\\cdot" ?$,1z%(B), for U+22C5, DOT
+ ;; OPERATOR, whereas ,A7(B is MIDDLE DOT. JadeTeX translates both to
+ ;; \cdot.
+ ("$\\cdot$" ?,A7(B) ("\\cdot" ?,A7(B)
("\\c{}" ?,A8(B)
("$^1$" ?,A9(B)
("$^o$" ?,A:(B)
@@ -78,7 +86,7 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported."
("\\~{O}" ?,AU(B) ("\\~O" ?,AU(B)
("\\\"{O}" ?,AV(B) ("\\\"O" ?,AV(B)
("\\\k{O}" ?$,1"J(B)
- ("$\\times$" ?,AW(B)
+ ("$\\times$" ?,AW(B) ("\\times" ?,AW(B)
("{\\O}" ?,AX(B) ("\\O" ?,AX(B)
("\\`{U}" ?,AY(B) ("\\`U" ?,AY(B)
("\\'{U}" ?,AZ(B) ("\\'U" ?,AZ(B)
@@ -115,7 +123,7 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported."
("\\~{o}" ?,Au(B) ("\\~o" ?,Au(B)
("\\\"{o}" ?,Av(B) ("\\\"o" ?,Av(B)
("\\\k{o}" ?$,1"K(B)
- ("$\\div$" ?,Aw(B)
+ ("$\\div$" ?,Aw(B) ("\\div" ?,Aw(B)
("{\\o}" ?,Ax(B) ("\\o" ?,Ax(B)
("\\`{u}" ?,Ay(B) ("\\`u" ?,Ay(B)
("\\'{u}" ?,Az(B) ("\\'u" ?,Az(B)
@@ -255,9 +263,9 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported."
("\\'{g}" ?$,1"U(B) ("\\'g" ?$,1"U(B)
("\\`{N}" ?$,1"X(B) ("\\`N" ?$,1"X(B)
("\\`{n}" ?$,1"Y(B) ("\\`n" ?$,1"Y(B)
- ("\\'{\\AE}" ?$,1"\(B) ("\\'\\AE")
+ ("\\'{\\AE}" ?$,1"\(B) ("\\'\\AE" ?$,1"\(B)
("\\'{\\ae}" ?$,1"](B) ("\\'\\ae" ?$,1"](B)
- ("\\'{\\O}" ?$,1"^(B) ("\\'\\O")
+ ("\\'{\\O}" ?$,1"^(B) ("\\'\\O" ?$,1"^(B)
("\\'{\\o}" ?$,1"_(B) ("\\'\\o" ?$,1"_(B)
("\\v{H}" ?$,1"~(B) ("\\vH" ?$,1"~(B)
@@ -276,4 +284,617 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported."
("\\.{}" ?$,1$y(B)
("\\~{}" ?$,1$|(B)
("\\H{}" ?$,1$}(B)
+
+ ("\\'" ?$,1%A(B)
+ ("\\'K" ?$,1mp(B)
+ ("\\'M" ?$,1m~(B)
+ ("\\'P" ?$,1n4(B)
+ ("\\'W" ?$,1nb(B)
+ ("\\'k" ?$,1mq(B)
+ ("\\'m" ?$,1m(B)
+ ("\\'p" ?$,1n5(B)
+ ("\\'w" ?$,1nc(B)
+ ("\\," ?$,1rf(B)
+ ("\\." ?$,1%G(B)
+ ("\\.B" ?$,1mB(B)
+ ("\\.D" ?$,1mJ(B)
+ ("\\.F" ?$,1m^(B)
+ ("\\.H" ?$,1mb(B)
+ ("\\.M" ?$,1n (B)
+ ("\\.N" ?$,1n$(B)
+ ("\\.P" ?$,1n6(B)
+ ("\\.R" ?$,1n8(B)
+ ("\\.S" ?$,1n@(B)
+ ("\\.T" ?$,1nJ(B)
+ ("\\.W" ?$,1nf(B)
+ ("\\.X" ?$,1nj(B)
+ ("\\.Y" ?$,1nn(B)
+ ("\\.b" ?$,1mC(B)
+ ("\\.d" ?$,1mK(B)
+ ("\\.e" ?$,1 7(B)
+ ("\\.f" ?$,1m_(B)
+ ("\\.h" ?$,1mc(B)
+ ("\\.m" ?$,1n!(B)
+ ("\\.n" ?$,1n%(B)
+ ("\\.p" ?$,1n7(B)
+ ("\\.r" ?$,1n9(B)
+ ("\\.s" ?$,1nA(B)
+ ("\\.t" ?$,1nK(B)
+ ("\\.w" ?$,1ng(B)
+ ("\\.x" ?$,1nk(B)
+ ("\\.y" ?$,1no(B)
+ ("\\/" ?$,1rl(B)
+ ("\\:" ?$,1re(B)
+ ("\\;" ?$,1rd(B)
+ ("\\=" ?$,1%D(B)
+ ("\\=G" ?$,1m`(B)
+ ("\\=g" ?$,1ma(B)
+
+ ("^(" ?$,1s}(B)
+ ("^)" ?$,1s~(B)
+ ("^+" ?$,1sz(B)
+ ("^-" ?$,1s{(B)
+ ("^0" ?$,1sp(B)
+ ("^1" ?,A9(B)
+ ("^2" ?,A2(B)
+ ("^3" ?,A3(B)
+ ("^4" ?$,1st(B)
+ ("^5" ?$,1su(B)
+ ("^6" ?$,1sv(B)
+ ("^7" ?$,1sw(B)
+ ("^8" ?$,1sx(B)
+ ("^9" ?$,1sy(B)
+ ("^=" ?$,1s|(B)
+ ("^\\gamma" ?$,1% (B)
+ ("^h" ?$,1$P(B)
+ ("^j" ?$,1$R(B)
+ ("^l" ?$,1%!(B)
+ ("^n" ?$,1s(B)
+ ("^o" ?,A:(B)
+ ("^r" ?$,1$S(B)
+ ("^s" ?$,1%"(B)
+ ("^w" ?$,1$W(B)
+ ("^x" ?$,1%#(B)
+ ("^y" ?$,1$X(B)
+ ("^{SM}" ?$,1u`(B)
+ ("^{TEL}" ?$,1ua(B)
+ ("^{TM}" ?$,1ub(B)
+ ("_(" ?$,1t-(B)
+ ("_)" ?$,1t.(B)
+ ("_+" ?$,1t*(B)
+ ("_-" ?$,1t+(B)
+ ("_0" ?$,1t (B)
+ ("_1" ?$,1t!(B)
+ ("_2" ?$,1t"(B)
+ ("_3" ?$,1t#(B)
+ ("_4" ?$,1t$(B)
+ ("_5" ?$,1t%(B)
+ ("_6" ?$,1t&(B)
+ ("_7" ?$,1t'(B)
+ ("_8" ?$,1t((B)
+ ("_9" ?$,1t)(B)
+ ("_=" ?$,1t,(B)
+
+ ("\\~" ?$,1%C(B)
+ ("\\~E" ?$,1o<(B)
+ ("\\~V" ?$,1n\(B)
+ ("\\~Y" ?$,1ox(B)
+ ("\\~e" ?$,1o=(B)
+ ("\\~v" ?$,1n](B)
+ ("\\~y" ?$,1oy(B)
+
+ ("\\\"" ?$,1%H(B)
+ ("\\\"H" ?$,1mf(B)
+ ("\\\"W" ?$,1nd(B)
+ ("\\\"X" ?$,1nl(B)
+ ("\\\"h" ?$,1mg(B)
+ ("\\\"t" ?$,1nw(B)
+ ("\\\"w" ?$,1ne(B)
+ ("\\\"x" ?$,1nm(B)
+ ("\\^" ?$,1%B(B)
+ ("\\^Z" ?$,1np(B)
+ ("\\^z" ?$,1nq(B)
+ ("\\`" ?$,1%@(B)
+ ("\\`W" ?$,1n`(B)
+ ("\\`Y" ?$,1or(B)
+ ("\\`w" ?$,1na(B)
+ ("\\`y" ?$,1os(B)
+ ("\\b" ?$,1%q(B)
+ ("\\c" ?$,1%g(B)
+ ("\\c{D}" ?$,1mP(B)
+ ("\\c{H}" ?$,1mh(B)
+ ("\\c{d}" ?$,1mQ(B)
+ ("\\c{h}" ?$,1mi(B)
+ ("\\d" ?$,1%c(B)
+ ("\\d{A}" ?$,1o (B)
+ ("\\d{B}" ?$,1mD(B)
+ ("\\d{D}" ?$,1mL(B)
+ ("\\d{E}" ?$,1o8(B)
+ ("\\d{H}" ?$,1md(B)
+ ("\\d{I}" ?$,1oJ(B)
+ ("\\d{K}" ?$,1mr(B)
+ ("\\d{L}" ?$,1mv(B)
+ ("\\d{M}" ?$,1n"(B)
+ ("\\d{N}" ?$,1n&(B)
+ ("\\d{O}" ?$,1oL(B)
+ ("\\d{R}" ?$,1n:(B)
+ ("\\d{S}" ?$,1nB(B)
+ ("\\d{T}" ?$,1nL(B)
+ ("\\d{U}" ?$,1od(B)
+ ("\\d{V}" ?$,1n^(B)
+ ("\\d{W}" ?$,1nh(B)
+ ("\\d{Y}" ?$,1ot(B)
+ ("\\d{Z}" ?$,1nr(B)
+ ("\\d{a}" ?$,1o!(B)
+ ("\\d{b}" ?$,1mE(B)
+ ("\\d{d}" ?$,1mM(B)
+ ("\\d{e}" ?$,1o9(B)
+ ("\\d{h}" ?$,1me(B)
+ ("\\d{i}" ?$,1oK(B)
+ ("\\d{k}" ?$,1ms(B)
+ ("\\d{l}" ?$,1mw(B)
+ ("\\d{m}" ?$,1n#(B)
+ ("\\d{n}" ?$,1n'(B)
+ ("\\d{o}" ?$,1oM(B)
+ ("\\d{r}" ?$,1n;(B)
+ ("\\d{s}" ?$,1nC(B)
+ ("\\d{t}" ?$,1nM(B)
+ ("\\d{u}" ?$,1oe(B)
+ ("\\d{v}" ?$,1n_(B)
+ ("\\d{w}" ?$,1ni(B)
+ ("\\d{y}" ?$,1ou(B)
+ ("\\d{z}" ?$,1ns(B)
+ ("\\rq" ?$,1ry(B)
+ ("\\u" ?$,1%F(B)
+ ("\\v" ?$,1%L(B)
+ ("\\v{L}" ?$,1 ](B)
+ ("\\v{i}" ?$,1"0(B)
+ ("\\v{j}" ?$,1"P(B)
+ ("\\v{l}" ?$,1 ^(B)
+ ("\\yen" ?,A%(B)
+
+ ("\\Box" ?$,2!a(B)
+ ("\\Bumpeq" ?$,1xn(B)
+ ("\\Cap" ?$,1z2(B)
+ ("\\Cup" ?$,1z3(B)
+ ("\\Delta" ?$,1&t(B)
+ ("\\Diamond" ?$,2"'(B)
+ ("\\Downarrow" ?$,1wS(B)
+ ("\\Gamma" ?$,1&s(B)
+ ("\\H" ?$,1%K(B)
+ ("\\H{o}" ?$,1 q(B)
+ ("\\Im" ?$,1uQ(B)
+ ("\\Join" ?$,1z((B)
+ ("\\Lambda" ?$,1&{(B)
+ ("\\Leftarrow" ?$,1wP(B)
+ ("\\Leftrightarrow" ?$,1wT(B)
+ ("\\Ll" ?$,1z8(B)
+ ("\\Lleftarrow" ?$,1wZ(B)
+ ("\\Longleftarrow" ?$,1wP(B)
+ ("\\Longleftrightarrow" ?$,1wT(B)
+ ("\\Longrightarrow" ?$,1wR(B)
+ ("\\Lsh" ?$,1w0(B)
+ ("\\Omega" ?$,1')(B)
+ ("\\Phi" ?$,1'&(B)
+ ("\\Pi" ?$,1' (B)
+ ("\\Psi" ?$,1'((B)
+ ("\\Re" ?$,1u\(B)
+ ("\\Rightarrow" ?$,1wR(B)
+ ("\\Rrightarrow" ?$,1w[(B)
+ ("\\Rsh" ?$,1w1(B)
+ ("\\Sigma" ?$,1'#(B)
+ ("\\Subset" ?$,1z0(B)
+ ("\\Supset" ?$,1z1(B)
+ ("\\Theta" ?$,1&x(B)
+ ("\\Uparrow" ?$,1wQ(B)
+ ("\\Updownarrow" ?$,1wU(B)
+ ("\\Upsilon" ?$,1'%(B)
+ ("\\Vdash" ?$,1yi(B)
+ ("\\Vert" ?$,1rv(B)
+ ("\\Vvdash" ?$,1yj(B)
+ ("\\Xi" ?$,1&~(B)
+ ("\\aleph" ?$,1uu(B)
+ ("\\alpha" ?$,1'1(B)
+ ("\\amalg" ?$,1x0(B)
+ ("\\angle" ?$,1x@(B)
+ ("\\approx" ?$,1xh(B)
+ ("\\approxeq" ?$,1xj(B)
+ ("\\ast" ?$,1x7(B)
+ ("\\asymp" ?$,1xm(B)
+ ("\\backcong" ?$,1xl(B)
+ ("\\backepsilon" ?$,1x-(B)
+ ("\\backprime" ?$,1s5(B)
+ ("\\backsim" ?$,1x](B)
+ ("\\backsimeq" ?$,1z-(B)
+ ("\\backslash" ?\\)
+ ("\\barwedge" ?$,1y|(B)
+ ("\\because" ?$,1xU(B)
+ ("\\beta" ?$,1'2(B)
+ ("\\beth" ?$,1uv(B)
+ ("\\between" ?$,1y,(B)
+ ("\\bigcap" ?$,1z"(B)
+ ("\\bigcirc" ?$,2"O(B)
+ ("\\bigcup" ?$,1z#(B)
+ ("\\bigstar" ?$,2"e(B)
+ ("\\bigtriangledown" ?$,2!}(B)
+ ("\\bigtriangleup" ?$,2!s(B)
+ ("\\bigvee" ?$,1z!(B)
+ ("\\bigwedge" ?$,1z (B)
+ ("\\blacklozenge" ?$,2%f(B)
+ ("\\blacksquare" ?$,2!j(B)
+ ("\\blacktriangle" ?$,2!t(B)
+ ("\\blacktriangledown" ?$,2!~(B)
+ ("\\blacktriangleleft" ?$,2""(B)
+ ("\\blacktriangleright" ?$,2!x(B)
+ ("\\bot" ?$,1ye(B)
+ ("\\bowtie" ?$,1z((B)
+ ("\\boxminus" ?$,1y_(B)
+ ("\\boxplus" ?$,1y^(B)
+ ("\\boxtimes" ?$,1y`(B)
+ ("\\bullet" ?$,1s"(B)
+ ("\\bumpeq" ?$,1xo(B)
+ ("\\cap" ?$,1xI(B)
+ ("\\cdots" ?$,1zO(B)
+ ("\\centerdot" ?,A7(B)
+ ("\\checkmark" ?$,2%S(B)
+ ("\\chi" ?$,1'G(B)
+ ("\\circ" ?$,2"+(B)
+ ("\\circeq" ?$,1xw(B)
+ ("\\circlearrowleft" ?$,1w:(B)
+ ("\\circlearrowright" ?$,1w;(B)
+ ("\\circledR" ?,A.(B)
+ ("\\circledS" ?$,1H(B)
+ ("\\circledast" ?$,1y[(B)
+ ("\\circledcirc" ?$,1yZ(B)
+ ("\\circleddash" ?$,1y](B)
+ ("\\clubsuit" ?$,2#c(B)
+ ("\\colon" ?:)
+ ("\\coloneq" ?$,1xt(B)
+ ("\\complement" ?$,1x!(B)
+ ("\\cong" ?$,1xe(B)
+ ("\\coprod" ?$,1x0(B)
+ ("\\cup" ?$,1xJ(B)
+ ("\\curlyeqprec" ?$,1z>(B)
+ ("\\curlyeqsucc" ?$,1z?(B)
+ ("\\curlypreceq" ?$,1y<(B)
+ ("\\curlyvee" ?$,1z.(B)
+ ("\\curlywedge" ?$,1z/(B)
+ ("\\curvearrowleft" ?$,1w6(B)
+ ("\\curvearrowright" ?$,1w7(B)
+
+ ("\\dag" ?$,1s (B)
+ ("\\dagger" ?$,1s (B)
+ ("\\daleth" ?$,1ux(B)
+ ("\\dashv" ?$,1yc(B)
+ ("\\ddag" ?$,1s!(B)
+ ("\\ddagger" ?$,1s!(B)
+ ("\\ddots" ?$,1zQ(B)
+ ("\\delta" ?$,1'4(B)
+ ("\\diamond" ?$,1z$(B)
+ ("\\diamondsuit" ?$,2#b(B)
+ ("\\digamma" ?$,1'\(B)
+ ("\\divideontimes" ?$,1z'(B)
+ ("\\doteq" ?$,1xp(B)
+ ("\\doteqdot" ?$,1xq(B)
+ ("\\dotplus" ?$,1x4(B)
+ ("\\dotsquare" ?$,1ya(B)
+ ("\\downarrow" ?$,1vs(B)
+ ("\\downdownarrows" ?$,1wJ(B)
+ ("\\downleftharpoon" ?$,1wC(B)
+ ("\\downrightharpoon" ?$,1wB(B)
+ ("\\ell" ?$,1uS(B)
+ ("\\emptyset" ?$,1x%(B)
+ ("\\epsilon" ?$,1'5(B)
+ ("\\eqcirc" ?$,1xv(B)
+ ("\\eqcolon" ?$,1xu(B)
+ ("\\eqslantgtr" ?$,1z=(B)
+ ("\\eqslantless" ?$,1z<(B)
+ ("\\equiv" ?$,1y!(B)
+ ("\\eta" ?$,1'7(B)
+ ("\\euro" ?$,1tL(B)
+ ("\\exists" ?$,1x#(B)
+ ("\\fallingdotseq" ?$,1xr(B)
+ ("\\flat" ?$,2#m(B)
+ ("\\forall" ?$,1x (B)
+ ("\\frac1" ?$,1v?(B)
+ ("\\frac12" ?,A=(B)
+ ("\\frac13" ?$,1v3(B)
+ ("\\frac14" ?,A<(B)
+ ("\\frac15" ?$,1v5(B)
+ ("\\frac16" ?$,1v9(B)
+ ("\\frac18" ?$,1v;(B)
+ ("\\frac23" ?$,1v4(B)
+ ("\\frac25" ?$,1v6(B)
+ ("\\frac34" ?,A>(B)
+ ("\\frac35" ?$,1v7(B)
+ ("\\frac38" ?$,1v<(B)
+ ("\\frac45" ?$,1v8(B)
+ ("\\frac56" ?$,1v:(B)
+ ("\\frac58" ?$,1v=(B)
+ ("\\frac78" ?$,1v>(B)
+ ("\\frown" ?$,1{"(B)
+ ("\\gamma" ?$,1'3(B)
+ ("\\ge" ?$,1y%(B)
+ ("\\geq" ?$,1y%(B)
+ ("\\geqq" ?$,1y'(B)
+ ("\\geqslant" ?$,1y%(B)
+ ("\\gets" ?$,1vp(B)
+ ("\\gg" ?$,1y+(B)
+ ("\\ggg" ?$,1z9(B)
+ ("\\gimel" ?$,1uw(B)
+ ("\\gnapprox" ?$,1zG(B)
+ ("\\gneq" ?$,1y)(B)
+ ("\\gneqq" ?$,1y)(B)
+ ("\\gnsim" ?$,1zG(B)
+ ("\\gtrapprox" ?$,1y3(B)
+ ("\\gtrdot" ?$,1z7(B)
+ ("\\gtreqless" ?$,1z;(B)
+ ("\\gtreqqless" ?$,1z;(B)
+ ("\\gtrless" ?$,1y7(B)
+ ("\\gtrsim" ?$,1y3(B)
+ ("\\gvertneqq" ?$,1y)(B)
+ ("\\hbar" ?$,1uO(B)
+ ("\\heartsuit" ?$,2#e(B)
+ ("\\hookleftarrow" ?$,1w)(B)
+ ("\\hookrightarrow" ?$,1w*(B)
+ ("\\iff" ?$,1wT(B)
+ ("\\imath" ?$,1 Q(B)
+ ("\\in" ?$,1x((B)
+ ("\\infty" ?$,1x>(B)
+ ("\\int" ?$,1xK(B)
+ ("\\intercal" ?$,1yz(B)
+ ("\\iota" ?$,1'9(B)
+ ("\\kappa" ?$,1':(B)
+ ("\\lambda" ?$,1';(B)
+ ("\\langle" ?$,1{)(B)
+ ("\\lbrace" ?{)
+ ("\\lbrack" ?[)
+ ("\\lceil" ?$,1zh(B)
+ ("\\ldots" ?$,1s&(B)
+ ("\\le" ?$,1y$(B)
+ ("\\leadsto" ?$,1v}(B)
+ ("\\leftarrow" ?$,1vp(B)
+ ("\\leftarrowtail" ?$,1w"(B)
+ ("\\leftharpoondown" ?$,1w=(B)
+ ("\\leftharpoonup" ?$,1w<(B)
+ ("\\leftleftarrows" ?$,1wG(B)
+ ("\\leftparengtr" ?$,1{)(B)
+ ("\\leftrightarrow" ?$,1vt(B)
+ ("\\leftrightarrows" ?$,1wF(B)
+ ("\\leftrightharpoons" ?$,1wK(B)
+ ("\\leftrightsquigarrow" ?$,1w-(B)
+ ("\\leftthreetimes" ?$,1z+(B)
+ ("\\leq" ?$,1y$(B)
+ ("\\leqq" ?$,1y&(B)
+ ("\\leqslant" ?$,1y$(B)
+ ("\\lessapprox" ?$,1y2(B)
+ ("\\lessdot" ?$,1z6(B)
+ ("\\lesseqgtr" ?$,1z:(B)
+ ("\\lesseqqgtr" ?$,1z:(B)
+ ("\\lessgtr" ?$,1y6(B)
+ ("\\lesssim" ?$,1y2(B)
+ ("\\lfloor" ?$,1zj(B)
+ ("\\lhd" ?$,2"!(B)
+ ("\\ll" ?$,1y*(B)
+ ("\\llcorner" ?$,1z~(B)
+ ("\\lnapprox" ?$,1zF(B)
+ ("\\lneq" ?$,1y((B)
+ ("\\lneqq" ?$,1y((B)
+ ("\\lnsim" ?$,1zF(B)
+ ("\\longleftarrow" ?$,1vp(B)
+ ("\\longleftrightarrow" ?$,1vt(B)
+ ("\\longmapsto" ?$,1w&(B)
+ ("\\longrightarrow" ?$,1vr(B)
+ ("\\looparrowleft" ?$,1w+(B)
+ ("\\looparrowright" ?$,1w,(B)
+ ("\\lozenge" ?$,2%g(B)
+ ("\\lq" ?$,1rx(B)
+ ("\\lrcorner" ?$,1z(B)
+ ("\\ltimes" ?$,1z)(B)
+ ("\\lvertneqq" ?$,1y((B)
+ ("\\maltese" ?$,2%`(B)
+ ("\\mapsto" ?$,1w&(B)
+ ("\\measuredangle" ?$,1xA(B)
+ ("\\mho" ?$,1ug(B)
+ ("\\mid" ?$,1xC(B)
+ ("\\models" ?$,1yg(B)
+ ("\\mp" ?$,1x3(B)
+ ("\\multimap" ?$,1yx(B)
+ ("\\nLeftarrow" ?$,1wM(B)
+ ("\\nLeftrightarrow" ?$,1wN(B)
+ ("\\nRightarrow" ?$,1wO(B)
+ ("\\nVDash" ?$,1yo(B)
+ ("\\nVdash" ?$,1yn(B)
+ ("\\nabla" ?$,1x'(B)
+ ("\\napprox" ?$,1xi(B)
+ ("\\natural" ?$,2#n(B)
+ ("\\ncong" ?$,1xg(B)
+ ("\\ne" ?$,1y (B)
+ ("\\nearrow" ?$,1vw(B)
+ ("\\neg" ?,A,(B)
+ ("\\neq" ?$,1y (B)
+ ("\\nequiv" ?$,1y"(B)
+ ("\\newline" ?$,1s((B)
+ ("\\nexists" ?$,1x$(B)
+ ("\\ngeq" ?$,1y1(B)
+ ("\\ngeqq" ?$,1y1(B)
+ ("\\ngeqslant" ?$,1y1(B)
+ ("\\ngtr" ?$,1y/(B)
+ ("\\ni" ?$,1x+(B)
+ ("\\nleftarrow" ?$,1vz(B)
+ ("\\nleftrightarrow" ?$,1w.(B)
+ ("\\nleq" ?$,1y0(B)
+ ("\\nleqq" ?$,1y0(B)
+ ("\\nleqslant" ?$,1y0(B)
+ ("\\nless" ?$,1y.(B)
+ ("\\nmid" ?$,1xD(B)
+ ("\\not" ?$,1%x(B)
+ ("\\notin" ?$,1x)(B)
+ ("\\nparallel" ?$,1xF(B)
+ ("\\nprec" ?$,1y@(B)
+ ("\\npreceq" ?$,1z@(B)
+ ("\\nrightarrow" ?$,1v{(B)
+ ("\\nshortmid" ?$,1xD(B)
+ ("\\nshortparallel" ?$,1xF(B)
+ ("\\nsim" ?$,1xa(B)
+ ("\\nsimeq" ?$,1xd(B)
+ ("\\nsubset" ?$,1yD(B)
+ ("\\nsubseteq" ?$,1yH(B)
+ ("\\nsubseteqq" ?$,1yH(B)
+ ("\\nsucc" ?$,1yA(B)
+ ("\\nsucceq" ?$,1zA(B)
+ ("\\nsupset" ?$,1yE(B)
+ ("\\nsupseteq" ?$,1yI(B)
+ ("\\nsupseteqq" ?$,1yI(B)
+ ("\\ntriangleleft" ?$,1zJ(B)
+ ("\\ntrianglelefteq" ?$,1zL(B)
+ ("\\ntriangleright" ?$,1zK(B)
+ ("\\ntrianglerighteq" ?$,1zM(B)
+ ("\\nu" ?$,1'=(B)
+ ("\\nvDash" ?$,1ym(B)
+ ("\\nvdash" ?$,1yl(B)
+ ("\\nwarrow" ?$,1vv(B)
+ ("\\odot" ?$,1yY(B)
+ ("\\oint" ?$,1xN(B)
+ ("\\omega" ?$,1'I(B)
+ ("\\ominus" ?$,1yV(B)
+ ("\\oplus" ?$,1yU(B)
+ ("\\oslash" ?$,1yX(B)
+ ("\\otimes" ?$,1yW(B)
+ ("\\par" ?$,1s)(B)
+ ("\\parallel" ?$,1xE(B)
+ ("\\partial" ?$,1x"(B)
+ ("\\perp" ?$,1ye(B)
+ ("\\phi" ?$,1'F(B)
+ ("\\pi" ?$,1'@(B)
+ ("\\pitchfork" ?$,1z4(B)
+ ("\\prec" ?$,1y:(B)
+ ("\\precapprox" ?$,1y>(B)
+ ("\\preceq" ?$,1y<(B)
+ ("\\precnapprox" ?$,1zH(B)
+ ("\\precnsim" ?$,1zH(B)
+ ("\\precsim" ?$,1y>(B)
+ ("\\prime" ?$,1s2(B)
+ ("\\prod" ?$,1x/(B)
+ ("\\propto" ?$,1x=(B)
+ ("\\psi" ?$,1'H(B)
+ ("\\quad" ?$,1ra(B)
+ ("\\rangle" ?$,1{*(B)
+ ("\\rbrace" ?})
+ ("\\rbrack" ?])
+ ("\\rceil" ?$,1zi(B)
+ ("\\rfloor" ?$,1zk(B)
+ ("\\rightarrow" ?$,1vr(B)
+ ("\\rightarrowtail" ?$,1w#(B)
+ ("\\rightharpoondown" ?$,1wA(B)
+ ("\\rightharpoonup" ?$,1w@(B)
+ ("\\rightleftarrows" ?$,1wD(B)
+ ("\\rightleftharpoons" ?$,1wL(B)
+ ("\\rightparengtr" ?$,1{*(B)
+ ("\\rightrightarrows" ?$,1wI(B)
+ ("\\rightthreetimes" ?$,1z,(B)
+ ("\\risingdotseq" ?$,1xs(B)
+ ("\\rtimes" ?$,1z*(B)
+ ("\\sbs" ?$,3q((B)
+ ("\\searrow" ?$,1vx(B)
+ ("\\setminus" ?$,1x6(B)
+ ("\\sharp" ?$,2#o(B)
+ ("\\shortmid" ?$,1xC(B)
+ ("\\shortparallel" ?$,1xE(B)
+ ("\\sigma" ?$,1'C(B)
+ ("\\sim" ?$,1x\(B)
+ ("\\simeq" ?$,1xc(B)
+ ("\\smallamalg" ?$,1x0(B)
+ ("\\smallsetminus" ?$,1x6(B)
+ ("\\smallsmile" ?$,1{#(B)
+ ("\\smile" ?$,1{#(B)
+ ("\\spadesuit" ?$,2#`(B)
+ ("\\sphericalangle" ?$,1xB(B)
+ ("\\sqcap" ?$,1yS(B)
+ ("\\sqcup" ?$,1yT(B)
+ ("\\sqsubset" ?$,1yO(B)
+ ("\\sqsubseteq" ?$,1yQ(B)
+ ("\\sqsupset" ?$,1yP(B)
+ ("\\sqsupseteq" ?$,1yR(B)
+ ("\\square" ?$,2!a(B)
+ ("\\squigarrowright" ?$,1w](B)
+ ("\\star" ?$,1z&(B)
+ ("\\straightphi" ?$,1'F(B)
+ ("\\subset" ?$,1yB(B)
+ ("\\subseteq" ?$,1yF(B)
+ ("\\subseteqq" ?$,1yF(B)
+ ("\\subsetneq" ?$,1yJ(B)
+ ("\\subsetneqq" ?$,1yJ(B)
+ ("\\succ" ?$,1y;(B)
+ ("\\succapprox" ?$,1y?(B)
+ ("\\succcurlyeq" ?$,1y=(B)
+ ("\\succeq" ?$,1y=(B)
+ ("\\succnapprox" ?$,1zI(B)
+ ("\\succnsim" ?$,1zI(B)
+ ("\\succsim" ?$,1y?(B)
+ ("\\sum" ?$,1x1(B)
+ ("\\supset" ?$,1yC(B)
+ ("\\supseteq" ?$,1yG(B)
+ ("\\supseteqq" ?$,1yG(B)
+ ("\\supsetneq" ?$,1yK(B)
+ ("\\supsetneqq" ?$,1yK(B)
+ ("\\surd" ?$,1x:(B)
+ ("\\swarrow" ?$,1vy(B)
+ ("\\tau" ?$,1'D(B)
+ ("\\therefore" ?$,1xT(B)
+ ("\\theta" ?$,1'8(B)
+ ("\\thickapprox" ?$,1xh(B)
+ ("\\thicksim" ?$,1x\(B)
+ ("\\to" ?$,1vr(B)
+ ("\\top" ?$,1yd(B)
+ ("\\triangle" ?$,2!u(B)
+ ("\\triangledown" ?$,2!(B)
+ ("\\triangleleft" ?$,2"#(B)
+ ("\\trianglelefteq" ?$,1yt(B)
+ ("\\triangleq" ?$,1x|(B)
+ ("\\triangleright" ?$,2!y(B)
+ ("\\trianglerighteq" ?$,1yu(B)
+ ("\\twoheadleftarrow" ?$,1v~(B)
+ ("\\twoheadrightarrow" ?$,1w (B)
+ ("\\ulcorner" ?$,1z|(B)
+ ("\\uparrow" ?$,1vq(B)
+ ("\\updownarrow" ?$,1vu(B)
+ ("\\upleftharpoon" ?$,1w?(B)
+ ("\\uplus" ?$,1yN(B)
+ ("\\uprightharpoon" ?$,1w>(B)
+ ("\\upsilon" ?$,1'E(B)
+ ("\\upuparrows" ?$,1wH(B)
+ ("\\urcorner" ?$,1z}(B)
+ ("\\u{i}" ?$,1 M(B)
+ ("\\vDash" ?$,1yh(B)
+ ("\\varkappa" ?$,1'p(B)
+ ("\\varphi" ?$,1'U(B)
+ ("\\varpi" ?$,1'V(B)
+ ("\\varprime" ?$,1s2(B)
+ ("\\varpropto" ?$,1x=(B)
+ ("\\varrho" ?$,1'q(B)
+ ("\\varsigma" ?$,1'B(B)
+ ("\\vartheta" ?$,1'Q(B)
+ ("\\vartriangleleft" ?$,1yr(B)
+ ("\\vartriangleright" ?$,1ys(B)
+ ("\\vdash" ?$,1yb(B)
+ ("\\vdots" ?$,1zN(B)
+ ("\\vee" ?$,1xH(B)
+ ("\\veebar" ?$,1y{(B)
+ ("\\vert" ?|)
+ ("\\wedge" ?$,1xG(B)
+ ("\\wp" ?$,1uX(B)
+ ("\\wr" ?$,1x`(B)
+ ("\\xi" ?$,1'>(B)
+ ("\\zeta" ?$,1'6(B)
+
+ ("\\Bbb{N}" ?$,1uU(B) ; AMS commands for blackboard bold
+ ("\\Bbb{P}" ?$,1uY(B) ; Also sometimes \mathbb.
+ ("\\Bbb{R}" ?$,1u](B)
+ ("\\Bbb{Z}" ?$,1ud(B)
+ ("--" ?$,1rs(B)
+ ("---" ?$,1rt(B)
+ ("~" ?\xa0) ; nbsp
+ ("\\mu" ?$,1'<(B)
+ ("\\rho" ?$,1'A(B)
)